[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000260968A - Solid-state imaging device and method of manufacturing the same - Google Patents

Solid-state imaging device and method of manufacturing the same

Info

Publication number
JP2000260968A
JP2000260968A JP11057199A JP5719999A JP2000260968A JP 2000260968 A JP2000260968 A JP 2000260968A JP 11057199 A JP11057199 A JP 11057199A JP 5719999 A JP5719999 A JP 5719999A JP 2000260968 A JP2000260968 A JP 2000260968A
Authority
JP
Japan
Prior art keywords
color
solid
imaging device
state imaging
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11057199A
Other languages
Japanese (ja)
Inventor
Hiroki Omori
宏紀 大森
Tatsuhiko Furuta
達彦 古田
Takao Taguchi
貴雄 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP11057199A priority Critical patent/JP2000260968A/en
Publication of JP2000260968A publication Critical patent/JP2000260968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/805Coatings
    • H10F39/8053Colour filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/806Optical elements or arrangements associated with the image sensors
    • H10F39/8063Microlenses

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

(57)【要約】 (修正有) 【課題】全ての色の感度を向上させ、色再現領域を向上
することが可能な固体撮像素子の提供する。 【解決手段】1の色のカラーフィルタ5上に形成された
マイクロレンズの大きさが、他の色のカラーフィルタ上
に形成されたマイクロレンズの大きさと異なる構造を採
るので、感度の低い色(例えば、青、赤)のマイクロレ
ンズ10の大きさを感度の高い色(例えば、緑)のマイ
クロレンズ11より大きなものとして分光感度を高める
ことにより、感度の低い色に関してノイズを低減するこ
とができ、固体撮像素子の色再現領域を向上することが
可能となる。
(57) [Summary] (with correction) [PROBLEMS] To provide a solid-state imaging device capable of improving sensitivity of all colors and improving a color reproduction area. The size of a microlens formed on a color filter of one color has a different structure from the size of a microlens formed on a color filter of another color. For example, by increasing the spectral sensitivity by making the size of the microlens 10 (blue, red) larger than the microlens 11 of a color with high sensitivity (for example, green), noise can be reduced for a color with low sensitivity. Thus, the color reproduction area of the solid-state imaging device can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマイクロレンズ付き
の固体撮像素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device having a microlens and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、固体撮像素子では、電荷転送部な
ど光電変換に寄与しない領域が各画素に存在しているた
め、画素面全体に占める受光部の受光面に対する開口率
が15〜30%程度であり入射光の利用率が十分でないと言
う問題がある。このような問題を解消し感度向上を達成
するために、半導体プロセスによる受光部以外の領域の
微細化する技術や、高エネルギーイオン注入技術を導入
して転送レジスタ部の飽和電荷量を高めることにより転
送レジスタ部の面積を小さくし受光部面積及び開口面積
を大きくする試みがなされているが、これらは固体撮像
素子の構造的に限界がある。そこで近年では図3(c)
に示すように受光部上部に凸型のマイクロレンズを設
け、入射した光を受光部に効率的に集光させ実効開口率
を高めたオンチップマイクロレンズを有した撮像素子が
提供されている。
2. Description of the Related Art Conventionally, in a solid-state imaging device, since an area not contributing to photoelectric conversion such as a charge transfer section exists in each pixel, the aperture ratio of the light receiving section to the light receiving surface occupying the entire pixel surface is 15 to 30%. However, there is a problem that the utilization rate of incident light is not sufficient. In order to solve such problems and achieve higher sensitivity, the technology of miniaturizing the area other than the light receiving part by the semiconductor process and the high energy ion implantation technology are introduced to increase the saturation charge amount of the transfer register part. Attempts have been made to reduce the area of the transfer register section and increase the area of the light receiving section and the area of the aperture, but these are limited in structure of the solid-state imaging device. Therefore, in recent years, FIG.
As shown in (1), there is provided an image sensor having an on-chip microlens in which a convex microlens is provided above a light receiving unit, and the incident light is efficiently condensed on the light receiving unit to increase the effective aperture ratio.

【0003】さらにカラー固体撮像素子においては、マ
イクロレンズに加えてカラーフィルタが備えられてい
る。基板表層部に光電変換を行う受光部が複数箇所形成
されている撮像素子に、カラーフィルタ及びマイクロレ
ンズを形成する一般的な製造方法は下記の通りである。 受光部の透明樹脂による受光部の穴埋め 受光部の平坦化 カラーフィルタの形成 透明樹脂によるカラーフィルタの平坦化 マイクロレンズの形成
Further, a color solid-state image sensor has a color filter in addition to a micro lens. A general manufacturing method for forming a color filter and a microlens on an imaging device in which a plurality of light receiving portions for performing photoelectric conversion are formed on a surface layer portion of a substrate is as follows. Fill the hole in the light receiving part with the transparent resin of the light receiving part Flatten the light receiving part Form the color filter Flatten the color filter with the transparent resin Form the micro lens

【0004】特にマイクロレンズの形成を図面を参照
して説明する。図3は従来のマイクロレンズの製造方法
の説明図である。1は半導体基板、2は受光部、3は電
荷転送部、4は下部平坦化層、5はカラーフィルタ、6
は遮光膜、7は上部平坦化層である(図3(a)参
照)。上部平坦化層上にマイクロレンズ材料であるマイ
クロレンズ用レジストを塗布し、従来のフォトリソグラ
フィー技術によりパターン12を形成した後(図3
(b)参照)、加熱処理を施し、パターンを変形させて
受光部上に凸状のマイクロレンズ13を形成する(図3
(c)参照)。
[0004] In particular, the formation of a microlens will be described with reference to the drawings. FIG. 3 is an explanatory diagram of a conventional method for manufacturing a microlens. 1 is a semiconductor substrate, 2 is a light receiving section, 3 is a charge transfer section, 4 is a lower flattening layer, 5 is a color filter, 6
Denotes a light shielding film, and 7 denotes an upper flattening layer (see FIG. 3A). A microlens resist, which is a microlens material, is applied on the upper planarization layer, and a pattern 12 is formed by a conventional photolithography technique (FIG. 3).
(Refer to FIG. 3B), a heat treatment is performed, and the pattern is deformed to form a convex microlens 13 on the light receiving portion (FIG. 3).
(C)).

【0005】近年、固体撮像素子の高解像度化や小型化
に伴い、マイクロレンズを高精細化する必要がある。併
せて受光部の受光面積が小さくなる為、マイクロレンズ
の集光位置を保ちながらレンズの幅を広げ、レンズ間の
距離をできるだけ小さくすることが望ましい。すなわち
図3(c)のマイクロレンズ間スペースをできるだけ小
さくすることが望ましい。
In recent years, as the resolution and size of the solid-state imaging device have been increased, it has been necessary to increase the definition of the microlens. At the same time, since the light receiving area of the light receiving section is reduced, it is desirable to increase the width of the lenses while keeping the light condensing position of the microlenses and to minimize the distance between the lenses. That is, it is desirable to minimize the space between the microlenses in FIG.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、カラー
フィルタの分光透過率の限界すなわちカラーフィルタの
色分解能と、光電変換素子の光電変換波長依存性の為、
単にマイクロレンズ間スペースを小さくしても、感度を
十分に満足しない色が存在し、固体撮像素子の色再現領
域を狭めるという問題点があった。
However, due to the limitation of the spectral transmittance of the color filter, that is, the color resolution of the color filter and the photoelectric conversion wavelength dependence of the photoelectric conversion element,
Even if the space between microlenses is simply reduced, there is a color that does not sufficiently satisfy the sensitivity, and there is a problem that the color reproduction area of the solid-state imaging device is narrowed.

【0007】そこで、本発明は、全ての色の感度を向上
させ、色再現領域を向上することが可能な固体撮像素子
の提供を目的とする。
Accordingly, an object of the present invention is to provide a solid-state imaging device capable of improving the sensitivity of all colors and improving the color reproduction area.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであって、請求項1記載の発明は、半導
体基板上に複数の受光部を備え、前記受光部上にカラー
フィルタ及びマイクロレンズを形成した固体撮像素子に
おいて、1の色のカラーフィルタ上に形成されたマイク
ロレンズの大きさが、他の色のカラーフィルタ上に形成
されたマイクロレンズの大きさと異なることを特徴とす
る固体撮像素子である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the invention according to claim 1 is provided with a plurality of light receiving portions on a semiconductor substrate, and a color filter on the light receiving portion. And a size of a micro lens formed on a color filter of one color is different from a size of a micro lens formed on a color filter of another color in a solid-state imaging device formed with a micro lens. A solid-state image sensor.

【0009】請求項2記載の発明は、請求項1記載の発
明を前提とし、カラーフィルタが原色フィルタで構成さ
れ、フィルタ配列がベイヤー方式及びインタライン方式
を有することを特徴とする固体撮像素子である。
According to a second aspect of the present invention, there is provided a solid-state image pickup device based on the first aspect of the present invention, wherein the color filters are constituted by primary color filters, and the filter array has a Bayer system and an interline system. is there.

【0010】請求項3記載の発明は、1の色のカラーフ
ィルタ上に形成されたマイクロレンズの大きさが、他の
色のカラーフィルタ上に形成されたマイクロレンズの大
きさと異なる固体撮像素子の製造方法であって、1の色
のカラーフィルタ上にマイクロレンズを形成した後、他
の色のカラーフィルタ上にマイクロレンズを形成するこ
とを特徴とする固体撮像素子の製造方法である。
According to a third aspect of the present invention, there is provided a solid-state imaging device in which the size of a microlens formed on a color filter of one color is different from the size of a microlens formed on a color filter of another color. A method of manufacturing a solid-state imaging device, comprising: forming a microlens on a color filter of one color and then forming a microlens on a color filter of another color.

【0011】[0011]

【発明の実施の形態】[実施例1]次に本発明の第1実
施例について図面を参照して説明する。図1は実施例1
に係る固体撮像素子の製造工程を示した断面構造及び平
面構造の説明図である。図1(a)は固体撮像素子にカ
ラーフィルタを形成し、その後上部平坦化層を形成した
時の固体撮像素子の断面図である。1は半導体基板、2
は受光部、3は電荷転送部、4は下部平坦化層、5はカ
ラーフィルタ、6は遮光膜、7は上部平坦化層であり従
来の構成と同じであるため、同一の符号を付けて説明を
省略する。
[First Embodiment] Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the first embodiment.
4A and 4B are explanatory views of a cross-sectional structure and a planar structure showing a manufacturing process of the solid-state imaging device according to the first embodiment. FIG. 1A is a cross-sectional view of the solid-state imaging device when a color filter is formed on the solid-state imaging device and an upper flattening layer is formed thereafter. 1 is a semiconductor substrate, 2
Is a light receiving portion, 3 is a charge transfer portion, 4 is a lower flattening layer, 5 is a color filter, 6 is a light shielding film, and 7 is an upper flattening layer, which is the same as the conventional structure. Description is omitted.

【0012】次に、図1(b)に示すように上部平坦化
層7上に市松状に異なる大きさ(幅)のマイクロレンズ
用レジストからなるパターン8、9を形成し、加熱処理
にてマイクロレンズ10、11を形成する。すなわちG
(緑/1の色)のカラーフィルタ上にはレンズ幅の小さ
いマイクロレンズを、R(赤/他の色)、B(青/他の
色)のカラーフィルタ上にはレンズ幅の大きなマイクロ
レンズを形成する(すなわちGとR、Bのマイクロレン
ズの大きさは異なる)。なお、大きなマイクロレンズと
小さなマイクロレンズの高さは略同一である。これによ
り感度の低いR(赤)、B(青)の分光感度を向上する
ことができ、R、G、Bの分光感度を揃えることで、固
体撮像素子の色再現領域を広げることができる。
Next, as shown in FIG. 1B, patterns 8 and 9 of microlens resists having different sizes (widths) are formed in a checkered pattern on the upper flattening layer 7 and heat-treated. Micro lenses 10 and 11 are formed. That is, G
A microlens with a small lens width is placed on the (green / 1 color) color filter, and a microlens with a large lens width is placed on the R (red / other color) and B (blue / other color) color filters. (That is, the sizes of the G, R, and B microlenses are different). The heights of the large micro lens and the small micro lens are substantially the same. As a result, the spectral sensitivities of R (red) and B (blue) with low sensitivity can be improved, and the color reproduction area of the solid-state imaging device can be expanded by aligning the spectral sensitivities of R, G, and B.

【0013】[実施例2]本発明の第2実施例について
図面を参照にして説明する。図2は実施例2である固体
撮像素子の製造工程を示した断面構造及び平面構造の説
明図である。図2(a)は固体撮像素子にカラーフィル
タを形成し、その後上部平坦化層を形成した時の固体撮
像素子の断面図である。1は半導体基板、2は受光部、
3電荷転送部は、4は下部平坦化層、5はカラーフィル
タ、6は遮光膜、7は上部平坦化層であり従来の構成と
同じであるため、同一の符号を付けて説明を省略する。
[Embodiment 2] A second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is an explanatory diagram of a cross-sectional structure and a planar structure showing a manufacturing process of the solid-state imaging device according to the second embodiment. FIG. 2A is a cross-sectional view of the solid-state imaging device when a color filter is formed on the solid-state imaging device and then an upper flattening layer is formed. 1 is a semiconductor substrate, 2 is a light receiving section,
In the three charge transfer portions, 4 is a lower flattening layer, 5 is a color filter, 6 is a light shielding film, and 7 is an upper flattening layer, which is the same as the conventional configuration. .

【0014】なお、カラーフィルタのフィルタ配列は、
マイクロレンズの融着を防止する観点から、同色が市松
状に並ぶベイヤー方式又はインタライン方式を有するこ
とが望ましい。
The filter arrangement of the color filters is as follows.
From the viewpoint of preventing fusion of the microlenses, it is desirable to have a Bayer system or an interline system in which the same colors are arranged in a checkered pattern.

【0015】次に図2(b)に示すように上部平坦化層
7上に市松状、すなわちR(赤)、B(青)のカラーフ
ィルタ上に従来のフォトリソグラフィー技術によりパタ
ーン8を形成し、加熱処理にてレンズ幅の大きいマイク
ロレンズ10を形成する(図2(c)参照)。その後、
図2(d)に示すようにG(緑)のカラーフィルタ上に
同様の方法でパターン9及びレンズ幅の小さいマイクロ
レンズ11を形成する(図2(e)参照)。なお、この
製造方法によれば、パターンの厚さを変更することによ
り、大きなマイクロレンズと小さなマイクロレンズの高
さを変化させることも可能である。また、屈折率の異な
るマイクロレンズ形成レジストを用いることにより、集
光率を変えることも可能である。これにより感度の低い
R(赤)、B(青)の分光感度を更に向上することがで
き、固体撮像素子の色再現領域を広げることができる。
Next, as shown in FIG. 2B, a pattern 8 is formed on the upper flattening layer 7 on a checkered, ie, R (red), B (blue) color filter by a conventional photolithography technique. Then, a microlens 10 having a large lens width is formed by a heat treatment (see FIG. 2C). afterwards,
As shown in FIG. 2D, a pattern 9 and a microlens 11 having a small lens width are formed on the G (green) color filter in the same manner (see FIG. 2E). According to this manufacturing method, it is also possible to change the height of the large micro lens and the small micro lens by changing the thickness of the pattern. Further, by using a microlens forming resist having a different refractive index, it is possible to change the light condensing rate. As a result, the spectral sensitivities of R (red) and B (blue) with low sensitivity can be further improved, and the color reproduction area of the solid-state imaging device can be expanded.

【0016】[0016]

【発明の効果】以上より明らかなように請求項1に係る
固体撮像素子によれば、1の色のカラーフィルタ上に形
成されたマイクロレンズの大きさが、他の色のカラーフ
ィルタ上に形成されたマイクロレンズの大きさと異なる
構造を採るので、感度の低い色(例えば、青、赤)のマ
イクロレンズの大きさを感度の高い色(例えば、緑)の
マイクロレンズより大きなものとして分光感度を高める
ことにより、感度の低い色に関してノイズを低減するこ
とができ、固体撮像素子の色再現領域を向上することが
可能となる。
As is clear from the above, according to the solid-state imaging device of the first aspect, the size of the microlens formed on the color filter of one color is formed on the color filter of another color. Since the size of the microlens is different from the size of the microlens, the size of the microlens of low sensitivity (for example, blue and red) is made larger than the microlens of high sensitivity (for example, green), and the spectral sensitivity is increased. By increasing the value, noise can be reduced for a color having low sensitivity, and the color reproduction region of the solid-state imaging device can be improved.

【0017】また、請求項3に係る固体撮像素子の製造
方法によれば、請求項1に係る固体撮像素子を容易に作
ることが可能であると共に、カラーフィルタの色毎にマ
イクロレンズの高さの変更やマイクロレンズ用レジスト
の変更が可能である。これにより感度の低いR(赤)、
B(青)の分光感度を更に向上することができ、固体撮
像素子の色再現領域を広げることができる。
According to the method of manufacturing a solid-state imaging device according to the third aspect, the solid-state imaging device according to the first aspect can be easily manufactured, and the height of the microlens can be increased for each color of the color filter. And the microlens resist can be changed. As a result, low sensitivity R (red),
The spectral sensitivity of B (blue) can be further improved, and the color reproduction area of the solid-state imaging device can be expanded.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る固体撮像素子の製造工程を示し
た断面構造の断面図である。
FIG. 1 is a cross-sectional view of a cross-sectional structure illustrating a manufacturing process of a solid-state imaging device according to a first embodiment.

【図2】実施例2に係る固体撮像素子の製造工程を示し
た断面構造の断面図である。
FIG. 2 is a cross-sectional view of a cross-sectional structure illustrating a manufacturing process of a solid-state imaging device according to a second embodiment.

【図3】従来の固体撮像素子の製造工程を示した断面構
造の断面図である。
FIG. 3 is a cross-sectional view of a cross-sectional structure illustrating a manufacturing process of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 受光部 3 電荷転送部 4 下部平坦化層 5 カラーフィルタ 6 遮光層 7 上部平坦化層 8 パターン 9 パターン 10 大きいマイクロレンズ 11 小さいマイクロレンズ 12 パターン 13 マイクロレンズ DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Light receiving part 3 Charge transfer part 4 Lower flattening layer 5 Color filter 6 Light shielding layer 7 Upper flattening layer 8 Pattern 9 Pattern 10 Large micro lens 11 Small micro lens 12 Pattern 13 Micro lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 9/07 H04N 9/07 A Fターム(参考) 2H048 BB02 BB10 BB13 BB46 4M118 AA06 AA10 AB01 BA13 CA27 FA06 GC08 GC14 GD04 GD07 5C024 AA01 CA31 EA04 EA08 FA01 FA11 5C065 AA01 BB42 DD01 EE03 EE11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04N 9/07 H04N 9/07 A F term (Reference) 2H048 BB02 BB10 BB13 BB46 4M118 AA06 AA10 AB01 BA13 CA27 FA06 GC08 GC14 GD04 GD07 5C024 AA01 CA31 EA04 EA08 FA01 FA11 5C065 AA01 BB42 DD01 EE03 EE11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に複数の受光部を備え、前記
受光部上にカラーフィルタ及びマイクロレンズを形成し
た固体撮像素子において、1の色のカラーフィルタ上に
形成されたマイクロレンズの大きさが、他の色のカラー
フィルタ上に形成されたマイクロレンズの大きさと異な
ることを特徴とする固体撮像素子。
1. A solid-state imaging device having a plurality of light receiving portions on a semiconductor substrate and a color filter and a micro lens formed on the light receiving portion, the size of a micro lens formed on a color filter of one color. Is different from the size of a micro lens formed on a color filter of another color.
【請求項2】カラーフィルタのフィルタ配列がベイヤー
方式又はインタライン方式を有することを特徴とする請
求項1記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein the filter array of the color filter has a Bayer system or an interline system.
【請求項3】1の色のカラーフィルタ上に形成されたマ
イクロレンズの大きさが、他の色のカラーフィルタ上に
形成されたマイクロレンズの大きさと異なる固体撮像素
子の製造方法であって、1の色のカラーフィルタ上にマ
イクロレンズを形成した後、他の色のカラーフィルタ上
にマイクロレンズを形成することを特徴とする固体撮像
素子の製造方法。
3. A method for manufacturing a solid-state imaging device in which the size of a microlens formed on a color filter of one color is different from the size of a microlens formed on a color filter of another color. A method for manufacturing a solid-state imaging device, comprising: forming a microlens on a color filter of one color, and then forming a microlens on a color filter of another color.
JP11057199A 1999-03-04 1999-03-04 Solid-state imaging device and method of manufacturing the same Pending JP2000260968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11057199A JP2000260968A (en) 1999-03-04 1999-03-04 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11057199A JP2000260968A (en) 1999-03-04 1999-03-04 Solid-state imaging device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2000260968A true JP2000260968A (en) 2000-09-22

Family

ID=13048835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11057199A Pending JP2000260968A (en) 1999-03-04 1999-03-04 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2000260968A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332547A (en) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd Solid-state imaging device and manufacturing method thereof
US7009681B2 (en) 2002-02-13 2006-03-07 Canon Kabushiki Kaisha Exposure apparatus and method, and device fabricating method using the same
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, manufacturing method thereof, and camera
KR100658932B1 (en) * 2004-12-30 2006-12-15 매그나칩 반도체 유한회사 Micro lens manufacturing method of CMOS image sensor
US7227692B2 (en) * 2003-10-09 2007-06-05 Micron Technology, Inc Method and apparatus for balancing color response of imagers
KR100748325B1 (en) * 2001-06-28 2007-08-09 매그나칩 반도체 유한회사 Image sensor
JP2007304583A (en) * 2006-05-02 2007-11-22 Sharp Corp Step-over lithography to produce parabolic photoresist profiles for microlens formation
US7307788B2 (en) * 2004-12-03 2007-12-11 Micron Technology, Inc. Gapless microlens array and method of fabrication
JP2009004550A (en) * 2007-06-21 2009-01-08 Fujifilm Corp Solid-state image sensor for imaging color images
KR100976284B1 (en) * 2007-06-07 2010-08-16 가부시끼가이샤 도시바 Imaging device
JP2011054488A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Organic electroluminescent display device and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748325B1 (en) * 2001-06-28 2007-08-09 매그나칩 반도체 유한회사 Image sensor
US7092071B2 (en) 2002-02-13 2006-08-15 Canon Kabushiki Kaisha Exposure apparatus and method, and device fabricating method using the same
US7009681B2 (en) 2002-02-13 2006-03-07 Canon Kabushiki Kaisha Exposure apparatus and method, and device fabricating method using the same
JP2003332547A (en) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd Solid-state imaging device and manufacturing method thereof
US8795559B2 (en) 2003-10-09 2014-08-05 Micron Technology, Inc. Method for forming imagers
US7227692B2 (en) * 2003-10-09 2007-06-05 Micron Technology, Inc Method and apparatus for balancing color response of imagers
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, manufacturing method thereof, and camera
US7307788B2 (en) * 2004-12-03 2007-12-11 Micron Technology, Inc. Gapless microlens array and method of fabrication
KR100658932B1 (en) * 2004-12-30 2006-12-15 매그나칩 반도체 유한회사 Micro lens manufacturing method of CMOS image sensor
JP2007304583A (en) * 2006-05-02 2007-11-22 Sharp Corp Step-over lithography to produce parabolic photoresist profiles for microlens formation
KR100976284B1 (en) * 2007-06-07 2010-08-16 가부시끼가이샤 도시바 Imaging device
US8013928B2 (en) 2007-06-07 2011-09-06 Kabushiki Kaisha Toshiba Image pickup device and camera module using the same
US8547472B2 (en) 2007-06-07 2013-10-01 Kabushiki Kaisha Toshiba Image pickup device and camera module using the same
JP2009004550A (en) * 2007-06-21 2009-01-08 Fujifilm Corp Solid-state image sensor for imaging color images
JP2011054488A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Organic electroluminescent display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6818934B1 (en) Image sensor having micro-lens array separated with trench structures and method of making
US8139131B2 (en) Solid state imaging device and fabrication method thereof, and camera incorporating the solid state imaging device
US6737719B1 (en) Image sensor having combination color filter and concave-shaped micro-lenses
US20040082093A1 (en) Image sensor having large micro-lenses at the peripheral regions
JP2003332547A (en) Solid-state imaging device and manufacturing method thereof
EP1414073A2 (en) Image sensor having micro-lenses with integrated color filter and method of making
KR20090085635A (en) Solid-state imaging device and its manufacturing method
JP2000260968A (en) Solid-state imaging device and method of manufacturing the same
JPH09148549A (en) Color solid image pickup element with on-chip lens
US7535043B2 (en) Solid-state image sensor, method of manufacturing the same, and camera
JP3747682B2 (en) Solid-state imaging device and manufacturing method thereof
CN100587595C (en) Method for making planar color filter in image sensor
JPH11289073A (en) Solid image pickup device and manufacture thereof
CN101211829A (en) Image Sensor
KR100644018B1 (en) Micro Lens Formation Method of Image Sensor
JP4595405B2 (en) Solid-state imaging device and manufacturing method thereof
KR20100079761A (en) Image sensor, and fabricating method thereof
JP4696385B2 (en) Manufacturing method of color solid-state imaging device
US20040082096A1 (en) Method for forming an image sensor having concave-shaped micro-lenses
JP2003249634A (en) Solid imaging device and manufacturing method thereof
CN100405607C (en) Image sensor having microlenses separated by ridge structures and method of manufacturing the same
US20040080006A1 (en) Image sensor having concave-shaped micro-lenses
JP3719036B2 (en) Solid-state imaging device and manufacturing method thereof
JP4497076B2 (en) Solid-state imaging device and manufacturing method thereof
JP2000012814A (en) Solid color imaging element with on-chip lens and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930