[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000262276A - New microorganism and biological treatment of marine life - Google Patents

New microorganism and biological treatment of marine life

Info

Publication number
JP2000262276A
JP2000262276A JP11068899A JP6889999A JP2000262276A JP 2000262276 A JP2000262276 A JP 2000262276A JP 11068899 A JP11068899 A JP 11068899A JP 6889999 A JP6889999 A JP 6889999A JP 2000262276 A JP2000262276 A JP 2000262276A
Authority
JP
Japan
Prior art keywords
marine
microorganism
ferm
results
marine organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11068899A
Other languages
Japanese (ja)
Other versions
JP3641156B2 (en
Inventor
Michio Ikeda
理夫 池田
Hiroko Imamura
裕子 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06889999A priority Critical patent/JP3641156B2/en
Priority to KR1020000012853A priority patent/KR100322439B1/en
Publication of JP2000262276A publication Critical patent/JP2000262276A/en
Application granted granted Critical
Publication of JP3641156B2 publication Critical patent/JP3641156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new microorganism consisting of Bacillus sp NA-3, Pseudomonas fluorescence NA-11, NA-12, etc., having a marine life decomposing activity, and useful for the decomposition treatment of shells, jelly fishes, etc., removed from a ship body or a water intake port. SOLUTION: This new microorganism is selected from a group consisting of Bacillus sp NA-3 (FERM P-17302), Pseudomonas fluorescens NA-11 (FERM P-17303), Pseudomonas fluorescens NA-12 (FERM P-17304), Enterobacter amnigeus NA-34 (FERM P-17305) and Ochrobactrum anthropi NA-43 (FERM P-17306), has a marine life decomposing activity and is useful for performing a decomposition treatment of shells attached to a ship body and a water intake port and marine life such as jelly fishes sucked at the water intake port of a water intake passage, without generating a bad smell and in a good efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海生物分解能を有
する新規な微生物菌株およびそれを用いた海生物の生物
処理方法に関する。
[0001] The present invention relates to a novel microorganism strain having the ability to degrade marine organisms and a method for biologically treating marine organisms using the same.

【0002】[0002]

【従来の技術】船体や取水路に付着した貝等や、取水路
の取水口に吸い寄せられたクラゲ等の海生物のなかで、
例えば、工場や発電所等の冷却用取水路に付着する海生
物は、熱交換の効率低下を引き起こす原因となる。ま
た、取水路の取水口に吸い寄せられた海生物は、取水口
の水位を低下させるために取水量の低下を引き起こし、
システムの停止や稼動率の低下の原因となる。そのた
め、これら海生物を定期的にあるいは随時除去しなけれ
ばならない。これまでは、これら除去された海生物の処
理には、埋め立て処理を適用することが一般的であっ
た。しかし、埋め立てのために放置された海生物は腐敗
し、強烈な悪臭を発生するため問題となっている。
2. Description of the Related Art Among sea creatures such as shellfish attached to a hull and an intake channel and jellyfish attracted to an intake of an intake channel,
For example, marine organisms adhering to a cooling intake channel of a factory, a power plant, or the like cause a reduction in heat exchange efficiency. In addition, sea creatures drawn into the intake of the intake channel cause a decrease in water intake to lower the water level at the intake,
This may cause the system to stop and the operating rate to decrease. Therefore, these marine organisms must be removed regularly or as needed. Heretofore, landfill treatment has generally been applied to the treatment of these removed marine organisms. However, marine organisms left unfilled have become a problem because they rot and emit intense odors.

【0003】工場の取水路に付着したり、取水口に吸い
寄せられる海生物は、取水路の規模によっては、年間に
膨大な量になり、上述したような埋め立て処理により発
生する悪臭の問題は、特に大きな問題となっている。さ
らに、埋め立て用地確保等の問題からも、埋め立て処理
には限界があるといわざるを得ない。
[0003] The amount of marine organisms that adhere to the intake channels of factories or are drawn into the intake ports is enormous per year depending on the scale of the intake channels. This is a particularly big problem. Furthermore, it cannot be said that there is a limit to the landfill processing due to problems such as securing land for landfill.

【0004】その他の処理方法として、取水路内や取水
口から除去、回収した海生物を焼却処理することも行わ
れている。しかし、この方法は投入エネルギーが大き
く、処理コストが高くなることから、廃棄物の処理方法
として望ましい方法とはいえない。さらに、今後の我々
をとりまく環境問題を考えると、ただ単に海生物を処分
してしまうだけでなく、何らかのかたちで有効利用を目
指した処理方法が望まれる。そのため、海産物を効率よ
く処理する技術の開発が行われており、特に、定期的に
大量に発生する海生物について、それらの有効利用も含
めた処理技術の開発が行われている。
[0004] As another treatment method, marine organisms removed and recovered from an intake channel or an intake port are incinerated. However, this method is not a desirable method as a method for treating waste, because the input energy is large and the treatment cost is high. Furthermore, considering the environmental issues surrounding us in the future, it is desirable to have a treatment method that not only disposes of marine life but also aims for effective utilization in some form. For this reason, technologies for efficiently processing marine products are being developed, and especially for marine organisms that regularly occur in large quantities, processing technologies are being developed including their effective use.

【0005】上述したような観点から開発された技術と
して、水揚げされた海生物を処理槽に入れ、そこへ予め
培養しておいた嫌気性微生物生物群を注入した後、外気
と遮断して嫌気発酵を行い分解処理する技術が挙げられ
る。この技術は、少量の海生物を処理する場合には有効
であると思われる。しかし、工場や発電所の取水路等か
ら除去される海生物のように、大量の廃棄海生物が順次
水揚げされるような場合には、大容量の処理槽を設置し
なければならないというような問題がある。また、海生
物のような数ミリ〜数センチといった比較的大きな固形
物を含む場合には、処理槽の処理効率が低い。さらに、
例えば貝類の場合でいえば、貝殻と貝肉の分離では5日
程度、また、貝肉の液化に1〜2ヶ月程度の長期間を要
する等、実用化を図るためには解決すべき問題が多い。
[0005] As a technique developed from the above-mentioned viewpoint, landed marine organisms are put into a treatment tank, and anaerobic microbial organisms that have been cultured in advance are injected into the tank. There is a technique of performing fermentation and decomposition treatment. This technique may be effective when treating small amounts of marine organisms. However, if a large amount of waste marine organisms are to be landed one after another, such as marine organisms that are removed from the intake channels of factories and power plants, a large-capacity treatment tank must be installed. There's a problem. In addition, when relatively large solids such as several millimeters to several centimeters are contained, such as marine organisms, the processing efficiency of the processing tank is low. further,
For example, in the case of shellfish, there are problems to be solved in order to achieve practical use, such as the separation of shells and shell meat takes about 5 days, and the liquefaction of shell meat requires a long period of about 1 to 2 months. Many.

【0006】このような事情から、廃棄される海生物を
悪臭を発生することなく、低コストで効率よく処理可能
であり、さらに、貝殻等の有効利用をも視野に入れた処
理技術の開発が求められている。
[0006] Under such circumstances, it is necessary to develop a processing technique that can efficiently treat discarded marine organisms at low cost without generating a bad odor, and furthermore, with a view to effective use of shells and the like. It has been demanded.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上述
のように問題となっている悪臭を発生することなく、海
生物を効率よく処理するために、海生物を分解するため
の強力な新規微生物、およびその微生物を利用した、海
生物を分解処理する方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a powerful marine biodegradation system for efficiently processing marine organisms without generating the offensive odor as described above. An object of the present invention is to provide a novel microorganism and a method for decomposing marine organisms using the microorganism.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成できる海生物分解微生物の単離に成功し、本発明
に至った。
Means for Solving the Problems The present inventors have succeeded in isolating a marine biodegradable microorganism which can achieve the above object, and have accomplished the present invention.

【0009】本発明により単離された新規微生物は、バ
チルス・スピーシーズNA−3(Bacillus sp. NA−
3;FERM P−17302)、シュードモナス・フ
ルオレセンスNA−11(Pseudomonas fluolescens
NA−11;FERM P−17303)、シュードモ
ナス・フルオレセンスNA−12(Pseudomonas fluole
scens NA−12;FERM P−17304)、エ
ンテロバクター・アムニゲウスNA−34(Enterobact
er amnigenus NA−34;FERM P−1730
5)、およびオクロバクトラム・アンスロピNA−43
(Ochrobactrum anthropi NA−43;FERM P
−17306)である。
The novel microorganism isolated according to the present invention is Bacillus sp. NA-
3: FERM P-17302), Pseudomonas fluorescens NA-11 (Pseudomonas fluolescens)
NA-11; FERM P-17303), Pseudomonas fluorescein NA-12 (Pseudomonas fluole)
scens NA-12; FERM P-17304), Enterobacter amnigeuus NA-34 (Enterobact
er amnigenus NA-34; FERM P-1730
5), and Ochrobactrum anthropi NA-43
(Ochrobactrum anthropi NA-43; FERMP
-17306).

【0010】本発明における海生物の分解処理方法は、
微生物源から、海生物を含む水性無機培地中で生存可能
な微生物を選択する第1の工程と、前記第1の工程で選
択された微生物から、海生物分解処理能および3%Na
Cl以上の耐塩性を有するものを選択する第2の工程
と、前記第2の工程で得られた微生物を処理すべき海生
物と接触させて海生物を分解処理する第3の工程とを具
備する。
The method for decomposing marine organisms according to the present invention comprises:
A first step of selecting a microorganism that can survive in an aqueous inorganic medium containing a marine organism from a microorganism source; and a marine biodegradability and 3% Na from the microorganism selected in the first step.
A second step of selecting a substance having a salt tolerance of not less than Cl, and a third step of decomposing the marine organism by bringing the microorganism obtained in the second step into contact with the marine organism to be treated. I do.

【0011】また、本発明の好ましい海生物の分解処理
方法は、海生物分解能および3%NaCl以上の耐塩性
を有する微生物を培養槽中で担体に担持させて増殖さ
せ、前記微生物から前記培養槽中に体外酵素を放出させ
る工程と、前記工程で得られた体外酵素を含む溶液を、
海生物を含む処理槽に供給して該海生物を分解する工程
と、前記処理槽内の溶液を、前記微生物培養槽に循環さ
せる工程とを具備する。
In a preferred method for decomposing marine organisms according to the present invention, microorganisms having marine organism resolution and salt tolerance of 3% NaCl or more are supported on a carrier in a culture tank and grown. Releasing the extracorporeal enzyme into the solution containing the extracorporeal enzyme obtained in the step,
The method includes a step of decomposing the marine organism by supplying the marine organism to a processing tank containing the marine organism, and a step of circulating the solution in the processing tank to the microorganism culturing tank.

【0012】[0012]

【発明の実施の形態】上述の目的は、以下の本発明によ
り達成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-mentioned object is achieved by the present invention described below.

【0013】〈単離方法〉本発明者らは、海生物を効率
よく分解する微生物を探索した結果、日本の関東地方の
土壌中から、ムラサキイガイやミズクラゲ等の海生物を
効率よく分解する菌株を取得し、この菌株を海生物と接
触させることにより分解する方法を見出した。本発明に
おいて、海生物とは、貝、クラゲ、魚、海藻、甲殻類な
ど何でもよいが、主に取水路に付着したり取水口に吸い
寄せられたりして問題を引き起こす貝類およびクラゲ類
を対象とする。
<Isolation method> As a result of searching for microorganisms that can efficiently degrade marine organisms, the present inventors have found from the soil in the Kanto region of Japan a strain that efficiently degrades marine organisms such as mussels and moon jellyfish. A method for decomposing the strain by contacting the strain with marine organisms was found. In the present invention, marine organisms may be shellfish, jellyfish, fish, seaweed, crustaceans, etc., but mainly include shellfish and jellyfish that cause problems when attached to an intake channel or sucked into an intake. I do.

【0014】実際の海生物の処理においては、排出され
る廃液の処理や固相培養における担体等をコンポストと
して使用する場合を想定すると、海生物処理の場に分解
菌の生育に対する栄養分を多量に添加することが困難な
場合が容易に推測される。
In the actual treatment of marine organisms, if it is assumed that waste water is discharged or a carrier or the like in solid-phase cultivation is used as compost, a large amount of nutrients for the growth of degrading bacteria will be generated in the marine organism treatment field. It is easily assumed that it is difficult to add.

【0015】そこで、海生物を唯一の炭素源として生育
可能で、悪臭を発生することなく海生物を効率よく分解
する微生物の探索を行った。
Therefore, a search was made for microorganisms capable of growing using marine organisms as the sole carbon source and decomposing marine organisms efficiently without generating bad odors.

【0016】すなわち、まず第一段の選抜として、関東
地方の土壌0.3g、蒸留水100mL、海生物1g
(生鮮重量)を容器に添加して培養することを繰り返し
集積培養を行った。この時点で生育している微生物を、
LB寒天培地を用いた平板希釈法によるシングルコロニ
ーアイソレーションにより単離した。
That is, first, as the first stage selection, 0.3 g of soil in the Kanto region, 100 mL of distilled water, and 1 g of marine organisms
(Fresh weight) was added to the container and culturing was repeated to perform enrichment culturing. The microorganisms growing at this point
It was isolated by single colony isolation by a plate dilution method using LB agar medium.

【0017】この様にして、海生物のみで生育可能な微
生物に関して、第二段の選抜として、海生物の分解能を
指標に更に選抜を行った。すなわち、これら海生物のみ
で生育可能な微生物を含む無機塩培地懸濁液100mL
に海生物1gを添加し、海生物の分解活性を検証した。
その結果、海生物分解活性の高い微生物を選択した。ま
た、実際の処理においては、海生物に含まれるNaCl
および海水中のNaClが処理環境中に存在することか
ら、実用に耐えうる海生物処理用の微生物の選抜を目的
として、これら海生物分解能の高い微生物について耐塩
性を検証した。その結果、NaCl濃度3%(重量%)
以上のNaClに対して耐性を有する微生物を、海生物
分解微生物として選択した。
As described above, as a second stage of selection, microorganisms capable of growing only on marine organisms were further selected based on the resolution of marine organisms. That is, 100 mL of an inorganic salt medium suspension containing microorganisms that can grow only in these marine organisms
Was added with 1 g of marine organism, and the decomposition activity of the marine organism was verified.
As a result, microorganisms having high marine biodegradation activity were selected. In the actual treatment, NaCl contained in marine organisms
In addition, since NaCl in the seawater is present in the treatment environment, the salt tolerance of these microorganisms having a high resolution of marine organisms was verified for the purpose of selecting microorganisms for marine organism treatment that can be practically used. As a result, the NaCl concentration was 3% (% by weight).
Microorganisms having the above-mentioned resistance to NaCl were selected as marine biodegradable microorganisms.

【0018】以下にLB寒天培地の組成を示す。The composition of the LB agar medium is shown below.

【0019】LB寒天培地(培地1L中:pH7) NaOH:10g トリプトン:10g イースト・エクストラクト:5g Agar:15g 上述の操作によって単離した菌株を用いて、上述の試験
と同様に海生物の分解試験を行い、分解の有無、およ
び、試験培養液の吸光度の増加を指標とした生育の様
子、さらに、分解処理時の悪臭の官能試験から分解能力
・処理能力を確認・検討し、海生物分解能の高い5菌株
を取得することに成功した。
LB agar medium (in 1 L of medium: pH 7) NaOH: 10 g Tryptone: 10 g Yeast extract: 5 g Agar: 15 g Using the strain isolated by the above operation, degradation of marine organisms in the same manner as the above test The test was conducted to determine the presence or absence of decomposition and the growth of the test culture based on the increase in the absorbance of the test medium. Successfully obtained five strains with high levels.

【0020】〈菌学的性質〉本発明で新たに取得された
5菌株の菌学的性質を以下に示す。
<Mycological properties> The mycological properties of the five strains newly obtained in the present invention are shown below.

【0021】まず、バチルス・スピーシーズNA−3
(Bacillus sp. NA−3;FERMP−17302)
について示す。
First, Bacillus species NA-3
(Bacillus sp. NA-3; FERMP-17302)
It shows about.

【0022】 a)形態的性質等 (1)形態:桿菌 b)生理学的性質 (1)グラム染色:+ (2)オキシダーゼ:− (3)硫化水素の生成:− (4)硝酸塩の還元:+ (5)インドールの生成:− (6)VPテスト:− (7)ONPG:− (8)ゼラチンの液化:+ (9)Or(decarboxylation from ornithine):− (10)Ly(decarboxylation from lysine):− (11)Ar(decarboxylation from arginine):+ (12)利用能 グルコース:+ フルクトース:+ マンノース:+ マルトース:+ トレハロース:+ マンニトール:− キシリトール:− イノシトール:− ソルビトール:− ラムノース:− シュークロース:− メルビオース:− アミグダリン:− アラビノース:− 以上の諸性質から、本菌株は、バチルス(Bacillus)属
に属していることは明らかであり、該当種が判明しない
ことから、バチルス・スピーシーズ(Bacillussp.)に
属せしめるのが適当であると認められた。
A) Morphological properties etc. (1) Morphology: Bacillus b) Physiological properties (1) Gram staining: + (2) Oxidase:-(3) Production of hydrogen sulfide:-(4) Reduction of nitrate: + (5) Formation of indole:-(6) VP test:-(7) ONPG:-(8) Liquefaction of gelatin: + (9) Or (decarboxylation from ornithine):-(10) Ly (decarboxylation from lysine): -(11) Ar (decarboxylation from arginine): + (12) Availability glucose: + fructose: + mannose: + maltose: + trehalose: + mannitol:-xylitol:-inositol:-sorbitol:-rhamnose:-sucrose: -Melviose:-amygdalin:-arabinose:-From the above properties, it is clear that this strain belongs to the genus Bacillus, and since the corresponding species is not known, Bacillus sp. Has been found to be suitable for belonging to Bacillus sp.

【0023】次いで、シュードモナス・フルオレセンス
NA−11(Pseudomonas fluolescens NA−11;
FERM P−17303)について示す。
Next, Pseudomonas fluorescens NA-11;
FERM P-17303).

【0024】 a)形態的性質等 (1)形態:桿菌 b)生理学的性質 (1)グラム染色:− (2)オキシダーゼ:+ (3)色素産生能:+ (4)硫化水素の生成:− (5)硝酸塩の還元:− (6)インドールの生成:− (7)クエン酸利用能:− (8)VPテスト:− (9)ONPG:− (10)ゼラチンの液化:+ (11)Or(decarboxylation from ornithine):− (12)Ly(decarboxylation from lysine):− (13)Ar(decarboxylation from arginine):+ (14)利用能 グルコース:+ フルクトース:+ マルトース:− ガラクトース:+ キシロース:+ マンニトール:+ シュークロース:− ラクトース:− エスクリン:− 以上の諸性質から、本菌株は、シュードモナス・フルオ
レセンス(Pseudomonas fluolescens)に属せしめるの
が適当であると認められた。
A) Morphological properties etc. (1) Morphology: Bacillus b) Physiological properties (1) Gram staining:-(2) Oxidase: + (3) Pigment-producing ability: + (4) Production of hydrogen sulfide:- (5) Reduction of nitrate:-(6) Formation of indole:-(7) Utilization of citric acid:-(8) VP test:-(9) ONPG:-(10) Liquefaction of gelatin: + (11) Or (Decarboxylation from ornithine):-(12) Ly (decarboxylation from lysine):-(13) Ar (decarboxylation from arginine): + (14) Availability glucose: + fructose: + maltose:-galactose: + xylose: + mannitol : + Sucrose:-lactose:-esculin:-From the above properties, it was recognized that this strain was appropriate to belong to Pseudomonas fluolescens.

【0025】次いで、シュードモナス・フルオレセンス
NA−12(Pseudomonas fluolescens NA−12;
FERM P−17304)について示す。
Next, Pseudomonas fluorescens NA-12;
FERM P-17304).

【0026】 a)形態的性質等 (1)形態:桿菌 b)生理学的性質 (1)グラム染色:− (2)オキシダーゼ:+ (3)色素産生能:+ (4)硫化水素の生成:− (5)硝酸塩の還元:− (6)インドールの生成:− (7)クエン酸利用能:− (8)VPテスト:+ (9)ONPG:− (10)ゼラチンの液化:+ (11)Or(decarboxylation from ornithine):− (12)Ly(decarboxylation from lysine):− (13)Ar(decarboxylation from arginine):+ (14)利用能 グルコース:+ フルクトース:+ マルトース:− ガラクトース:+ キシロース:+ マンニトール:+ シュークロース:− ラクトース:− エスクリン:− 以上の諸性質から、本菌株は、シュードモナス・フルオ
レセンス(Pseudomonas fluolescens)に属せしめるの
が適当であると認められた。
A) Morphological properties etc. (1) Morphology: Bacillus b) Physiological properties (1) Gram staining:-(2) Oxidase: + (3) Pigment-producing ability: + (4) Production of hydrogen sulfide:- (5) Reduction of nitrate:-(6) Formation of indole:-(7) Utilization of citric acid:-(8) VP test: + (9) ONPG:-(10) Liquefaction of gelatin: + (11) Or (Decarboxylation from ornithine):-(12) Ly (decarboxylation from lysine):-(13) Ar (decarboxylation from arginine): + (14) Availability glucose: + fructose: + maltose:-galactose: + xylose: + mannitol : + Sucrose:-lactose:-esculin:-From the above properties, it was recognized that this strain was appropriate to belong to Pseudomonas fluolescens.

【0027】次いで、エンテロバクター・アムニゲウス
NA−34(Enterobacter amnigenus NA−34;F
ERM P−17305)について示す。
Next, Enterobacter amnigenus NA-34;
ERM P-17305).

【0028】 a)形態的性質等 (1)形態:桿菌 b)生理学的性質 (1)グラム染色:− (2)オキシダーゼ:− (3)β−ガラクトシダーゼ:+ (4)α−ガラクトシダーゼ:+ (5)ONPG:+ (6)ウレアーゼ:− (7)Or(decarboxylation from ornithine):+ (8)Ly(decarboxylation from lysine):− (9)Ar(decarboxylation from arginine):+ (10)利用能 グルコース:+ シュークロース:− L−アラビノース:+ D−アラビノース:− L−アラビトール:− D−マルトース:+ D−マンニトール:+ L−ラムノース:+ イノシトール:− D−セトビオース:+ D−ソルビトール:− アドニット:− パラチノース:− D−ガラクツロン酸:+ L−オルニチン一塩酸塩:+ L−アルギニン一塩酸塩:+ 塩酸リジン:− 5−ケトグルコン酸カリウム:− ノナノン酸5−ブロモインドキシル:− ピルビン酸ナトリウム:+ p−ニトロフェニル−β−D−グルコシド:+ p−ニトロフェニル−β−D−グルコロイド:− マロン酸ナトリウム:+ L−トリプトファン:− 5-ブロモ-4-クロロ-3-インドキシル-N-アセチル-D
-グルコサミド:− p−ニトロフェニル−β−D−ガラクトピラノシド:+ p−ニトロフェニル−α−D−グルコシド:− p−ニトロフェニル−α−D−ガラクトピラノシド:+ トレハロース:+ 4−ニトロフェニル−α−D−マルトサイド:− L−アスパラギン酸−4−ニトロアニリド:− 以上の諸性質から、本菌株は、エンテロバクター・アム
ニゲウス(Enterobacter amnigenus)に属せしめるのが
適当であると認められた。
A) Morphological properties etc. (1) Morphology: Bacillus b) Physiological properties (1) Gram staining:-(2) Oxidase:-(3) β-galactosidase: + (4) α-galactosidase: + ( 5) ONPG: + (6) urease:-(7) Or (decarboxylation from lysine): + (8) Ly (decarboxylation from lysine):-(9) Ar (decarboxylation from arginine): + (10) availability glucose : + Sucrose:-L-arabinose: + D-arabinose:-L-arabitol:-D-maltose: + D-mannitol: + L-rhamnose: + inositol:-D-setobiose: + D-sorbitol:-adinit :-Palatinose:-D-galacturonic acid: + L-ornithine monohydrochloride: + L-arginine monohydrochloride: + Lysine hydrochloride:-Potassium 5-ketogluconate:- Non-acid 5-bromoindoxyl:-Sodium pyruvate: + p-nitrophenyl-β-D-glucoside: + p-nitrophenyl-β-D-glucocolloid:-Sodium malonate: + L-tryptophan: -5 -Bromo-4-chloro-3-indoxyl-N-acetyl-D
-Glucosamide:-p-nitrophenyl-β-D-galactopyranoside: + p-nitrophenyl-α-D-glucoside:-p-nitrophenyl-α-D-galactopyranoside: + trehalose: +4 -Nitrophenyl-α-D-maltoside: -L-aspartic acid-4-nitroanilide:-From the above-mentioned properties, it is appropriate that this strain belongs to Enterobacter amnigenus. Admitted.

【0029】最後に、オクロバクトラム・アンスロピN
A−43(Ochrobactrum anthropiNA−43;FER
M P−17306)について示す。
Finally, Okrobactrum Anthropi N
A-43 (Ochrobactrum anthropi NA-43; FER
MP-17306).

【0030】 a)形態的性質等 (1)形態:桿菌 b)生理学的性質 (1)グラム染色:− (2)オキシダーゼ:+ (3)利用能 グルコース:+ ラムノース:+ N−アセチルグルコサミン:+ D−リボース:+ イノシット:+ L−フコース:+ シュークロース:+ ソルビトール:+ マルトース:+ L−アラビノース:+ グリコーゲン:− D−メルビオース:− サリシン:+ イタコン酸:− プロピオン酸:+ スベリン酸:− マロン酸ナトリウム:− 酢酸ナトリウム:+ 乳酸:+ 5−ケトグルコン酸:− L−アラニン:+ m−ヒドロキシ安息香酸:− L−セリン:+ D−マンニトール:+ n−カプリン酸:+ n−吉草酸:+ クエン酸ナトリウム:+ L−ヒスチジン塩酸塩:+ 2−ケトグルコン酸:+ 3−ヒドロキシ酪酸:− p−ヒドロキシ安息香酸:+ L−プロリン:+ 以上の諸形質から、本菌株は、オクロバクトラム・アン
スロピ(Ochrobactrumanthropi)に属せしめるのが適当
であると認められた。
A) Morphological properties etc. (1) Morphology: Bacillus b) Physiological properties (1) Gram staining:-(2) Oxidase: + (3) Availability glucose: + rhamnose: + N-acetylglucosamine: + D-ribose: + inosit: + L-fucose: + sucrose: + sorbitol: + maltose: + L-arabinose: + glycogen:-D-melbiose:-salicin: + itaconic acid:-propionic acid: + suberic acid: -Sodium malonate:-sodium acetate: + lactic acid: + 5-ketogluconic acid:-L-alanine: + m-hydroxybenzoic acid:-L-serine: + D-mannitol: + n-capric acid: + n-k Herbic acid: + sodium citrate: + L-histidine hydrochloride: + 2-ketogluconic acid: + 3-hydroxybutyric acid:-p-hydrid Carboxymethyl acid: + L-Proline: from + above various characteristics, the present strain was recognized as that occupied Zokuse to Ochrobactrum anthropi (Ochrobactrumanthropi) is suitable.

【0031】また、本発明の5菌株は、後述する実施例
からも明らかなように、ムラサキイガイおよびミズクラ
ゲ等の海生物を効率よく分解することが可能である。本
発明者らは、当該5菌株のタイプストレインを用いて海
生物の分解を試みたが、必ずしも本菌株ほどの良好な分
解活性を得られなかったため、本菌株を新菌株と認定し
た。新菌株の各々を、バチルス・スピーシーズNA−3
株(Bacillus sp.NA−3:FERM P−1730
2)、シュードモナス・フルオレセンスNA−11株
(Pseudomonas fluolescens NA−11:FERM P
−17303)、シュードモナス・フルオレセンスNA
−12株(Pseudomonas fluolescens NA−12:FE
RM P−17304)、エンテロバクター・アムニゲ
ヌスNA−34株(Enterobacter amnigenus NA−3
4:FERM P−17305)、オクロバクトラム・
アンスロピNA−43株(Ochrobactrum anthropi NA
−43:FERM P−17306)と命名し、通産省
工業技術院生命工学工業技術研究所に寄託した。以下、
上記5菌株をNA−3、NA−11、NA−12、NA
−34、NA−43と記す。
The five strains of the present invention are capable of efficiently decomposing marine organisms such as mussels and moon jellyfish, as is clear from the examples described later. The present inventors attempted to degrade marine organisms using the five strains of the type strain, but did not always obtain as good a degrading activity as the present strain, and thus identified the present strain as a new strain. Each of the new strains was transformed into Bacillus species NA-3
Strain (Bacillus sp. NA-3: FERM P-1730)
2), Pseudomonas fluorescens NA-11 strain (FERM P
-17303), Pseudomonas fluorescens NA
-12 strain (Pseudomonas fluolescens NA-12: FE
RM P-17304), Enterobacter amnigenus NA-34 strain (Enterobacter amnigenus NA-3).
4: FERM P-17305), Ochrobactrum
Anthropi NA-43 strain (Ochrobactrum anthropi NA
-43: FERM P-17306) and deposited with the Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry. Less than,
The above five strains were used for NA-3, NA-11, NA-12, NA
-34, NA-43.

【0032】〈培養条件〉本発明の5菌株を培養するた
めに用いられる培地の栄養源としては、通常の微生物の
生育に必要であって、各菌株が資化可能な栄養源であれ
ば如何なる炭素源、窒素源および無機塩類等でもよく、
例えばLB培地で培養することが可能である。
<Culture conditions> As a nutrient source of a medium used for culturing the five strains of the present invention, any nutrient source that is necessary for the growth of ordinary microorganisms and can be assimilated by each strain is used. A carbon source, a nitrogen source and inorganic salts may be used,
For example, it is possible to culture in an LB medium.

【0033】以下にLB培地の組成を示す。The composition of the LB medium is shown below.

【0034】LB培地(培地1L中:pH7) NaOH:10g トリプトン:10g イースト・エクストラクト:5g 培養は、好気条件下で行うことが出来、液体培養でも固
体培養でも良い。
LB medium (1 L of medium: pH 7) NaOH: 10 g Tryptone: 10 g Yeast extract: 5 g Culture can be performed under aerobic conditions, and either liquid culture or solid culture may be used.

【0035】培養温度は、各菌株が良好に生育出来る温
度範囲であればよく、この範囲内で培養することが望ま
しい。例えば、NA−11、NA−12およびNA−3
4は、20℃〜30℃が好ましく、特に25℃前後、2
3℃〜27℃が好ましい。NA−3およびNA−43
は、35℃〜45℃が好ましく、特に37℃前後、35
℃〜39℃が好ましい。
The cultivation temperature may be within a temperature range in which each strain can grow well, and it is desirable to culture within this range. For example, NA-11, NA-12 and NA-3
4 is preferably 20 ° C to 30 ° C, particularly around 25 ° C,
3 ° C to 27 ° C is preferred. NA-3 and NA-43
Is preferably 35 ° C to 45 ° C, particularly around 37 ° C,
C. to 39 C. are preferred.

【0036】培養時のpHは、各菌株が良好に生育出来
る範囲であればよい。例えば、NA−3、NA−11、
NA−12、NA−34、NA−43は、pH5.5〜
8.5が好ましく、特にpH6〜8が好ましい。
The pH at the time of culturing may be within a range in which each strain can grow well. For example, NA-3, NA-11,
NA-12, NA-34 and NA-43 have a pH of 5.5 to 5.5.
8.5 is preferable, and pH 6 to 8 is particularly preferable.

【0037】海生物の負荷量は、各菌株が良好に海生物
処理を行える範囲に設定することが望ましい。例えば、
培養槽中に菌株が、108CFU/mL〜109CFU/
mL程度存在する場合、培養槽1m3当たり、海生物
0.2t〜0.5tを添加する。
It is desirable to set the load of marine organisms within a range in which each strain can perform marine organism treatment well. For example,
In the culture tank, 10 8 CFU / mL to 10 9 CFU /
When about mL exists, 0.2 t to 0.5 t of marine organism is added per 1 m 3 of the culture tank.

【0038】上述したとおり、本発明の5菌株による処
理温度、処理pH、海生物負荷量としては、各菌株が良
好な海生物処理を行える範囲で処理を行うことが望まし
い。また、本5菌株を培養することにより産生する酵素
等を用いて海生物処理を行う場合は、海生物の処理環境
を、当該酵素等が良好な処理効果を発揮する温度、pH
として処理を行うことが望ましい。また、海生物負荷量
も当該酵素等が良好に処理を行える範囲に設定すること
が望ましい。
As described above, the treatment temperature, the treatment pH, and the marine organism load with the five strains of the present invention are desirably within the range in which each strain can perform good marine organism treatment. In the case where marine organism treatment is performed using an enzyme or the like produced by culturing the five strains, the treatment environment of the marine organism is adjusted to a temperature, pH, at which the enzyme or the like exerts a good treatment effect.
It is desirable to perform the processing as follows. It is also desirable to set the load on the marine organism within a range where the enzyme or the like can perform a satisfactory treatment.

【0039】〈酵素活性〉海生物の体、特に貝類および
クラゲ類の体は、水や灰分(85%)を除くと、大部分
がタンパク質(10%)で占められており、次いで糖質
(3%)そして脂質(2%)が占めている。
<Enzyme activity> The body of marine organisms, particularly the bodies of shellfish and jellyfish, is mostly composed of protein (10%) except for water and ash (85%), followed by carbohydrate (10%). 3%) and lipids (2%).

【0040】そこで、本発明の5菌株について、プロテ
アーゼ、アミラーゼ、リパーゼの活性を検討したとこ
ろ、全ての菌株とも、体外にプロテアーゼを放出してい
ると思われる結果を得た(実施例1〜5、表1参照)。
特に、NA−11株は高いプロテアーゼ活性を示した。
一方、アミラーゼ活性は全ての菌株とも低い値を示し、
リパーゼ活性に関しては、まったく活性が観察されなか
った。
Then, the protease, amylase and lipase activities of the five strains of the present invention were examined. As a result, it was found that all the strains released the protease outside the body (Examples 1 to 5). , Table 1).
In particular, the NA-11 strain showed high protease activity.
On the other hand, the amylase activity shows a low value for all strains,
No activity was observed for lipase activity.

【0041】このことから、これらの5菌株は、主に菌
体外へ放出したプロテアーゼ、すなわち可溶性プロテア
ーゼの作用により、海生物の構成要素であるタンパク質
を分解し、海生物を高効率に分解処理可能であるものと
考えられる。しかし、5菌株のプロテアーゼ活性と海生
物分解の効果との間には、必ずしも明らかな相関関係が
見られるわけではなかった。そのため、本発明者らは、
海生物分解には、プロテアーゼの活性は必要ではある
が、可溶性プロテアーゼの活性のみでは説明することが
できないと考えている。すなわち、単に可溶性プロテア
ーゼ活性が高い菌株が必ずしも海生物分解に適している
とはいえない。この理由は、現在のところ明らかではな
いが、海生物分解に効果的な可溶性プロテアーゼの存在
することや、プロテアーゼ活性以外の何らかの要因が海
生物の高効率分解の重要なファクターであるのではない
かと考えられる。あるいは、通常のプロテアーゼ活性は
低い場合であっても、海生物に由来する物質によってプ
ロテアーゼが誘導されることにより酵素活性が向上し、
海生物の処理活性が高くなる可能性も考えられる。
From these facts, these five strains mainly degrade proteins which are components of marine organisms by the action of proteases released outside the cells, that is, soluble proteases, and degrade marine organisms with high efficiency. It is considered possible. However, there was not always a clear correlation between the protease activity of the five strains and the effect of sea biodegradation. Therefore, the present inventors
It is thought that protease activity is necessary for marine biodegradation, but it cannot be explained by soluble protease activity alone. That is, a strain having merely a high soluble protease activity is not always suitable for marine biodegradation. The reason for this is not clear at present, but the existence of soluble proteases that are effective in degrading marine organisms, and that factors other than protease activity may be important factors in the efficient degradation of marine organisms. Conceivable. Alternatively, even when the normal protease activity is low, the enzyme activity is improved by the induction of the protease by a substance derived from marine organisms,
It is also possible that the processing activity of marine organisms will be high.

【0042】また、先にも述べたが、海中に生息してい
る海生物を処理する場合、処理の場に水揚げされた海生
物とともに一部海水が混入することが容易に推測され
る。また、海生物中に含まれるNaClも処理の場に持
ち込まれることとなる。そのため、海生物処理微生物
は、ある程度の耐塩性が必要となることが推測された。
As described above, when treating marine organisms that live in the sea, it is easily presumed that some seawater is mixed in with the marine organisms landed at the treatment site. In addition, NaCl contained in marine organisms will also be brought to the treatment site. For this reason, it was presumed that the marine organism-treated microorganisms required some degree of salt tolerance.

【0043】そこで、本発明の海生物分解微生物は、選
抜段階で耐塩性の評価を行った。耐塩性を有するとは、
ある塩濃度(3%NaCl)を含む培地において、Na
Clの存在しない状況下と同じ増殖曲線を描いて増殖で
きることをいう。本発明の5菌株とも、3%NaClの
存在下で、耐塩性を有していた(表1参照)。耐塩性を
有することにより、本発明の菌株は、海生物が生育する
のと同じ環境下で海生物分解能を発揮することができ
る。すなわち、本発明の菌株を、海生物を含む海水中に
直接投入して海生物の分解処理を行うことが可能であ
る。
Accordingly, the sea-biodegradable microorganism of the present invention was evaluated for salt tolerance at the selection stage. To have salt resistance,
In a medium containing a certain salt concentration (3% NaCl), Na
This means that the cells can be grown by drawing the same growth curve as in the absence of Cl. All five strains of the present invention were salt-tolerant in the presence of 3% NaCl (see Table 1). By having salt tolerance, the strain of the present invention can exhibit marine biodegradability under the same environment in which marine organisms grow. That is, the strain of the present invention can be directly introduced into seawater containing marine organisms to perform a decomposition treatment of marine organisms.

【0044】〈海生物の分解処理方法〉本発明における
海生物の分解処理は、海生物を含む媒体が、例えば上記
NA−3、NA−11、NA−12、NA−34、NA
−43のような海生物分解能を有する微生物と接触させ
ることにより成されることを特徴とする。微生物と海生
物との接触は、海生物を含む媒体中で該微生物を培養す
る方法、または海生物を含む媒体を該微生物の培養系に
添加する方法等によって行うことができ、バッチ法、半
連続法、連続法など種々の方法を用いて実施することが
できる。また、該微生物は半固体状態、または適当な担
体に固定化して用いることもできる。さらに、海生物の
破砕処理等の各種の前処理や、処理環境の調整・制御を
行うことは処理効率の向上が期待できるので望ましい。
処理環境の調整としては、例えば、海生物の添加濃度、
処理媒体中のpH、各種栄養物質の補充等の数値を、利
用する微生物が最も効率良く海生物を処理できる範囲内
に制御することにより、海生物の高効率処理が可能とな
る。
<Method of Decomposing Marine Organism> In the process of decomposing marine organisms in the present invention, the medium containing marine organisms may be, for example, one of the above-mentioned NA-3, NA-11, NA-12, NA-34, NA
It is characterized by being brought into contact with a microorganism having marine life resolution such as -43. Contact between the microorganism and the marine organism can be performed by a method of culturing the microorganism in a medium containing the marine organism, a method of adding the medium containing the marine organism to the culture system of the microorganism, or the like. It can be carried out using various methods such as a continuous method and a continuous method. The microorganism may be used in a semi-solid state or immobilized on a suitable carrier. Further, it is desirable to perform various pretreatments such as crushing treatment of marine organisms and to adjust and control the treatment environment, because treatment efficiency can be expected to be improved.
The adjustment of the treatment environment includes, for example,
By controlling the values of the pH in the treatment medium, the replenishment of various nutrients, and the like within a range in which the microorganisms to be used can most efficiently treat marine organisms, highly efficient treatment of marine organisms becomes possible.

【0045】なお、本発明の分解処理方法は、上記5種
類の菌株に限らず、既述した単離方法で得られた他の菌
株を用いて実施することにより、同様の効果を得ること
ができる。
The degradation treatment method of the present invention is not limited to the above five types of strains, and the same effect can be obtained by using other strains obtained by the above-mentioned isolation method. it can.

【0046】以下に本発明の内容を説明するために、海
生物の分解処理形態の具体例を述べるが、本発明は、こ
れらの形態になんら限定されるものではない。
In order to explain the contents of the present invention, specific examples of the mode of decomposing marine organisms will be described below, but the present invention is not limited to these modes.

【0047】例1 本発明における海生物処理法としては、例えば本発明の
5菌株のような海生物分解能を有する微生物を、培養槽
を設けて液体培地中で培養する。次いで、この培養槽に
海生物を導入することで、微生物と海生物とを接触させ
分解させる形態が挙げられる。あるいは、海生物を添加
した処理槽に、培養した海生物分解能を有する微生物を
添加して、微生物と海生物とを接触させ分解させる形態
がある。
Example 1 As a method for treating a marine organism in the present invention, a microorganism having marine biodegradability, such as the five strains of the present invention, is cultured in a liquid medium by providing a culture tank. Next, a mode in which microorganisms and marine organisms are brought into contact with each other to be decomposed by introducing marine organisms into the culture tank is exemplified. Alternatively, there is a form in which a cultured microorganism having the ability to degrade a marine organism is added to a treatment tank to which a marine organism is added, and the microorganism is brought into contact with the marine organism to decompose the microorganism.

【0048】海生物分解能を有する微生物の添加法とし
ては、微生物を効率よく添加できる方法であればいかな
る方法でも良い。例えば、反応槽に微生物もしくは微生
物の凍結乾燥体等の微生物製剤等を添加する方法、およ
び微生物の培養液を添加する方法等様々な方法を適宜選
択して実施することが可能である。
As a method for adding microorganisms having the ability to degrade marine organisms, any method can be used as long as microorganisms can be efficiently added. For example, various methods such as a method of adding a microorganism preparation such as a microorganism or a freeze-dried product of the microorganism to the reaction tank and a method of adding a culture solution of the microorganism can be appropriately selected and carried out.

【0049】また、海生物の導入法についても何ら制限
はないが、微生物および微生物が産生する酵素との接触
効率を高め、処理効率の向上を図る観点から、海生物は
細かく破砕した後に処理槽もしくは培養槽へ導入するこ
とが好ましい。海生物の導入は、連続して行っても良い
が、処理能力に応じて間欠的にもしくはバッチ式で処理
することも可能である。このような制御を、海生物濃度
に合わせてシステムとして制御し、最適化を図ると良
い。
There is no particular limitation on the method of introducing marine organisms, but from the viewpoint of increasing the efficiency of contact with microorganisms and enzymes produced by the microorganisms and improving the processing efficiency, marine organisms are finely crushed and then treated in a treatment tank. Alternatively, it is preferable to introduce into a culture tank. The introduction of marine organisms may be carried out continuously, but it is also possible to carry out the treatment intermittently or batchwise according to the treatment capacity. It is good to control such a control as a system according to the concentration of marine organisms, and to optimize it.

【0050】上記海生物処理法を実施するため、例え
ば、図1に示す海生物処理装置を用いることができる。
In order to carry out the above-mentioned marine organism treatment method, for example, a marine organism treatment apparatus shown in FIG. 1 can be used.

【0051】図1の装置において、利用する微生物は、
海生物分解微生物培養槽3中で培養される。前記微生物
培養槽3は、加温装置8で温度制御され、該培養槽内の
培養液は、攪拌用モーター6により駆動する攪拌翼5で
攪拌される。一方、海生物破砕機1で破砕された海生物
は、海生物運搬用ベルトコンベアー7により海生物処理
槽2に運搬される。前記海生物処理槽2も、加温装置8
で温度制御され、該処理槽内の内容物は、攪拌用モータ
ー6により駆動する攪拌翼5で攪拌される。前記微生物
培養槽3中の培養液を、送液ポンプ4により前記海生物
処理槽2に添加することで、微生物と海生物との接触を
起こすことができる。ここで微生物による海生物の分解
処理が行われ、分解処理し終えた液は、廃液として処理
槽2から排出される。
In the apparatus shown in FIG. 1, the microorganisms used are:
It is cultured in the marine biodegradable microorganism culture tank 3. The temperature of the microbial culture tank 3 is controlled by a heating device 8, and the culture solution in the culture tank is stirred by a stirring blade 5 driven by a stirring motor 6. On the other hand, the marine organisms crushed by the marine organism crusher 1 are transported to the marine organism treatment tank 2 by the marine organism transport belt conveyor 7. The marine biological treatment tank 2 also includes a heating device 8
The content in the processing tank is agitated by a stirring blade 5 driven by a stirring motor 6. By adding the culture solution in the microorganism culture tank 3 to the marine organism treatment tank 2 by the liquid sending pump 4, contact between microorganisms and marine organisms can be caused. Here, marine organisms are decomposed by microorganisms, and the liquid after the decomposition processing is discharged from the processing tank 2 as waste liquid.

【0052】例2 微生物は、反応槽からの流出を防ぐために適当な担体に
固定化することが望ましい。微生物を担体に保持させる
と、微生物の集積度を向上させるとともに、海生物由来
の微生物や外界由来の微生物との生存競争および捕食者
等から有用微生物を保護することが出来、処理効率の長
期維持が可能となる。担体としては、利用する微生物を
保持出来る担体であれば何でもよく、例えば、セラミク
ス、ガラス、ケイ酸カルシウム、シリカ、アルミナ、お
よび鹿沼土のような団粒構造を持つ土壌粒子等の無機材
料およびそれらの多孔質体、並びに活性炭、繊維活性
炭、ウレタンフォーム、光硬化樹脂、イオン交換樹脂、
セルローズ、リグニン、キチン、キトサン、ポリビニル
アルコール重合体、高吸収性樹脂、高吸油性樹脂等の有
機材料およびそれらから成る多孔質体、並びにアルギン
酸ナトリウムゲル、カラギーナンゲル、寒天、アクリル
アミドゲル等の親水性ゲル、更に、不織布等の布および
繊維状材料等のうち、一種、または二種以上を組み合わ
せて用いることができる。担体は、利用する微生物が、
良好な海生物分解効率を発揮するような材料・形態・機
能を選択することが望ましい。
Example 2 It is desirable that microorganisms be immobilized on a suitable carrier to prevent outflow from the reaction vessel. By holding microorganisms on a carrier, the concentration of microorganisms can be improved, and at the same time, survival of microorganisms derived from marine organisms and microorganisms derived from the outside world can be protected, and useful microorganisms can be protected from predators, etc. Becomes possible. As the carrier, any carrier can be used as long as it can hold microorganisms to be used, for example, inorganic materials such as ceramics, glass, calcium silicate, silica, alumina, and inorganic particles such as soil particles having an aggregated structure such as Kanuma soil, and the like. , Activated carbon, fiber activated carbon, urethane foam, photocurable resin, ion exchange resin,
Organic materials such as cellulose, lignin, chitin, chitosan, polyvinyl alcohol polymer, superabsorbent resin and superabsorbent resin, and porous bodies composed of them, and hydrophilic properties such as sodium alginate gel, carrageenan gel, agar, acrylamide gel A gel, a cloth such as a nonwoven fabric, a fibrous material, or the like can be used alone or in combination of two or more. The carrier is a microorganism used,
It is desirable to select materials, forms, and functions that exhibit good marine biodegradation efficiency.

【0053】また、処理に用いる微生物が放出する酵素
等、微生物の体外放出成分が、海生物の分解に効果のあ
る場合には、微生物を培養する槽と海生物を処理する槽
とを別々に設置し、両者の間で液体媒体を循環させて処
理を行うことも可能である。上記処理法は、該微生物の
培養条件と海生物の処理条件とが大きく異なる場合に
も、効率良く対応することが可能となる。
In addition, when a component to be released from the microorganism such as an enzyme released by the microorganism used in the treatment is effective in decomposing the marine organism, a tank for culturing the microorganism and a tank for treating the marine organism are separately provided. It is also possible to install and circulate the liquid medium between them to perform the treatment. The above-mentioned treatment method can efficiently cope with the case where the culture condition of the microorganism and the treatment condition of the marine organism are significantly different.

【0054】上記海生物処理法を実施するため、例え
ば、図7に示す海生物処理装置を用いることができる。
In order to carry out the above-mentioned marine organism treatment method, for example, a marine organism treatment apparatus shown in FIG. 7 can be used.

【0055】図7の装置において、利用する微生物は、
固定化微生物充填塔13中で培養される。前記固定化微
生物充填塔13は、加温装置8で温度制御される。この
微生物充填塔内において、微生物は担体に固定化されて
いる。微生物充填塔13内は、微生物が体外酵素を放出
するのに好ましい培養条件に設定され、ここで、微生物
による体外酵素の放出が効率よく行われる。一方、海生
物破砕機1で破砕した海生物は、海生物運搬用ベルトコ
ンベアー7により海生物処理槽2に運搬される。前記海
生物処理槽2内の液は、外気温に晒した条件下に置くこ
とも可能であるが、必要に応じて、加温装置8により温
度制御することもできる。また、前記海生物処理槽2内
の液は、攪拌用モーター6により駆動する攪拌翼5で攪
拌される。固定化微生物充填塔13中の培養液を、送液
ポンプ4により前記海生物処理槽2に添加することで、
微生物の菌体外放出酵素と海生物との接触を起こすこと
ができる。ここで前記放出酵素による海生物の分解処理
が行われ、分解処理し終えた液は、再度、微生物充填塔
13に戻される。このように、微生物充填塔13と海生
物処理槽2との間で液体を循環させることにより、海生
物の分解処理を行う。
In the apparatus shown in FIG. 7, the microorganisms used are:
The cells are cultured in the immobilized microorganism packed tower 13. The temperature of the immobilized microorganism packed column 13 is controlled by a heating device 8. In the microorganism packed tower, microorganisms are immobilized on a carrier. The inside of the microorganism packed tower 13 is set to a culture condition preferable for the microorganism to release the extracorporeal enzyme, and the microorganism releases the extracorporeal enzyme efficiently. On the other hand, marine organisms crushed by the marine organism crusher 1 are transported to the marine organism treatment tank 2 by the marine organism transport belt conveyor 7. The liquid in the marine organism treatment tank 2 can be placed under conditions exposed to the outside temperature, but the temperature can be controlled by the heating device 8 as needed. The liquid in the marine organism treatment tank 2 is stirred by a stirring blade 5 driven by a stirring motor 6. By adding the culture solution in the immobilized microorganism packed tower 13 to the marine organism treatment tank 2 by the liquid sending pump 4,
Contact between marine organisms and microbial extracellular release enzymes can occur. Here, the marine organism is decomposed by the release enzyme, and the liquid after the decomposition is returned to the microorganism packed tower 13 again. As described above, by circulating the liquid between the microorganism packed tower 13 and the marine organism treatment tank 2, the marine organism is decomposed.

【0056】本発明による海生物処理により排出される
廃液は、その性状に併せて様々な処理を行い、再生水や
放流水として再利用・処理することが可能である。廃液
の処理方法としては、有効に廃液を処理できる方法であ
れば、如何なる方法でもよく、例えば、嫌気性微生物に
よる処理や活性汚泥による処理、超臨界水による処理等
が挙げられる。また、分解時の各種条件を制御すること
により、海生物を完全に分解処理してしまうのみなら
ず、処理後の媒体中に含まれる海生物由来の有機成分を
肥料等として回収することも可能となる。さらに、処理
対象の海生物のうち貝類では、本発明によれば容易に貝
殻と貝肉とを分離することが出来るため、該貝類から貝
殻を回収し、Ca原料として再利用することも可能とな
る。
The waste liquid discharged by the marine organism treatment according to the present invention can be subjected to various treatments according to its properties, and can be reused and treated as reclaimed water or effluent water. As a method of treating the waste liquid, any method can be used as long as it can effectively treat the waste liquid, and examples thereof include a treatment with an anaerobic microorganism, a treatment with activated sludge, and a treatment with supercritical water. In addition, by controlling various conditions at the time of decomposition, it is possible not only to completely decompose marine organisms, but also to recover organic components derived from marine organisms contained in the treated medium as fertilizer etc. Becomes Furthermore, among shellfishes among marine organisms to be treated, shells and shell meat can be easily separated according to the present invention, so that shells can be recovered from the shellfish and reused as a Ca raw material. Become.

【0057】例3 本発明による海生物処理法の別の形態としては、反応槽
内で海生物、水分調整材および微生物の担体として作用
する固体媒体を混合し、これに海生物を分解可能な微生
物を添加して、海生物と該微生物を固相接触させること
により分解処理を行う形態がある。通気および発酵熱の
放散のために固体媒体を常時あるいは間欠的に攪拌する
ことにより分解効率の向上を図ることができる。また、
反応槽内の酸素濃度および水分条件、媒体のpH等を制
御することにより、効率よく反応を進めることが可能と
なる。これらの条件は、利用する微生物が海生物を高効
率で処理可能な範囲で制御することが望ましい。
Example 3 Another form of the method for treating marine organisms according to the present invention is to mix marine organisms, a water conditioner, and a solid medium acting as a carrier for microorganisms in a reaction vessel, to which marine organisms can be decomposed. There is a form in which a decomposition treatment is performed by adding a microorganism and bringing the microorganism into solid phase contact with the marine organism. Decomposition efficiency can be improved by constantly or intermittently stirring the solid medium for aeration and fermentation heat dissipation. Also,
By controlling the oxygen concentration and water conditions in the reaction tank, the pH of the medium, and the like, the reaction can be efficiently advanced. It is desirable that these conditions be controlled within a range in which microorganisms to be used can treat marine organisms with high efficiency.

【0058】使用する媒体としては、保水性に優れ、微
生物の保持能力を有するものが望ましい。例えば、おが
くず、コーヒー粕、おから等の植物性の媒体や、幾分保
水性は低い場合はあるが、セラミクス、ガラス、ケイ酸
カルシウム、シリカ、アルミナ、および鹿沼土のような
団粒構造を持つ土壌粒子等の無機材料およびそれらの多
孔質体、並びに活性炭、繊維活性炭、ウレタンフォー
ム、光硬化樹脂、イオン交換樹脂、セルロース、リグニ
ン、キチン、キトサン、ポリビニルアルコール重合体、
高吸収性樹脂等の有機材料およびそれらから成る多孔質
体、並びに不織布等の布および繊維状材料等のうち、一
種、または二種以上を組み合わせて用いることができ
る。また、これらの担体とともに、スペーサーとして吸
収性を有さない材料からなる担体を利用することも有効
である。
As a medium to be used, a medium having excellent water retention and having an ability to retain microorganisms is desirable. For example, sawdust, coffee grounds, vegetable medium such as okara, and, if somewhat less water-retaining, may have aggregate structures such as ceramics, glass, calcium silicate, silica, alumina, and Kanuma soil. Inorganic materials such as soil particles and their porous bodies, and activated carbon, fiber activated carbon, urethane foam, photocurable resin, ion exchange resin, cellulose, lignin, chitin, chitosan, polyvinyl alcohol polymer,
One or a combination of two or more of an organic material such as a superabsorbent resin and a porous body made of the same, and a cloth and a fibrous material such as a nonwoven fabric can be used. It is also effective to use a carrier made of a non-absorbable material as a spacer together with these carriers.

【0059】上記海生物処理法を実施するため、例え
ば、図13に示す海生物処理装置を用いることができ
る。
In order to carry out the above-mentioned marine life treatment method, for example, a marine life treatment apparatus shown in FIG. 13 can be used.

【0060】図13の装置において、媒体、海生物投入
・サンプリング口23から処理槽内に、固体媒体21、
海生物、微生物および水分調整材を投入する。処理槽内
の温度は、ファン、センサー等24および加温装置26
により制御されている。利用する微生物は、凍結乾燥さ
れた微生物製剤として添加され、海生物と固相接触させ
る。処理槽内の上記混合物は、処理槽内部のスクリュー
コンベヤ22により攪拌されながら、媒体排出口25の
方に向けて搬送される。この攪拌搬送の間に、微生物に
よる海生物の分解処理が行われる。また、この攪拌によ
り処理槽内の媒体に対して通気をうながし、微生物処理
を効率よく実施可能となる。海生物は分解処理されなが
ら、順次、媒体排出口25の方へと送られ排出される。
In the apparatus shown in FIG. 13, a solid medium 21,
Introduce marine organisms, microorganisms and water conditioning materials. The temperature in the processing tank is determined by a fan, a sensor 24, etc.
Is controlled by The microorganism to be used is added as a freeze-dried microbial preparation and brought into solid phase contact with a marine organism. The mixture in the processing tank is conveyed toward the medium outlet 25 while being stirred by the screw conveyor 22 in the processing tank. During the stirring and transport, the microorganism is subjected to a decomposition treatment of the marine organism. In addition, the agitation of the medium in the processing tank is promoted by this stirring, so that the microorganism treatment can be performed efficiently. While being decomposed, the marine organisms are sequentially sent to the medium outlet 25 and discharged.

【0061】このように処理を施された反応槽内の混合
物は、担体などが生分解性を有する物質の場合には、廃
棄物として処理してしまうのみならず、コンポスト等と
して有効に利用することも可能である。
When the carrier or the like is a biodegradable substance, the mixture in the reaction tank thus treated is not only treated as waste but also effectively used as compost or the like. It is also possible.

【0062】[0062]

【実施例】以下、本発明の好適な実施例について、実験
結果に基づいて説明するが、これらは、本発明を何ら限
定するものではない。
EXAMPLES Hereinafter, preferred examples of the present invention will be described based on experimental results, but these do not limit the present invention in any way.

【0063】〈実施例1〉本発明の菌株、バチルス・ス
ピーシーズNA−3について、プロテアーゼ活性、アミ
ラーゼ活性、およびリパーゼ活性を評価した。また、耐
塩性の評価を行った。
<Example 1> Bacillus species NA-3, a strain of the present invention, was evaluated for protease activity, amylase activity, and lipase activity. In addition, the salt resistance was evaluated.

【0064】LB寒天培地上にコロニーを形成している
NA−3を、1白金耳、LB液体培地に接種した後、2
日間培養した。培養後の培地を滅菌ろ過したものを酵素
液として、プロテアーゼ活性、アミラーゼ活性を、各々
アゾカゼイン法、Bernfeld還元糖定量法(ジニトリル酢
酸法)により評価した。また、リパーゼ活性は、NA−
3をリパーゼ活性測定用培地に植菌し、ハローの有無に
より活性を評価した。以下にリパーゼ活性測定用培地の
組成を示す。
After inoculating one loopful of NA-3 forming a colony on the LB agar medium into the LB liquid medium,
Cultured for days. Protease activity and amylase activity were evaluated by the azocasein method and the Bernfeld reducing sugar quantification method (dinitrile acetic acid method), respectively, using the medium after the cultivation as a sterile filtered enzyme solution. In addition, the lipase activity is NA-
3 was inoculated into a lipase activity measurement medium, and the activity was evaluated based on the presence or absence of a halo. The composition of the medium for measuring lipase activity is shown below.

【0065】リパーゼ活性測定用培地 オリーブオイル 1.0% 胆汁粉末 1.0% ペプトン 1.0% 酵母エキス 0.5% NaCl 3.5% Agar 2.0% 耐塩性の評価は、複数のNaCl濃度に調整したLB液
体培地中にNA−3を接種し、培養50時間後の波長6
60nmの光の吸光度を指標とした菌体の生育の状況を
観察することにより行った。酵素活性および耐塩性評価
の結果を表1に示す。
A medium for measuring lipase activity Olive oil 1.0% Bile powder 1.0% Peptone 1.0% Yeast extract 0.5% NaCl 3.5% Agar 2.0% NA-3 was inoculated into the LB liquid medium adjusted to the concentration, and the wavelength 6 after 50 hours of culturing.
The observation was performed by observing the growth of the bacterial cells using the absorbance of light at 60 nm as an index. Table 1 shows the results of the enzyme activity and salt tolerance evaluation.

【0066】[0066]

【表1】 [Table 1]

【0067】〈実施例2〉本発明の菌株、シュードモナ
ス・フルオレセンスNA−11について、実施例1と同
様の試験を行った。その結果を表1に示す。
Example 2 The same test as in Example 1 was carried out for the strain of the present invention, Pseudomonas fluorescens NA-11. Table 1 shows the results.

【0068】〈実施例3〉本発明の菌株、シュードモナ
ス・フルオレセンスNA−12について、実施例1と同
様の試験を行った。その結果を表1に示す。
Example 3 The same test as in Example 1 was carried out on the strain of the present invention, Pseudomonas fluorescens NA-12. Table 1 shows the results.

【0069】〈実施例4〉本発明の菌株、エンテロバク
ター・アムニゲウスNA−34について、実施例1と同
様の試験を行った。その結果を表1に示す。
Example 4 The same test as in Example 1 was conducted for the strain of the present invention, Enterobacter amnigaeus NA-34. Table 1 shows the results.

【0070】〈実施例5〉本発明の菌株、オクロバクト
ラム・アンスロピNA−43について、実施例1と同様
の試験を行った。その結果を表1に示す。
Example 5 The same test as in Example 1 was conducted for the strain of the present invention, Ochrobactrum anthropi NA-43. Table 1 shows the results.

【0071】〈実施例6〉図1に示すような装置を作製
し、海生物の分解処理試験を行った。
Example 6 An apparatus as shown in FIG. 1 was prepared, and a test for decomposing marine organisms was performed.

【0072】NA−3の対数増殖期の培養液(培地はL
B培地)3m3に、海生物としてムラサキイガイ破砕物
1.5tを添加し、攪拌しながら24時間培養した。添
加した海微生物の破砕物には、貝殻等は含まなかった。
培養液の菌体濃度は、約10 8CFU/mLに調整し
た。
A culture solution in the logarithmic growth phase of NA-3 (the medium is L
B medium) 3mThreeCrushed mussels as sea life
1.5 t was added, and the cells were cultured with stirring for 24 hours. Attachment
The crushed sea microorganisms added did not include shells and the like.
The cell concentration of the culture solution is about 10 8Adjust to CFU / mL
Was.

【0073】培養開始12時間後および24時間後に、
培養液1Lを50μmのナイロンメッシュでろ過し、メ
ッシュ上の残存物の重さを測定した。その結果を図2に
示す。
At 12 hours and 24 hours after the start of the culture,
One liter of the culture solution was filtered through a 50 μm nylon mesh, and the weight of the residue on the mesh was measured. The result is shown in FIG.

【0074】図2は、ムラサキイガイの12時間後およ
び24時間後の残存物の重さを、初期値(投入時の重
さ)に対する割合(%)で表示する。初期値の測定は、
12時間後および24時間後の残存物の重さを測定する
のと同じ操作により、投入時のムラサキイガイをメッシ
ュでろ過し、メッシュ上の残存物の重さを測定すること
より行った。
FIG. 2 shows the weight (%) of the residue of the mussel after 12 hours and 24 hours, relative to the initial value (the weight at the time of introduction). The measurement of the initial value
The same operation as that for measuring the weight of the residue after 12 hours and 24 hours was performed by filtering the purple mussel at the time of feeding with a mesh and measuring the weight of the residue on the mesh.

【0075】また、試験中の悪臭発生の有無は、サンプ
ル採取時に官能試験により行った。12時間後の官能試
験の結果を表2に示す。
The presence or absence of malodor during the test was determined by a sensory test at the time of sampling. Table 2 shows the results of the sensory test after 12 hours.

【0076】[0076]

【表2】 [Table 2]

【0077】培養開始12時間後と24時間後のサンプ
リンングは、各々n=3で行い、試験は、繰り返し3回
行った。
Sampling at 12 hours and 24 hours after the start of the culture was performed at n = 3, respectively, and the test was repeated three times.

【0078】〈実施例7〉本発明の菌株NA−11につ
いて、実施例6と同様の試験を行った。その結果を表2
および図3に示す。
Example 7 The same test as in Example 6 was performed on the strain NA-11 of the present invention. Table 2 shows the results.
And FIG.

【0079】〈実施例8〉本発明の菌株NA−12につ
いて、実施例6と同様の試験を行った。その結果を表2
および図4に示す。
Example 8 The same test as in Example 6 was performed on the strain NA-12 of the present invention. Table 2 shows the results.
And FIG.

【0080】〈実施例9〉本発明の菌株NA−34につ
いて、実施例6と同様の試験を行った。その結果を表2
および図5に示す。
Example 9 The same test as in Example 6 was performed on the strain NA-34 of the present invention. Table 2 shows the results.
And FIG.

【0081】〈実施例10〉本発明の菌株NA−43に
ついて、実施例6と同様の試験を行った。その結果を表
2および図6に示す。
Example 10 The same test as in Example 6 was performed on the strain NA-43 of the present invention. The results are shown in Table 2 and FIG.

【0082】〈実施例11〉図7に示すような装置を作
製し、海生物の分解処理試験を行った。
Example 11 An apparatus as shown in FIG. 7 was prepared, and a test for decomposing marine organisms was performed.

【0083】NA−3をキトサン多孔質担体に固定化し
た物を微生物充填塔13に充填し、海生物処理槽2と微
生物充填塔13との間で水を循環させた。微生物充填塔
13は、約37℃に保ち、海物処理槽2は外気温条件下
で処理を行った。
The immobilized NA-3 on the chitosan porous carrier was filled in a microorganism packed tower 13, and water was circulated between the marine organism treatment tank 2 and the microorganism packed tower 13. The microorganism packed tower 13 was kept at about 37 ° C., and the seafood treatment tank 2 was treated under the outside air temperature condition.

【0084】海生物処理槽2に、海生物としてムラサキ
イガイの破砕物1.5tを添加し、処理を行った。海生
物破砕物には、湿重量で20%分の貝殻等が含まれてい
た。定期的(4時間ごとに24時間後まで)に処理槽の
水をサンプリングし、50μmナイロンメッシュで濾過
し、残存物の重量を測定した。その結果を図8に示す。
結果は、貝殻等の重量を除いた重量について評価した。
すなわち、図8の結果は、初期値および残存物の重量と
もに、ムラサキイガイの貝殻等の重量(20%湿重量)
を除いた値によるものである。
To the marine organism treatment tank 2, 1.5 tons of crushed mussels as marine organisms were added for treatment. The crushed marine organism contained 20% of shells by wet weight. The water in the treatment tank was sampled periodically (every 4 hours until after 24 hours), filtered through a 50 μm nylon mesh, and the weight of the residue was measured. FIG. 8 shows the result.
The results were evaluated for the weight excluding the weight of shells and the like.
That is, the results in FIG. 8 show that both the initial value and the weight of the residue are the weight of the mussel shell (20% wet weight).
Is the value excluding.

【0085】また、試験中の悪臭発生の有無は、サンプ
ル採取時に官能試験により行った。12時間後の官能試
験の結果を表2に示す。
The presence or absence of odor during the test was determined by a sensory test at the time of sampling. Table 2 shows the results of the sensory test after 12 hours.

【0086】サンプリングは、各々n=3で行い、試験
は、繰り返し3回行った。
The sampling was performed with n = 3, and the test was repeated three times.

【0087】〈実施例12〉本発明の菌株NA−11に
ついて、微生物充填塔を25℃に保持した以外、実施例
11と同様の試験を行った。その結果を表2および図9
に示す。
<Example 12> The same test as in Example 11 was carried out on the strain NA-11 of the present invention except that the microorganism-filled tower was kept at 25 ° C. Table 2 and FIG.
Shown in

【0088】〈実施例13〉本発明の菌株NA−12に
ついて、微生物充填塔を25℃に保持した以外、実施例
11と同様の試験を行った。その結果を表2および図1
0に示す。
Example 13 The same test as in Example 11 was carried out on the strain NA-12 of the present invention except that the microorganism-filled tower was kept at 25 ° C. Table 2 and FIG.
0 is shown.

【0089】〈実施例14〉本発明の菌株NA−34に
ついて、微生物充填塔を25℃に保持した以外、実施例
11と同様の試験を行った。その結果を表2および図1
1に示す。
Example 14 The same test as in Example 11 was carried out on the strain NA-34 of the present invention except that the microorganism-filled tower was kept at 25 ° C. Table 2 and FIG.
It is shown in FIG.

【0090】〈実施例15〉本発明の菌株NA−43に
ついて、実施例11と同様の試験を行った。その結果を
表2および図12に示す。
Example 15 The same test as in Example 11 was performed on the strain NA-43 of the present invention. The results are shown in Table 2 and FIG.

【0091】〈実施例16〉図13に示すような装置を
作製し、海生物の分解処理試験を行った。処理槽の内容
積は2m3である。
Example 16 An apparatus as shown in FIG. 13 was prepared, and a test for decomposing marine organisms was performed. The inner volume of the processing tank is 2 m 3 .

【0092】固体媒体21として、スギの大鋸屑1.2
3を用いた。NA−3は、LB培地で培養後、常法に
より凍結乾燥することにより微生物製剤として用いた。
海生物処理の3日前に上述の微生物製剤を108CFU
/g媒体になるように添加するとともに、処理槽内を、
媒体含水率:45±10%、温度:約37℃に制御し
た。媒体の攪拌は、処理槽内部のスクリューコンベヤ2
2により、間欠的に行った。
As the solid medium 21, cedar sawdust 1.2
m 3 was used. NA-3 was used as a microbial preparation by culturing in an LB medium and freeze-drying in a conventional manner.
Three days prior to marine treatment, 10 8 CFU of the above microbial preparation
/ G medium, and the inside of the processing tank is
The water content of the medium was controlled at 45 ± 10%, and the temperature was controlled at about 37 ° C. The stirring of the medium is performed by the screw conveyor 2 inside the processing tank.
2 and intermittently.

【0093】海生物(ムラサキイガイ)の投入は、一日
に120kgずつ行った。海生物投入後の温度制御は、
37℃以下にならないように行った。海生物投入24時
間後に媒体1Lをサンプリングし、海生物の分解の有無
を目視により観察・評価した。その結果を表3に示す。
[0093] The introduction of marine organisms (mussels) was carried out at a rate of 120 kg per day. Temperature control after sea life input
The test was performed so that the temperature did not fall below 37 ° C. Twenty-four hours after the introduction of the marine organism, 1 L of the medium was sampled, and the presence or absence of decomposition of the marine organism was visually observed and evaluated. Table 3 shows the results.

【0094】[0094]

【表3】 [Table 3]

【0095】〈実施例17〉本発明の菌株NA−11に
ついて、処理槽内温度を25℃に制御した以外、実施例
16と同様の試験を行った。その結果を表3に示す。
Example 17 The same test as in Example 16 was carried out on the strain NA-11 of the present invention except that the temperature in the treatment tank was controlled at 25 ° C. Table 3 shows the results.

【0096】〈実施例18〉本発明の菌株NA−12に
ついて、処理槽内温度を25℃に制御した以外、実施例
16と同様の試験を行った。その結果を表3に示す。
Example 18 The same test as in Example 16 was carried out on the strain NA-12 of the present invention except that the temperature in the treatment tank was controlled at 25 ° C. Table 3 shows the results.

【0097】〈実施例19〉本発明の菌株NA−34に
ついて、処理槽内温度を25℃に制御した以外、実施例
16と同様の試験を行った。その結果を表3に示す。
Example 19 The same test as in Example 16 was carried out on the strain NA-34 of the present invention except that the temperature in the treatment tank was controlled at 25 ° C. Table 3 shows the results.

【0098】〈実施例20〉本発明の菌株NA−43に
ついて、実施例16と同様の試験を行った。その結果を
表3に示す。
Example 20 The same test as in Example 16 was carried out on the strain NA-43 of the present invention. Table 3 shows the results.

【0099】〈実施例21〉媒体として、ウレタンフォ
ームの円柱状チップを利用した以外、実施例16と同様
の試験を行った。その結果を表3に示す。
Example 21 The same test as in Example 16 was conducted, except that a urethane foam cylindrical tip was used as a medium. Table 3 shows the results.

【0100】〈実施例22〉媒体として、ポリプロピレ
ンの中空網目状成形体とコーヒー粕を使用した以外、実
施例16と同様の試験を行った。その結果を表3に示
す。
Example 22 The same test as in Example 16 was carried out, except that a hollow network-shaped molded product of polypropylene and coffee grounds were used as the medium. Table 3 shows the results.

【0101】〈実施例23〉海生物としてミズクラゲを
用いた以外、実施例6と同様の試験を実施し、その結果
を表2および図14に示す。
<Example 23> A test similar to that in Example 6 was performed except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and Fig. 14.

【0102】〈実施例24〉海生物としてミズクラゲを
用いた以外、実施例7と同様の試験を実施し、その結果
を表2および図15に示す。
Example 24 A test was conducted in the same manner as in Example 7 except that moon jellyfish was used as a marine organism. The results are shown in Table 2 and FIG.

【0103】〈実施例25〉海生物としてミズクラゲを
用いた以外、実施例8と同様の試験を実施し、その結果
を表2および図16に示す。
<Example 25> A test similar to that in Example 8 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and FIG.

【0104】〈実施例26〉海生物としてミズクラゲを
用いた以外、実施例9と同様の試験を実施し、その結果
を表2および図17に示す。
<Example 26> The same test as in Example 9 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and Fig. 17.

【0105】〈実施例27〉海生物としてミズクラゲを
用いた以外、実施例10と同様の試験を実施し、その結
果を表2および図18に示す。
<Example 27> The same test as in Example 10 was carried out except that moon jellyfish was used as the marine life, and the results are shown in Table 2 and FIG.

【0106】〈実施例28〉海生物としてミズクラゲを
用いた以外、実施例11と同様の試験を実施し、その結
果を表2および図19に示す。
<Example 28> A test similar to that in Example 11 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and Fig. 19.

【0107】〈実施例29〉海生物としてミズクラゲを
用いた以外、実施例12と同様の試験を実施し、その結
果を表2および図20に示す。
<Example 29> A test similar to that in Example 12 was performed, except that moon jellyfish was used as a marine organism. The results are shown in Table 2 and FIG.

【0108】〈実施例30〉海生物としてミズクラゲを
用いた以外、実施例13と同様の試験を実施し、その結
果を表2および図21に示す。
<Example 30> The same test as in Example 13 was carried out except that moon jellyfish was used as the marine life, and the results are shown in Table 2 and Fig. 21.

【0109】〈実施例31〉海生物としてミズクラゲを
用いた以外、実施例14と同様の試験を実施し、その結
果を表2および図22に示す。
<Example 31> A test similar to that of Example 14 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and FIG.

【0110】〈実施例32〉海生物としてミズクラゲを
用いた以外、実施例15と同様の試験を実施し、その結
果を表2および図23に示す。
<Example 32> A test similar to that of Example 15 was performed except that moon jellyfish was used as a marine organism, and the results are shown in Table 2 and Fig. 23.

【0111】〈実施例33〉海生物としてミズクラゲを
用いた以外、実施例16と同様の試験を実施し、その結
果を表3に示す。
Example 33 A test was conducted in the same manner as in Example 16 except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0112】〈実施例34〉海生物としてミズクラゲを
用いた以外、実施例17と同様の試験を実施し、その結
果を表3に示す。
Example 34 A test was conducted in the same manner as in Example 17 except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0113】〈実施例35〉海生物としてミズクラゲを
用いた以外、実施例18と同様の試験を実施し、その結
果を表3に示す。
Example 35 A test was conducted in the same manner as in Example 18 except that moon jellyfish was used as a marine organism. Table 3 shows the results.

【0114】〈実施例36〉海生物としてミズクラゲを
用いた以外、実施例19と同様の試験を実施し、その結
果を表3に示す。
Example 36 A test was conducted in the same manner as in Example 19, except that moon jellyfish was used as a marine organism. Table 3 shows the results.

【0115】〈実施例37〉海生物としてミズクラゲを
用いた以外、実施例20と同様の試験を実施し、その結
果を表3に示す。
<Example 37> A test similar to that in Example 20 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0116】以下、本発明の5菌株のタイプストレイン
を用いて海生物の分解を試みた比較例である。
The following is a comparative example in which marine organisms were degraded using the five strains of the present invention.

【0117】〈比較例1〉使用する微生物として、バチ
ルス・サブチリス(Bacillus subtilis)のタイプスト
レイン(ATCC6051)を用いた以外、実施例6と
同様の試験を実施した。その結果を表2および図24に
示す。
<Comparative Example 1> The same test as in Example 6 was carried out, except that Bacillus subtilis type strain (ATCC6051) was used as a microorganism to be used. The results are shown in Table 2 and FIG.

【0118】〈比較例2〉使用する微生物として、シュ
ードモナス・フルオレセンス(Pseudomonas fluolescen
s)のタイプストレイン(ATCC13525)を用い
た以外、実施例7,8と同様の試験を実施した。その結
果を表2および図25に示す。
Comparative Example 2 Pseudomonas fluolescen was used as a microorganism.
The same tests as in Examples 7 and 8 were performed except that the type strain (ATCC13525) of s) was used. The results are shown in Table 2 and FIG.

【0119】〈比較例3〉使用する微生物として、エン
テロバクター・アムニゲウス(Enterobacter amnigenu
s)のタイプストレイン(ATCC33072)を用い
た以外、実施例9と同様の試験を実施した。その結果を
表2および図26に示す。
Comparative Example 3 As a microorganism to be used, Enterobacter amnigenu
A test similar to that of Example 9 was performed, except that the type strain (s) (ATCC 33072) was used. The results are shown in Table 2 and FIG.

【0120】〈比較例4〉使用する微生物として、オク
ロバクトラム・アンスロピ(Ochrobactrum anthropi)
のタイプストレイン(ATCC49188)を用いた以
外、実施例10と同様の試験を実施した。その結果を表
2および図27に示す。
Comparative Example 4 As a microorganism to be used, Ochrobactrum anthropi was used.
The same test as in Example 10 was performed except that the type strain (ATCC49188) was used. The results are shown in Table 2 and FIG.

【0121】〈比較例5〉使用する微生物として、バチ
ルス・サブチリス(Bacillus subtilis)のタイプスト
レイン(ATCC6051)を用いた以外、実施例16
と同様の試験を実施した。その結果を表3に示す。
Comparative Example 5 Example 16 was repeated except that Bacillus subtilis type strain (ATCC6051) was used as the microorganism to be used.
The same test was performed. Table 3 shows the results.

【0122】〈比較例6〉使用する微生物として、シュ
ードモナス・フルオレセンス(Pseudomonas fluolescen
s)のタイプストレイン(ATCC13525)を用い
た以外、実施例17,18と同様の試験を実施した。そ
の結果を表3に示す。
Comparative Example 6 Pseudomonas fluolescen was used as a microorganism.
The same tests as in Examples 17 and 18 were performed except that the type strain (ATCC13525) of s) was used. Table 3 shows the results.

【0123】〈比較例7〉使用する微生物として、エン
テロバクター・アムニゲウス(Enterobacter amnigenu
s)のタイプストレイン(ATCC33072)を用い
た以外、実施例19と同様の試験を実施した。その結果
を表3に示す。
Comparative Example 7 As the microorganism to be used, Enterobacter amnigenu
The same test as in Example 19 was performed, except that the type strain (ATCC33072) of s) was used. Table 3 shows the results.

【0124】〈比較例8〉使用する微生物として、オク
ロバクトラム・アンスロピ(Ochrobactrum anthropi)
のタイプストレイン(ATCC49188)を用いた以
外、実施例20と同様の試験を実施した。その結果を表
3に示す。
Comparative Example 8 As a microorganism to be used, Ochrobactrum anthropi was used.
The same test as in Example 20 was performed, except that the type strain (ATCC49188) was used. Table 3 shows the results.

【0125】〈比較例9〉海生物としてミズクラゲを用
いた以外、比較例1と同様の試験を実施し、その結果を
図28に示す。
<Comparative Example 9> The same test as in Comparative Example 1 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in FIG.

【0126】〈比較例10〉海生物としてミズクラゲを
用いた以外、比較例2と同様の試験を実施し、その結果
を図29に示す。
<Comparative Example 10> The same test as in Comparative Example 2 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in FIG.

【0127】〈比較例11〉海生物としてミズクラゲを
用いた以外、比較例3と同様の試験を実施し、その結果
を図30に示す。
<Comparative Example 11> The same test as in Comparative Example 3 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in FIG.

【0128】〈比較例12〉海生物としてミズクラゲを
用いた以外、比較例4と同様の試験を実施し、その結果
を図31に示す。
<Comparative Example 12> The same test as in Comparative Example 4 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in FIG.

【0129】〈比較例13〉海生物としてミズクラゲを
用いた以外、比較例5と同様の試験を実施し、その結果
を表3に示す。
<Comparative Example 13> The same test as in Comparative Example 5 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0130】〈比較例14〉海生物としてミズクラゲを
用いた以外、比較例6と同様の試験を実施し、その結果
を表3に示す。
<Comparative Example 14> A test was conducted in the same manner as in Comparative Example 6 except that moon jellyfish was used as a marine organism. Table 3 shows the results.

【0131】〈比較例15〉海生物としてミズクラゲを
用いた以外、比較例7と同様の試験を実施し、その結果
を表3に示す。
<Comparative Example 15> A test similar to that of Comparative Example 7 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0132】〈比較例16〉海生物としてミズクラゲを
用いた以外、比較例8と同様の試験を実施し、その結果
を表3に示す。
<Comparative Example 16> The same test as in Comparative Example 8 was carried out except that moon jellyfish was used as a marine organism, and the results are shown in Table 3.

【0133】〈実験結果〉実施例1〜5の結果より、本
発明の新規微生物は、プロテアーゼ活性が高く、海水程
度までの塩濃度であれば耐性を有することが容易に理解
できる。しかし、実施例1〜5の結果、並びに実施例6
〜10および実施例23〜27の結果より明らかなよう
に、海生物の分解処理には、使用する微生物がある程度
以上のプロテアーゼ活性を有することが必要ではある
が、プロテアーゼ活性のみが必ずしも処理能力を一義的
に決定するものではないことが理解できる。これは、前
述のとおり、海生物の処理に有効なプロテアーゼの存在
や、その他の何らかの要因によるもの、あるいは、海生
物に由来する物質に起因するものと考える。
<Experimental Results> From the results of Examples 1 to 5, it can be easily understood that the novel microorganism of the present invention has a high protease activity and has a tolerance at a salt concentration up to about seawater. However, the results of Examples 1 to 5 and Example 6
As is clear from the results of Comparative Examples 10 to 10 and Examples 23 to 27, the degradation treatment of marine organisms requires that the microorganism used has a certain level of protease activity, but only the protease activity necessarily has the processing ability. It can be understood that it is not determined uniquely. As described above, this is considered to be due to the presence of a protease effective for treating marine organisms or some other factor, or to a substance derived from marine organisms.

【0134】また、実施例6〜15および実施例23〜
32の結果と、比較例1〜4および比較例9〜12の結
果を比較して明らかなように、本発明の海生物分解能を
有する微生物は、海生物の処理に非常に有効であること
が容易に理解できる。また、本発明による処理法を用い
れば、液層媒体中の海生物の処理を少ない投入エネルギ
ーで効果的に、且つ悪臭を発生することなく処理できる
ことが容易に理解できる。
Further, Examples 6 to 15 and Examples 23 to
As is clear from the comparison between the results of Comparative Example 32 and the results of Comparative Examples 1 to 4 and Comparative Examples 9 to 12, the microorganism having the ability to degrade marine organisms of the present invention is very effective in treating marine organisms. Easy to understand. In addition, it can be easily understood that the use of the treatment method according to the present invention enables effective treatment of marine organisms in the liquid layer medium with little input energy and without generating offensive odor.

【0135】更に、実施例16〜22および実施例33
〜37の結果と、比較例5〜8および比較例13〜16
の結果を比較して明らかなように、本発明の処理方法を
用いれば、固相媒体中においても海生物を効率よく処理
できることが容易に理解できる。
Further, Examples 16 to 22 and Example 33
To 37, Comparative Examples 5 to 8 and Comparative Examples 13 to 16
As is clear from the comparison of the results, it is easily understood that the treatment method of the present invention can efficiently treat marine organisms even in a solid phase medium.

【0136】[0136]

【発明の効果】以上説明したように、本発明の新規な海
生物分解菌バチルス・スピーシーズNA−3(Bacillus
sp. NA−3:FERM P−17302)、シュー
ドモナス・フルオレセンスNA−11(Pseudomonas fl
uolescens NA−11:FERM P−17303)、
シュードモナス・フルオレセンスNA−12(Pseudomo
nas fluolescens NA−11:FERM P−1730
4)、エンテロバクター・アムニゲウス(Enterobacter
amnigenus NA−34:FERM P−1730
5)、およびオクロバクトラム・アンスロピ(Ochrobac
trum anthropi NA−43:FERM P−1730
6)を用いれば、海生物を効率よく分解することが可能
である。また、本発明による海生物処理方法は、悪臭を
発生することなく、且つ非常に経済性に優れ、その工業
的価値は極めて大きい。
As described above, the novel marine biodegradable bacterium Bacillus sp. NA-3 (Bacillus sp.) Of the present invention is described.
sp. NA-3: FERM P-17302), Pseudomonas fluorescens NA-11 (Pseudomonas fl
uolescens NA-11: FERM P-17303),
Pseudomonas fluorescens NA-12 (Pseudomo
nas fluolescens NA-11: FERM P-1730
4), Enterobacter amnigeus (Enterobacter
amnigenus NA-34: FERM P-1730
5), and Ochrobac anthropi (Ochrobac
trum anthropi NA-43: FERM P-1730
If 6) is used, marine organisms can be efficiently decomposed. In addition, the method for treating marine organisms according to the present invention does not generate a bad odor, is extremely economical, and has an extremely large industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例6〜10、実施例23〜27に用いた
装置の模式図
FIG. 1 is a schematic view of an apparatus used in Examples 6 to 10 and Examples 23 to 27.

【図2】 実施例6における好適な結果を示す図FIG. 2 is a view showing preferable results in Example 6.

【図3】 実施例7における好適な結果を示す図FIG. 3 is a view showing preferable results in Example 7.

【図4】 実施例8における好適な結果を示す図FIG. 4 is a view showing preferable results in Example 8.

【図5】 実施例9における好適な結果を示す図FIG. 5 is a view showing preferable results in Example 9.

【図6】 実施例10における好適な結果を示す図FIG. 6 is a view showing preferable results in Example 10.

【図7】 実施11〜15、実施例28〜32に用いた
装置の模式図
FIG. 7 is a schematic view of an apparatus used in Examples 11 to 15 and Examples 28 to 32.

【図8】 実施例11における好適な結果を示す図FIG. 8 is a view showing preferable results in Example 11.

【図9】 実施例12における好適な結果を示す図FIG. 9 is a view showing preferable results in Example 12.

【図10】 実施例13における好適な結果を示す図FIG. 10 is a view showing preferable results in Example 13.

【図11】 実施例14における好適な結果を示す図FIG. 11 is a view showing preferable results in Example 14.

【図12】 実施例15における好適な結果を示す図FIG. 12 is a view showing preferable results in Example 15.

【図13】 実施例16〜22、実施例33〜37に用
いた装置の模式図
FIG. 13 is a schematic view of an apparatus used in Examples 16 to 22 and Examples 33 to 37.

【図14】 実施例23における好適な結果を示す図FIG. 14 is a view showing preferable results in Example 23.

【図15】 実施例24における好適な結果を示す図FIG. 15 is a view showing preferable results in Example 24.

【図16】 実施例25における好適な結果を示す図FIG. 16 is a view showing preferable results in Example 25.

【図17】 実施例26における好適な結果を示す図FIG. 17 is a view showing preferable results in Example 26.

【図18】 実施例27における好適な結果を示す図FIG. 18 is a view showing preferable results in Example 27.

【図19】 実施例28における好適な結果を示す図FIG. 19 is a view showing preferable results in Example 28.

【図20】 実施例29における好適な結果を示す図FIG. 20 is a view showing preferable results in Example 29.

【図21】 実施例30における好適な結果を示す図FIG. 21 is a view showing preferable results in Example 30.

【図22】 実施例31における好適な結果を示す図FIG. 22 is a view showing preferable results in Example 31.

【図23】 実施例32における好適な結果を示す図FIG. 23 is a view showing preferable results in Example 32.

【図24】 比較例1における好適な結果を示す図FIG. 24 is a view showing preferable results in Comparative Example 1.

【図25】 比較例2における好適な結果を示す図FIG. 25 is a view showing preferable results in Comparative Example 2.

【図26】 比較例3における好適な結果を示す図FIG. 26 is a view showing preferable results in Comparative Example 3.

【図27】 比較例4における好適な結果を示す図FIG. 27 is a view showing preferable results in Comparative Example 4.

【図28】 比較例9における好適な結果を示す図FIG. 28 is a view showing preferable results in Comparative Example 9.

【図29】 比較例10における好適な結果を示す図FIG. 29 is a view showing preferable results in Comparative Example 10.

【図30】 比較例11における好適な結果を示す図FIG. 30 is a view showing preferable results in Comparative Example 11.

【図31】 比較例12における好適な結果を示す図FIG. 31 is a view showing preferable results in Comparative Example 12.

【符号の説明】[Explanation of symbols]

1…海生物破砕機 2…海生物処理槽 3…海生物分解微生物培養槽 4…送液ポンプ 5…攪拌翼 6…攪拌用モーター 7…海生物運搬用ベルトコンベアー 8…加温装置 13…固定化微生物充填塔 21…固体媒体 22…スクリューコンベヤ 23…媒体、海生物投入・サンプリング口 24…ファン、センサー等 25…媒体排出口 26…加温装置 DESCRIPTION OF SYMBOLS 1 ... Sea creature crusher 2 ... Sea creature treatment tank 3 ... Sea creature decomposing microorganism cultivation tub 4 ... Liquid feed pump 5 ... Stirring blade 6 ... Stirring motor 7 ... Sea creature conveyor belt 8 ... Heating device 13 ... Fixed Packing tower for immobilized microorganisms 21 ... Solid medium 22 ... Screw conveyor 23 ... Medium, sea organism input / sampling port 24 ... Fan, sensor, etc. 25 ... Media outlet 26 ... Heating device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:07) (C12N 1/20 C12R 1:39) (C12N 1/20 C12R 1:01) Fターム(参考) 4B029 AA02 AA21 BB01 BB02 BB16 CC01 CC02 CC03 CC10 CC13 DA04 DA06 DA07 DA10 DB01 DD02 DF01 DF05 DG06 DG08 4B033 NA01 NA12 NB12 NB22 NB32 NB49 NB68 NC04 ND04 ND15 ND20 4B065 AA15X AA43X AC08 AC12 AC20 BA23 BB01 BB22 BB23 BB26 BC01 BC31 BC41 BC42 BD42 BD43 BD50 CA27 CA31 CA32 CA33 CA41 CA49 CA55──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12R 1:07) (C12N 1/20 C12R 1:39) (C12N 1/20 C12R 1:01) F term (Reference) 4B029 AA02 AA21 BB01 BB02 BB16 CC01 CC02 CC03 CC10 CC13 DA04 DA06 DA07 DA10 DB01 DD02 DF01 DF05 DG06 DG08 4B033 NA01 NA12 NB12 NB22 NB32 NB49 NB68 NC04 ND04 ND15 ND20 4B031A22 BC15 AB12ACB BCX BC42 BD42 BD43 BD50 CA27 CA31 CA32 CA33 CA41 CA49 CA55

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バチルス・スピーシーズNA−3(Baci
llus sp. NA−3;FERM P−17302)、シ
ュードモナス・フルオレセンスNA−11(Pseudomona
s fluolescens NA−11;FERM P−1730
3)、シュードモナス・フルオレセンスNA−12(Ps
eudomonas fluolescens NA−12;FERM P−
17304)、エンテロバクター・アムニゲウスNA−
34(Enterobacter amnigenus NA−34;FERM
P−17305)、オクロバクトラム・アンスロピN
A−43(Ochrobactrum anthropi NA−43;FE
RM P−17306)からなる群より選ばれることを
特徴とする新規微生物。
1. Bacillus species NA-3 (Baci
llus sp. NA-3; FERM P-17302), Pseudomonas fluorescens NA-11 (Pseudomona
s fluolescens NA-11; FERM P-1730
3), Pseudomonas fluorescens NA-12 (Ps
eudomonas fluolescens NA-12; FERM P-
17304), Enterobacter amnigueus NA-
34 (Enterobacter amnigenus NA-34; FERM
P-17305), Ochrobactrum anthropi N
A-43 (Ochrobactrum anthropi NA-43; FE
RM P-17306). A novel microorganism selected from the group consisting of:
【請求項2】 微生物源から、海生物を含む水性無機培
地中で生存可能な微生物を選択する第1の工程と、 前記第1の工程で選択された微生物から、海生物分解処
理能および3%NaCl以上の耐塩性を有するものを選
択する第2の工程と、 前記第2の工程で得られた微生物を処理すべき海生物と
接触させて海生物を分解処理する第3の工程とを具備す
ることを特徴とする海生物の分解処理方法。
2. A first step of selecting a microorganism that can survive in an aqueous inorganic medium containing a marine organism from a source of microorganisms; A second step of selecting a substance having a salt tolerance of not less than% NaCl, and a third step of contacting the microorganism obtained in the second step with a marine organism to be treated to decompose the marine organism. A method for decomposing marine organisms, comprising:
【請求項3】 前記第2の工程により得られる微生物
が、バチルス・スピーシーズNA−3(Bacillus sp.
NA−3;FERM P−17302)、シュードモナ
ス・フルオレセンスNA−11(Pseudomonas fluolesc
ens NA−11;FERM P−17303)、シュ
ードモナス・フルオレセンスNA−12(Pseudomonas
fluolescens NA−12;FERM P−1730
4)、エンテロバクター・アムニゲウスNA−34(En
terobacter amnigenus NA−34;FERM P−1
7305)、オクロバクトラム・アンスロピNA−43
(Ochrobactrum anthropi NA−43;FERM P
−17306)からなる群より選ばれる微生物であるこ
とを特徴とする、請求項2記載の海生物の分解処理方
法。
3. The microorganism obtained in the second step is Bacillus sp. NA-3 (Bacillus sp.
NA-3; FERM P-17302), Pseudomonas fluorescens NA-11 (Pseudomonas fluolesc)
ens NA-11; FERM P-17303), Pseudomonas fluorescens NA-12 (Pseudomonas
fluolescens NA-12; FERM P-1730
4), Enterobacter amnigueus NA-34 (En
terobacter amnigenus NA-34; FERM P-1
7305), Ochrobactrum anthropi NA-43
(Ochrobactrum anthropi NA-43; FERMP
The method according to claim 2, wherein the microorganism is selected from the group consisting of: (-17306).
【請求項4】 前記海生物分解能を有する微生物を培養
槽中で担体に担持させて増殖させ、前記微生物から前記
培養槽中に体外酵素を放出させる工程と、 前記工程で得られた体外酵素を含む溶液を、海生物を含
む処理槽に供給して該海生物を分解する工程と、 前記処理槽内の溶液を、前記微生物培養槽に循環させる
工程とを具備することを特徴とする、請求項3記載の海
生物の分解処理方法。
4. A process in which the microorganism having the ability to degrade marine organisms is supported on a carrier in a culture vessel and grown, and an extracorporeal enzyme is released from the microorganism into the culture vessel. And supplying a solution containing the marine organism to a treatment tank containing the marine organism to decompose the marine organism; and circulating the solution in the treatment tank to the microorganism culturing tank. Item 4. The method for decomposing marine organisms according to Item 3.
JP06889999A 1999-03-15 1999-03-15 New microorganisms and biological treatment methods for marine organisms Expired - Fee Related JP3641156B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06889999A JP3641156B2 (en) 1999-03-15 1999-03-15 New microorganisms and biological treatment methods for marine organisms
KR1020000012853A KR100322439B1 (en) 1999-03-15 2000-03-14 Etching and cleaning methods and etching and cleaning apparatuses used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06889999A JP3641156B2 (en) 1999-03-15 1999-03-15 New microorganisms and biological treatment methods for marine organisms

Publications (2)

Publication Number Publication Date
JP2000262276A true JP2000262276A (en) 2000-09-26
JP3641156B2 JP3641156B2 (en) 2005-04-20

Family

ID=13386975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06889999A Expired - Fee Related JP3641156B2 (en) 1999-03-15 1999-03-15 New microorganisms and biological treatment methods for marine organisms

Country Status (2)

Country Link
JP (1) JP3641156B2 (en)
KR (1) KR100322439B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057209A (en) * 2001-04-19 2004-02-26 Mitsubishi Heavy Ind Ltd Collagenase for using for jellyfish processing
JP2004267127A (en) * 2003-03-10 2004-09-30 Kobelco Eco-Solutions Co Ltd New microorganism and method for treating organic solid material by using the same microorganism
JP2005289910A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Method for floating micro substance and method for floating jellyfish decomposing micro substance
JP2007000863A (en) * 2005-05-25 2007-01-11 Microbial Chem Res Found Apparatus and method of treating salt-containing waste liquid, and microorganism
JP2008212143A (en) * 2006-11-15 2008-09-18 Millipore Corp Bioreactor structure
JP2008212142A (en) * 2006-11-15 2008-09-18 Millipore Corp Self-standing bioreactor construction
WO2012039483A1 (en) * 2010-09-24 2012-03-29 公益財団法人微生物化学研究会 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste
KR20140130024A (en) * 2013-04-30 2014-11-07 (주)케비젠 Microorganism having ammonia odor removal activity and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430737B1 (en) * 2001-10-08 2004-05-10 주식회사 실트론 An etching treatment equipment for etching the edge surface of wafer
KR100481277B1 (en) * 2002-05-10 2005-04-07 한국디엔에스 주식회사 Device and Method for manufacturing semiconductor
DE102009050845A1 (en) 2009-10-19 2011-04-21 Gebr. Schmid Gmbh & Co. Method and device for treating a substrate surface of a substrate
JP7453020B2 (en) * 2020-03-06 2024-03-19 株式会社Screenホールディングス Substrate processing method
KR102623921B1 (en) * 2022-12-01 2024-01-11 세메스 주식회사 Substrate processing apparatus and substrate processing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057209A (en) * 2001-04-19 2004-02-26 Mitsubishi Heavy Ind Ltd Collagenase for using for jellyfish processing
JP2004267127A (en) * 2003-03-10 2004-09-30 Kobelco Eco-Solutions Co Ltd New microorganism and method for treating organic solid material by using the same microorganism
JP2005289910A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Method for floating micro substance and method for floating jellyfish decomposing micro substance
JP2007000863A (en) * 2005-05-25 2007-01-11 Microbial Chem Res Found Apparatus and method of treating salt-containing waste liquid, and microorganism
JP2008212143A (en) * 2006-11-15 2008-09-18 Millipore Corp Bioreactor structure
JP2008212142A (en) * 2006-11-15 2008-09-18 Millipore Corp Self-standing bioreactor construction
WO2012039483A1 (en) * 2010-09-24 2012-03-29 公益財団法人微生物化学研究会 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste
JP5715635B2 (en) * 2010-09-24 2015-05-13 公益財団法人微生物化学研究会 Bacillus microorganism, toxin degrading agent, and waste treatment method
US9079229B2 (en) 2010-09-24 2015-07-14 Microbial Chemistry Research Foundation Microorganism belonging to genus Bacillus, thrombolytic enzyme, and method for treating waste
KR101542595B1 (en) 2010-09-24 2015-08-12 자이단호진 비세이부쯔 가가꾸 겡뀨까이 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste
KR20140130024A (en) * 2013-04-30 2014-11-07 (주)케비젠 Microorganism having ammonia odor removal activity and uses thereof
KR101580779B1 (en) 2013-04-30 2015-12-30 (주)케비젠 Microorganism having ammonia odor removal activity and uses thereof

Also Published As

Publication number Publication date
JP3641156B2 (en) 2005-04-20
KR100322439B1 (en) 2002-03-18
KR20010006799A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
CN102212476B (en) Method for cleanly and efficiently producing microorganism bactericide
JP3641156B2 (en) New microorganisms and biological treatment methods for marine organisms
CN109082393A (en) One kind can be used for Treating Municipal Sewage microbial bacterial agent and preparation method thereof
CN109762767B (en) Sewage composite microbial treatment agent and preparation method and application thereof
CN114921385A (en) Bacillus subtilis and application thereof in feed addition and antibiotic-free culture
CN100579920C (en) Domestic sewage process method
JP2004275960A (en) Treating method for organic waste water
JPH09131177A (en) Microorganism formulation containing new microorganism, its production and sewage treatment and deodorization of waste water utilizing the microorganism
JP2003009848A (en) Microorganism composition and method for degrading organic waste with the composition
KR19990065800A (en) Wastewater Treatment Microorganisms and Microbial Agents
EP0761732B1 (en) Method of degrading polymer
KR102055544B1 (en) A novel Geobacillus sp. strain and use thereof
EP1126024B1 (en) Novel thermostable collagen-digesting enzyme, novel microorganism producing the enzyme and process for producing the enzyme
CN115232766B (en) Halophilic microorganism sewage cleaning agent and preparation method thereof
WO1997032969A1 (en) Method of composite fermentation of aerobic and anaerobic microorganisms
CN114807109B (en) Efficient composting microbial inoculum based on organic matter gradient conversion of human excrement PPLC (poly-phenylene vinylether) and preparation method and application thereof
JP2002301494A (en) Activated sludge and wastewater disposal method
KR100571999B1 (en) Microorganisms for the Decomposition of Foodstuffs and Microbial Seeding Composition for Fermentation Comprising Nutrients for the Stimulation of Propagating the Microorganisms
JPH09103290A (en) Noble microorganism capable of deodorization in sewage treatment, its culture medium composition and cultivation
WO2000026341A1 (en) A mixed microbial population designated as jsb 98.0 capable of degrading fecal material of animals
KR102175728B1 (en) Microbial preparations for the decomposition of organic wastes including novel geobacilli strains and excipients
KR100381371B1 (en) A feedingstuff including microorganism and manufacture method of feedingstuff
JPH07246381A (en) Treatment of organic waste
CN114133025A (en) Preparation method of microbial agent carrier material and application of microbial agent carrier material in high-density aquaculture
US7172895B2 (en) Microorganism and drainage method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees