JP2000265239A - High carbon steel sheet excellent in blankability - Google Patents
High carbon steel sheet excellent in blankabilityInfo
- Publication number
- JP2000265239A JP2000265239A JP6949899A JP6949899A JP2000265239A JP 2000265239 A JP2000265239 A JP 2000265239A JP 6949899 A JP6949899 A JP 6949899A JP 6949899 A JP6949899 A JP 6949899A JP 2000265239 A JP2000265239 A JP 2000265239A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- less
- carbide
- steel sheet
- notch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、打抜き加工性に優れ、
各種機械部品等に使用される高炭素鋼板に関する。BACKGROUND OF THE INVENTION The present invention has excellent punching workability,
The present invention relates to a high carbon steel sheet used for various machine parts and the like.
【0002】[0002]
【従来の技術】複雑形状をもち高い寸法精度,耐摩耗性
が要求されるギア等の機械部品は、高炭素鋼を素材と
し、切削加工等によって成形仕上げされた後、焼入れ焼
戻し等の必要な熱処理を施すことにより製造されてき
た。切削加工では製造コストが高くつくため、切削加工
を打抜き加工に置き換えることが検討されている。打抜
き加工による場合、特にギア歯等の部品と接触する部分
では、打抜き加工に起因する割れが抑制又は解消され、
剪断面が多いことが要求される。また、複雑形状で高寸
法精度の製品を得るためには、打抜き加工技術の向上に
加え、優れた打抜き性を示す高炭素鋼板が素材として要
求される。2. Description of the Related Art Gears and other mechanical parts that have a complicated shape and require high dimensional accuracy and wear resistance are made of high carbon steel, and are formed and finished by cutting or the like and then require quenching and tempering. It has been manufactured by heat treatment. Since the manufacturing cost is high in the cutting process, it has been studied to replace the cutting process with a punching process. In the case of punching, in particular, in the portion that comes into contact with parts such as gear teeth, cracks due to punching are suppressed or eliminated,
It is required that the shear surface be large. In addition, in order to obtain a product having a complicated shape and high dimensional accuracy, a high carbon steel sheet exhibiting excellent punching properties is required as a raw material, in addition to an improvement in punching technology.
【0003】鋼帯の熱延条件を制御してベイナイトの生
成を抑制するとき、熱延材のままであっても打抜きによ
る割れが発生しない鋼板が得られることが特開昭56−
9329号公報で紹介されている。しかし、対象鋼種は
C含有量が0.60重量%以下の鋼板であり、C含有量
が0.70重量%以上の高炭素鋼板には適用できない。
高炭素鋼の打抜き性に関しては、炭化物粒径の微細化及
びフェライトの粒径制御によりバリ高さの低減や金型の
長寿命化が図られること(特開平9−316595号公
報), 特殊元素の添加によりバリ高さの低減や金型の長
寿命化が図られること(特開昭57−110622号公
報,特開平3−44447号公報,特開平4−2352
52号公報),打抜き時の騒音低減や金型の長寿命化に
炭化物の黒鉛化が有効であること(特開昭56−119
758号公報)等が知られている。When controlling the hot-rolling condition of a steel strip to suppress the formation of bainite, it is known that a steel sheet which does not crack by punching even if the hot-rolled material is obtained can be obtained.
No. 9329. However, the target steel type is a steel sheet having a C content of 0.60% by weight or less, and cannot be applied to a high carbon steel sheet having a C content of 0.70% by weight or more.
Regarding the punching property of high carbon steel, reduction of burr height and prolongation of mold life can be achieved by making carbide grain size finer and controlling ferrite grain size (Japanese Patent Application Laid-Open No. 9-316595), special elements The height of the burrs and the life of the mold can be reduced by the addition of (Japanese Patent Application Laid-Open Nos. 57-110622, 3-44447 and 4-2352).
No. 52), graphitization of carbide is effective for reducing noise during punching and extending the life of a mold (Japanese Patent Application Laid-Open No. 56-119).
No. 758) is known.
【0004】[0004]
【発明が解決しようとする課題】従来の打抜き性改善策
は、何れもバリ高さの低減や金型の長寿命化を狙ったも
のに過ぎない。また、打抜き性の改善に使用される特殊
元素は、一般的な高炭素鋼に適用できず、製造コストを
上昇させる原因にもなる。このように、打抜き性の中で
も特に打抜き面性状に優れた高炭素鋼板のニーズが高ま
っているにも拘わらず、一般的な高炭素鋼において割れ
が小さいこと,剪断面が多いこと等、打抜き面性状を改
善する有効な方法が確立されていない。本発明は、この
ような問題を解消すべく案出されたものであり、0.7
0〜1.20重量%のCを含む高炭素鋼板において炭化
物を粒径制御することにより、打抜き性に密接な関係を
もつ切欠き引張伸びを改善し、打抜き性に優れた高炭素
鋼板を提供することを目的とする。Any of the conventional measures for improving the punching performance are merely aimed at reducing the burr height and extending the life of the mold. In addition, special elements used for improving the punching property cannot be applied to general high carbon steel, and cause an increase in manufacturing cost. As described above, despite the growing needs for high carbon steel sheets with particularly excellent punching surface properties among the punching properties, general high carbon steels have small cracks and large shear surfaces. An effective method to improve the properties has not been established. The present invention has been devised in order to solve such a problem.
By controlling the grain size of carbide in a high carbon steel sheet containing 0 to 1.20 wt% C, the notch tensile elongation closely related to the punching property is improved, and a high carbon steel sheet excellent in the punching property is provided. The purpose is to do.
【0005】[0005]
【課題を解決するための手段】本発明の高炭素鋼板は、
その目的を達成するため、C:0.70〜1.20重量
%,Si:0.40重量%以下,Mn:1.0重量%以
下,P:0.03重量%以下,全Al:0.10重量%
以下を含み、残部が実質的にFeの組成をもち、平均粒
径0.3〜1.2μmで炭化物球状化率80%以上の炭
化物がフェライト粒径5μm以上のフェライトマトリッ
クスに分散した組織をもち、JIS5号引張試験片の平
行部長手方向中央位置における幅方向両サイドに開き角
45度,深さ2mmのVノッチを入れた試験片を用いて
引張試験し、平行部長手方向中央部の標点間距離10m
mに対する破断後の伸び率として表わされる切欠き引張
伸びが10%以上であることを特徴とする。The high carbon steel sheet of the present invention comprises:
In order to achieve the object, C: 0.70 to 1.20% by weight, Si: 0.40% by weight or less, Mn: 1.0% by weight or less, P: 0.03% by weight or less, total Al: 0% .10% by weight
Including the following, the balance substantially has a composition of Fe, and has a structure in which carbide having an average particle diameter of 0.3 to 1.2 μm and a carbide spheroidization ratio of 80% or more is dispersed in a ferrite matrix having a ferrite particle diameter of 5 μm or more. A tensile test was performed using a test piece having a V-notch with an opening angle of 45 degrees and a depth of 2 mm on both sides in the width direction at the center in the longitudinal direction of the parallel portion of the JIS No. 5 tensile test piece, Point-to-point distance 10m
The notch tensile elongation expressed as the elongation percentage after breaking with respect to m is 10% or more.
【0006】高炭素鋼板は、更にCr:1.6重量%以
下,Mo:0.3重量%以下,Cu:0.3重量%以
下,Ni:2.0重量%以下,Ca:0.01重量%以
下の1種又は2種以上を含むことができる。不純物とし
て含まれるSは、0.01重量%以下に規制することが
好ましい。炭化物球状化率は、鋼板断面の金属組織を観
察するとき、炭化物総数が300個以上の領域を観察視
野にとり、最大長さpを定め、最大長さpと直角方向の
最大長さqとの比p/qが3未満の炭化物(以下、球状
化炭化物という)の個数が観察視野内の炭化物総数に占
める割合(%)で表わされる。また、炭化物平均粒径
は、同じ炭化物総数300個以上の観察視野において個
々の炭化物について測定した円相当径を全測定炭化物で
平均した値で表わされる。[0006] The high carbon steel sheet further contains Cr: 1.6 wt% or less, Mo: 0.3 wt% or less, Cu: 0.3 wt% or less, Ni: 2.0 wt% or less, and Ca: 0.01. It may contain one or more kinds by weight of not more than one. S contained as an impurity is preferably regulated to 0.01% by weight or less. When observing the metallographic structure of the steel plate cross section, the carbide spheroidization ratio is determined by observing the region where the total number of carbides is 300 or more in the observation visual field and determining the maximum length p. The number of carbides having a ratio p / q of less than 3 (hereinafter referred to as spheroidized carbides) is expressed as a ratio (%) to the total number of carbides in the observation visual field. In addition, the carbide average particle diameter is represented by a value obtained by averaging the equivalent circle diameters measured for individual carbides in the observation field of the same carbide total number of 300 or more for all the measured carbides.
【0007】[0007]
【作用】本発明者等は、一般的な高炭素鋼板の打抜き性
を向上させる方法を種々検討したところ、局部延性の指
標の一つである切欠き引張伸び及び打抜き時の剪断面率
に打抜き性が良好な相関関係をもつことを見出した。ま
た、鋼板に分散している炭化物の形態が切欠き引張伸び
に大きな影響を及ぼし、炭化物の球状化及び平均粒径の
増大によって切欠き引張伸びが改善されることが判っ
た。割れや亀裂は、打抜き加工時に鋼板が加工変形する
際に発生した非常に局所的な欠陥を起点とし、加工変形
の進行に伴って素材内部を伝播した結果であると考えら
れる。高炭素鋼板においては、欠陥生成原因として炭化
物(セメンタイト),MnS系介在物等を起点とするミ
クロボイドの発生・成長が挙げられる。The present inventors have studied various methods for improving the punching properties of general high carbon steel sheets, and found that the notch tensile elongation, which is one of the indexes of local ductility, and the shear surface ratio at the time of punching were used. It was found that the sex had a good correlation. It was also found that the form of the carbide dispersed in the steel sheet had a great effect on the notch tensile elongation, and the notch tensile elongation was improved by spheroidizing the carbide and increasing the average grain size. Cracks and cracks are thought to be the result of very local defects generated when the steel sheet was deformed during punching, and propagated inside the material as the deformation progressed. In a high carbon steel sheet, the generation and growth of microvoids originating from carbides (cementite), MnS-based inclusions, and the like can be cited as defects.
【0008】このような前提に立つとき、加工変形時に
ミクロボイドの発生・成長を可能な限り抑制できる金属
組織の調整及び介在物の低減が打抜き性の改善に有効で
あるといえる。ミクロボイドの発生・成長を抑制するこ
とは、局部延性を向上させることにもなる。実際に切欠
き引張試験に供した試験片のミクロボイドを観察する
と、ミクロボイドの発生・成長が金属組織の形態に大き
く影響され、打抜き加工時のミクロボイドの発生・成長
に酷似していた。このことからしても、打抜き性と切欠
き引張伸びとの間に密接な関係があることが窺がわれ
る。[0008] Under such a premise, it can be said that the adjustment of the metal structure and the reduction of inclusions that can suppress the generation and growth of microvoids as much as possible during working deformation are effective in improving the punching performance. Suppressing the generation and growth of microvoids also improves local ductility. Observation of the microvoids of the test pieces actually subjected to the notch tensile test showed that the formation and growth of microvoids were greatly affected by the morphology of the metallographic structure, and were very similar to the formation and growth of microvoids during punching. This suggests that there is a close relationship between the punching property and the notch tensile elongation.
【0009】[成分・組成]本発明では、C:0.70
〜1.20重量%を含む高炭素鋼を対象としている。C
は、高炭素鋼において最も基本となる合金成分であり、
含有量の如何に応じて加工性,焼入れ硬さ,炭化物量等
が大きく変動する。C含有量が0.70重量%未満で
は、焼入れ後に十分な量の未溶解炭化物が残存せず、所
望の耐摩耗性が得られない。逆に1.20重量%を超え
るC含有量では、熱延後の靭性低下により鋼帯の製造性
・取扱い性が悪化すると共に、焼鈍後においても十分な
延性が得られないため、本発明が狙っている優れた打抜
き性が期待できない。Siは、局部延性に対し大きな影
響を及ぼす合金成分である。過剰量のSiを添加する
と、固溶強化作用によってフェライトが硬化し、成形加
工時に割れを発生させる原因になる。過剰なSi添加
は、製造過程で鋼板表面におけるスケール疵の発生を助
長し、表面品質を低下させる原因にもなる。そこで、S
i含有量の上限を0.40重量%に規定し、特に加工性
が要求される用途では0.20重量%以下に規制するこ
とが好ましい。[Components / Composition] In the present invention, C: 0.70
It is intended for high carbon steels containing up to 1.20% by weight. C
Is the most basic alloy component in high carbon steel,
Workability, quenching hardness, carbide amount, etc. greatly vary depending on the content. If the C content is less than 0.70% by weight, a sufficient amount of undissolved carbide does not remain after quenching, and desired wear resistance cannot be obtained. Conversely, if the C content exceeds 1.20% by weight, the productivity and handleability of the steel strip deteriorate due to a decrease in toughness after hot rolling, and sufficient ductility cannot be obtained even after annealing. The desired excellent punching property cannot be expected. Si is an alloy component that has a significant effect on local ductility. When an excessive amount of Si is added, the ferrite is hardened by a solid solution strengthening action, which causes cracks during molding. Excessive Si addition promotes the generation of scale flaws on the steel sheet surface during the manufacturing process, and also causes the surface quality to deteriorate. Then, S
It is preferable that the upper limit of the i content is set to 0.40% by weight, and particularly for applications requiring workability, the upper limit is set to 0.20% by weight or less.
【0010】Mnは、耐摩耗性改善に有効な合金成分で
あるが、1.0重量%を超える多量のMnが含まれると
フェライトが硬化し、加工性が劣化する。Pは、延性及
び靭性に悪影響を及ぼす成分であることから、上限を
0.03重量%に規定する。Alは、溶鋼の脱酸剤とし
て添加される成分であるが、鋼中の全Al量が0.1重
量%を超えると鋼材の清浄度が損われ、鋼板表面に疵が
発生し易くなる。Mn is an alloy component effective for improving wear resistance. However, when a large amount of Mn exceeding 1.0% by weight is contained, ferrite is hardened and workability is deteriorated. Since P is a component that adversely affects ductility and toughness, the upper limit is defined as 0.03% by weight. Al is a component added as a deoxidizing agent for molten steel. However, if the total Al content in the steel exceeds 0.1% by weight, the cleanliness of the steel material is impaired, and the surface of the steel sheet is liable to have flaws.
【0011】熱処理性を更に改善するため、Cr,M
o,Cu,Ni,Caの1種又は2種以上が必要に応じ
て添加される。Crは、焼入れ性の改善に有効な合金成
分であり、焼戻し軟化抵抗を大きくする作用を呈する。
しかし、1.6重量%を超える多量のCrが含まれる
と、A1変態点以下での長時間焼鈍やA1 変態点以上の
加熱を伴った焼鈍を施しても軟質化し難く、却って打抜
き性が低下する。したがって、Crを添加する場合に
は、Cr含有量の上限を1.6重量%に設定する。Mo
は、少量の添加でCrと同様に焼入れ性及び焼戻し軟化
抵抗を改善する作用を呈する。しかし、0.3重量%を
超える多量のMoが含まれると、A1 変態点以下での長
時間焼鈍やA1 変態点以上の加熱を伴った焼鈍を施して
も軟質化し難く、却って打抜き性が低下する。したがっ
て、Moを添加する場合には、Mo含有量の上限を0.
3重量%に設定する。Cuは、熱延中に生成される酸化
スケールの剥離性を向上させ、鋼板の表面品質を改善す
る作用を呈する。しかし、0.3重量%を超える多量の
Cuが含まれると、溶融金属脆化に起因して鋼板表面に
微細なクラックが発生し易くなる。Cuを添加する場
合、0.10〜0.15重量%の範囲が好ましい。In order to further improve the heat treatment property, Cr, M
One or more of o, Cu, Ni, and Ca are added as needed. Cr is an alloy component effective for improving hardenability, and exhibits an effect of increasing tempering softening resistance.
However, when contains a large amount of Cr exceeding 1.6% by weight, hardly softened even annealed accompanied by prolonged annealing and A 1 transformation point or more heating below the A 1 transformation point, rather punching properties Decrease. Therefore, when adding Cr, the upper limit of the Cr content is set to 1.6% by weight. Mo
Has the effect of improving the hardenability and the tempering softening resistance in the same manner as Cr when added in a small amount. However, when contains a large amount of Mo exceeding 0.3% by weight, hardly softened even annealed accompanied by prolonged annealing and A 1 transformation point or more heating below the A 1 transformation point, rather punching properties Decrease. Therefore, when adding Mo, the upper limit of the Mo content is set to 0.1.
Set to 3% by weight. Cu has an effect of improving the releasability of the oxide scale generated during hot rolling and improving the surface quality of the steel sheet. However, when a large amount of Cu exceeding 0.3% by weight is included, fine cracks are easily generated on the steel sheet surface due to the embrittlement of the molten metal. When adding Cu, the range of 0.10 to 0.15% by weight is preferable.
【0012】Niは、焼入れ性を改善すると共に、低温
靭性の向上に有効な合金成分である。また、Cu添加に
起因する溶融金属脆化の悪影響を打ち消す作用も呈す
る。溶融金属脆化の防止には、0.2重量%以上のCu
を添加する場合、Cu添加量と当量程度のNiを添加す
ることが有効である。しかし、2.0重量%を超える多
量のNiを添加すると、A1 変態点以下での長時間焼鈍
やA1 変態点以上の加熱を伴った焼鈍を施しても軟質化
し難く、却って打抜き性が低下する。Ni is an alloy component effective for improving hardenability and improving low-temperature toughness. In addition, it also has the effect of counteracting the adverse effect of embrittlement of molten metal due to the addition of Cu. To prevent the embrittlement of molten metal, 0.2% by weight or more of Cu
It is effective to add Ni in an amount equivalent to the amount of Cu added. However, if adding a large amount of Ni in excess of 2.0 wt%, it is difficult to softening even annealed accompanied by prolonged annealing and A 1 transformation point or more heating below the A 1 transformation point, rather punching property descend.
【0013】打抜き性は、S含有量を規制し、Caを添
加することによっても改善される。Sは、MnS系介在
物を生成する成分である。MnS系介在物の量が多くな
ると局部延性が劣化するので、鋼中のS量は可能な限り
低減することが好ましいが、本発明で規定する炭化物形
態が得られる限り、極低S化を要することなく一般的な
市販鋼に対しても打抜き性改善の効果は得られる。しか
し、C含有量が1.20重量%近くまで高くなった場合
でも高い局部延性を安定して確保するためには、S含有
量を0.01重量%以下に低減した鋼を使用することが
好ましい。MnS系介在物は、Ca添加により効果的に
形態制御される。通常のMnS系介在物は、細長い形状
を呈し、打抜き時にミクロボイド生成の起点になり易
い。これに対し、Ca添加した鋼材ではMn,S,Ca
の複合介在物となり、介在物が球状化するためミクロボ
イドの発生が抑えられる。しかし、0.01重量%を超
える過剰量のCaを添加すると、介在物の粗大化に起因
する弊害が現れるようになる。したがって、Caを添加
する場合、Ca含有量の上限を0.01重量%に設定す
る。[0013] The punchability is also improved by regulating the S content and adding Ca. S is a component that generates MnS-based inclusions. Since the local ductility is deteriorated when the amount of the MnS-based inclusions increases, the S content in the steel is preferably reduced as much as possible. However, as long as the carbide morphology defined in the present invention can be obtained, an extremely low S is required. Without this, the effect of improving the punchability can be obtained even for general commercial steel. However, in order to stably secure high local ductility even when the C content is increased to nearly 1.20% by weight, it is necessary to use steel in which the S content is reduced to 0.01% by weight or less. preferable. The morphology of the MnS-based inclusions is effectively controlled by adding Ca. Ordinary MnS-based inclusions have an elongated shape and tend to be the starting point of microvoid formation during punching. On the other hand, Mn, S, Ca
And inclusions are spheroidized to suppress generation of microvoids. However, when an excessive amount of Ca exceeding 0.01% by weight is added, a problem caused by coarsening of inclusions appears. Therefore, when adding Ca, the upper limit of the Ca content is set to 0.01% by weight.
【0014】[炭化物の球状化率]炭化物球状化率は、
「球状化した炭化物」が全炭化物に占める割合を示す。
本件明細書では、鋼板断面の金属組織観察視野で最大長
さpとそれに直交する方向の最大長さqの比p/qが3
未満の炭化物を「球状化した炭化物」として扱った。た
とえば、再生パーライトにおける炭化物では、ほとんど
p/q≧3の炭化物である。他方,Ac1 変態点以上の
加熱で残留した未溶解炭化物を起点として成長した炭化
物では、比p/qが3未満になる。炭化物の形状を立体
的に正確に捉えて規定することは難しく、製品鋼板の適
否を判定する上でも煩雑である。これに対し、鋼板断面
の平面的な金属組織を観察することは容易である。本発
明者等は、鋼板断面の金属組織の中で観察される炭化物
形状について比p/qを用いて球状化の程度を捉えたと
き、鋼板の局部延性に対する炭化物形状の影響を適切に
評価できることを確認した。そして、種々の実験結果か
ら、比p/qが3未満の「球状化した炭化物」の数が全
炭化物数の80%以上を占め、更には平均炭化物粒径を
特定範囲に調整するとき、鋼板が高い打抜き性を示すこ
とを見出した。[Spheroidization rate of carbide]
The ratio of “spheroidized carbide” to the total carbide is shown.
In the present specification, the ratio p / q of the maximum length p and the maximum length q in the direction orthogonal to the maximum length p in the metallographic observation field of view of the steel sheet cross section is 3
Less than the carbides were treated as "spheroidized carbides". For example, the carbide in the recycled pearlite is almost the carbide of p / q ≧ 3. On the other hand, in a carbide grown from the undissolved carbide remaining after heating at the Ac 1 transformation point or higher, the ratio p / q is less than 3. It is difficult to accurately determine the shape of the carbide by three-dimensionally grasping it, and it is also troublesome to determine the suitability of the product steel sheet. On the other hand, it is easy to observe the planar metal structure of the steel plate cross section. The present inventors can appropriately evaluate the influence of the carbide shape on the local ductility of the steel sheet when capturing the degree of spheroidization using the ratio p / q for the carbide shape observed in the metal structure of the steel sheet cross section. It was confirmed. According to various experimental results, when the number of “spheroidized carbides” having a ratio p / q of less than 3 accounts for 80% or more of the total number of carbides, and further when adjusting the average carbide particle size to a specific range, Showed high punching properties.
【0015】炭化物球状化率を高めると打抜き性が向上
することは、球状化率の高い炭化物は加工時にミクロボ
イドの生成起点になりにくいことが原因であると推察さ
れる。炭化物球状化率の低い鋼板では、分散している炭
化物のうち、たとえば再生パーライトの炭化物のように
球状化が不充分な炭化物は、周囲のフェライト粒との変
形能が異なる。そのため、球状化不充分な炭化物がミク
ロボイドの生成起点となり、ミクロボイドの生成・連結
を助長させて割れ発生に至るものと考えられる。したが
って、打抜き性の改善には、平均炭化物粒径の調整と相
俟って鋼板の炭化物球状化率を80%以上にすることが
有効である。It is supposed that the reason why the punching property is improved when the carbide spheroidization ratio is increased is that the carbide having a high spheroidization ratio is unlikely to be a starting point of microvoid formation during processing. In a steel sheet having a low carbide spheroidization rate, among the dispersed carbides, a carbide having insufficient spheroidization, such as carbide of recycled pearlite, has a different deformability from surrounding ferrite grains. For this reason, it is considered that the insufficiently spheroidized carbide serves as a starting point for the generation of microvoids, and promotes the generation and connection of microvoids, leading to the generation of cracks. Therefore, in order to improve the punchability, it is effective to adjust the carbide spheroidization ratio of the steel sheet to 80% or more in combination with the adjustment of the average carbide particle size.
【0016】[炭化物の平均粒径]打抜き性や局部延性
は、炭化物の平均粒径を大きくすることによっても顕著
に改善される。平均粒径の増大は、鋼中の炭素量は一定
であることから炭化物総数の減少を意味する。炭化物総
数の減少は、個々の炭化物を起点として生成したミクロ
ボイドの連結を抑制し、結果として打抜き性及び局部延
性の顕著な向上に寄与するものと推察される。平均炭化
物粒径は、鋼板断面の金属組織を観察するとき、観察視
野にある個々の炭化物について測定した円相当径を全測
定炭化物で平均した値で示される。具体的には、個々の
炭化物について面積を測定し、得られた面積から円相当
径を算出する。炭化物の面積は、画像処理装置を用いて
容易に測定できる。測定した全ての炭化物の円相当径の
総和を求め、総和を測定炭化物の総数で除した値を平均
炭化物粒径とする。数値の信頼性を高めるためには、測
定炭化物総数が300個以上となる観察視野を選定する
ことが好ましい。本発明者等による詳細な打抜き実験の
結果、炭化物球状化率を80%以上,平均炭化物粒径を
0.3μm以上とするとき、優れた打抜き性及び局部延
性を示す鋼板が得られることが判った。しかし、1.2
μm以上に平均炭化物粒径を粗大化させても、炭化物粒
径の増大に見合った局部延性向上の効果が小さく、長時
間の焼鈍を施す必要があるため経済的なデメリットが大
きくなる。したがって、本発明では、鋼板中の平均炭化
物粒径を0.3〜1.2μmの範囲に規定した。[Average Particle Size of Carbide] Punching properties and local ductility are also remarkably improved by increasing the average particle size of carbide. An increase in the average grain size means a decrease in the total number of carbides because the amount of carbon in the steel is constant. It is presumed that the reduction in the total number of carbides suppresses the connection of microvoids generated from individual carbides, and consequently contributes to remarkable improvement in punchability and local ductility. The average carbide particle size is represented by a value obtained by averaging the equivalent circle diameters measured for individual carbides in the observation field of view of all the measured carbides when observing the metal structure of the cross section of the steel sheet. Specifically, the area of each carbide is measured, and the equivalent circle diameter is calculated from the obtained area. The area of the carbide can be easily measured using an image processing device. The sum of the circle equivalent diameters of all the measured carbides is determined, and the value obtained by dividing the sum by the total number of the measured carbides is defined as the average carbide particle size. In order to increase the reliability of the numerical values, it is preferable to select an observation visual field in which the total number of measured carbides is 300 or more. As a result of detailed punching experiments performed by the present inventors, it has been found that when the carbide spheroidization ratio is 80% or more and the average carbide particle size is 0.3 μm or more, a steel sheet exhibiting excellent punchability and local ductility can be obtained. Was. However, 1.2
Even if the average carbide particle size is coarsened to at least μm, the effect of improving the local ductility corresponding to the increase in the carbide particle size is small, and long-term annealing needs to be performed, so that the economical disadvantage is increased. Therefore, in the present invention, the average carbide particle size in the steel sheet is specified in the range of 0.3 to 1.2 μm.
【0017】[フェライト粒径]焼鈍後のフェライト粒
径も、打抜き性や局部延性の改善に影響を及ぼす因子で
ある。フェライト粒径が5μm未満になると、材料の局
部延性が低下する傾向がみられる。この点、炭化物分散
形態適正化の効果を最大限発揮させるためには、フェラ
イトの結晶粒径(平均粒径)を5μm以上にすることが
好ましい。更には、フェライト結晶粒径が不揃いの混粒
組織は加工性に悪影響を及ぼすので、可能な限りフェラ
イト結晶粒径が揃った整粒組織にすることが好ましい。
整粒組織を得るためにはフェライト結晶粒径(平均粒
径)を5〜35μmの範囲に調整することが好ましく、
平均粒径が35μmを超えるフェライト結晶粒では混粒
組織になり易い。以上のような特性をもつ鋼板は、Ac
1 変態点以下の長時間焼鈍によっても得られるが、焼鈍
方法の工夫により比較的短時間の焼鈍で得ることができ
る。たとえば、Ac1 変態点直下及び直上の特定温度範
囲における加熱を適切に組み合わせた焼鈍等が採用され
る。具体的には、(AC1−50℃)〜(AC1未満の温
度)の温度域に熱延鋼板又は冷延鋼板を0.5時間以上
保持する1段目の加熱、A C1〜(AC1+100℃)の温
度域に0.5〜20時間保持する2段目の加熱、次いで
(Ar1−80℃)〜Ar1の温度域に2〜60時間保持す
る3段目の加熱を連続させ、2段目の保持温度から3段
目の保持温度への冷却速度を5〜30℃/時間とする3
段階焼鈍によって、炭化物分散形態が適正に制御された
鋼板が製造される。[Ferrite grain size] Ferrite grain after annealing
Diameter is also a factor that affects the improvement of punchability and local ductility.
is there. When the ferrite grain size is less than 5 μm,
There is a tendency for the ductility to decrease. In this regard, carbide dispersion
In order to maximize the effect of shape optimization,
The grain size (average grain size) of the particles must be 5 μm or more.
preferable. Furthermore, mixed grains with irregular ferrite grain size
The organization has a negative effect on workability, so
It is preferable that the grain size is uniform.
In order to obtain a sized structure, the ferrite grain size (average grain size)
Diameter) is preferably adjusted in the range of 5 to 35 μm,
Mixed ferrite grains with an average grain size exceeding 35 μm
Easy to become an organization. The steel sheet having the above characteristics is
1 Although it can be obtained by long-time annealing below the transformation point,
It can be obtained in a relatively short time annealing by devising the method
You. For example, Ac1 Specific temperature range just below and just above the transformation point
Annealing that appropriately combines heating in the enclosure
You. Specifically, (AC1-50 ° C) to (AC1Less than warm
Temperature) in hot rolled steel sheet or cold rolled steel sheet for 0.5 hours or more
First stage heating, A C1~ (AC1+ 100 ° C) temperature
The second stage of heating for 0.5 to 20 hours in the temperature range, then
(Ar1-80 ° C) to Ar1Temperature for 2 to 60 hours
The third stage heating is continued, and the third stage
The cooling rate to the eye holding temperature is 5 to 30 ° C./hour 3
Carbide dispersion form was properly controlled by step annealing
A steel plate is manufactured.
【0018】[0018]
【実施例】表1の組成をもつ各種鋼を溶製し、連鋳で得
られたスラブを熱間圧延した。このとき、巻取り温度を
調整して、熱延鋼帯の組織を変化させた。熱延鋼帯を酸
洗した後、鋼板の炭化物球状化率,平均炭化物粒径が異
なるように種々の条件で焼鈍した。表2の試験番号1,
3〜9,11〜14では、巻取り温度450〜600℃
で熱延した後、Ac1 変態点より低い温度に4時間保持
し、Ac1 変態点以上の730〜770℃の一定温度に
4時間保持し、冷却速度10℃/時で冷却し、Ac1 変
態点以下の690℃に4〜40時間保持し、次いで冷却
速度10℃/時で760℃まで冷却した後、空冷する熱
処理を施した。また、試験番号2,10では、巻取り温
度550℃で得られた熱延鋼帯を酸洗した後、30〜6
0%で冷延し、Ac1 変態点より低い700℃に10〜
30時間保持する熱処理を施した。EXAMPLES Various steels having the compositions shown in Table 1 were melted, and slabs obtained by continuous casting were hot-rolled. At this time, the structure of the hot-rolled steel strip was changed by adjusting the winding temperature. After pickling the hot-rolled steel strip, the steel sheet was annealed under various conditions so that the carbide spheroidization rate and the average carbide grain size of the steel sheet were different. Test No. 1 in Table 2
For 3 to 9, 11 to 14, the winding temperature is 450 to 600 ° C
In after hot rolled, and held for 4 hours at a temperature lower than Ac 1 transformation point, and held for 4 hours at a constant temperature above Ac 1 transformation point of the seven hundred thirty to seven hundred and seventy ° C., then cooled at a cooling rate of 10 ° C. / time, Ac 1 It was kept at 690 ° C. below the transformation point for 4 to 40 hours, and then cooled to 760 ° C. at a cooling rate of 10 ° C./hour, followed by air-cooling heat treatment. In Test Nos. 2 and 10, after pickling the hot-rolled steel strip obtained at a winding temperature of 550 ° C., 30 to 6
Cold-rolled at 0% and heated to 700 ° C lower than the Ac 1 transformation point.
Heat treatment was performed for 30 hours.
【0019】 [0019]
【0020】板厚2.0mmの鋼帯から引張試験,切欠
き引張試験及び打抜き性評価試験用の試験片を切り出し
た。炭化物球状化率は、走査型電子顕微鏡を用いて鋼板
断面の一定領域を観察し、総数300〜1000個の炭
化物が析出している部分を観察領域として選定した。炭
化物の最大長さpとその直角方向の最大長さqとの比p
/qが3未満となるものを「球状化した炭化物」として
カウントし、測定炭化物総数に占める「球状化した炭化
物」の数の割合を炭化物球状化率として算出した。平均
炭化物粒径は、炭化物球状化率を測定した観察視野を画
像処理して個々の炭化物の円相当径を算出し、算出値を
全測定炭化物で平均化することにより求めた。フェライ
ト粒径は、JIS G0522に規定されている切断法
に従って、直交する二つの線分で切断されるフェライト
結晶粒の数を測定し、10視野測定の結果を平均化して
求めた。Test pieces for a tensile test, a notch tensile test and a punching property evaluation test were cut out from a 2.0 mm thick steel strip. The carbide spheroidization ratio was determined by observing a predetermined region of the steel plate cross section using a scanning electron microscope and selecting a portion where a total of 300 to 1000 carbides were precipitated as an observation region. The ratio p between the maximum length p of the carbide and the maximum length q in the direction perpendicular thereto.
Those in which / q was less than 3 were counted as “spheroidized carbides”, and the ratio of the number of “spheroidized carbides” to the total number of measured carbides was calculated as the carbide spheroidization rate. The average carbide particle diameter was determined by performing image processing on the observation visual field in which the carbide spheroidization ratio was measured, calculating the circle equivalent diameter of each carbide, and averaging the calculated values with all the measured carbides. The ferrite grain size was determined by measuring the number of ferrite crystal grains cut along two orthogonal lines according to the cutting method defined in JIS G0522, and averaging the results of 10 visual field measurements.
【0021】引張試験にはJIS5号試験片を用い、平
行部の標点間距離を50mmに設定した。切欠き引張試
験では、JIS5号引張り試験片の平行部長手方向中央
位置における幅方向両側に開き角45度,深さ2mmの
Vノッチを入れた試験片を使用した。そして、平行部長
手方向中央部の標点間距離10mmに対する伸び率を破
断後に測定し、得られた伸び率を切欠き引張伸びElV
とした。ElV 値は、局部延性を示す指標であり、通常
の引張試験で(全伸び)−(均一伸び)として求められ
る局部伸びに比較して、より適切に局部延性を定量的に
評価できる。打抜き性評価試験では、径10mmのポン
チを用い、クリアランスを板厚の5%に設定して鋼板を
打ち抜き、試験片100個について剪断面率及び割れ深
さの平均を求めた。剪断面率は、打ち抜かれた試験片の
加工面において[板厚方向の剪断面長さ]/[板厚]×
100(%)として算出した。割れ深さは、各試験片に
ついて打抜き面近傍の圧延方向断面を顕微鏡観察し、破
断部の最も深い割れの深さを剪断面からの長さで測定し
た。For the tensile test, a JIS No. 5 test piece was used, and the distance between the reference points of the parallel portions was set to 50 mm. In the notch tensile test, a test piece having a V-notch with an opening angle of 45 degrees and a depth of 2 mm at both sides in the width direction at the center in the longitudinal direction of the parallel portion of the JIS No. 5 tensile test piece was used. Then, the elongation percentage with respect to the gauge length of 10 mm at the central part in the longitudinal direction of the parallel part was measured after breaking, and the obtained elongation percentage was determined by the notch tensile elongation El V.
And The El V value is an index indicating the local ductility, and can more quantitatively evaluate the local ductility more appropriately than the local elongation obtained as (total elongation) − (uniform elongation) in a normal tensile test. In the punching property evaluation test, a steel sheet was punched out using a punch having a diameter of 10 mm and the clearance was set to 5% of the sheet thickness, and the average of the shear surface ratio and the crack depth of 100 test pieces were obtained. The shear ratio is calculated as [shear length in plate thickness direction] / [plate thickness] ×
It was calculated as 100 (%). The crack depth was determined by observing a cross section in the rolling direction near the punched surface of each test piece with a microscope, and measuring the depth of the deepest crack at the fractured portion by the length from the shear plane.
【0022】表2の調査結果にみられるように、試験番
号14では、C含有量が1.20重量%を超えるF鋼を
素材としているため、炭化物粒径,炭化物球状化率及び
フェライト粒径が本発明で規定した範囲にあるものの、
切欠き引張伸びElV が低く、打抜き性も剪断面率8.
8%,割れ深さ0.26mmと劣っていた。試験番号2
は炭化物粒径が0.3μmに達しておらず、試験番号8
は炭化物の球状化率が80%未満,試験番号10はフェ
ライト粒径が5μm未満であり、何れも切欠き引張伸び
ElV が10%に達しておらず、打抜き性も剪断面率1
0%未満,割れ深さ0.25mm以上と劣っていた。こ
れに対し、炭化物平均粒径,炭化物球状化率及びフェラ
イト粒径を本発明で規定した範囲に調整した試験番号
1,3〜7,9,11〜13では、15%以上の高い剪
断面率で割れ深さも0.15mm以下と小さくなってお
り、良好な打抜き性が示された。As can be seen from the investigation results in Table 2, in Test No. 14, since the steel F was used as a material having a C content exceeding 1.20% by weight, the carbide grain size, the carbide spheroidization rate, and the ferrite grain size were used. Is within the range specified in the present invention,
7. Notch tensile elongation El V is low, and punching property is also shear surface ratio.
8% and a crack depth of 0.26 mm were inferior. Test number 2
Indicates that the carbide particle size has not reached 0.3 μm,
In Test No. 10, the ferrite grain size was less than 5 μm, the notch tensile elongation El V did not reach 10%, and the punching property was 1%.
Less than 0% and crack depth of 0.25 mm or more were inferior. On the other hand, in Test Nos. 1, 3 to 7, 9, 11 to 13 in which the carbide average particle diameter, the carbide spheroidization ratio and the ferrite particle diameter were adjusted to the ranges specified in the present invention, a high shear surface ratio of 15% or more was obtained. , The crack depth was as small as 0.15 mm or less, indicating good punching properties.
【0023】 [0023]
【0024】[0024]
【発明の効果】以上に説明したように、本発明の高炭素
鋼板は、炭化物球状化率,平均炭化物粒径及びフェライ
ト粒径を適正範囲に設定することにより、打抜き性及び
局部延性が改善されている。この高炭素鋼板は、従来の
高炭素鋼板に比較して打抜き性が格段に改善されている
ため、複雑な形状をもつ自動車部品,各種機械部品等の
素材として広範な分野で使用される。しかも、軟質化さ
れているので、プレス金型の長寿命化にも有効である。As described above, the high carbon steel sheet of the present invention has improved punchability and local ductility by setting the carbide spheroidization ratio, the average carbide particle size and the ferrite particle size in appropriate ranges. ing. This high-carbon steel sheet has a markedly improved punching property as compared with conventional high-carbon steel sheets, and is therefore used in a wide range of fields as materials for automobile parts having various shapes and various mechanical parts. In addition, since it is softened, it is effective in extending the life of the press die.
Claims (3)
0.40重量%以下,Mn:1.0重量%以下,P:
0.03重量%以下,全Al:0.10重量%以下を含
み、残部が実質的にFeの組成をもち、平均粒径0.3
〜1.2μm,球状化率80%以上の炭化物がフェライ
ト粒径5μm以上のフェライトマトリックスに分散した
組織をもち、JIS5号引張試験片の平行部長手方向中
央位置における幅方向両サイドに開き角45度,深さ2
mmのVノッチを入れた試験片を用いて引張試験し、平
行部長手方向中央部の標点間距離10mmに対する破断
後の伸び率として表わされる切欠き引張伸びが10%以
上である打抜き性に優れた高炭素鋼板。1. C: 0.70 to 1.20% by weight, Si:
0.40% by weight or less, Mn: 1.0% by weight or less, P:
0.03% by weight or less, total Al: 0.10% by weight or less, the balance being substantially Fe, with an average particle size of 0.3
It has a structure in which carbide having a spheroidization ratio of 80% or more is dispersed in a ferrite matrix having a ferrite particle size of 5 μm or more. Degree, depth 2
A tensile test using a test piece having a V notch of 10 mm, the notch tensile elongation expressed as the elongation after fracture with respect to the distance of 10 mm between the gauges at the center in the longitudinal direction of the parallel portion is 10% or more. Excellent high carbon steel sheet.
0.40重量%以下,Mn:1.0重量%以下,P:
0.03重量%以下,全Al:0.10重量%以下を含
み、更にCr:1.6重量%以下,Mo:0.3重量%
以下,Cu:0.3重量%以下,Ni:2.0重量%以
下の1種又は2種以上を含み、残部が実質的にFeの組
成をもち、平均粒径0.3〜1.2μmで炭化物球状化
率80%以上の炭化物がフェライト粒径5μm以上のフ
ェライトマトリックスに分散した組織をもち、JIS5
号引張試験片の平行部長手方向中央位置における幅方向
両サイドに開き角45度,深さ2mmのVノッチを入れ
た試験片を用いて引張試験し、平行部長手方向中央部の
標点間距離10mmに対する破断後の伸び率として表わ
される切欠き引張伸びが10%以上である打抜き性に優
れた高炭素鋼板。2. C: 0.70 to 1.20% by weight, Si:
0.40% by weight or less, Mn: 1.0% by weight or less, P:
0.03% by weight or less, total Al: 0.10% by weight or less, Cr: 1.6% by weight or less, Mo: 0.3% by weight
In the following, one or more of Cu: 0.3% by weight or less and Ni: 2.0% by weight or less are contained, and the balance substantially has a composition of Fe, and the average particle diameter is 0.3 to 1.2 μm. Has a structure in which carbides having a carbide spheroidization ratio of 80% or more are dispersed in a ferrite matrix having a ferrite particle size of 5 μm or more.
A tensile test was conducted using a test piece having a 45 degree opening angle and a 2 mm deep V-notch on both sides in the width direction at the center in the longitudinal direction of the parallel portion of the tensile test piece. A high-carbon steel sheet excellent in punchability, having a notch tensile elongation of 10% or more expressed as a percentage of elongation after fracture with respect to a distance of 10 mm.
求項1又は2記載の打抜き性に優れた高炭素鋼板。3. The high carbon steel sheet according to claim 1, further comprising 0.01% by weight or less of Ca.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06949899A JP4161090B2 (en) | 1999-03-16 | 1999-03-16 | High carbon steel plate with excellent punchability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06949899A JP4161090B2 (en) | 1999-03-16 | 1999-03-16 | High carbon steel plate with excellent punchability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000265239A true JP2000265239A (en) | 2000-09-26 |
JP4161090B2 JP4161090B2 (en) | 2008-10-08 |
Family
ID=13404457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06949899A Expired - Lifetime JP4161090B2 (en) | 1999-03-16 | 1999-03-16 | High carbon steel plate with excellent punchability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4161090B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215612A (en) * | 2008-03-11 | 2009-09-24 | Nisshin Steel Co Ltd | Medium-high carbon steel sheet excellent in workability and production method therefor |
WO2013061652A1 (en) | 2011-10-25 | 2013-05-02 | 新日鐵住金株式会社 | Steel sheet |
WO2014175381A1 (en) | 2013-04-25 | 2014-10-30 | 新日鐵住金株式会社 | Steel sheet |
EP3216889A4 (en) * | 2015-08-14 | 2017-10-25 | Tokushu Kinzoku Excel Co., Ltd. | High-carbon cold-rolled steel sheet and method for manufacturing same |
CN114763592A (en) * | 2021-01-11 | 2022-07-19 | 宝山钢铁股份有限公司 | Low-cost high-wear-resistance wear-resistant steel and manufacturing method thereof |
CN115478223A (en) * | 2022-09-27 | 2022-12-16 | 首钢集团有限公司 | Cold-rolled fine-punched steel strip and preparation method thereof |
-
1999
- 1999-03-16 JP JP06949899A patent/JP4161090B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215612A (en) * | 2008-03-11 | 2009-09-24 | Nisshin Steel Co Ltd | Medium-high carbon steel sheet excellent in workability and production method therefor |
WO2013061652A1 (en) | 2011-10-25 | 2013-05-02 | 新日鐵住金株式会社 | Steel sheet |
KR101492782B1 (en) | 2011-10-25 | 2015-02-12 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet |
US9051634B2 (en) | 2011-10-25 | 2015-06-09 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet |
WO2014175381A1 (en) | 2013-04-25 | 2014-10-30 | 新日鐵住金株式会社 | Steel sheet |
US10337092B2 (en) | 2013-04-25 | 2019-07-02 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet |
EP3216889A4 (en) * | 2015-08-14 | 2017-10-25 | Tokushu Kinzoku Excel Co., Ltd. | High-carbon cold-rolled steel sheet and method for manufacturing same |
CN114763592A (en) * | 2021-01-11 | 2022-07-19 | 宝山钢铁股份有限公司 | Low-cost high-wear-resistance wear-resistant steel and manufacturing method thereof |
CN115478223A (en) * | 2022-09-27 | 2022-12-16 | 首钢集团有限公司 | Cold-rolled fine-punched steel strip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4161090B2 (en) | 2008-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6388085B2 (en) | Steel sheet and manufacturing method thereof | |
WO2018026014A1 (en) | Steel sheet and plated steel sheet | |
JP4465057B2 (en) | High carbon steel sheet for precision punching | |
JP5484103B2 (en) | Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts | |
JP5280324B2 (en) | High carbon steel sheet for precision punching | |
JP3848444B2 (en) | Medium and high carbon steel plates with excellent local ductility and hardenability | |
WO2021090472A1 (en) | High-carbon cold-rolled steel sheet and production method therefor, and mechanical parts made of high-carbon steel | |
WO2021153392A1 (en) | Steel plate, member, and methods for manufacturing said steel plate and said member | |
WO2021153393A1 (en) | Steel plate, member, and methods for manufacturing said steel plate and said member | |
JP2003147485A (en) | High toughness high carbon steel sheet having excellent workability, and production method therefor | |
JP7444018B2 (en) | Steel plates, their manufacturing methods, and members | |
JP4159009B2 (en) | Steel sheet for punched parts with excellent fatigue characteristics | |
JP4377973B2 (en) | Steel sheet with excellent local ductility and heat treatment | |
JP4161090B2 (en) | High carbon steel plate with excellent punchability | |
TW202014526A (en) | Steel sheet for carburizing and production method for steel sheet for carburizing being superior in formability and toughness after carburizing | |
JP2002155339A (en) | Medium and high carbon steel having excellent deep drawability | |
JP4330090B2 (en) | Steel reclining seat gear | |
JP2010174293A (en) | Steel sheet to be die-quenched superior in hot-punchability | |
JP2021116477A (en) | High carbon steel sheet | |
JPH11264049A (en) | High carbon steel strip and its production | |
JP4266052B2 (en) | High workability high carbon steel sheet with excellent local ductility | |
JP7444096B2 (en) | Hot rolled steel sheet and its manufacturing method | |
JP7444097B2 (en) | Hot rolled steel sheet and its manufacturing method | |
JP5633426B2 (en) | Steel for heat treatment | |
JP2005336560A (en) | High-carbon steel sheet for precision-blanked parts, and precision-blanked parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060216 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070409 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080630 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |