[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000265177A - Hydrogenation treatment of heavy oil - Google Patents

Hydrogenation treatment of heavy oil

Info

Publication number
JP2000265177A
JP2000265177A JP11071356A JP7135699A JP2000265177A JP 2000265177 A JP2000265177 A JP 2000265177A JP 11071356 A JP11071356 A JP 11071356A JP 7135699 A JP7135699 A JP 7135699A JP 2000265177 A JP2000265177 A JP 2000265177A
Authority
JP
Japan
Prior art keywords
oil
heavy oil
hydrotreating
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11071356A
Other languages
Japanese (ja)
Other versions
JP4338254B2 (en
Inventor
Suguru Iki
英 壱岐
Yasutsugu Hashimoto
康嗣 橋本
Kazuaki Hayasaka
和章 早坂
Shigeto Hatanaka
重人 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mitsubishi Oil Corp filed Critical Nippon Mitsubishi Oil Corp
Priority to JP07135699A priority Critical patent/JP4338254B2/en
Publication of JP2000265177A publication Critical patent/JP2000265177A/en
Application granted granted Critical
Publication of JP4338254B2 publication Critical patent/JP4338254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating stably for a long period a hydrogenation treatment system for petroleum-based heavy hydrocarbons containing metals and sulfur. SOLUTION: This hydrogenation treatment method comprises the 1st process where stock heavy oil comprising petroleum-based hydrocarbons containing both sulfur and metals is mainly hydrodemetallied using reaction column(s) and the 2nd process where the product thus obtained is mainly desulfurized using reaction column(s); wherein the aromaticity index ([the number of the aromatic carbon atoms in the asphaltene]/[the total number of the carbon atoms in the asphaltene]) of the asphaltene in the stock heavy oil is brought to >=0.50, and that of the asphaltene in the product oil from the 1st process to <=0.65.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属分および硫黄
分を含有する重質油の水素化処理を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating heavy oil containing metal and sulfur.

【0002】[0002]

【従来の技術】原油の蒸留などによって得られる残さ油
などの重質油は、通常、硫黄分やニッケルやバナジウム
といった金属分を含んでいる。このような重質油を、燃
料油あるいは分解装置の原料油として用いるためには、
これらの金属分および硫黄分の除去が必要であり、通常
は水素化処理によってこれらを除去した後に、各用途に
使用される。しかし、近年、重質原油の処理の必要性の
増加に伴い、重質油中に含まれる金属分、硫黄分あるい
は残留炭素分の量は上昇しており、重質油水素化処理プ
ロセスに用いる触媒への負荷は大きくなっている。その
一方、環境を保護する観点から、燃料油に対する低硫黄
化への要求はますます強くなっている。
2. Description of the Related Art Heavy oil such as residual oil obtained by distillation of crude oil or the like usually contains sulfur and metals such as nickel and vanadium. In order to use such heavy oil as fuel oil or feedstock for cracking equipment,
It is necessary to remove these metal components and sulfur components, and they are usually used for each purpose after removing them by hydrogenation. However, in recent years, with the increase in the necessity of processing heavy crude oil, the amount of metal, sulfur, or residual carbon contained in heavy oil has been increasing, and is used in heavy oil hydrotreating processes. The load on the catalyst is increasing. On the other hand, from the viewpoint of protecting the environment, there is an increasing demand for reducing the sulfur content of fuel oil.

【0003】このような重質油の水素化処理では、触媒
上への金属析出あるいはコーク析出に起因した触媒細孔
の閉塞や活性点被覆による活性低下が大きな問題となっ
ており、水素化処理装置の長期安定運転のためには活性
劣化への対策が必要不可欠である。そのため、長期安定
運転を目的としたさまざまなプロセスが開発されてお
り、例えば、水素化脱硫を主目的とする反応塔の前段
に、脱金属を主目的とする反応塔を組み合わせた、多段
式の重質油水素化処理プロセスなどがある。
[0003] In such hydrogenation of heavy oil, blockage of catalyst pores due to deposition of metal or coke on the catalyst and reduction in activity due to coating of active sites are serious problems. For long-term stable operation of the equipment, it is indispensable to take measures against activity degradation. For this reason, various processes for long-term stable operation have been developed.For example, a multi-stage type in which a reaction tower mainly for demetallization is combined with a reaction tower mainly for hydrodesulfurization in front of the reaction tower. There is a heavy oil hydrotreating process.

【0004】このような二つの工程から成る水素化処理
装置において、第一工程の生成油は直接第二工程へと流
れ込むため、第一工程の脱金属反応塔内の水素化反応効
率が第二工程の性能や寿命を左右する重要な要素となっ
ている。例えば、第一工程反応器内で原料油から十分な
脱金属反応が進行しない場合、第二工程の脱硫触媒への
金属分のスリップが生じ、触媒活性の劣化が生じる。こ
のような金属による失活の場合、第一工程の生成油の金
属濃度を管理することで、失活の可能性を予期すること
ができる。
[0004] In such a two-stage hydrotreating apparatus, the oil produced in the first step directly flows into the second step, so that the hydrogenation reaction efficiency in the demetallization reaction tower in the first step is reduced by the second step. It is an important factor that affects the performance and life of the process. For example, when a sufficient demetallization reaction does not proceed from the raw material oil in the first step reactor, a metal component slips to the desulfurization catalyst in the second step, and the catalytic activity deteriorates. In the case of deactivation by such a metal, the possibility of deactivation can be expected by controlling the metal concentration of the oil produced in the first step.

【0005】一方、第一工程反応器内で原料油中の特に
重質な成分への水素化反応が十分進行しない場合にも、
コーク前駆体が生成し、第二工程に流れ込むため第二工
程の触媒はコークによる失活が発生する。しかしなが
ら、コークによる失活は、装置の長期運転を実現する上
では金属による失活と同様に解決すべき重大な問題であ
るにもかかわらず、従来このような触媒の失活を予期す
る具体的な基準が示されていなかった。
On the other hand, even when the hydrogenation reaction to a particularly heavy component in the feedstock in the first step reactor does not proceed sufficiently,
Since the coke precursor is generated and flows into the second step, the catalyst in the second step is deactivated by coke. However, although deactivation by coke is a serious problem to be solved as well as deactivation by metal in order to realize long-term operation of the apparatus, it has been a specific problem to anticipate such deactivation of the catalyst. Criteria were not provided.

【0006】水素化処理装置における原料油炭化水素へ
の水素付加を促進する技術としては、原料油へ水素供与
性溶剤を添加する方法が知られている( 例えば特開昭6
3−154795公報) 。しかし、この方法は主として
水素化処理( 水素化分解) 装置の生成油中に炭素質ある
いはドライスラッジと呼ばれるトルエン不溶分が生成す
るのを抑える技術であり、炭素質析出による触媒の失活
を抑制するものではない。
[0006] As a technique for accelerating the addition of hydrogen to a hydrocarbon feedstock in a hydrotreating apparatus, a method of adding a hydrogen-donating solvent to a feedstock oil is known (for example, Japanese Unexamined Patent Publication No. Sho.
3-154795). However, this method is a technology that mainly suppresses the formation of carbonaceous matter or toluene-insoluble matter called dry sludge in the oil produced by the hydrotreating (hydrocracking) unit, and suppresses catalyst deactivation due to carbonaceous precipitation. It does not do.

【0007】一方、反応塔内の気液あるいは気液固の混
合相( 以下、混合相) の流動状態が不均一なため、第一
工程反応塔内で水素化反応が十分進行しない場合があ
る。触媒粒子が固定された反応塔形式の場合、液とガス
の流れが交互に起きる脈動流と呼ばれる流動状態、ある
いはチャネリングやバイパスによる混合相の流れの不均
一が生じることがある。このような流動状態になるのを
防ぎ、理想的な灌液流を維持するためには適切な液質量
速度およびガス質量速度を維持するとともに、液体の物
理物性にも注意する必要がある。一方、触媒粒子が流動
・懸濁する反応塔形式では、気相は気泡となって反応塔
内を分散しているが、気泡の融合による気液接触面積の
減少や脈動流あるいは気相のチャネリングが発生するの
を防ぎ、気泡の均一かつ微小に分散した気泡流を維持す
るためには、同様にガス質量速度および液体の物理物性
の最適化が必要となる。
On the other hand, the hydrogenation reaction may not proceed sufficiently in the first-step reaction tower because the flow state of gas-liquid or a mixed phase of gas-liquid and solid (hereinafter, mixed phase) in the reaction tower is not uniform. . In the case of the reaction tower type in which the catalyst particles are fixed, a flow state called a pulsating flow in which the flow of the liquid and the gas alternately occurs, or an uneven flow of the mixed phase due to channeling or bypass may occur. In order to prevent such a flow state and maintain an ideal irrigation flow, it is necessary to maintain appropriate liquid mass velocity and gas mass velocity, and also to pay attention to the physical properties of the liquid. On the other hand, in a reaction tower type in which catalyst particles flow and suspend, the gas phase is dispersed as bubbles in the reaction tower, but the gas-liquid contact area is reduced due to the fusion of bubbles, and pulsating flow or gas phase channeling is caused. In order to prevent the generation of gas bubbles and to maintain a uniform and finely dispersed bubble flow of the bubbles, it is necessary to similarly optimize the gas mass velocity and the physical properties of the liquid.

【0008】しかし、水素ガスは脱硫、脱金属反応に必
要な水素を供給すると共に、反応熱を除去し原料油の流
通を良好にする役割を持ち、さらに装置設計上および経
済性の面から見て、混合相流動状態に応じて水素ガス流
量を変動させることは困難である。また、原料重質油は
経済性や生産計画などによって決定され、その物性を調
整することは難しい。
However, hydrogen gas supplies hydrogen necessary for desulfurization and demetallization reactions, has a role of removing reaction heat and improving the flow of feedstock oil, and furthermore, from the viewpoint of equipment design and economy. Therefore, it is difficult to change the flow rate of the hydrogen gas according to the flow state of the mixed phase. In addition, the raw material heavy oil is determined based on economics, production plan, and the like, and it is difficult to adjust its physical properties.

【0009】このように公知の技術には問題点が多く、
脱金属を主目的とした第一工程と脱硫を主目的とする第
二工程で構成される重質油の水素化処理装置では、重質
な原料油を処理する場合、第二工程の触媒活性の低下を
防ぎ、装置の長期安定運転を可能にする明確な管理手段
を採用することが必要不可欠であった。
As described above, the known technique has many problems,
In a heavy oil hydrotreating unit consisting of a first step mainly for demetallation and a second step mainly for desulfurization, when processing heavy feedstock, the catalytic activity of the second step It was indispensable to adopt clear management measures to prevent the decline of the equipment and to enable long-term stable operation of the equipment.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前記
の問題点を解決し、脱金属を主目的とした第一工程と脱
硫を主目的とする第二工程で構成される重質油の水素化
処理装置において、第二工程の水素化処理触媒への炭素
質の析出を抑え、活性の劣化を抑制することを可能にす
る明確な指針を与え、重質油の水素化処理装置を長期間
にわたり安定に運転する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a heavy oil comprising a first step mainly for demetallization and a second step mainly for desulfurization. In the hydrotreating equipment of the above, a clear guideline to suppress the deposition of carbonaceous material on the hydrotreating catalyst in the second step and to suppress the deterioration of the activity was given. An object of the present invention is to provide a method of operating stably for a long period of time.

【0011】[0011]

【課題を解決するための手段】本発明者らは鋭意研究し
た結果、以下の知見を得て本発明を完成するに至った。
まず、第二工程の水素化処理触媒の活性劣化を防止する
ためには、第一工程の生成油中に存在するアスファルテ
ンの芳香族指数と呼ばれるアスファルテン分子構造を示
すパラメータを、一定値以下に管理することが極めて重
要であることを明らかにした。アスファルテンは石油学
会法JPI-5S-22 によって定義される、重質油中のヘプタ
ン不溶かつトルエン可溶の重質高分子成分であり、触媒
上に析出するコークと重要な関係にあることは広く知ら
れている。
Means for Solving the Problems As a result of intensive studies, the present inventors have obtained the following findings and completed the present invention.
First, in order to prevent the activity of the hydrotreating catalyst in the second step from deteriorating, a parameter indicating the asphaltenic molecular structure called as aromatic index of asphaltene present in the oil produced in the first step is controlled to a certain value or less. It is clear that doing so is extremely important. Asphaltene is a heptane-insoluble and toluene-soluble heavy polymer component in heavy oil, as defined by the Japan Petroleum Institute method JPI-5S-22, and is widely associated with coke that precipitates on the catalyst. Are known.

【0012】一般的に、重質油中のアスファルテンは水
素化処理工程によって、アスファルテン量の減少を伴い
ながらアスファルテン分子中の全炭素原子数に対する芳
香族炭素原子数の割合が増加する。これはアスファルテ
ン分子の芳香族性が増加していることを意味し、アルキ
ル基および多環縮合芳香族で構成されるアスファルテン
分子から、アルキル基の脱離反応やナフテン基の脱水素
反応によるものである。特に、アスファルテンに十分な
水素化が進行しない場合、熱履歴のみを受けるためアス
ファルテン分子の芳香族性の上昇が顕著になる。
In general, the ratio of the number of aromatic carbon atoms to the total number of carbon atoms in an asphaltene molecule is increased while the amount of asphaltenes in the asphaltene in the heavy oil is reduced by the hydrotreating process. This means that the aromaticity of asphaltene molecules has increased, and is due to the elimination reaction of alkyl groups and the dehydrogenation reaction of naphthene groups from asphaltene molecules composed of alkyl groups and polycyclic fused aromatics. is there. In particular, when sufficient hydrogenation of asphaltenes does not proceed, only the thermal history is received, so that the aromaticity of the asphaltenes is significantly increased.

【0013】芳香族指数はこの芳香族性の度合いを示す
ものであり、[アスファルテン中の芳香族炭素原子数]
/[アスファルテン中の全炭素原子数]で定義され、炭
素13核核磁気共鳴分光法(13C-NMR) によって算出するこ
とができる。この測定方法は例えばASTM( アメリカ材料
試験協会規格)D-5292 に規定されている。
The aromatic index indicates the degree of the aromaticity, and is expressed by [the number of aromatic carbon atoms in asphaltenes].
/ [Total number of carbon atoms in asphaltenes] and can be calculated by carbon-13 nuclear magnetic resonance spectroscopy ( 13 C-NMR). This measuring method is specified, for example, in ASTM (American Society for Testing and Materials) D-5292.

【0014】実験の結果、原料油中のアスファルテン芳
香族指数が0.50以上の場合脱金属処理によって芳香族指
数の高いアスファルテンに変化しやすく、芳香族指数の
増加したアスファルテンは触媒上へのコーク析出につな
がる炭素質前駆体となり、後段の第二工程へ流入し、第
二工程の水素化処理触媒上への炭素質析出を促進する事
を明らかにした。また、第一工程生成油中のアスファル
テンの芳香族指数が0.65以上の場合に、このような炭素
質析出が特に顕著に見られることを明らかにした。さら
に、原料重質油に、水素供与性溶剤や低動粘度留分を添
加した原料油(以下、混合原料油)を用いたところ、上
記のような、アスファルテン芳香族指数が0.50以上のも
のであっても、第一工程の水素化処理生成油中のアスフ
ァルテンの芳香族指数が高くなる事を抑え、第二工程の
水素化処理触媒の活性劣化防止に大きく貢献することを
明らかにした。
As a result of the experiment, when the asphaltenic aromatic index in the feed oil is 0.50 or more, the asphaltene having an increased aromatic index is liable to be changed to asphalten having a high aromatic index by demetallization treatment, and asphaltene having an increased aromatic index is likely to cause coke deposition on the catalyst. It turned out to be a connected carbonaceous precursor and flowed to the subsequent second step to promote carbonaceous deposition on the hydrotreating catalyst in the second step. In addition, it was clarified that such carbonaceous precipitation was particularly remarkable when the aromatic index of asphaltenes in the oil produced in the first step was 0.65 or more. Furthermore, when a raw oil obtained by adding a hydrogen-donating solvent or a low kinematic viscosity fraction to a raw heavy oil (hereinafter referred to as a mixed raw oil) was used, the asphaltenic aromatic index was 0.50 or more as described above. Even so, it was clarified that the aromatic index of asphaltenes in the hydrotreating product oil of the first step was suppressed from increasing, and that it greatly contributed to the prevention of activity deterioration of the hydrotreating catalyst of the second step.

【0015】すなわち本発明は、硫黄分および金属分を
含有する石油系炭化水素で構成される重質油を水素化処
理して、主として金属分を除去する一又は複数の反応塔
を用いる第一工程、及び主として硫黄分を除去する一又
は複数の反応塔を用いる第二工程を有する水素化処理方
法において、原料重質油中のアスファルテンの芳香族指
数が0.50以上とし、第一工程生成油中のアスファルテン
の芳香族指数が0.65以下とすることを特徴とする重質油
の水素化処理方法である。ここで、第一工程において、
「主として金属分を除去する(脱金属する)」は、水素
化脱金属反応の他に水素化脱硫反応もある程度は生起し
ているが、水素化脱金属反応を主として実施することを
意味し、第二工程において、「主として硫黄分を除去す
る(脱硫する)」は、水素化脱硫反応の他に水素化脱金
属反応もある程度は生起しているが、水素化脱硫反応を
主として実施することを意味する。
[0015] That is, the present invention provides a first method using a hydrogenation treatment of heavy oil composed of petroleum hydrocarbons containing sulfur and metal to use one or more reaction towers for mainly removing metal. In the hydrotreating method having a step, and a second step using one or more reaction towers for mainly removing sulfur, the aromatic index of asphaltenes in the raw heavy oil is 0.50 or more, A method for hydrotreating heavy oil, wherein the aromatic index of asphaltene is 0.65 or less. Here, in the first step,
“Mainly remove metal (demetallize)” means that, in addition to the hydrodemetallization reaction, a hydrodesulfurization reaction has occurred to some extent, but the hydrodemetallization reaction is mainly performed, In the second step, “mainly removing sulfur (desulfurizing)” means that, in addition to the hydrodesulfurization reaction, a hydrodemetallation reaction has also occurred to some extent, but the hydrodesulfurization reaction is mainly performed. means.

【0016】また、本発明は、上記水素化処理方法の発
明において、第一工程の反応塔形式が沸騰床、気液上向
流方式固定床、気液上向流方式移動床のいづれかであ
り、その反応条件が、温度350 〜450 ℃、圧力10〜22MP
a 、LHSV0.1 〜1.0 h-1、水素/ 油比160 〜1000Nm3/
m3、および使用する水素ガス純度65容量%以上である、
重質油の水素化処理方法である。
Further, the present invention provides the above-mentioned hydrotreating method, wherein the reaction tower in the first step is any of a boiling bed, a gas-liquid upflow fixed bed, and a gas-liquid upflow moving bed. The reaction conditions are as follows: temperature 350-450 ° C, pressure 10-22MP
a, LHSV 0.1 to 1.0 h -1 , hydrogen / oil ratio 160 to 1000 Nm 3 /
m 3 , and the hydrogen gas purity used is 65% by volume or more,
This is a method for hydrotreating heavy oil.

【0017】また、本発明は、上記各重質油の水素化処
理方法の発明において、第一工程生成油中のアスファル
テンの芳香族指数を管理するために、原料重質油に水素
供与性溶剤を1 〜30容量%添加することを特徴とする、
重質油の水素化処理方法である。
Further, in the present invention, in the invention of the above-mentioned method for hydrotreating heavy oil, a hydrogen-donating solvent is added to the raw heavy oil in order to control the aromatic index of asphaltenes in the oil produced in the first step. Characterized by adding 1 to 30% by volume of
This is a method for hydrotreating heavy oil.

【0018】また、本発明は、上記各重質油の水素化処
理方法の発明において、第一工程生成油中のアスファル
テンの芳香族指数を管理するために、原料重質油に50℃
における動粘度が500mm2/s以下の低動粘度留分を1 〜30
容量%添加することを特徴とする、重質油の水素化処理
方法である。
Further, the present invention provides the method for hydrotreating each heavy oil according to the present invention, wherein the raw heavy oil is added to the raw heavy oil at 50 ° C.
1 kinematic viscosity of 500 mm 2 / s or less in a low dynamic viscosity fraction at 30
This is a method for hydrotreating heavy oil, characterized by adding volume%.

【0019】さらに、本発明は、前記各重質油の水素化
処理方法の発明において、第一及び第二工程に使用され
る触媒が、アルミナ担体に6 族および9〜10族金属を担
持した柱状触媒あるいは球状触媒である、重質油の水素
化処理方法である。
Further, according to the present invention, in the invention of the above-mentioned method for hydrotreating each heavy oil, the catalyst used in the first and second steps is obtained by supporting a Group 6 metal and a Group 9 to 10 metal on an alumina carrier. This is a method for hydrotreating heavy oil, which is a columnar catalyst or a spherical catalyst.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態とその作用に
ついて説明する。本発明では、主として金属分を除去す
る一つまたは複数の反応塔による第一工程、および主と
して硫黄分を除去する一つまたは複数の反応塔による第
二工程で構成される重質油の水素化処理方法において、
第二工程の触媒のコークによる失活を防止するために第
一工程生成油中のアスファルテンの芳香族指数を管理す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention and its operation will be described. In the present invention, hydrogenation of heavy oil composed of a first step by one or more reaction towers mainly for removing metal and a second step by one or more reaction towers for mainly removal of sulfur In the processing method,
The aromatic index of asphaltenes in the oil produced in the first step is controlled in order to prevent the deactivation of the catalyst in the second step by coke.

【0021】具体的にはアスファルテンの芳香族指数が
0.50以上の原料重質油を脱金属処理した第一工程生成油
からアスファルテンを抽出し、核磁気共鳴分光法測定に
より、[アスファルテン中の芳香族炭素原子数]/[ア
スファルテン中の全炭素原子数]で定義される芳香族指
数を算出する。この芳香族指数が0.65を超える場合、第
二工程の水素化処理触媒上への炭素質析出が顕著にな
り、触媒活性の低下が著しく進行するため、芳香族指数
を0.65以下になるように管理する。芳香族指数は低いほ
ど第二工程の触媒の活性劣化を防止する効果が大きい。
Specifically, the aromatic index of asphaltenes is
Asphaltene was extracted from the first step oil obtained by demetallizing a heavy oil of 0.50 or more, and the number of aromatic carbon atoms in asphaltenes / [total carbon atoms in asphaltenes] was determined by nuclear magnetic resonance spectroscopy. ] Is calculated. When the aromatic index exceeds 0.65, the carbonaceous deposition on the hydrotreating catalyst in the second step becomes remarkable, and the catalytic activity decreases remarkably. Therefore, the aromatic index is controlled to be 0.65 or less. I do. The lower the aromatic index, the greater the effect of preventing the catalyst from deteriorating in the second step.

【0022】本発明において、第一工程に含まれる反応
塔には反応器体積に対して或る程度以上の割合の体積を
持つ、主として脱金属を目的とした水素化脱金属触媒が
充填されている。このプロセスの脱金属反応塔には、触
媒粒子を固定した形式として、原料油と水素ガスが下方
に向って流れ落ちる気液下向流並流充填層方式(灌液
流) の固定床型反応塔の他に気液向流充填層方式(気体
が上昇、液体が下降)、気液上向並流充填層方式( 気
体、液体ともに上昇) が一般的に採用されている。ま
た、劣化した水素化処理触媒を運転中に反応塔内から抜
き出すことが可能な、触媒粒子が液相で流動・懸濁する
形式の移動床あるいは沸騰床型反応塔が採用されること
もある。
In the present invention, the reaction column included in the first step is packed with a hydrodemetallation catalyst having a volume of a certain ratio or more to the reactor volume and mainly for the purpose of demetallization. I have. The demetallization reaction tower of this process has a fixed bed type of fixed-bed type reaction vessel in which the feedstock oil and hydrogen gas flow downwards in a gas-liquid down-flow co-current packed bed system (perfusate flow). In addition, a gas-liquid countercurrent packed bed method (gas rises and liquid descends) and a gas-liquid upward cocurrent packed bed method (both gas and liquid rise) are generally adopted. Further, a moving bed or an ebullated bed type reaction tower in which catalyst particles flow and suspend in a liquid phase, which can extract the deteriorated hydrotreating catalyst from the reaction tower during operation, may be employed. .

【0023】本発明における第一工程の反応器は、水素
化処理プロセスとして商業運転されている一般的な気液
固三相から成る多相系の固定床あるいは流動床である
が、好ましくは水素ガスが気泡として分散する沸騰床、
気液上向流方式固定床、気液上向流方式移動床のいづれ
かである。これらの反応器形式は、原料油の滞留時間が
長いため反応の過酷度が高く、気泡流のため混合相の流
動状態が悪化しやすいため、本発明は沸騰床や、気液上
向流方式の固定床あるいは移動床において最もその効果
を発揮する。
The reactor of the first step in the present invention is a multi-phase fixed bed or fluidized bed composed of a general gas-liquid-solid three-phase which is commercially operated as a hydrotreating process. A boiling bed, in which the gas is dispersed as bubbles,
Either a gas-liquid upflow fixed bed or a gas-liquid upflow moving bed. In these types of reactors, since the residence time of the feed oil is long, the severity of the reaction is high, and the flow state of the mixed phase is likely to be deteriorated due to the bubble flow. It works best on fixed or moving beds.

【0024】本発明は、水素化処理装置の反応条件は実
際に操業されている重質油水素化処理プロセスの反応条
件を用いることができる。第一工程は、好ましくは反応
温度350 ℃〜450 ℃、さらに好ましくは360 〜430 ℃の
間で運転される。また、第二工程の反応温度は好ましく
は350 ℃〜450 ℃、さらに好ましくは370 〜420 ℃の間
で運転される。また、水素分圧は好ましくは第一、第二
工程とも10〜22MPaの範囲で運転できる。水素化処理
に用いられる水素ガス純度は、好ましくは65容量%以
上、さらに好ましくは80容量%以上のものとする。
In the present invention, the reaction conditions of the hydrotreating apparatus can use the reaction conditions of the heavy oil hydrotreating process actually operated. The first step is preferably operated at a reaction temperature between 350 ° C and 450 ° C, more preferably between 360 and 430 ° C. The reaction temperature in the second step is preferably from 350 to 450 ° C, more preferably from 370 to 420 ° C. In addition, the first and second steps can be preferably operated at a hydrogen partial pressure of 10 to 22 MPa. The purity of the hydrogen gas used for the hydrogenation treatment is preferably at least 65% by volume, more preferably at least 80% by volume.

【0025】第一工程生成油中のアスファルテンの芳香
族指数を管理するために原料重質油に添加する水素供与
性溶剤は、水素供与性を有するいかなる溶剤も用いるこ
とができる。水素供与性溶剤は、気相中の水素の代わり
に原料油中分子への水素移行反応を促進することができ
る炭化水素を含む溶剤であり、多環芳香族炭化水素ある
いは環式脂肪族炭化水素を含む留分が高い水素供与性を
持っている。
As the hydrogen-donating solvent to be added to the raw heavy oil for controlling the aromatic index of asphaltenes in the oil produced in the first step, any solvent having a hydrogen-donating property can be used. A hydrogen-donating solvent is a solvent containing a hydrocarbon capable of promoting a hydrogen transfer reaction to a molecule in a feed oil instead of hydrogen in a gaseous phase, and is a polycyclic aromatic hydrocarbon or a cycloaliphatic hydrocarbon. Has a high hydrogen-donating property.

【0026】従って、例えば石油精製における水素化処
理装置からの各種製品あるいは接触分解装置からの分解
軽油留分を用いることができる。また、本水素化処理装
置における第二工程からの生成油を蒸留し、各留分に分
けた後、一部を抜きとった留分をリサイクルして用いる
こともできる。水素供与性溶剤は、第一工程生成油中の
アスファルテンの芳香族指数が0.65以下になるように原
料油に対し1 〜30容量%添加することができる。添加量
が少なすぎると効果が小さく、多すぎると処理量低下に
よる経済性低下や軽質分の分解によるガス発生や製品収
率の変化による装置上の制約の発生もあり、不利であ
る。
Therefore, for example, various products from a hydrotreating unit in petroleum refining or cracked gas oil fractions from a catalytic cracking unit can be used. Further, it is also possible to distill the oil produced from the second step in the present hydrotreating apparatus, divide it into fractions, and recycle and use the fraction obtained by extracting a part. The hydrogen-donating solvent can be added in an amount of 1 to 30% by volume based on the feedstock oil so that the aromatic index of asphaltenes in the oil produced in the first step is 0.65 or less. If the addition amount is too small, the effect is small. If the addition amount is too large, there is a disadvantage in that the economical efficiency is reduced due to a decrease in the processing amount, the gas is generated due to the decomposition of light components, and the equipment is restricted due to a change in the product yield.

【0027】本発明における低動粘度留分は、いかなる
石油系炭化水素留分も利用可能である。例えば、蒸留装
置からの直留留分や水素化処理装置からの各種製品ある
いは接触分解装置からの分解軽油留分を用いることがで
きる。また、本水素化処理装置における第二工程からの
生成油を蒸留し、各留分に分けた後、一部を抜きとった
低動粘度留分をリサイクルして用いることができる。低
動粘度留分の動粘度は原料重質油より低いことが必要で
あり、好ましくは500mm2/s(50 ℃) 以下、さらに好まし
くは100mm2/s以下(50 ℃) である。
As the low kinematic viscosity fraction in the present invention, any petroleum hydrocarbon fraction can be used. For example, a straight distillate from a distillation apparatus, various products from a hydrotreating apparatus, or a cracked gas oil fraction from a catalytic cracking apparatus can be used. Moreover, after distilling the oil produced from the second step in the present hydrotreating apparatus and dividing it into fractions, a low kinematic viscosity fraction obtained by extracting a part can be recycled. The kinematic viscosity of the low kinematic viscosity fraction must be lower than that of the raw material heavy oil, and is preferably 500 mm 2 / s (50 ° C.) or less, more preferably 100 mm 2 / s or less (50 ° C.).

【0028】また、低動粘度留分の沸点は、好ましくは
180 〜450 ℃の範囲である。低動粘度留分としては鎖状
脂肪族炭化水素、環式脂肪族炭化水素および芳香族炭化
水素のいずれの成分を主成分としてもよいが、環式脂肪
族炭化水素あるいは芳香族炭化水素を含む留分を用いる
方が原料重質油との相互作用に優れ、また水素供与性溶
剤としての効果と相乗的に働き、原料油およびアスファ
ルテンへの水素化反応効率の改善効果が大きく、炭素質
前駆体の生成を抑制する効果が大きい。低動粘度留分
は、第一工程生成油中のアスファルテンの芳香族指数が
0.65以下になるように原料油に対し1 〜30容量%添加す
ることができる。添加量が少なすぎると効果が小さく、
多すぎると処理量低下による経済性低下や軽質分分解に
よるガス発生や製品収率の変化による装置上の制約の発
生により、不味である。
The boiling point of the low kinematic viscosity fraction is preferably
It is in the range of 180-450 ° C. As the low kinematic viscosity fraction, any component of a chain aliphatic hydrocarbon, a cycloaliphatic hydrocarbon and an aromatic hydrocarbon may be the main component, but a cycloaliphatic hydrocarbon or an aromatic hydrocarbon is included. Using a distillate has a better interaction with the raw material heavy oil, works synergistically with the effect as a hydrogen-donating solvent, has a large effect of improving the hydrogenation reaction efficiency to the raw material oil and asphaltene, and The effect of suppressing body formation is great. The low kinematic viscosity fraction has an aromatic index of asphaltene in the first step product oil.
It can be added in an amount of 1 to 30% by volume with respect to the feed oil so as to be 0.65 or less. If the amount is too small, the effect is small,
If the amount is too large, it is unsatisfactory because of reduced economical efficiency due to a decrease in the processing amount, gas generation due to light decomposition, and restriction on the apparatus due to a change in product yield.

【0029】本発明で使用される第一、第二工程の触媒
はいずれも一般的な重質油の水素化処理プロセスに用い
られる、アルミナを担体とし、6 族金属および9〜10族
金属を活性金属として担持している多孔質の柱状触媒、
あるいは球状触媒を使用することができる。また、必要
に応じてゼオライトなどの固体酸触媒やリン、アルカリ
金属といった第三成分を含有していることもある。第一
工程に使用する水素化処理触媒は水素化脱金属能を有
し、分子サイズの大きい重質油中の含金属分子を補足す
るために、アルミナ担体の平均細孔径は8nm 〜50nm、好
ましくは10nm〜30nmの範囲である。また、第二工程の水
素化処理触媒は水素化脱硫能を有し、アルミナ担体の平
均細孔径は5nm 〜30nm、好ましくは5nm 〜20nmの範囲で
あり、第一工程の触媒の細孔よりも小さい場合が多い。
The catalysts of the first and second steps used in the present invention both use alumina as a carrier and contain a Group 6 metal and a Group 9 to 10 metal used in a general heavy oil hydrotreating process. A porous columnar catalyst supported as an active metal,
Alternatively, a spherical catalyst can be used. Further, if necessary, a solid acid catalyst such as zeolite or a third component such as phosphorus or an alkali metal may be contained. The hydrotreating catalyst used in the first step has a hydrodemetallizing ability, and in order to capture metal-containing molecules in heavy oil having a large molecular size, the average pore diameter of the alumina carrier is preferably 8 nm to 50 nm, preferably. Is in the range of 10 nm to 30 nm. Further, the hydrotreating catalyst of the second step has hydrodesulfurization ability, the average pore diameter of the alumina carrier is in the range of 5 nm to 30 nm, preferably 5 nm to 20 nm, which is larger than the pores of the catalyst of the first step. Often small.

【0030】本発明に使用する水素化処理触媒に担持す
る活性金属量は、通常の重質油の脱硫触媒に用いられて
いる量を採用することができる。すなわち担体の重量を
100重量%として、9 〜10族金属を元素換算で1 〜10重
量%、好ましくは3 〜6 重量%含有し、また6 族金属を
元素換算で3 〜30重量%、好ましくは6 〜15重量%含有
する。なお、金属量および6 族金属と9 〜10族金属の担
持量およびその比率は、活性、失活速度および経済性の
面から見て最適な量が存在する。
The amount of the active metal supported on the hydrotreating catalyst used in the present invention may be the amount used for a usual heavy oil desulfurization catalyst. That is, the weight of the carrier
Assuming 100% by weight, 1 to 10% by weight, preferably 3 to 6% by weight, of a Group 9 to 10 metal is contained in terms of element, and 3 to 30% by weight, preferably 6 to 15% by weight of Group 6 metal in terms of element. %contains. The amount of the metal, the amount of the Group 6 metal and the amount of the Group 9 to 10 metal to be supported, and the ratio thereof are optimal in view of the activity, deactivation rate, and economy.

【0031】本発明が適用できる原料重質油は、原油の
蒸留によって得られる常圧残さ油、減圧残さ油などの沸
点350 ℃以上の留分である。原料油に含まれる硫黄分お
よび金属分の量、動粘度およびアスファルテン含有量は
特に限定されないが、通常の原油の常圧蒸留装置残さ油
の場合は硫黄分1 〜10重量%、金属分10〜1000重量ppm
程度である。また、原料油の50℃における動粘度は、10
0 〜8000mm2/s である。アスファルテンの分取方法は石
油学会法JPI-5S-22 で定義される。本方法は、重質油試
料に対し規定量のヘプタンとともにヘプタン沸点で規定
時間加熱した後、ヘプタンに不要な成分のうちトルエン
可溶分を濃縮した成分である。原料油中のアスファルテ
ン含有量は、通常の原油の常圧蒸留装置残さ油で1 〜10
重量%である。
The raw material heavy oil to which the present invention can be applied is a fraction having a boiling point of 350 ° C. or higher, such as an atmospheric residue or a vacuum residue obtained by distillation of crude oil. The amounts of sulfur and metals, kinematic viscosity and asphaltenes content in the feedstock are not particularly limited, but in the case of ordinary crude oil residue from residual pressure distillation equipment, sulfur content is 1 to 10% by weight and metal content is 10 to 10%. 1000 weight ppm
It is about. The kinematic viscosity at 50 ° C of the feedstock is 10
0 to 8000 mm 2 / s. The method for asphaltene fractionation is defined in the Japan Petroleum Institute method JPI-5S-22. This method is a component obtained by heating a heavy oil sample with a specified amount of heptane at a heptane boiling point for a specified time, and then concentrating a toluene-soluble component among components unnecessary for heptane. The asphaltenes content in the feedstock is 1 to 10 as the residual oil of a normal crude pressure distillation unit.
% By weight.

【0032】生成油の硫黄分の量は必要に応じて任意に
定めることができ、反応温度、圧力、液空間速度等の反
応条件を最適化することにより必要とされる脱硫率を達
成できる。
The amount of sulfur in the produced oil can be arbitrarily determined as necessary, and the required desulfurization rate can be achieved by optimizing the reaction conditions such as the reaction temperature, pressure and liquid hourly space velocity.

【0033】本発明では、水素供与性溶剤あるいは低動
粘度留分の導入方法は特に限定されない。例えば、原料
重質油と水素供与性溶剤あるいは低動粘度留分を混合し
た後、加熱炉によって所定の温度まで加熱し反応塔に注
入する方法や、個別に加熱炉によって所定の温度に上昇
させた後、第一工程の反応塔の前で混合した後反応塔に
注入する方法を採用することができる。
In the present invention, the method of introducing the hydrogen-donating solvent or the low kinematic viscosity fraction is not particularly limited. For example, a method of mixing a raw heavy oil and a hydrogen-donating solvent or a low kinematic viscosity fraction, heating the mixture to a predetermined temperature with a heating furnace and injecting the mixture into a reaction tower, or individually raising the temperature to a predetermined temperature with a heating furnace. After that, a method in which the mixture is mixed before the reaction tower in the first step and then injected into the reaction tower can be adopted.

【0034】[0034]

【実施例】本発明の実施形態を実施例によりさらに詳細
に説明する。 [実施例1]第一工程として、内径1インチの第一反応
管にγ―アルミナ担体100 重量%に対してニッケル1 重
量%(Ni換算)とモリブデン3 重量%(Mo換算)を担持
した1/20インチ柱状触媒を200 ml充填した。第二工程
として、内径1インチの第二反応管にγ―アルミナ担体
100 重量%に対してニッケル2 重量%(Ni換算)とモリ
ブデン7 重量%(Mo換算)を担持した1/20インチ柱状触
媒を200 ml充填した。これらの触媒をそれぞれジブチ
ルジスルフィドを含む直留軽油(硫黄分3 重量%)を用
いて300 ℃、14MPa、LHSV( 各触媒容量に対して)=0.
3h-1、水素/ 油比360Nm3/m3 の条件下で、24時間、予備
硫化した。
EXAMPLES The embodiments of the present invention will be described in more detail with reference to Examples. [Example 1] As a first step, 1% by weight of nickel (in terms of Ni) and 3% by weight of molybdenum (in terms of Mo) were supported in a first reaction tube having an inner diameter of 1 inch with respect to 100% by weight of a γ-alumina carrier. 200 ml of the / 20 inch columnar catalyst was charged. As a second step, a γ-alumina carrier is placed in a second reaction tube having an inner diameter of 1 inch.
200 ml of a 1/20 inch column-shaped catalyst supporting 2% by weight of nickel (in terms of Ni) and 7% by weight of molybdenum (in terms of Mo) per 100% by weight was filled. Each of these catalysts was prepared by using a straight-run light oil (sulfur content: 3% by weight) containing dibutyl disulfide at 300 ° C., 14 MPa, and LHSV (for each catalyst capacity) = 0.
Preliminary sulfurization was performed for 24 hours under the conditions of 3h -1 and a hydrogen / oil ratio of 360 Nm 3 / m 3 .

【0035】これらの二本の反応管を連結し、中東系の
常圧残さ油(硫黄分=4.1重量%、バナジウム分=60 重量
ppm 、動粘度(50 ℃)=1733mm2/s 、アスファルテンの芳
香族指数= 0.53)を原料油とし反応管温度( 第一、
第二反応管とも)=380 ℃、圧力( 両反応管とも)=14MP
a、LHSV( 全触媒容量に対して)=0.25h -1、水素/ 油比
( 両反応管とも)=360Nm3/m3 の条件で第一反応管を気液
上向並流、第二反応管を気液下向並流で通油して水素化
処理した。通油1000時間後の、第一工程の生成油の硫黄
分は2.5 重量%、第二工程からの生成油の硫黄分は0.95
重量%であった。この生成油から380 ℃〜440 ℃の沸点
を持つ留分を蒸留により採取し、前出の常圧残さ油に10
重量%混合し、混合原料油を調製した。水素化処理に
は、水素ガス純度99%の水素ガスを用いた。
These two reaction tubes were connected to each other to form a Middle Eastern atmospheric residue (sulfur content = 4.1% by weight, vanadium content = 60% by weight).
ppm, kinematic viscosity (50 ° C.) = 1733 mm 2 / s, aromatic index of asphaltenes = 0.53) as the feed oil, and the reaction tube temperature (first,
380 ° C, pressure (both reaction tubes) = 14MP
a, LHSV (relative to total catalyst capacity) = 0.25 h -1 , hydrogen / oil ratio
Under the condition of (360 Nm 3 / m 3 ) (both reaction tubes), the first reaction tube was subjected to gas-liquid upward co-current flow, and the second reaction tube was subjected to gas-liquid downward co-current flow for hydrogenation treatment. After 1000 hours of oil passage, the sulfur content of the oil produced in the first step is 2.5% by weight, and the sulfur content of the oil produced from the second step is 0.95%.
% By weight. A distillate having a boiling point of 380 ° C to 440 ° C was collected from the resulting oil by distillation, and 10
% By weight to prepare a mixed raw material oil. Hydrogen gas having a hydrogen gas purity of 99% was used for the hydrogenation treatment.

【0036】採取した留分の性状を表1に、混合原料油
の性状を表2に示した。この混合原料油を表3に示す反
応条件で第一反応管を気液上向並流、第二反応管を気液
下向並流で通油して水素化処理した。通油1000時間後の
第一工程および第二工程生成油の硫黄分、第一工程の脱
金属率、第一工程生成油のアスファルテン芳香族指数を
表4に示した。さらに通油1000〜2000時間における第二
工程の脱硫率の低下速度を合わせて表4に示した。第二
工程における脱硫率は《{[ 第一工程生成油中の硫黄量
(g)]−[ 第二工程生成物中の硫黄量(g)]}/[第一工程生
成油中の硫黄量(g)]》×100(%) と定義した。
The properties of the collected fractions are shown in Table 1, and the properties of the mixed raw material oil are shown in Table 2. Under the reaction conditions shown in Table 3, this mixed raw material oil was passed through the first reaction tube in a gas-liquid upward flow direction and the second reaction tube was passed in a gas-liquid downward flow direction to perform a hydrogenation treatment. Table 4 shows the sulfur content of the oil produced in the first and second steps 1000 hours after passing through the oil, the metal removal ratio in the first step, and the asphaltene aromatic index of the oil produced in the first step. Table 4 also shows the rate of decrease in the desulfurization rate in the second step between 1000 and 2000 hours of oil passage. The desulfurization rate in the second step is as follows: << {[Sulfur content in oil produced in the first step
(g)] − [Sulfur content in second step product (g)]} / [sulfur content in first step product oil (g)] × 100 (%).

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [実施例2]接触分解装置で生成する、沸点200 ℃〜35
0 ℃の分解軽油留分を前出の常圧残さ油に10重量%混合
し、混合原料油を調製した。分解軽油留分の性状を表1
に、混合原料油の性状を表2に示した。この混合原料油
を表3に示す反応条件で第一反応管を気液上向並流、第
二反応管を気液下向並流で通油して水素化処理した。通
油1000時間後の第一工程および第二工程生成油の硫黄
分、第一工程の脱金属率、第一工程生成油のアスファル
テン芳香族指数を表4に示した。さらに通油1000〜2000
時間における第二工程の脱硫率の低下速度を合わせて表
4に示した。水素化処理には、実施例1で用いたものと
同じ純度の水素ガスを用いた。
[Table 2] [Example 2] Boiling point generated by catalytic cracking device: 200 ° C to 35 ° C
A 10% by weight of the cracked gas oil fraction at 0 ° C. was mixed with the above-mentioned normal pressure residual oil to prepare a mixed raw material oil. Table 1 shows the properties of the cracked gas oil fraction.
Table 2 shows the properties of the mixed stock oil. Under the reaction conditions shown in Table 3, this mixed raw material oil was passed through the first reaction tube in a gas-liquid upward flow direction and the second reaction tube was passed in a gas-liquid downward flow direction to perform a hydrogenation treatment. Table 4 shows the sulfur content of the oil produced in the first and second steps 1000 hours after passing through the oil, the metal removal ratio in the first step, and the asphaltene aromatic index of the oil produced in the first step. Further 1000 to 2000
Table 4 also shows the rate of decrease in the desulfurization rate in the second step over time. In the hydrogenation treatment, hydrogen gas having the same purity as that used in Example 1 was used.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [実施例3]n−テトラデカンを前出の常圧残さ油に10
重量%混合し、混合原料油を調製した。n−テトラデカ
ンの性状を表1に、混合原料油の性状を表2に示した。
この混合原料油を表3に示す反応条件で第一反応管を気
液上向並流、第二反応管を気液下向並流で通油して水素
化処理した。通油1000時間後の第一工程および第二工程
生成油の硫黄分、第一工程の脱金属率、第一工程生成油
のアスファルテン芳香族指数を表4に示した。さらに通
油1000〜2000時間における第二工程の脱硫率の低下速度
を合わせて表4に示した。水素化処理には、実施例1で
用いたものと同じ純度の水素ガスを用いた。
[Table 4] Example 3 n-tetradecane was added to the above-mentioned normal pressure residue oil by adding 10
% By weight to prepare a mixed raw material oil. Table 1 shows the properties of n-tetradecane, and Table 2 shows the properties of the mixed stock oil.
Under the reaction conditions shown in Table 3, this mixed raw material oil was passed through the first reaction tube in a gas-liquid upward flow direction and the second reaction tube was passed in a gas-liquid downward flow direction to perform a hydrogenation treatment. Table 4 shows the sulfur content of the oil produced in the first and second steps 1000 hours after passing through the oil, the metal removal ratio in the first step, and the asphaltene aromatic index of the oil produced in the first step. Table 4 also shows the rate of decrease in the desulfurization rate in the second step between 1000 and 2000 hours of oil passage. In the hydrogenation treatment, hydrogen gas having the same purity as that used in Example 1 was used.

【0041】[比較例1]実施例1と同じく、中東系の
常圧残さ油の水素化処理を行った。通油1000時間後の第
一工程および第二工程生成油の硫黄分、第一工程の脱金
属率、第一工程生成油のアスファルテン芳香族指数を表
4に示した。さらに通油1000〜2000時間における第二工
程の脱硫率の低下速度を合わせて表4に示した。水素化
処理には、実施例1で用いたものと同じ純度の水素ガス
を用いた。
COMPARATIVE EXAMPLE 1 As in Example 1, hydrogenation of a Middle Eastern ordinary pressure residue was carried out. Table 4 shows the sulfur content of the oil produced in the first and second steps 1000 hours after passing through the oil, the metal removal ratio in the first step, and the asphaltene aromatic index of the oil produced in the first step. Table 4 also shows the rate of decrease in the desulfurization rate in the second step between 1000 and 2000 hours of oil passage. In the hydrogenation treatment, hydrogen gas having the same purity as that used in Example 1 was used.

【0042】[比較例2]実施例1と同じく、常圧残さ
油の水素化処理を行った。LHSV( 各触媒容量に対して)=
0.45h -1とした。通油1000時間後の第一工程および第二
工程生成油の硫黄分、第一工程の脱金属率、第一工程生
成油のアスファルテン芳香族指数を表4に示した。さら
に通油1000〜2000時間における第二工程の脱硫率の低下
速度を合わせて表4に示した。水素化処理には、実施例
1で用いたものと同じ純度の水素ガスを用いた。
[Comparative Example 2] As in Example 1, hydrogenation treatment was carried out on the residual oil under normal pressure. LHSV (for each catalyst volume) =
0.45h -1 . Table 4 shows the sulfur content of the oil produced in the first and second steps 1000 hours after passing through the oil, the metal removal ratio in the first step, and the asphaltene aromatic index of the oil produced in the first step. Table 4 also shows the rate of decrease in the desulfurization rate in the second step between 1000 and 2000 hours of oil passage. In the hydrogenation treatment, hydrogen gas having the same purity as that used in Example 1 was used.

【0043】実施例1〜3は水素供与性溶剤および低動
粘度留分の両者の効果を確認したものである。また、実
施例4は低動粘度留分の効果を確認したものである。い
ずれの水素供与性溶剤あるいは低動粘度留分を用いた場
合でも、第一工程生成油中のアスファルテンの芳香族指
数を0.65以下に抑え、第二工程の、触媒の脱硫活性の低
下を抑制することができる。また、第一工程の反応塔内
で効率よく原料油への水素化が進んだ結果、第一工程で
の脱硫率および脱金属率が向上し増加した。実施例4
は、添加する低動粘度留分は鎖状脂肪族炭化水素でも効
果があるが、芳香族炭化水素あるいは環式脂肪族炭化水
素を含む留分の方が、より効果が大きいことを示してい
る。
Examples 1 to 3 confirm the effects of both the hydrogen donating solvent and the low kinematic viscosity fraction. Example 4 confirmed the effect of the low kinematic viscosity fraction. Regardless of which hydrogen donor solvent or low kinematic viscosity fraction is used, the aromatic index of asphaltenes in the oil produced in the first step is suppressed to 0.65 or less, and the decrease in the desulfurization activity of the catalyst in the second step is suppressed. be able to. Further, as a result of the efficient hydrogenation to the feedstock in the reaction tower in the first step, the desulfurization rate and the demetallation rate in the first step were improved and increased. Example 4
Indicates that the low kinematic viscosity fraction to be added is effective even with a chain aliphatic hydrocarbon, but the fraction containing an aromatic hydrocarbon or a cycloaliphatic hydrocarbon is more effective. .

【0044】以上の結果から明らかなように、本発明は
第一工程生成油中のアスファルテンの芳香族指数の増加
を抑制し、炭素質前駆体への変質の抑制に有効であり、
第二工程の水素化処理触媒の劣化防止を可能にするもの
である。
As is evident from the above results, the present invention is effective in suppressing an increase in the aromatic index of asphaltenes in the oil produced in the first step and suppressing the transformation into carbonaceous precursors.
This makes it possible to prevent the deterioration of the hydrotreating catalyst in the second step.

【0045】[0045]

【発明の効果】第一工程に脱金属を主目的とする反応塔
を含む重質油の水素化処理装置において、本発明を採用
することにより第一工程から第二工程への炭素質前駆体
の流入を抑え、水素化処理装置の安定な長期運転を可能
にする。
According to the present invention, a carbonaceous precursor from the first step to the second step is obtained by employing the present invention in a heavy oil hydrotreating apparatus including a reaction tower mainly for demetallization in the first step. Of inflow of hydrogen and enable stable long-term operation of the hydrotreating unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早坂 和章 神奈川県川崎市宮前区小台1−17−1− 330 (72)発明者 畑中 重人 神奈川県横浜市旭区今宿町832−1 サニ ーヒル今宿26−102 Fターム(参考) 4H029 CA00 DA00 DA09 DA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuaki Hayasaka 1-17-1-330 Kodai, Miyamae-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Shigeto Hatanaka 832-1 Imajukucho, Asahi-ku, Yokohama-shi, Kanagawa Prefecture -Hill Imajuku 26-102 F term (reference) 4H029 CA00 DA00 DA09 DA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫黄分および金属分を含有する石油系炭
化水素からなる原料重質油を一又は複数の反応塔を用い
て主として水素化脱金属する第一工程、及び一又は複数
の反応塔を用いて主として脱硫する第二工程を有する水
素化処理方法において、原料重質油中のアスファルテン
の芳香族指数([ アスファルテン中の芳香族炭素原子
数] /[ アスファルテン中の全炭素原子数] )が0.50以
上とし、第一工程生成油中のアスファルテンの芳香族指
数が0.65以下とすることを特徴とする重質油の水素化処
理方法。
1. A first step of mainly hydrodemetallizing a raw material heavy oil comprising a petroleum hydrocarbon containing a sulfur component and a metal component by using one or a plurality of reaction towers, and one or more reaction towers In the hydrotreating method having the second step of mainly desulfurizing using asphaltene, the aromatic index of asphaltenes in the raw heavy oil ([number of aromatic carbon atoms in asphaltenes] / [total number of carbon atoms in asphaltenes]) Is 0.50 or more, and the aromatic index of asphaltene in the first step product oil is 0.65 or less.
【請求項2】 第一工程の反応塔形式が沸騰床、気液上
向流方式固定床、気液上向流方式移動床のいづれかであ
り、その反応条件が、温度350 〜450 ℃、圧力10〜22MP
a 、LHSV0.1 〜1.0 h-1、水素/ 油比160 〜1000Nm3/
m3、および使用する水素ガス純度65容量%以上である、
請求項1に記載の重質油の水素化処理方法。
2. The reaction column of the first step is any one of a boiling bed, a fixed bed of gas-liquid upward flow type and a moving bed of gas-liquid upward flow type, and the reaction conditions are a temperature of 350 to 450 ° C. and a pressure of 350 ° C. 10-22MP
a, LHSV 0.1 to 1.0 h -1 , hydrogen / oil ratio 160 to 1000 Nm 3 /
m 3 , and the hydrogen gas purity used is 65% by volume or more,
The method for hydrotreating heavy oil according to claim 1.
【請求項3】 第一工程生成油中のアスファルテンの芳
香族指数を管理するために、水素供与性溶剤を原料重質
油に1〜30容量%添加することを特徴とする、請求項1
〜2に記載の重質油の水素化処理方法。
3. The method according to claim 1, wherein a hydrogen-donating solvent is added to the raw heavy oil in an amount of 1 to 30% by volume in order to control the aromatic index of asphaltenes in the oil produced in the first step.
3. The method for hydrotreating heavy oil according to any one of claims 1 to 2.
【請求項4】 第一工程生成油中のアスファルテンの芳
香族指数を管理するために、50℃における動粘度が500m
m2/s以下の低動粘度留分を原料重質油に1〜30容量%添
加することを特徴とする、請求項1〜3に記載の重質油
の水素化処理方法。
4. The kinematic viscosity at 50 ° C. is 500 m in order to control the aromatic index of asphaltenes in the first step product oil.
The heavy oil hydrotreating method according to claim 1, wherein a low kinematic viscosity fraction of m 2 / s or less is added to the raw heavy oil in an amount of 1 to 30% by volume.
【請求項5】 第一及び第二工程に使用される触媒が、
アルミナ担体に6 族および9〜10族金属を担持した柱状
触媒あるいは球状触媒である、請求項1〜4に記載の重
質油の水素化処理方法。
5. The catalyst used in the first and second steps,
The method for hydrotreating heavy oil according to any one of claims 1 to 4, wherein the catalyst is a columnar catalyst or a spherical catalyst having a Group 6 and Group 9 to 10 metal supported on an alumina carrier.
JP07135699A 1999-03-17 1999-03-17 Heavy oil hydroprocessing method Expired - Fee Related JP4338254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07135699A JP4338254B2 (en) 1999-03-17 1999-03-17 Heavy oil hydroprocessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07135699A JP4338254B2 (en) 1999-03-17 1999-03-17 Heavy oil hydroprocessing method

Publications (2)

Publication Number Publication Date
JP2000265177A true JP2000265177A (en) 2000-09-26
JP4338254B2 JP4338254B2 (en) 2009-10-07

Family

ID=13458147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07135699A Expired - Fee Related JP4338254B2 (en) 1999-03-17 1999-03-17 Heavy oil hydroprocessing method

Country Status (1)

Country Link
JP (1) JP4338254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513011A (en) * 2006-12-22 2010-04-30 アルケマ フランス Sulfurizing agents for hydrotreating catalysts and use of the sulphiding agents for on-site and off-site presulfidation
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
US8491779B2 (en) 2009-06-22 2013-07-23 Saudi Arabian Oil Company Alternative process for treatment of heavy crudes in a coking refinery
US8632673B2 (en) 2007-11-28 2014-01-21 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US9260671B2 (en) 2008-07-14 2016-02-16 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513011A (en) * 2006-12-22 2010-04-30 アルケマ フランス Sulfurizing agents for hydrotreating catalysts and use of the sulphiding agents for on-site and off-site presulfidation
US8632673B2 (en) 2007-11-28 2014-01-21 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
US9260671B2 (en) 2008-07-14 2016-02-16 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
US8491779B2 (en) 2009-06-22 2013-07-23 Saudi Arabian Oil Company Alternative process for treatment of heavy crudes in a coking refinery

Also Published As

Publication number Publication date
JP4338254B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US8926824B2 (en) Process for the conversion of residue integrating moving-bed technology and ebullating-bed technology
US8372267B2 (en) Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
US10221366B2 (en) Residue hydrocracking
JP4874977B2 (en) Recycling method of active slurry catalyst composition in heavy oil upgrade
US8956528B2 (en) Slurry bed hydroprocessing and system using feedstock containing dissolved hydrogen
RU2663896C2 (en) Residue hydrocracking processing
JPH0753967A (en) Hydrotreatment of heavy oil
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
WO2006022419A1 (en) Process for hydrorefining heavy hydrocarbon oil
JP6181378B2 (en) Hydrotreating method
JP2000265177A (en) Hydrogenation treatment of heavy oil
WO2021112895A1 (en) Mixed phase two-stage hydrotreating processes for enhanced desulfurization of distillates
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JP4245218B2 (en) Method for hydrodesulfurization of heavy oil
JP2000256678A (en) Method for hydro-refining of heavy oil
JP2012197350A (en) Hydrorefining method of heavy oil
JP4766940B2 (en) Method for producing hydrocarbon oil
US20200407652A1 (en) Two-phase moving bed reactor utilizing hydrogen-enriched feed
US8920631B2 (en) Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
WO2023150414A1 (en) Integrated hydrotreating and hydrocracking with continuous hydrotreating catalyst regeneration
JPH0235938A (en) Catalyst for use in hydrorefining of heavy oil and process for hydrorefining
JPH0547594B2 (en)
JPH05431B2 (en)
JP2008143917A (en) Hydrocarbon oil hydroforming process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees