[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000261095A - Surface-emitting type semiconductor laser and its manufacture - Google Patents

Surface-emitting type semiconductor laser and its manufacture

Info

Publication number
JP2000261095A
JP2000261095A JP11063111A JP6311199A JP2000261095A JP 2000261095 A JP2000261095 A JP 2000261095A JP 11063111 A JP11063111 A JP 11063111A JP 6311199 A JP6311199 A JP 6311199A JP 2000261095 A JP2000261095 A JP 2000261095A
Authority
JP
Japan
Prior art keywords
layer
reflection mirror
high resistance
mirror layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11063111A
Other languages
Japanese (ja)
Other versions
JP3800852B2 (en
JP2000261095A5 (en
Inventor
Nobuaki Ueki
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP06311199A priority Critical patent/JP3800852B2/en
Publication of JP2000261095A publication Critical patent/JP2000261095A/en
Publication of JP2000261095A5 publication Critical patent/JP2000261095A5/ja
Application granted granted Critical
Publication of JP3800852B2 publication Critical patent/JP3800852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-emitting type semiconductor laser, which can be manufactured through a relatively simple process and can control the plane of polarization of laser light in a fixed direction and from which a low threshold current can be obtained. SOLUTION: A surface-emitting type semiconductor laser is provided with a first reflecting mirror layer 12 formed on the main surface of a semiconductor substrate 10, an active layer 30 formed on the layer 12 and containing a quantum well 16, and a post section 20 provided with a columnar second reflecting mirror layer 24 constituting a resonator structure together with the layer 12. The laser is also provided with a layer 22, the thickness of which varies in orthogonal two directions in a plane parallel to the main surface of the substrate 10 and the resistance of which becomes higher going toward its periphery between the first and second reflecting mirror layer 12 and 24. When the semiconductor laser is constituted in this way, anisotropy can be given to the oscillation threshold gain of the laser and only an axial mode having a small threshold gain is selectively obtained, because the stresses of different magnitudes are given to the active layer 30 in the orthogonal two directions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、面発光型半導体レ
ーザに関し、特に、光情報処理や光通信、あるいは光を
用いた画像形成装置の光源として利用される偏波面制御
型の面発光型半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser, and more particularly to a polarization-controlled surface-emitting type semiconductor used as a light source in optical information processing, optical communication, or an image forming apparatus using light. Related to laser.

【0002】[0002]

【従来の技術】面発光型半導体レーザは、発光スポット
を円形にできるところに特徴を持ち、2次元集積が可能
な光源としての利便性が近年とみに注目されている。こ
の面発光型半導体レーザは、発光面に対して垂直な方向
に等方的な物理形状を有する(軸対称性が高い)ため、
発光面に対して水平な平面内における直交する2つの軸
方向(以後、2軸方向と称す。)に関して特性の差異が
ない。そのため、偏波面は2軸方向に対して等しい確率
で向くことが知られている。
2. Description of the Related Art A surface-emitting type semiconductor laser is characterized in that a light-emitting spot can be made circular, and its convenience as a light source capable of two-dimensional integration has recently attracted attention. This surface emitting semiconductor laser has an isotropic physical shape in the direction perpendicular to the light emitting surface (high axial symmetry),
There is no difference in characteristics between two orthogonal axial directions (hereinafter referred to as two axial directions) in a plane horizontal to the light emitting surface. Therefore, it is known that the plane of polarization is oriented with equal probability in the two axial directions.

【0003】偏波面が2軸方向に対して等しい確率で向
く状態であると、特殊なコーティングを施していないレ
ンズや偏光ビームスプリッタといった偏波依存性のある
光学素子を使用することができず、また、多数個の素子
を同一の光学系を用いて使用する場合などにおいては、
素子間の偏波面のばらつきが反映され、光量ばらつきな
ど支障をきたすため、従来、偏波面を一方向に安定化さ
せる工夫がなされている。
If the plane of polarization is oriented with equal probability in the biaxial directions, it is not possible to use a polarization-dependent optical element such as a lens without a special coating or a polarizing beam splitter. In the case where many elements are used using the same optical system, for example,
Since variations in the plane of polarization between the elements are reflected and cause problems such as variations in the amount of light, conventionally, a device for stabilizing the plane of polarization in one direction has been devised.

【0004】その一つとして、特開平5−21890号
公報が挙げられる。これは、図9に示すように、GaA
s基板50上に、GaAs層とAlAs層との交互積層
の多層膜より構成されn型不純物がドープされた第1の
反射ミラー層52と、2つのAlGaAs層54、58
によりInGaAs層56を挟んでInGaAs層56
を量子井戸とした構成の活性層70と、GaAs層とA
lAs層との交互積層の多層膜と金属電極層より構成さ
れp型不純物がドープされた第2の反射ミラー層64
と、を形成した後、メサエッチングにより第2の反射ミ
ラー層64と活性層70とを四角柱状のポスト部60と
して垂直共振器構造を構成し、ポスト部60のメサ側面
の一部分に金属膜80a、80bを設けることで、共振
器損失に差を生じさせ、特定の偏光方向で発振させ、偏
波面を一方向にさせるものである。
As one of them, Japanese Patent Application Laid-Open No. Hei 5-21890 is cited. This is because, as shown in FIG.
On a s substrate 50, a first reflection mirror layer 52 composed of a multilayer film of alternately laminated GaAs layers and AlAs layers and doped with n-type impurities, and two AlGaAs layers 54, 58
The InGaAs layer 56 with the InGaAs layer 56 interposed therebetween.
Layer 70 having a quantum well structure, a GaAs layer and A
a second reflection mirror layer 64 composed of a multilayer film alternately stacked with an lAs layer and a metal electrode layer and doped with a p-type impurity;
Are formed, and the second reflection mirror layer 64 and the active layer 70 are formed as a quadrangular columnar post part 60 by mesa etching to form a vertical resonator structure, and a metal film 80a is formed on a part of the mesa side face of the post part 60. , 80b are provided to cause a difference in resonator loss, oscillate in a specific polarization direction, and make the polarization plane in one direction.

【0005】また、別の構成のものとして特公平7−7
3139号公報が挙げられる。これは、図10(b)及
び図10(c)に示すように、n型GaAs基板50上
に、n型AlAs/GaAs分布ブラッグ反射鏡(以
後、DBRと称す。)52と、n型Al0.4 Ga0.6
s層54と、In0.2 Ga0.8 As活性層56と、p型
Al0.4 Ga0.6 As層58と、p型AlAs/GaA
sDBR64と、を順に形成した後、メサエッチングに
よりn型Al0.4 Ga0.6 As層54と、In0. 2 Ga
0.8 As活性層56と、p型Al0.4 Ga0.6 As層5
8と、p型AlAs/GaAsDBR64とを四角柱状
にエッチングしてポスト部60とすることで垂直共振器
構造を構成し、ポスト部60のメサ側面にSiN膜72
を形成する際に、対向する一対の側面では300℃、対
向する他の一対の側面では100℃の温度雰囲気として
いる。
[0005] As another configuration, Japanese Patent Publication No.
No. 3139 is cited. This is, as shown in FIGS. 10B and 10C, an n-type AlAs / GaAs distributed Bragg reflector (hereinafter referred to as DBR) 52 and an n-type Al on an n-type GaAs substrate 50. 0.4 Ga 0.6 A
s layer 54, In 0.2 Ga 0.8 As active layer 56, p-type Al 0.4 Ga 0.6 As layer 58, and p-type AlAs / GaAs
and SDBR64, after were formed in this order, the n-type Al 0.4 Ga 0.6 As layer 54 by mesa etching, an In 0. 2 Ga
0.8 As active layer 56 and p-type Al 0.4 Ga 0.6 As layer 5
8 and the p-type AlAs / GaAs DBR 64 are etched into a quadrangular prism shape to form the post portion 60, thereby forming a vertical resonator structure. The SiN film 72 is formed on the mesa side surface of the post portion 60.
Is formed at a temperature of 300 ° C. on the pair of opposing side surfaces and at 100 ° C. on the other pair of opposing side surfaces.

【0006】これにより室温に戻ったときにポスト部6
0にかかる引張応力が前記2軸方向で変わるため、発光
面に対して水平な活性層面内の2軸方向のそれぞれに与
えられるストレスが異なり、2軸方向の一方の偏光モー
ドが発振しにくくなって偏波面が一方向に安定する。
As a result, when the temperature returns to room temperature,
Since the tensile stress applied to zero varies in the two axial directions, the stress applied to each of the two axial directions in the active layer plane horizontal to the light emitting surface is different, so that one of the polarization modes in the two axial directions does not easily oscillate. The polarization plane is stabilized in one direction.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
構成の面発光型半導体レーザはエアポスト構造であるの
で、しきい値電流を小さくするためにポスト径を小さく
すると、光出力も小さくなって好ましくなく、また、所
望の光出力を得るためにポスト径を大きくすると、しき
い値電流の増大と共に横モードが不安定になるなどと言
うように、所望のしきい値電流が得られる面発光型半導
体レーザとするのが難しい。
However, since the surface emitting semiconductor laser having the conventional structure has an air post structure, if the diameter of the post is reduced in order to reduce the threshold current, the light output is also reduced, which is not preferable. Also, if the post diameter is increased in order to obtain a desired optical output, the lateral mode becomes unstable with an increase in the threshold current. Difficult to be laser.

【0008】また、半導体基板面に対してほぼ垂直な面
であるメサ側面に金属膜80a、80bやSiN膜72
を形成させており、半導体基板面に対してほぼ垂直な面
に再現性の高い均一な膜を形成するのは容易ではなく、
特殊で高度な技術を要するため素子を精度良く製造する
等の信頼性の点から好ましくない。
The metal films 80a and 80b and the SiN film 72 are formed on the mesa side surfaces which are substantially perpendicular to the semiconductor substrate surface.
It is not easy to form a highly reproducible uniform film on a surface almost perpendicular to the semiconductor substrate surface,
Since special and advanced technology is required, it is not preferable from the viewpoint of reliability such as manufacturing the element with high accuracy.

【0009】以上のことから、本発明は、レーザ光の偏
波面を一定方向に制御でき、さらには低しきい値電流が
得られる面発光型半導体レーザを提供することを第1の
目的とする。また、比較的簡単な工程で、レーザ光の偏
波面を一定方向に制御でき、素子特性を向上できる面発
光型半導体レーザの製造方法を提供することを第2の目
的とする。
As described above, it is a first object of the present invention to provide a surface-emitting type semiconductor laser capable of controlling the plane of polarization of laser light in a fixed direction and obtaining a low threshold current. . It is a second object of the present invention to provide a method for manufacturing a surface-emitting type semiconductor laser capable of controlling the polarization plane of laser light in a fixed direction by a relatively simple process and improving element characteristics.

【0010】[0010]

【課題を解決するための手段】本発明者は、鋭意検討の
結果、下記手段により上記課題が解決されることを見出
した。すなわち、請求項1記載の本発明の面発光型半導
体レーザは、半導体基板の主面に形成された第1反射ミ
ラー層と、前記第1反射ミラー層上に積層され、かつ、
量子井戸が形成された活性層と、前記第1反射ミラー層
と共に共振器構造を構成する柱状の第2反射ミラー層を
備えたポスト部と、前記第1反射ミラー層と前記第2反
射ミラー層との間に形成され、周縁部が高抵抗化された
周縁高抵抗化層と、を備えた面発光型半導体レーザであ
って、該周縁高抵抗化層の少なくとも1つの膜は、前記
半導体基板の主面に平行な面内において直交する2軸方
向に異なる膜厚を有することを特徴とする。
As a result of intensive studies, the present inventor has found that the above means can be solved by the following means. That is, a surface-emitting type semiconductor laser according to the first aspect of the present invention has a first reflection mirror layer formed on a main surface of a semiconductor substrate, and is stacked on the first reflection mirror layer;
An active layer having a quantum well formed therein; a post having a columnar second reflecting mirror layer forming a resonator structure together with the first reflecting mirror layer; the first reflecting mirror layer and the second reflecting mirror layer And a peripheral edge resistance increasing layer having a peripheral portion having an increased resistance, wherein at least one film of the peripheral edge increasing resistance layer is a semiconductor substrate. Are characterized by having different film thicknesses in two axial directions orthogonal to each other in a plane parallel to the main surface of (1).

【0011】高抵抗された領域は殆ど電流を通さないた
め、半導体基板の主面に平行な面内において直交する2
軸方向に異なる膜厚の周縁高抵抗化層を設けたことによ
り、半導体基板の主面に平行な面内において直交する2
軸方向に異なる割合で電流狭窄及び光の閉じ込めがなさ
れる。このように、直交する2軸方向で異なる反射率分
布と異なるストレスが活性層に与えられ、発振しきい値
利得に異方性が生じ、しきい値利得の小さい軸方向のモ
ードだけが選択的に得られ、レーザ光の偏波面を一定方
向に固定化することができる。また、周縁を高抵抗化す
ることにより屈折率導波路が形成されるため、低しきい
値電流の良好な素子特性が得られる。
[0011] Since the high-resistance region hardly conducts current, it is orthogonal to the plane parallel to the main surface of the semiconductor substrate.
By providing the peripheral high resistance layers having different film thicknesses in the axial direction, it is possible to make two orthogonal to each other in a plane parallel to the main surface of the semiconductor substrate.
Current confinement and light confinement are performed at different rates in the axial direction. In this way, different reflectivity distributions and different stresses are applied to the active layer in the two orthogonal axes directions, anisotropy occurs in the oscillation threshold gain, and only the axial mode with a small threshold gain is selectively used. And the polarization plane of the laser beam can be fixed in a certain direction. In addition, since the refractive index waveguide is formed by increasing the resistance of the periphery, good device characteristics with a low threshold current can be obtained.

【0012】請求項2の発明は、請求項1記載の面発光
型半導体レーザにおいて、前記周縁高抵抗化層の少なく
とも1つの膜は、その非高抵抗化領域の前記半導体基板
の主面に平行な面内において直交する2軸方向の長さが
異なることを特徴とする。
According to a second aspect of the present invention, in the surface emitting semiconductor laser according to the first aspect, at least one film of the peripheral high resistance layer is parallel to a main surface of the semiconductor substrate in a non-high resistance region. Characterized in that the lengths in two orthogonal directions in different planes are different.

【0013】周縁高抵抗化層に、半導体基板の主面に平
行な面内において直交する2軸方向の長さが異なる形状
の非高抵抗化領域を設けたことにより、直交する2軸方
向で異なる反射率分布と異なるストレスが活性層に与え
られ、発振しきい値利得に異方性が生じ、しきい値利得
の小さい軸方向のモードだけが選択的に得られ、レーザ
光の偏波面を一定方向に固定化することができる。
[0013] By providing the non-resistance increasing region in the peripheral high resistance layer having different shapes in the orthogonal biaxial directions in a plane parallel to the main surface of the semiconductor substrate, Different reflectivity distributions and different stresses are applied to the active layer, anisotropy occurs in the oscillation threshold gain, and only the axial mode having a small threshold gain can be selectively obtained. It can be fixed in a certain direction.

【0014】請求項3の発明は、請求項1に記載の面発
光型半導体レーザにおいて、前記周縁高抵抗化層が複数
の膜からなり、各膜の非高抵抗化の割合が異なることを
特徴とする。
According to a third aspect of the present invention, in the surface emitting semiconductor laser according to the first aspect, the peripheral high resistance layer is composed of a plurality of films, and the ratio of non-high resistance of each film is different. And

【0015】各膜の非高抵抗化の割合が異なる複数の膜
からなる周縁高抵抗化層を設けたことにより、直交する
2軸方向で異なる反射率分布と異なるストレスが活性層
に与えられ、発振しきい値利得に異方性が生じ、しきい
値利得の小さい軸方向のモードだけが選択的に得られ、
レーザ光の偏波面を一定方向に固定化することができ
る。なお、ここでいう高抵抗化の割合とは側面部からの
高抵抗化の到達距離の深さ、あるいは高抵抗化された膜
の厚み、高抵抗化された膜の化学組成等を意味し、活性
層に印加されるストレスに影響を与える因子全般を指し
ている。
By providing the peripheral high resistance layer composed of a plurality of films having different non-high resistance ratios in each film, different reflectivity distributions and different stresses are given to the active layer in two orthogonal directions. Anisotropy occurs in the oscillation threshold gain, and only the axial mode having a small threshold gain can be selectively obtained.
The polarization plane of the laser light can be fixed in a certain direction. Here, the ratio of the increase in resistance means the depth of the reaching distance of the increase in resistance from the side surface, or the thickness of the film having increased resistance, the chemical composition of the film having increased resistance, and the like. It refers to all the factors that affect the stress applied to the active layer.

【0016】また、複数の膜は、すべての膜が前記直交
する2軸方向に異なる割合で周縁部が高抵抗化された膜
であっても良いし、前記直交する2軸方向に異なる割合
で周縁部が高抵抗化された膜と直交する2軸方向に同じ
割合で周縁部が高抵抗化された膜との組み合わせであっ
ても良い。
In addition, the plurality of films may be films whose peripheral portions are made to have high resistance at different ratios in all the orthogonal biaxial directions, or at different ratios in the orthogonal biaxial directions. It may be a combination of a film whose peripheral portion has a higher resistance in the same ratio in two axial directions orthogonal to the film whose peripheral portion has a higher resistance.

【0017】請求項4の発明は、請求項1から3までの
いずれか1項に記載の面発光型半導体レーザにおいて、
前記周縁高抵抗化層を、Al組成の高い半導体層を選択
酸化することによって形成されたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a surface-emitting type semiconductor laser according to any one of the first to third aspects,
The peripheral high resistance layer is formed by selectively oxidizing a semiconductor layer having a high Al composition.

【0018】Alを含有層は水蒸気雰囲気下の高温熱処
理で酸化されるが、Al組成の違いによって酸化速度に
大きな差が生ずることが知られており、Al組成の差を
設けることによって、所望の層のみを選択的に酸化する
ことができる。
The Al-containing layer is oxidized by a high-temperature heat treatment in a water vapor atmosphere, and it is known that a large difference occurs in the oxidation rate due to a difference in Al composition. Only the layers can be selectively oxidized.

【0019】請求項5に記載の本発明の面発光型半導体
レーザの製造方法は、半導体基板の主面上に、第1反射
ミラー層、量子井戸が形成された活性層、及び前記第1
反射ミラー層と共に共振器構造を構成する第2反射ミラ
ー層を順に設けると共に、前記第1反射ミラー層、前記
活性層、及び前記第2反射ミラー層を順に設ける際に、
前記第1反射ミラー層と前記第2反射ミラー層との間
に、高抵抗化することが可能であり、前記半導体基板の
主面に平行な面内において直交する2軸方向に異なる膜
厚を有する挿入層を設ける積層工程と、少なくとも該挿
入層の表面または側面が露出するまでエッチングして凸
部を形成するエッチング工程と、該凸部の表面または側
面に露出した前記挿入層を高抵抗化する選択高抵抗化工
程と、を含んでいる。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a surface emitting semiconductor laser according to the present invention, wherein a first reflection mirror layer, an active layer having a quantum well formed thereon, and the first layer are formed on a main surface of a semiconductor substrate.
When providing the second reflection mirror layer constituting the resonator structure together with the reflection mirror layer in order, and providing the first reflection mirror layer, the active layer, and the second reflection mirror layer in order,
It is possible to increase the resistance between the first reflection mirror layer and the second reflection mirror layer, and to have different film thicknesses in two directions orthogonal to each other in a plane parallel to the main surface of the semiconductor substrate. A laminating step of providing an insertion layer having the same, an etching step of etching at least until the surface or side surface of the insertion layer is exposed to form a projection, and increasing the resistance of the insertion layer exposed on the surface or side surface of the projection. And increasing the resistance.

【0020】請求項5の発明によれば、1回のエッチン
グ工程と1回の選択高抵抗化工程で、請求項1〜4で説
明したような半導体基板の主面に平行な面内において直
交する2軸方向に異なる膜厚を有する周縁高抵抗化層を
備えた面発光型半導体レーザの製造工程を簡略化するこ
とができる。
According to the fifth aspect of the present invention, one etching step and one selective resistance increasing step are orthogonal to each other in a plane parallel to the main surface of the semiconductor substrate as described in the first to fourth aspects. The manufacturing process of the surface-emitting type semiconductor laser having the peripheral high resistance layers having different film thicknesses in the two axial directions can be simplified.

【0021】特に、Al組成の高い層は膜厚が薄いほど
酸化速度が低下することが知られており、周縁高抵抗化
層をAl組成の高い半導体層を選択酸化することによっ
て形成する場合には、特別な加工手段を用いることなく
直交する2軸方向で側面からの酸化距離に差をつけるこ
とができる。
In particular, it is known that the oxidation rate of a layer having a high Al composition becomes lower as the film thickness becomes thinner. Therefore, when the peripheral high resistance layer is formed by selectively oxidizing a semiconductor layer having a high Al composition, Can provide a difference in the oxidation distance from the side surface in two orthogonal axes directions without using special processing means.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図8を参照して説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS.

【0023】(第1の実施形態)図1〜図7を参照して
第1の実施形態を説明する。図1は、第1の実施形態に
係る面発光型半導体レーザの概略構成を示しており、図
2〜図7は、第1の実施形態に係る面発光型半導体レー
ザの製造工程の概略を示している。
(First Embodiment) A first embodiment will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a surface emitting semiconductor laser according to the first embodiment, and FIGS. 2 to 7 show an outline of a manufacturing process of the surface emitting semiconductor laser according to the first embodiment. ing.

【0024】図1(a)の平面図に示すように、第1の
実施形態に係る面発光型半導体レーザは、上面に光を射
出させるための開口部20aが形成された四角柱状のポ
スト部20を備えた素子であり、図1(b)及び図1
(c)に示すように、裏面にn側電極28が設けられた
n型GaAs基板10に、詳細には図示しないが、厚さ
λ/(4nr)(λ:発振波長、nr:媒質の屈折率)の
n型Al0.9Ga0.1As膜と厚さλ/(4nr)のn型
Al0.3Ga0.7As膜とを交互に40.5周期程度積層
して、n型不純物であるSiをドーピングすることによ
りキャリア濃度を2×1018cm-3としたn型第1反射
ミラー層12が設けられている。
As shown in the plan view of FIG. 1A, the surface-emitting type semiconductor laser according to the first embodiment has a quadrangular prism-shaped post having an opening 20a for emitting light on the upper surface. 1 and FIG. 1 (b) and FIG.
As shown in (c), although not shown in detail, the thickness λ / (4n r ) (λ: oscillation wavelength, n r : medium) is provided on the n-type GaAs substrate 10 having the n-side electrode 28 provided on the back surface. n-type Al 0.9 Ga 0.1 as layer and the thickness of lambda / (with thickness of approximately 40.5 cycles alternating with n-type Al 0.3 Ga 0.7 as layer of the 4n r) of the refractive index), an n-type impurity Si of Is provided to provide an n-type first reflection mirror layer 12 having a carrier concentration of 2 × 10 18 cm −3 .

【0025】n型第1反射ミラー層12の上層には、n
型Al0.5Ga0.5Asからなる第1スペーサ層14が設
けられ、さらにこの第1スペーサ層14の上層には、4
層の膜厚5nmのアンドープAl0.3Ga0.7As障壁膜
と3層の膜厚8nmのアンドープAl0.11Ga0.89As
膜とが交互に積層された構成の量子井戸層を含む量子井
戸活性層16設けられている。さらにこの量子井戸活性
層16の上層にはp型Al0.5Ga0.5Asからなる第2
スペーサ層18が設けられ、上記第1スペーサ層14と
上記第2スペーサ層18とで量子井戸活性層16を挟み
こんで活性層30を形成している。
On the upper layer of the n-type first reflection mirror layer 12, n
A first spacer layer 14 of type Al 0.5 Ga 0.5 As is provided.
Undoped Al 0.3 Ga 0.7 As barrier film having a thickness of 5 nm and undoped Al 0.11 Ga 0.89 As having a thickness of 3 nm
A quantum well active layer 16 including a quantum well layer having a configuration in which films are alternately stacked is provided. Further, a second layer made of p-type Al 0.5 Ga 0.5 As is formed on the quantum well active layer 16.
A spacer layer 18 is provided, and an active layer 30 is formed by sandwiching the quantum well active layer 16 between the first spacer layer 14 and the second spacer layer 18.

【0026】この活性層30の膜厚はλ/nrの整数倍
とされ、定在波がたつように調整されている。そのた
め、面発光型半導体レーザとして働いたときに光強度の
最も強いいわゆる「腹」の部分が量子井戸活性層16の
位置となる。
The thickness of the active layer 30 is set to an integral multiple of λ / n r and adjusted so that a standing wave is emitted. Therefore, a so-called “antinode” having the highest light intensity when functioning as a surface emitting semiconductor laser is located at the quantum well active layer 16.

【0027】第2スペーサ層18の上面には、略四角柱
状のポスト部20が設けられている。ポスト部20は、
周縁部がn型GaAs基板10の主面に平行な面内にお
いて直交する2軸方向に異なる膜厚を有するAlAs周
縁高抵抗化層22と、詳細には図示しないが厚さλ/
(4nr)のp型Al0.9Ga0.1As膜と厚さλ/(4
r)のp型Al0.3Ga0.7As膜とを前記2つの膜の
中間のAl組成比を有する中間層を介して交互に30周
期積層してCをドーピングすることにより3×1018
-3のキャリア濃度としたp型第2反射ミラー層24
と、Cをドーピングすることにより1×1020cm-3
キャリア濃度とした膜厚10nmのp型GaAsコンタ
クト層26とから構成されている。
On the upper surface of the second spacer layer 18, a substantially quadrangular prism-shaped post portion 20 is provided. The post section 20
An AlAs peripheral high-resistance layer 22 having different thicknesses in two axial directions perpendicular to each other in a plane parallel to the main surface of the n-type GaAs substrate 10, and a thickness λ /
(4n r ) p-type Al 0.9 Ga 0.1 As film and thickness λ / (4
n r ) p-type Al 0.3 Ga 0.7 As film is alternately stacked for 30 periods via an intermediate layer having an intermediate Al composition ratio between the two films, and is doped with C to obtain 3 × 10 18 c
p-type second reflection mirror layer 24 having a carrier concentration of m -3
And a 10 nm-thick p-type GaAs contact layer 26 having a carrier concentration of 1 × 10 20 cm −3 by doping C.

【0028】AlAs周縁高抵抗化層22は、図1
(b)及び図1(c)に示すように、その膜厚が中央部
で薄く、周辺部で厚くなるように形成されている。ま
た、AlAs周縁高抵抗化層22のAl組成が反射ミラ
ー層を構成するAl0.9Ga0.1As膜とAl0.3Ga0.7
As膜よりも高く設定されており、水蒸気雰囲気下での
熱処理によって酸化を受けやすく調整されている。この
AlAs周縁高抵抗化層22の周縁部には高抵抗化領域
21が設けられている。
As shown in FIG.
As shown in (b) and FIG. 1 (c), the film is formed so that the film thickness is thin at the center and thick at the peripheral portion. Further, the Al composition in the AlAs peripheral high resistance layer 22 is such that the Al 0.9 Ga 0.1 As film and the Al 0.3 Ga 0.7 which constitute the reflection mirror layer.
It is set higher than the As film, and is adjusted to be easily oxidized by a heat treatment in a water vapor atmosphere. A high resistance region 21 is provided at a peripheral portion of the AlAs peripheral high resistance layer 22.

【0029】また、p型第2反射ミラー層24は、前述
したn型第1反射ミラー層12よりも周期数(層数)が
少なく設けられて、 光学反射率がn型第1反射ミラー層
12よりも小さくされている。この反射率の差により出
射光がポスト部20上面から取り出されることとなる。
なお、図示はされていないがp型第2反射ミラー層24
を構成するp型Al0.9Ga0.1As膜とp型Al0.3
0.7As膜との間に設けた中間層は、素子の直列抵抗
を下げる働きをしている。さらに、最上層に設けられた
p型GaAsコンタクト層26は、絶縁膜27を介して
設けられたp側電極29とのコンタクトを取るために形
成されている。
The p-type second reflection mirror layer 24 is provided with a smaller number of periods (number of layers) than the above-described n-type first reflection mirror layer 12, and has an optical reflectance of the n-type first reflection mirror layer. It is smaller than 12. The emitted light is extracted from the upper surface of the post section 20 by the difference in the reflectance.
Although not shown, the p-type second reflection mirror layer 24
-Type Al 0.9 Ga 0.1 As film and p-type Al 0.3 G
The intermediate layer provided between the a 0.7 As film and the a 0.7 As film functions to reduce the series resistance of the device. Further, the p-type GaAs contact layer 26 provided on the uppermost layer is formed to make contact with a p-side electrode 29 provided via an insulating film 27.

【0030】以下、上記構成の面発光型半導体レーザの
製造工程を図2〜図8を参照して説明する。
Hereinafter, a manufacturing process of the surface emitting semiconductor laser having the above configuration will be described with reference to FIGS.

【0031】図2に示すように、n型GaAs基板10
に、Siをドーピングしたn型Al 0.9Ga0.1As膜
(図示せず)とn型Al0.3Ga0.7As膜(図示せず)
とを交互に積層して構成したn型第1反射ミラー層12
と、n型Al0.5Ga0.5Asからなる第1スペーサ層1
4とp型Al0.5Ga0.5Asからなる第2スペーサ層1
8とにより量子井戸活性層16を挟みこんだ構成の活性
層30とを、例えば、有機金属気相成長(MOCVD)
法や分子線エピタキシー(MBE)法などの半導体結晶
成長技術を用いて順次積層形成する。次段階でマスクM
BE法による成膜を行う関係上、この段階で半導体基板
を大気中に取り出すことを避ける意味でMBE法を使っ
て成膜することが望ましい。
As shown in FIG. 2, the n-type GaAs substrate 10
N-type Al doped with Si 0.9Ga0.1As film
(Not shown) and n-type Al0.3Ga0.7As film (not shown)
N-type first reflection mirror layer 12 configured by alternately stacking
And n-type Al0.5Ga0.5First spacer layer 1 made of As
4 and p-type Al0.5Ga0.5Second spacer layer 1 made of As
8 and the structure having the quantum well active layer 16 interposed therebetween.
The layer 30 is formed, for example, by metal organic chemical vapor deposition (MOCVD).
Semiconductor crystal such as molecular beam epitaxy (MBE) method
The layers are sequentially formed using a growth technique. Mask M in the next stage
At this stage, the semiconductor substrate is formed because the film is formed by the BE method.
Use MBE method to avoid taking out to the atmosphere
It is desirable to form the film by using

【0032】つぎに、周縁高抵抗化層22となるAlA
s層を積層する。AlAs層の積層にはマスクMBE法
という結晶成長技術を用いる。マスクMBE法について
は、例えば特開平10−178235号公報に詳細が記
載されている。図3に示すように、AlAs層は、厚さ
λ/(4nr)だけ成長した後、積層体の上方に5〜1
0μm径のワイヤー状のマスク40を配置して、この状
態でさらにAlAs層を成膜する。ワイヤー状のマスク
40によってマスクされた部分にはこれ以上AlAs層
が形成されないため、同一層内で異なる膜厚を有する周
縁高抵抗化層22となるAlAs層が形成される。
Next, the AlA to be the peripheral high resistance layer 22
The s layer is laminated. A crystal growth technique called a mask MBE method is used for laminating the AlAs layer. The details of the mask MBE method are described in, for example, JP-A-10-178235. As shown in FIG. 3, the AlAs layer is grown by a thickness of λ / (4n r ), and then 5 to 1
A wire-shaped mask 40 having a diameter of 0 μm is arranged, and an AlAs layer is further formed in this state. Since the AlAs layer is not formed any more on the portion masked by the wire-shaped mask 40, an AlAs layer serving as the peripheral high resistance layer 22 having a different thickness in the same layer is formed.

【0033】つづいて、図4に示すように、Cをドーピ
ングしたp型Al0.9Ga0.1As膜とp型Al0.3Ga
0.7As膜とを中間層を介して交互に積層した構成のp
型第2反射ミラー層24と、Cを高濃度にドーピングし
たp型GaAsコンタクト層26とを、順次積層する
(積層工程)。
Subsequently, as shown in FIG. 4, a C-doped p-type Al 0.9 Ga 0.1 As film and a p-type Al 0.3 Ga
A p-type structure in which 0.7 As films are alternately stacked with an intermediate layer interposed therebetween
The second reflective mirror layer 24 and the p-type GaAs contact layer 26 doped with C at a high concentration are sequentially laminated (lamination step).

【0034】次に、図5に示すように、上記の層を積層
した積層体上の全面にシリコン系絶縁膜を堆積した後、
フォトリソグラフィ技術を使って最終的にポスト部20
の上面となる領域にフォトレジストを形成する。これを
マスクとして反応性イオンエッチングにより周縁高抵抗
化層22となるAlAs膜の表面または側面が露出する
までエッチングして、図5に示すようにメサ構造となる
四角柱状のポスト部20を形成する。これにより、ポス
ト部20の周囲には、周縁高抵抗化層22となるAlA
s膜の端部が露出することとなる(エッチング工程)。
Next, as shown in FIG. 5, after a silicon-based insulating film is deposited on the entire surface of the laminate obtained by laminating the above layers,
Finally, the post part 20 is formed using photolithography technology.
A photoresist is formed in a region to be the upper surface of the substrate. Using this as a mask, etching is performed by reactive ion etching until the surface or side surface of the AlAs film serving as the peripheral high resistance layer 22 is exposed, thereby forming a quadrangular post 20 having a mesa structure as shown in FIG. . As a result, around the post 20, the AlA serving as the peripheral high resistance layer 22 is formed.
The end of the s film is exposed (etching step).

【0035】その後、水蒸気を充満させた石英管内にお
いて380℃、5〜10分間の加熱を行うことにより、
周縁高抵抗化層22となるAlAs膜を選択的に酸化し
て高抵抗化する(高抵抗化工程)。
Thereafter, by heating at 380 ° C. for 5 to 10 minutes in a quartz tube filled with water vapor,
The AlAs film serving as the peripheral high resistance layer 22 is selectively oxidized to increase the resistance (high resistance step).

【0036】これにより、図6に示すように、ポスト部
20の4側面に露出した周縁高抵抗化層22となるAl
As膜が外周部から内部に向かって徐々に酸化され、高
抵抗化領域21が形成される。周縁高抵抗化層22とな
るAlAs膜については、図7(a)に示すように、G
aAs基板10の主面に平行な面内において膜厚の分布
があり、幅5から10μmのストライプ状に膜厚の薄い
部分がある。この部分では酸化の進行速度が遅く、いわ
ゆる酸化深さの異方性を生ずる。このため、図7(b)
に示すように、GaAs基板10の主面に平行な面内に
おいて直交する2軸方向の長さが異なる非高抵抗化領域
23が形成される。
As a result, as shown in FIG. 6, the Al which becomes the peripheral high resistance layer 22 exposed on the four side surfaces of the post portion 20 is formed.
The As film is gradually oxidized from the outer peripheral portion toward the inner portion, and the high-resistance region 21 is formed. As shown in FIG. 7A, the AlAs film serving as the peripheral high resistance layer 22 has a G
There is a distribution of the film thickness in a plane parallel to the main surface of the aAs substrate 10, and there are thin portions in a stripe shape having a width of 5 to 10 μm. In this portion, the progress of oxidation is slow, and so-called anisotropy of oxidation depth is generated. For this reason, FIG.
As shown in FIG. 5, non-resistance increasing regions 23 having different lengths in two orthogonal directions in a plane parallel to the main surface of the GaAs substrate 10 are formed.

【0037】その後、フォトリソグラフィ技術を使っ
て、GaAs基板10の表面側にはポスト部20の上面
に光を射出させるための開口部20aを形成したp側電
極29を絶縁膜27を介して形成し、GaAs基板10
の裏面側には全面にn側電極28を形成して、図1に示
す構成のλ〜780nmの発振波長を備えた面発光型半
導体レーザを得る。
Thereafter, a p-side electrode 29 having an opening 20 a for emitting light on the upper surface of the post section 20 is formed on the front side of the GaAs substrate 10 through an insulating film 27 by using a photolithography technique. And the GaAs substrate 10
An n-side electrode 28 is formed on the entire back surface of the substrate to obtain a surface-emitting type semiconductor laser having the configuration shown in FIG.

【0038】この製造方法によれば、AlAs膜の膜厚
分布により酸化速度に異方性を与えるという単純な構成
で所望の周縁高抵抗化層22を形成できるため、マスク
MBE法という工程が結晶成長時に1つ増えるが、エッ
チング工程および高抵抗化工程を各々1回にできること
から、プロセスがより容易化されている。
According to this manufacturing method, a desired peripheral high resistance layer 22 can be formed with a simple structure of giving anisotropy to the oxidation rate by the thickness distribution of the AlAs film. The number increases by one during the growth, but since the etching step and the resistance increasing step can be performed once each, the process is further simplified.

【0039】(第2の実施形態)第2の実施形態は、第
1の実施形態の変形例であり、図8(b)及び図8
(c)に示すように、第1の実施形態に係る面発光型半
導体レーザの周縁高抵抗化層22を、第1のAlAs膜
22aと第2のAlAs膜22bとに分けて、活性層3
0の上面と下面とにそれぞれ設けたものである。第1の
AlAs膜22aは、GaAs基板10の主面に平行な
面内において直交する2軸方向に異なる膜厚を有し、前
記直交する2軸方向に異なる割合で周縁部が高抵抗化さ
れたAlAs膜であり、図8(a)に示すように、出射
方向から見た非高抵抗化領域の形状は矩形となる。一
方、第2のAlAs膜22bは、均一な膜厚を有し、前
記直交する2軸方向に同じ割合で周縁部が高抵抗化され
たAlAs膜であり、出射方向から見た非高抵抗化領域
の形状は正方形となる。
(Second Embodiment) The second embodiment is a modification of the first embodiment, and is shown in FIGS.
As shown in (c), the peripheral high resistance layer 22 of the surface-emitting type semiconductor laser according to the first embodiment is divided into a first AlAs film 22a and a second AlAs film 22b.
0 are provided on the upper surface and the lower surface, respectively. The first AlAs film 22a has different thicknesses in two orthogonal directions in a plane parallel to the main surface of the GaAs substrate 10, and the peripheral portion is made to have high resistance at a different ratio in the two orthogonal directions. As shown in FIG. 8A, the non-resistance increasing region has a rectangular shape when viewed from the emission direction. On the other hand, the second AlAs film 22b is an AlAs film having a uniform film thickness and a high resistance in the peripheral portion at the same ratio in the two orthogonal axes directions. The shape of the area is a square.

【0040】活性層30の上面と下面とに、周縁部が高
抵抗化された第1のAlAs膜22aと第2のAlAs
膜22bとを備えることにより、活性性層30に与える
ストレスを第1の実施形態に係る面発光型半導体レーザ
よりも大きくできる。このため、より効果的に発振しき
い値利得に異方性が与えられるので、より効果的にしき
い値利得の小さい軸方向のモードだけを選択的に得るこ
とができると共に、より効果的にGaAs基板10の主
面に平行な面内において直交する2軸方向に異なる割合
で電流狭窄及び光の閉じ込めを行えるので、偏波方向が
一定に制御されることになる。
On the upper and lower surfaces of the active layer 30, a first AlAs film 22a having a high resistance at the peripheral edge and a second AlAs film
By providing the film 22b, the stress applied to the active layer 30 can be made larger than that of the surface emitting semiconductor laser according to the first embodiment. Therefore, the oscillation threshold gain is more effectively given anisotropy, so that only the axial mode having a small threshold gain can be selectively obtained more effectively, and GaAs can be more effectively obtained. Since current confinement and light confinement can be performed at different rates in two orthogonal directions in a plane parallel to the main surface of the substrate 10, the polarization direction is controlled to be constant.

【0041】なお、その他の構成部分は第1の実施形態
に係る面発光型半導体レーザと同様であるため説明を省
略する。
The other components are the same as those of the surface-emitting type semiconductor laser according to the first embodiment, and the description is omitted.

【0042】また、第2の実施形態に係る面発光型半導
体レーザーの製造工程は、第2の実施形態に係る面発光
型半導体レーザーの製造工程と比べて、挿入層である第
2のAlAs膜22bを活性層30を積層する前に積層
する点と、ポスト部20を形成する際に、第2のAlA
s膜22bの表面または側面が露出するまでエッチング
を行う点とが異なるだけで、その他の点は同様であるた
め説明を省略する。
Further, the manufacturing process of the surface-emitting type semiconductor laser according to the second embodiment is different from the manufacturing process of the surface-emitting type semiconductor laser according to the second embodiment in that a second AlAs film serving as an insertion layer is formed. The point of laminating the first Al layer 22b before laminating the active layer 30 and the second AlA
The only difference is that etching is performed until the surface or side surface of the s film 22b is exposed, and the other points are the same, and therefore description thereof is omitted.

【0043】以上説明した第1及び第2の実施形態にお
いては、周縁高抵抗化層22を構成するAlAs膜2
2、22a、22bは、第1の反射ミラー層12と第2
の反射ミラー層24とを構成するAl組成比の異なる2
種類の膜(Al0.9Ga0.1As膜とAl0.3Ga0.7As
膜)よりもAlの組成を高く調整したAlAs層として
いるが、前記2種類の膜のうち、Al組成比の高い方
(ここでは90%のAl0. 9Ga0.1As膜)と熱処理を
行う際の酸化速度に差が生じれば良いことから、周縁高
抵抗化層22を構成するAlAs膜としては、Al組成
比が95%以上、望ましくは98%以上のものであれば
よい。
In the first and second embodiments described above, the AlAs film 2 forming the peripheral high resistance layer 22
2, 22a and 22b are formed by the first reflection mirror layer 12 and the second
2 having different Al composition ratios from the reflection mirror layer 24 of FIG.
Films (Al 0.9 Ga 0.1 As film and Al 0.3 Ga 0.7 As film)
Although a higher adjusted AlAs layer composition of Al than the membrane), among the two kinds of films, performing 90% of Al 0. 9 Ga 0.1 As layer) and the heat treatment in the way (where a high Al composition ratio Since it is sufficient that a difference occurs in the oxidation rate at this time, the AlAs film constituting the peripheral high resistance layer 22 has an Al composition ratio of 95% or more, preferably 98% or more.

【0044】また、上記第1及び第2の実施形態におい
ては、周縁高抵抗化層22を構成する膜の組成を同一の
AlAsとしたが、もちろんこれに限らず、例えばAl
AsとAlGaAsの組み合わせであったり、AlAs
とAlGaInPの組み合わせなど、周囲の半導体層に
比べて酸化されやすいAl組成比の高い他の材料系から
なる、材料の異なる組み合わせの層とすることもでき
る。
In the first and second embodiments, the composition of the film constituting the peripheral high resistance layer 22 is the same AlAs. However, the composition is not limited to this.
A combination of As and AlGaAs, AlAs
It can also be a layer of a different combination of materials, such as a combination of AlGaInP and another material system having a higher Al composition ratio that is more easily oxidized than the surrounding semiconductor layers.

【0045】なお、一般にp型層はn型層に比べバンド
不連続に起因する素子抵抗の増大の懸念があるため、こ
のことを考慮して、上記第1及び第2の実施形態におい
ては、対向して設けられる第1の反射ミラー層12と第
2の反射ミラー層24のうち層数の少ない射出側の第2
の反射ミラー層24の導電型をp型としているが、これ
に限定されることなく導電型を反対にすることも可能で
ある。
In general, the p-type layer is more concerned with an increase in device resistance due to band discontinuity than the n-type layer. In consideration of this, in the first and second embodiments, Of the first reflection mirror layer 12 and the second reflection mirror layer 24 provided to face each other,
Although the conductivity type of the reflection mirror layer 24 is p-type, the conductivity type may be reversed without being limited to this.

【0046】また、上記第1及び第2の実施形態におい
ては、出射光をポスト部20が形成された表面側から取
り出す構成としたが、GaAs基板10裏面から取り出
す構成とすることもできる。この場合GaAs基板10
側に形成する反射ミラー層の導電型をp型とし、ポスト
部20に形成する反射ミラー層の導電型をn型とすると
よい。
In the first and second embodiments, the outgoing light is extracted from the front surface on which the post portion 20 is formed. However, the emitted light may be extracted from the back surface of the GaAs substrate 10. In this case, the GaAs substrate 10
Preferably, the conductivity type of the reflection mirror layer formed on the side is p-type, and the conductivity type of the reflection mirror layer formed on the post portion 20 is n-type.

【0047】なお、上記第1及び第2の実施形態におい
ては、量子井戸活性層16を構成する材料としてGaA
s/AlGaAs系半導体を用いたが、これに限定され
ることなく、例えば量子井戸活性層16にGaAs/I
nGaAs系、あるいはInP/InGaAsP系半導
体を用いることも可能である。これらの量子井戸層から
の発光波長はGaAs基板に対して透過であり、半導体
基板裏面から出射光を取り出すのが容易となって、プロ
セス上の手間が省ける。
In the first and second embodiments, the material constituting the quantum well active layer 16 is GaAs.
Although an s / AlGaAs-based semiconductor was used, the present invention is not limited to this. For example, GaAs / I
It is also possible to use an nGaAs-based or InP / InGaAsP-based semiconductor. The emission wavelengths from these quantum well layers are transmitted through the GaAs substrate, so that it is easy to extract the emitted light from the back surface of the semiconductor substrate, and the process can be saved.

【0048】また、上記第1及び第2の実施形態におい
ては、ポスト部20の形状を上面が正方形の柱状とした
が、もちろんこれに限らず、上面形状が長方形や、菱形
や、円形や、楕円形の柱状とすることもできる。上面形
状を長方形や、菱形または、楕円形などの長軸と短軸と
を有する形状とする場合、長軸方向と短軸方向のそれぞ
れと前記直交する2軸方向とが対応しするように構成す
ると、偏波面をより一層安定化させることができ好まし
い。なお、ここで述べる柱状とは、上面と下面の寸法が
同じ物に限らず、上面の方が下面よりも小さいまたは大
きい寸法の柱状のものも含んでいる。
In the first and second embodiments, the shape of the post portion 20 is a column having a square upper surface. However, the shape is not limited to this, and the shape of the upper surface is rectangular, rhombic, circular, or the like. An elliptical columnar shape is also possible. When the top surface shape is a shape having a major axis and a minor axis such as a rectangle, a rhombus, or an ellipse, the major axis direction and the minor axis direction correspond to the orthogonal two-axis directions, respectively. Then, the polarization plane can be further stabilized, which is preferable. The columnar shape described here is not limited to a columnar shape having the same size of the upper surface and the lower surface, but also includes a columnar shape whose upper surface is smaller or larger than the lower surface.

【0049】また、周縁高抵抗化層22を形成させるた
めの選択酸化の加熱温度を380℃としたが、これに限
定されることなく、最終的な電流通路の大きさが所望の
値となるよう制御できる条件であれば良い。温度を上げ
ると酸化速度が増し、短時間で所望の高抵抗化領域を形
成することができるが、400℃前後が酸化距離を最も
制御し易く好ましい。
The heating temperature of the selective oxidation for forming the peripheral high resistance layer 22 is set to 380 ° C., but the present invention is not limited to this, and the size of the final current path becomes a desired value. Any condition can be used as long as it can be controlled. When the temperature is increased, the oxidation rate is increased, and a desired high-resistance region can be formed in a short time. However, a temperature of about 400 ° C. is preferable because the oxidation distance is most easily controlled.

【0050】また、上記第1及び第2の実施形態におい
ては、周縁高抵抗化層22を構成する膜の数を2つとし
ているが、これに限定されることなく、3膜以上とする
こともできる。
In the first and second embodiments, the number of films constituting the peripheral high resistance layer 22 is two. However, the present invention is not limited to this. Can also.

【0051】さらに、上記第1及び第2の実施形態にお
いては、GaAs基板10の主面に平行な面内において
直交する2軸方向でに膜厚分布を持たせる層を活性層よ
り上方の第1のAlAs膜22aとしたが、もちろんこ
れに限らず、第2のAlAs層に膜厚分布を持たせても
同様な効果が得られる。
Further, in the first and second embodiments, the layer having a film thickness distribution in two axes perpendicular to each other in a plane parallel to the main surface of the GaAs substrate 10 is formed above the active layer. Although the first AlAs film 22a is used, the present invention is not limited to this, and a similar effect can be obtained even if the second AlAs layer has a film thickness distribution.

【0052】[0052]

【発明の効果】以上述べたように、本発明の面発光型半
導体レーザは、半導体基板の主面に水平な面内において
直交する2軸方向に膜厚分布を有し、高抵抗化の進行が
異なる周縁高抵抗化層を備えるため、活性層に対して前
記直交する2つの方向で異なる大きさのストレスが与え
られるので、発振しきい値利得に異方性が与えられ、し
きい値利得の小さい軸方向のモードだけが選択的に得ら
れる。従って、レーザ光の偏波面が一定方向に制御され
た面発光型半導体レーザとすることができる、という効
果を達成する。また、周縁高抵抗化層の高抵抗化領域に
より屈折率導波路が形成されるので、低しきい値電流の
良好な素子特性を備えた面発光型半導体レーザとするこ
とができる、という効果を達成する。
As described above, the surface-emitting type semiconductor laser of the present invention has a film thickness distribution in two axial directions orthogonal to each other in a plane horizontal to the main surface of the semiconductor substrate, and the resistance increases. Are provided with different peripheral edge resistance increasing layers, so that different magnitudes of stress are applied to the active layer in the two directions perpendicular to each other, so that the oscillation threshold gain is anisotropic and the threshold gain is increased. Only the mode in the axial direction having a small value is selectively obtained. Therefore, an effect that a surface emitting semiconductor laser in which the polarization plane of laser light is controlled in a fixed direction can be achieved. Further, since the refractive index waveguide is formed by the high resistance region of the peripheral high resistance layer, the surface emitting semiconductor laser having a low threshold current and good device characteristics can be obtained. To achieve.

【0053】また、本発明の面発光型半導体レーザの製
造方法では、膜厚分布により高抵抗化速度に異方性を与
えるという単純な構成で所望の周縁高抵抗化層を形成で
きることとしたため、製造工程を簡略化することがで
き、半導体基板と水平な面内において直交する2軸方向
に膜厚分布を有し、高抵抗化の進行が異なる周縁高抵抗
化層を備えた面発光型半導体レーザを比較的容易に製造
することができる、という効果を達成する。
In the method of manufacturing a surface emitting semiconductor laser according to the present invention, a desired peripheral high resistance layer can be formed with a simple structure of giving anisotropy to a high resistance speed by a film thickness distribution. A surface emitting semiconductor having a peripheral high resistance layer which can simplify the manufacturing process, has a film thickness distribution in two axial directions orthogonal to each other in a plane parallel to the semiconductor substrate, and has a different progression of high resistance. This achieves the effect that the laser can be manufactured relatively easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の第1の実施形態の面発光型
半導体レーザの概略平面図であり、(b)は(a)にお
けるB-B矢視断面図であり、(c)は(a)における
A-A矢視断面図である。
1A is a schematic plan view of a surface emitting semiconductor laser according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line BB in FIG. () Is a sectional view taken along the line AA in (a).

【図2】 本発明の第1実施形態の面発光型半導体レー
ザの製造方法における積層工程の中間段階の状態を示す
概略図である。
FIG. 2 is a schematic diagram showing a state of an intermediate stage of a laminating step in the method of manufacturing the surface emitting semiconductor laser according to the first embodiment of the present invention.

【図3】 本発明の第1実施形態の面発光型半導体レー
ザの製造方法における積層工程の中間段階の状態を示す
概略図である。
FIG. 3 is a schematic view showing a state of an intermediate stage of a laminating step in the method for manufacturing the surface emitting semiconductor laser according to the first embodiment of the present invention.

【図4】 本発明の第1実施形態の面発光型半導体レー
ザの製造方法における積層工程終了後の状態を示す概略
図である。
FIG. 4 is a schematic view showing a state after the lamination step in the method for manufacturing the surface emitting semiconductor laser according to the first embodiment of the present invention.

【図5】 本発明の第1実施形態の面発光型半導体レー
ザの製造方法におけるポスト部形成工程終了後の状態を
示す概略図である。
FIG. 5 is a schematic diagram showing a state after a post portion forming step in the method for manufacturing a surface emitting semiconductor laser according to the first embodiment of the present invention.

【図6】 本発明の第1実施形態の面発光型半導体レー
ザの製造方法における高抵抗化工程終了後の状態を示す
概略図である。
FIG. 6 is a schematic view showing a state after a resistance increasing step in the method for manufacturing a surface emitting semiconductor laser according to the first embodiment of the present invention.

【図7】 (a)は、本発明の第1実施形態の面発光型
半導体レーザの製造方法における図5に示す高抵抗化前
の周縁高抵抗化層の状態を示す平面図であり、(b)
は、図6に示す高抵抗化工程終了後の周縁高抵抗化層の
状態を示す平面図である。
FIG. 7A is a plan view showing a state of a peripheral high resistance layer before high resistance shown in FIG. 5 in the method for manufacturing the surface emitting semiconductor laser according to the first embodiment of the present invention; b)
FIG. 7 is a plan view showing the state of the peripheral high resistance layer after the completion of the high resistance step shown in FIG. 6.

【図8】(a)は、本発明の第2の実施形態の面発光型
半導体レーザの出射方向から見た周縁高抵抗化層の状態
を示す平面図であり、(b)は(a)の面発光型半導体
レーザのB-B矢視断面図であり、(c)は(a)の面
発光型半導体レーザのA-A矢視断面図である。
FIG. 8A is a plan view showing a state of a peripheral high resistance layer viewed from an emission direction of a surface emitting semiconductor laser according to a second embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view of the surface-emitting type semiconductor laser taken along line BB, and FIG.

【図9】 従来の面発光型半導体レーザの一部破断斜視
図である。
FIG. 9 is a partially cutaway perspective view of a conventional surface-emitting type semiconductor laser.

【図10】(a)は、従来の別の構成の面発光型半導体
レーザの上面図、(b)は、(a)におけるA-A矢視
断面図、(c)は(a)におけるB-B矢視断面図であ
る。
10A is a top view of a conventional surface-emitting type semiconductor laser having another configuration, FIG. 10B is a cross-sectional view taken along the line AA in FIG. 10A, and FIG. It is arrow B sectional drawing.

【符号の説明】[Explanation of symbols]

10 n型GaAs基板 12 n型第1反射ミラー層 14 第1スペーサ層 16 量子井戸活性層 18 第2スペーサ層 20 ポスト部 20a 開口部 21,21a,21b 高抵抗化領域 22,22a,22b 周縁高抵抗化層 24 p型第2反射ミラー層 26 p型GaAsコンタクト層 27 絶縁膜 28 n側電極 29 p側電極 30 活性層 40 MBEマスク DESCRIPTION OF SYMBOLS 10 n-type GaAs substrate 12 n-type 1st reflection mirror layer 14 1st spacer layer 16 Quantum well active layer 18 2nd spacer layer 20 Post part 20a Opening 21, 21a, 21b High resistance area 22, 22a, 22b Perimeter height Resistance layer 24 p-type second reflection mirror layer 26 p-type GaAs contact layer 27 insulating film 28 n-side electrode 29 p-side electrode 30 active layer 40 MBE mask

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の主面に形成された第1反射
ミラー層と、 前記第1反射ミラー層上に積層され、かつ、量子井戸が
形成された活性層と、 前記第1反射ミラー層と共に共振器構造を構成する柱状
の第2反射ミラー層を備えたポスト部と、 前記第1反射ミラー層と前記第2反射ミラー層との間に
形成され、周縁部が高抵抗化された周縁高抵抗化層と、
を備えた面発光型半導体レーザであって、 該周縁高抵抗化層の少なくとも1つの膜は、前記半導体
基板の主面に平行な面内において直交する2軸方向に異
なる膜厚を有することを特徴とする面発光型半導体レー
ザ。
A first reflection mirror layer formed on a main surface of a semiconductor substrate; an active layer laminated on the first reflection mirror layer and formed with a quantum well; and the first reflection mirror layer And a post having a columnar second reflection mirror layer forming a resonator structure, and a periphery formed between the first reflection mirror layer and the second reflection mirror layer, the periphery having a high resistance. A high resistance layer,
Wherein at least one film of the peripheral high resistance layer has different thicknesses in two axial directions orthogonal to each other in a plane parallel to the main surface of the semiconductor substrate. Characteristic surface emitting semiconductor laser.
【請求項2】 前記周縁高抵抗化層の少なくとも1つの
膜は、その非高抵抗化領域の前記半導体基板の主面に平
行な面内において直交する2軸方向の長さが異なること
を特徴とする請求項1に記載の面発光型半導体レーザ。
2. The semiconductor device according to claim 1, wherein at least one film of the peripheral high resistance layer has a different length in a biaxial direction orthogonal to a non-high resistance region in a plane parallel to a main surface of the semiconductor substrate. The surface emitting semiconductor laser according to claim 1.
【請求項3】 前記周縁高抵抗化層が複数の膜からな
り、各膜の非高抵抗化の割合が異なることを特徴とする
請求項1に記載の面発光型半導体レーザ。
3. The surface-emitting type semiconductor laser according to claim 1, wherein the peripheral high resistance layer is composed of a plurality of films, and each film has a different ratio of non-high resistance.
【請求項4】 前記周縁高抵抗化層は、Al組成の高い
半導体層を選択酸化することによって形成されたことを
特徴とする請求項1から3までのいずれか1項に記載の
面発光型半導体レーザ。
4. The surface emitting type device according to claim 1, wherein the peripheral high resistance layer is formed by selectively oxidizing a semiconductor layer having a high Al composition. Semiconductor laser.
【請求項5】 半導体基板の主面上に、第1反射ミラー
層、量子井戸が形成された活性層、及び前記第1反射ミ
ラー層と共に共振器構造を構成する第2反射ミラー層を
順に設けると共に、前記第1反射ミラー層、前記活性
層、及び前記第2反射ミラー層を順に設ける際に、前記
第1反射ミラー層と前記第2反射ミラー層との間に、高
抵抗化することが可能であり、前記半導体基板の主面に
平行な面内において直交する2軸方向に異なる膜厚を有
する挿入層を設ける積層工程と、 少なくとも該挿入層の表面または側面が露出するまでエ
ッチングして凸部を形成するエッチング工程と、 該凸部の表面または側面に露出した前記挿入層を高抵抗
化する高抵抗化工程と、を含む面発光型半導体レーザの
製造方法。
5. A first reflection mirror layer, an active layer having a quantum well formed thereon, and a second reflection mirror layer forming a resonator structure together with the first reflection mirror layer are provided in this order on a main surface of a semiconductor substrate. In addition, when the first reflection mirror layer, the active layer, and the second reflection mirror layer are sequentially provided, a high resistance may be provided between the first reflection mirror layer and the second reflection mirror layer. A laminating step of providing insertion layers having different thicknesses in two axial directions orthogonal to each other in a plane parallel to the main surface of the semiconductor substrate; and etching at least until the surface or side surface of the insertion layer is exposed. A method for manufacturing a surface-emitting type semiconductor laser, comprising: an etching step of forming a projection; and a resistance increasing step of increasing the resistance of the insertion layer exposed on the surface or side surface of the projection.
JP06311199A 1999-03-10 1999-03-10 Surface emitting semiconductor laser and manufacturing method thereof Expired - Fee Related JP3800852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06311199A JP3800852B2 (en) 1999-03-10 1999-03-10 Surface emitting semiconductor laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06311199A JP3800852B2 (en) 1999-03-10 1999-03-10 Surface emitting semiconductor laser and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2000261095A true JP2000261095A (en) 2000-09-22
JP2000261095A5 JP2000261095A5 (en) 2004-09-09
JP3800852B2 JP3800852B2 (en) 2006-07-26

Family

ID=13219866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06311199A Expired - Fee Related JP3800852B2 (en) 1999-03-10 1999-03-10 Surface emitting semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3800852B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142361A (en) * 2003-11-06 2005-06-02 Toshiba Corp Surface-emitting semiconductor element and its manufacturing method
JP2009302512A (en) * 2008-05-15 2009-12-24 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
EP2120303A3 (en) * 2008-05-13 2010-09-29 Ricoh Company, Ltd. Surface-emitting laser, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2011003820A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
JP2011129866A (en) * 2009-11-17 2011-06-30 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142361A (en) * 2003-11-06 2005-06-02 Toshiba Corp Surface-emitting semiconductor element and its manufacturing method
EP2120303A3 (en) * 2008-05-13 2010-09-29 Ricoh Company, Ltd. Surface-emitting laser, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2009302512A (en) * 2008-05-15 2009-12-24 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP2011003820A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
JP2011129866A (en) * 2009-11-17 2011-06-30 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus

Also Published As

Publication number Publication date
JP3800852B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP3783411B2 (en) Surface emitting semiconductor laser
US6792026B2 (en) Folded cavity solid-state laser
US6885690B2 (en) Transverse mode and polarization control of surface emitting lasers through the formation of a dielectric stack
KR101014412B1 (en) Surface-emitting semiconductor laser device
JP4010095B2 (en) Surface emitting semiconductor laser and laser array
JP2002208755A (en) Surface emitting semiconductor laser
JP2001284722A (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2002164621A (en) Plane emission semiconductor laser element
JP3799667B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JPH11307882A (en) Surface light-emitting semiconductor laser, laser array thereof, and manufacture thereof
JP2009246194A (en) Surface-emitting semiconductor laser element
JP2009259857A (en) Surface emitting laser element and surface emitting laser element array
JP3800852B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2000277852A (en) Surface emitting semiconductor laser and manufacturing method
JP2004289033A (en) Surface-emitting semiconductor laser element
JP2003324234A (en) Surface emitting semiconductor laser element and its manufacturing method
JP2003209282A (en) Semiconductor light emitting element and its manufacturing method
JP3840696B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
JPH01266779A (en) Surface emission laser
JP3470282B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2007227861A (en) Semiconductor light-emitting device
JP2004128524A (en) Manufacturing method for surface emitting semiconductor laser device
JPWO2005074080A1 (en) Surface emitting laser and manufacturing method thereof
JP2000269586A (en) Manufacture of light transmit-receive module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees