JP2000256836A - Tungsten target for sputtering and its production - Google Patents
Tungsten target for sputtering and its productionInfo
- Publication number
- JP2000256836A JP2000256836A JP5639599A JP5639599A JP2000256836A JP 2000256836 A JP2000256836 A JP 2000256836A JP 5639599 A JP5639599 A JP 5639599A JP 5639599 A JP5639599 A JP 5639599A JP 2000256836 A JP2000256836 A JP 2000256836A
- Authority
- JP
- Japan
- Prior art keywords
- tungsten
- sputtering
- target
- powder
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、IC、LSI等のゲ
ート電極あるいは配線材料等をスパッタリング法によっ
て形成する際に用いられるタングステンターゲットおよ
びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten target used for forming a gate electrode or a wiring material of an IC, an LSI or the like by a sputtering method, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年,超LSIの高集積化に伴い電気抵
抗値のより低い材料を電極材や配線材料として使用する
検討が行われているが、このような中で抵抗値が低く、
熱及び化学的に安定である高純度タングステンが電極材
や配線材料として有望視されている。この超LSI用の
電極材や配線材料は、一般にスパッタリング法とCVD
法で製造されているが、スパッタリング法は装置の構造
及び操作が比較的単純で、容易に成膜でき、また低コス
トであることからCVD法よりも広く使用されている。
ところが、超LSI用の電極材や配線材をスパッタリン
グ法で成膜する際に使用されるタングステンターゲット
は、300mmφ以上の比較的大きな寸法が必要であ
り、且つ高純度、高密度が要求される。2. Description of the Related Art In recent years, studies have been made to use materials having lower electric resistance values as electrode materials and wiring materials in accordance with high integration of VLSIs.
High-purity tungsten that is thermally and chemically stable is promising as an electrode material and a wiring material. The electrode material and wiring material for the VLSI are generally formed by sputtering and CVD.
Although the sputtering method is used, the sputtering method is more widely used than the CVD method because the structure and operation of the apparatus are relatively simple, the film can be easily formed, and the cost is low.
However, a tungsten target used when depositing an electrode material and a wiring material for an VLSI by a sputtering method needs to have a relatively large size of 300 mmφ or more, and high purity and high density are required.
【0003】従来、このような大型のタングステンター
ゲットの作製方法として、電子ビーム溶解を用いてイン
ゴットを作製し,これを熱間圧延する方法(特開昭61
−107728)、タングステン粉末を加圧焼結しその
後圧延する方法(特開平3−150356)およびCV
D法によってタングステンの底板の一面にタングステン
層を積層する、いわゆるCVD−W法(特開平6−15
8300)が知られている。しかし、前記の電子ビーム
溶解したインゴットあるいはタングステン粉末を加圧焼
結した焼結体を圧延する方法は、結晶粒が粗大化し易い
ため機械的に脆く、またスパッタリングした膜上にパー
ティクルと呼ばれる粒状の欠陥が発生し易くなるという
問題があった。またCVD−W法は良好なスパッタリン
グ特性を示すが、ターゲットの作製に多大な時間と費用
がかかるという問題があった。Conventionally, as a method for producing such a large-sized tungsten target, a method of producing an ingot by using electron beam melting and hot rolling the ingot (Japanese Patent Application Laid-Open No. Sho 61 (1986)).
-107728), a method of sintering tungsten powder under pressure, and then rolling it (Japanese Patent Laid-Open No. 3-150356)
A so-called CVD-W method in which a tungsten layer is laminated on one surface of a tungsten bottom plate by the D method (Japanese Patent Laid-Open No.
8300) are known. However, the method of rolling a sintered body obtained by pressure-sintering the ingot or tungsten powder melted by the electron beam is mechanically fragile because the crystal grains are easily coarsened, and a granular material called particles is formed on the sputtered film. There is a problem that defects easily occur. Further, the CVD-W method shows good sputtering characteristics, but has a problem that it takes a lot of time and cost to produce a target.
【0004】[0004]
【発明が解決しようとする課題】本発明者らは製造工程
が比較的簡単である粉末焼結法に着目し、従来の加圧焼
結法よりも低温で緻密化する方法により、W粉末の焼結
性を改善してより密度を向上させ、かつ酸素含有量と結
晶粒を低く抑え、さらにパーティクルの発生を抑制する
ことのできるスパッタリング用タングステンターゲット
及び該ターゲットの製造コストを下げ、かつ安定して製
造できる方法に関する。SUMMARY OF THE INVENTION The present inventors have focused on a powder sintering method whose manufacturing process is relatively simple, and have developed a method of densifying W powder by a method of densification at a lower temperature than the conventional pressure sintering method. A tungsten target for sputtering capable of improving sinterability, increasing density, suppressing oxygen content and crystal grains, further suppressing generation of particles, and reducing the production cost of the target, and stabilizing And a method that can be manufactured.
【0005】[0005]
【課題を解決するための手段】加圧焼結前にW粉末をプ
ラズマ処理しタングステン粉末表面を活性化させるか、
またはプラズマ処理と同時に加圧焼結を行うことにより
焼結特性を著しく向上させ、加圧焼結法だけで高密度の
タングステンターゲットを作製できることを見出した。
すなわち、本発明のタングステンターゲットは、酸素含
有量0.1〜10ppm、相対密度99%以上、且つ結
晶粒径が80μm以下のスパッタリング用タングステン
ターゲット、好ましくは該ターゲットの前記酸素含有量
が0.1〜5ppmである、スパッタリングによる膜上
のパーティクルの発生が非常に少ないスパッタリング用
タングステンターゲットであって、このタングステンタ
ーゲットは、タングステン粉末をプラズマ処理した後に
真空中で加圧焼結するか又はタングステン粉末をプラズ
マ処理と同時に加圧焼結することを特徴とするスパッタ
リング用タングステンターゲットの製造を提供するもの
である。Before the pressure sintering, the W powder is plasma-treated to activate the tungsten powder surface,
Alternatively, it has been found that sintering characteristics are significantly improved by performing pressure sintering simultaneously with plasma treatment, and that a high-density tungsten target can be produced only by pressure sintering.
That is, the tungsten target of the present invention is a tungsten target for sputtering having an oxygen content of 0.1 to 10 ppm, a relative density of 99% or more, and a crystal grain size of 80 μm or less, preferably the oxygen content of the target is 0.1 to 0.1 μm. A tungsten target for sputtering, in which the generation of particles on the film by sputtering is very small, which is about 5 ppm. An object of the present invention is to provide production of a tungsten target for sputtering, which is characterized by performing pressure sintering simultaneously with plasma treatment.
【0006】[0006]
【発明の実施の形態】通常、粉末冶金法では使用する粉
体の粒度が微細なほど焼結性が向上する。しかし、タン
グステンは酸化されやすい材料であるため、粉体の粒径
を微細にするとその表面に酸化物層が形成され焼結性を
低下させてしまう。そこで本発明では、加圧焼結する前
または加圧焼結と同時にタングステン粉末をプラズマ処
理する事によって、タングステン粉末表面の酸化層を除
去することができるため、微細なタングステン粉末を使
用することができ焼結性が向上するという特性を見い出
し、これを利用したものである。原料タングステン粉末
の表面に酸化層があると、焼結中にWO3が蒸発し気孔
として残留するために密度が上がりづらくなる。一方、
本発明においては焼結が進行する前の段階で、プラズマ
処理によって酸化層を除去するため、WO3の蒸発によ
る気孔の残留が少なくなり、高密度化が達成できる。ま
た、プラズマ処理しながらホットプレスする方法は、粉
体表面の酸化層除去効果の外、プラズマの発生によって
ネック成長が促進されるため、より低温で焼結が進むと
考えられる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In powder metallurgy, the finer the particle size of the powder used, the better the sinterability. However, since tungsten is a material that is easily oxidized, if the particle size of the powder is reduced, an oxide layer is formed on the surface of the powder, and the sinterability is reduced. Therefore, in the present invention, the oxide layer on the surface of the tungsten powder can be removed by performing a plasma treatment on the tungsten powder before or simultaneously with the pressure sintering. The present inventors have found a characteristic that sinterability is improved, and utilize this characteristic. If there is an oxide layer on the surface of the raw material tungsten powder, WO 3 evaporates during sintering and remains as pores, so that it becomes difficult to increase the density. on the other hand,
In the present invention, the oxide layer is removed by plasma treatment at a stage before sintering proceeds, so that the amount of pores remaining due to the evaporation of WO 3 is reduced, and high density can be achieved. In addition, in the method of hot pressing while performing plasma treatment, in addition to the effect of removing an oxide layer from the powder surface, neck growth is promoted by the generation of plasma, so that sintering proceeds at a lower temperature.
【0007】上記により、本発明は酸素含有量0.1〜
10ppm、相対密度99%以上、且つ結晶粒径が80
μm以下のスパッタリング用タングステンターゲット得
ることが可能となった。これによって、スパッタリング
中に異常放電が起こりスプラッシュが発生したり、ある
いはスパッタリング膜上にパーティクル欠陥が多数発生
してしまうという問題が解消され、また、ターゲットの
強度も十分であり、操作または使用中に割れるというよ
うな問題もなくなった。As described above, the present invention provides an oxygen content of 0.1 to 0.1.
10 ppm, relative density of 99% or more, and crystal grain size of 80
It has become possible to obtain a tungsten target for sputtering of μm or less. This eliminates the problem that abnormal discharge occurs during sputtering and splash occurs, or that a large number of particle defects are generated on the sputtered film.Also, the strength of the target is sufficient and during operation or use. The problem of cracking is gone.
【0008】[0008]
【実施例および比較例】以下、実施例および比較例に基
づいて説明する。なお、本実施例はあくまで一例であ
り、この例のみに制限されるものではない。すなわち、
本発明に含まれる他の態様または変形を包含するもので
ある。 (実施例1)純度99.999%、平均粒径0.6μm
のタングステン粉末を100mmφのグラファイトダイス
に充填し同材質の上パンチと下パンチで密閉した後、真
空度10−2Paに減圧した。Examples and comparative examples are described below based on examples and comparative examples. This embodiment is merely an example, and the present invention is not limited to this example. That is,
It is intended to cover other aspects or modifications included in the present invention. (Example 1) Purity 99.999%, average particle size 0.6 μm
Was filled in a graphite die of 100 mmφ and sealed with an upper punch and a lower punch of the same material, and the pressure was reduced to a degree of vacuum of 10-2 Pa.
【0009】次に、上下パンチに約4000Aの高周波
電流を10分間通電し、内部のタングステン粉末表面間
でプラズマを発生させて粉体表面を浄化および活性化さ
せた。続いて通電を停止した後、ダイスに30MPaの
圧力を付加し,外部加熱で1800°Cまで加熱後2時
間保持した。得られたタングステン焼結体の密度は9
9.2%、結晶粒径は72μm、酸素含有量は3ppm
であった。このように、粉末の粒径が小さいにもかかわ
らず酸素の含有量が極めて少ない結果が得られた。この
タングステン焼結体をターゲットとしてスパッタリング
した結果、膜上のパーティクルは0.09個/cm2で
あった。Next, a high-frequency current of about 4000 A was applied to the upper and lower punches for 10 minutes to generate plasma between the surfaces of the tungsten powder inside to purify and activate the powder surface. Subsequently, after the energization was stopped, a pressure of 30 MPa was applied to the die, and the die was heated to 1800 ° C. by external heating and held for 2 hours. The density of the obtained tungsten sintered body is 9
9.2%, crystal grain size is 72 μm, oxygen content is 3 ppm
Met. As described above, a result was obtained in which the oxygen content was extremely low despite the small particle size of the powder. As a result of sputtering using this tungsten sintered body as a target, particles on the film were 0.09 particles / cm 2 .
【0010】(実施例2)実施例1と同じ粉末を100
mmφのグラファイトダイスに充填し同材質の上パンチと
下パンチで密閉した後、真空度10−2Paに減圧し
た。同様にして高周波電流を通電すると同時に30MP
aの圧力を付加し、タングステン粉末表面間でプラズマ
を発生させて粉体表面を浄化および活性化させると同時
に加圧焼結した。焼結中、ダイス及び充填されたタング
ステン粉中の通電による自己発熱によって1550°C
まで昇温した後、その温度で2時間保持した。得られた
タングステン焼結体の密度は99.1%であり、結晶粒
径は38μm、酸素含有量は9ppmであった。焼結温
度が低い条件で実施したので、結晶成長が小さく密度も
それほど高くないが、満足できる範囲である。実施例1
と同様に、粉末の粒径が小さいにもかかわらず酸素の含
有量が少ない結果が得られた。このタングステン焼結体
をターゲットとして成膜した膜上のパーティクルは0.
07個/cm2であり、良好な結果を示した。Example 2 The same powder as in Example 1 was used for 100
After filling into a graphite die of mmφ and sealing with an upper punch and a lower punch of the same material, the pressure was reduced to a vacuum degree of 10-2 Pa. Similarly, 30MP
A pressure was applied to generate a plasma between the surfaces of the tungsten powder to purify and activate the powder surface, and at the same time, sintered under pressure. During sintering, 1550 ° C due to self-heating due to energization in die and filled tungsten powder
Then, the temperature was maintained at that temperature for 2 hours. The density of the obtained tungsten sintered body was 99.1%, the crystal grain size was 38 μm, and the oxygen content was 9 ppm. Since the sintering temperature was low, the crystal growth was small and the density was not so high, but it was in a satisfactory range. Example 1
Similarly to the above, the result that the oxygen content was small despite the small particle size of the powder was obtained. Particles on the film formed by using this tungsten sintered body as a target have a particle size of 0.
07 / cm 2 , indicating a good result.
【0011】(実施例3)実施例1と同じ粉末を100
mmφのグラファイトダイスに充填し同材質の上パンチと
下パンチで密閉した後、真空度10−2Paに減圧し
た。同様にして高周波電流を通電すると同時に30MP
aの圧力を付加し、タングステン粉末表面間でプラズマ
を発生させて粉体表面を浄化および活性化させると同時
に加圧焼結した。焼結中、ダイス及び充填されたタング
ステン粉中の通電による自己発熱によって1650°C
まで昇温した後、その温度で2時間保持した。得られた
タングステン焼結体の密度は99.6%に達し、結晶粒
径は55μmと、結晶成長が抑制されており、酸素含有
量も3ppmであった。実施例1と同様に、使用した粉
末の粒径が小さいにもかかわらず酸素の含有量が極めて
少ない結果が得られた。このタングステン焼結体をター
ゲットとして成膜した膜上のパーティクルは0.05個
/cm2であり、良好な結果を示している。Example 3 The same powder as in Example 1 was used for 100
After filling into a graphite die of mmφ and sealing with an upper punch and a lower punch of the same material, the pressure was reduced to a vacuum degree of 10-2 Pa. Similarly, 30MP
A pressure was applied to generate a plasma between the surfaces of the tungsten powder to purify and activate the powder surface, and at the same time, sintered under pressure. During sintering, 1650 ° C due to self-heating due to energization in die and filled tungsten powder
Then, the temperature was maintained at that temperature for 2 hours. The density of the obtained tungsten sintered body reached 99.6%, the crystal grain size was 55 μm, crystal growth was suppressed, and the oxygen content was 3 ppm. As in Example 1, a result was obtained in which the oxygen content was extremely low despite the small particle size of the powder used. The number of particles on the film formed by using this tungsten sintered body as a target was 0.05 particles / cm 2 , indicating a good result.
【0012】(実施例4)実施例1と同じ粉末を100
mmφのグラファイトダイスに充填し同材質の上パンチと
下パンチで密閉した後、真空度10−2Paに減圧し
た。同様にして高周波電流を通電すると同時に30MP
aの圧力を付加し、タングステン粉末表面間でプラズマ
を発生させて粉体表面を浄化および活性化させると同時
に加圧焼結した。焼結中、ダイス及び充填されたタング
ステン粉中の通電による自己発熱によって1800°C
まで昇温した後、その温度で2時間保持した。得られた
タングステン焼結体の密度は99.8%に達し、結晶粒
径は80μmと、焼結温度が高いために結晶成長が強く
現れているが、この程度は特に問題となることはない。
酸素含有量は1ppmと非常に低くなっており、酸素の
低減効果は大きい。実施例1と同様に、使用した粉末の
粒径が小さいにもかかわらず酸素の含有量が極めて少な
い結果が得られた。このタングステン焼結体をターゲッ
トとして成膜した膜上のパーティクルは0.03個/c
m2であり、良好な結果を示している。Example 4 The same powder as in Example 1 was added to 100
After filling into a graphite die of mmφ and sealing with an upper punch and a lower punch of the same material, the pressure was reduced to a vacuum degree of 10-2 Pa. Similarly, 30MP
A pressure was applied to generate a plasma between the surfaces of the tungsten powder to purify and activate the powder surface, and at the same time, sintered under pressure. During sintering, 1800 ° C due to self-heating by energization in die and filled tungsten powder
Then, the temperature was maintained at that temperature for 2 hours. The density of the obtained tungsten sintered body reaches 99.8%, the crystal grain size is 80 μm, and the crystal growth is strong due to the high sintering temperature. However, this degree does not cause any problem. .
The oxygen content is very low at 1 ppm, and the effect of reducing oxygen is great. As in Example 1, a result was obtained in which the oxygen content was extremely low despite the small particle size of the powder used. Particles on the film formed by using this tungsten sintered body as a target are 0.03 particles / c.
m 2 , showing good results.
【0013】(比較例)実施例1と同じタングステン粉
末を用い、100mmφのグラファイトダイスに充填
し、真空度10−2Paで30MPaの圧力を付加、1
800°Cで2時間保持した。得られたタングステン焼
結体の密度は95.8%で、結晶粒径は69μm、酸素
含有量は80ppmであった。このタングステン焼結体
をターゲットとして成膜した膜上のパーティクル数は
0.44個/cm2であった。(Comparative Example) The same tungsten powder as in Example 1 was filled in a graphite die having a diameter of 100 mm, and a pressure of 30 MPa was applied at a degree of vacuum of 10-2 Pa.
It was kept at 800 ° C. for 2 hours. The density of the obtained tungsten sintered body was 95.8%, the crystal grain size was 69 μm, and the oxygen content was 80 ppm. The number of particles on the film formed by using the tungsten sintered body as a target was 0.44 / cm 2 .
【0014】実施例1および2ならびに比較例の結果を
表1に示す。この表の対比から明かなように、比較例の
タングステン焼結体をターゲットでは密度が95.8%
と低く、また酸素含有量が80ppmと高い。これに対
し、本発明の実施例に示すタングステンターゲットはい
ずれも、酸素含有量が0.1〜10ppmの範囲で少な
く、相対密度99%以上の緻密なターゲットが得られ、
またパーティクル数も比較例にくらべ格段に優れたター
ゲットが得られた。特に、実施例3は結晶が成長せず粒
径はより小さい値となっており、相対密度も高く、酸素
含有量及びパーティクル数も少なくなっており、好まし
い結果が得られている。The results of Examples 1 and 2 and Comparative Example are shown in Table 1. As is clear from the comparison in this table, the density of the tungsten sintered body of the comparative example was 95.8% in the target.
And the oxygen content is as high as 80 ppm. On the other hand, all of the tungsten targets shown in Examples of the present invention have a small oxygen content in the range of 0.1 to 10 ppm, and a dense target having a relative density of 99% or more can be obtained.
In addition, a target having a much better number of particles than the comparative example was obtained. In particular, in Example 3, the crystal did not grow, the particle size was smaller, the relative density was high, the oxygen content and the number of particles were small, and favorable results were obtained.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【発明の効果】本発明の方法によって製造されるスパッ
タリング用タングステンターゲットは、従来法で得られ
るタングステンターゲットに比べて密度が高くかつ結晶
粒径が小さく、また酸素含有量がきわめて少ないという
特徴を有する。更に、このタングステンターゲットを用
いてスパッタリングすることにより、タングステン膜上
のパーティクルが著しく減少し、製品歩留まりが大きく
向上するという優れた効果を備えている。As described above, the tungsten target for sputtering manufactured by the method of the present invention has the characteristics that the density is high, the crystal grain size is small, and the oxygen content is extremely small as compared with the tungsten target obtained by the conventional method. . Further, by performing sputtering using this tungsten target, particles on the tungsten film are significantly reduced, and an excellent effect that product yield is greatly improved is provided.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年6月1日(2000.6.1)[Submission date] June 1, 2000 (2006.1)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Correction target item name] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0005】[0005]
【課題を解決するための手段】加圧焼結前にW粉末をプ
ラズマ処理しタングステン粉末表面を活性化させるか、
またはプラズマ処理と同時に加圧焼結を行うことにより
焼結特性を著しく向上させ、加圧焼結法だけで高密度の
タングステンターゲットを作製できることを見出した。
すなわち、本発明のタングステンターゲットは、酸素含
有量0.1〜10ppm、相対密度99%以上、且つ結
晶粒径が80μm以下のスパッタリング用タングステン
ターゲット、好ましくは該ターゲットの前記酸素含有量
が0.1〜5ppmである、スパッタリングによる膜上
のパーティクルの発生が非常に少ないスパッタリング用
タングステンターゲットであって、このタングステンタ
ーゲットは、タングステン粉末を真空下で高周波電流を
通電してタングステン粉末表面間でプラズマを発生させ
るプラズマ処理した後に真空中で加圧焼結するか又はタ
ングステン粉末を真空下で高周波電流を通電してタング
ステン粉末表面間でプラズマを発生させるプラズマ処理
と同時に加圧焼結することを特徴とするスパッタリング
用タングステンターゲットの製造を提供するものであ
る。Before the pressure sintering, the W powder is plasma-treated to activate the tungsten powder surface,
Alternatively, it has been found that sintering characteristics are significantly improved by performing pressure sintering simultaneously with plasma treatment, and that a high-density tungsten target can be produced only by pressure sintering.
That is, the tungsten target of the present invention is a tungsten target for sputtering having an oxygen content of 0.1 to 10 ppm, a relative density of 99% or more, and a crystal grain size of 80 μm or less, preferably the oxygen content of the target is 0.1 to 0.1 μm. A sputtering target of about 5 ppm, which generates very few particles on the film by sputtering, and this tungsten target applies high-frequency current to a tungsten powder under vacuum.
Energize to generate plasma between tungsten powder surfaces
Tongue or or tungsten powder to pressure sintering in vacuum by applying a high frequency current under vacuum after that the plasma treatment
An object of the present invention is to provide a tungsten target for sputtering characterized by performing pressure sintering simultaneously with plasma treatment for generating plasma between stainless steel powder surfaces .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 博仁 茨城県北茨城市華川町臼場187番地4 株 式会社ジャパンエナジー磯原工場内 Fターム(参考) 4K029 CA05 DC03 DC09 4M104 BB18 DD40 5F103 AA08 BB22 DD28 GG02 HH03 RR04 RR10 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hirohito Miyashita 187-4, Usaba, Hanakawa-cho, Kitaibaraki-shi, Ibaraki F-term in Japan Energy Isohara Factory (reference) 4K029 CA05 DC03 DC09 4M104 BB18 DD40 5F103 AA08 BB22 DD28 GG02 HH03 RR04 RR10
Claims (5)
度99%以上、且つ結晶粒径が80μm以下であること
を特徴とするスパッタリング用タングステンターゲッ
ト。1. A tungsten target for sputtering having an oxygen content of 0.1 to 10 ppm, a relative density of 99% or more, and a crystal grain size of 80 μm or less.
とを特徴とする請求項1記載のスパッタリング用タング
ステンターゲット。2. The sputtering tungsten target according to claim 1, wherein the oxygen content is 0.1 to 5 ppm.
に真空中で加圧焼結することを特徴とする酸素含有量
0.1〜10ppm、相対密度99%以上、且つ結晶粒
径が80μm以下であるスパッタリング用タングステン
ターゲットの製造方法。3. A sputtering method comprising subjecting a tungsten powder to plasma treatment and then sintering under pressure in a vacuum, wherein the sputtering has an oxygen content of 0.1 to 10 ppm, a relative density of 99% or more, and a crystal grain size of 80 μm or less. Of manufacturing tungsten target for aluminum.
に加圧焼結することを特徴とする酸素含有量0.1〜1
0ppm、相対密度99%以上、且つ結晶粒径が80μ
m以下であるスパッタリング用タングステンターゲット
の製造方法。4. An oxygen content of 0.1 to 1 wherein the tungsten powder is sintered under pressure simultaneously with the plasma treatment.
0 ppm, relative density of 99% or more, and crystal grain size of 80μ
m or less.
とを特徴とする請求項3または4記載のスパッタリング
用タングステンターゲットの製造方法。5. The method for producing a tungsten target for sputtering according to claim 3, wherein the oxygen content is 0.1 to 5 ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11056395A JP3086447B1 (en) | 1999-03-04 | 1999-03-04 | Tungsten target for sputtering and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11056395A JP3086447B1 (en) | 1999-03-04 | 1999-03-04 | Tungsten target for sputtering and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3086447B1 JP3086447B1 (en) | 2000-09-11 |
JP2000256836A true JP2000256836A (en) | 2000-09-19 |
Family
ID=13026036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11056395A Expired - Lifetime JP3086447B1 (en) | 1999-03-04 | 1999-03-04 | Tungsten target for sputtering and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3086447B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003016585A1 (en) * | 2001-08-10 | 2003-02-27 | Nikko Materials Company, Limited | Sintered tungsten target for sputtering and method for preparation thereof |
KR100711833B1 (en) * | 2006-01-04 | 2007-05-02 | 한국생산기술연구원 | Alloy target and method for manufacturing ti-al-si alloy target by mechanical alloying and spark plasma sintering |
EP2284289A1 (en) * | 2008-06-02 | 2011-02-16 | JX Nippon Mining & Metals Corporation | Tungsten sintered material sputtering target |
US9812301B2 (en) | 2013-03-22 | 2017-11-07 | Jx Nippon Mining & Metals Corporation | Tungsten sintered compact sputtering target and method for producing same |
US10047433B2 (en) | 2012-03-02 | 2018-08-14 | Jx Nippon Mining & Metals Corporation | Tungsten sintered compact sputtering target and tungsten film formed using same target |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4797099B2 (en) | 2009-10-01 | 2011-10-19 | Jx日鉱日石金属株式会社 | Manufacturing method of high purity tungsten powder |
-
1999
- 1999-03-04 JP JP11056395A patent/JP3086447B1/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003016585A1 (en) * | 2001-08-10 | 2003-02-27 | Nikko Materials Company, Limited | Sintered tungsten target for sputtering and method for preparation thereof |
KR100711833B1 (en) * | 2006-01-04 | 2007-05-02 | 한국생산기술연구원 | Alloy target and method for manufacturing ti-al-si alloy target by mechanical alloying and spark plasma sintering |
EP2284289A1 (en) * | 2008-06-02 | 2011-02-16 | JX Nippon Mining & Metals Corporation | Tungsten sintered material sputtering target |
JPWO2009147900A1 (en) * | 2008-06-02 | 2011-10-27 | Jx日鉱日石金属株式会社 | Tungsten sintered sputtering target |
EP2284289A4 (en) * | 2008-06-02 | 2011-11-09 | Jx Nippon Mining & Metals Corp | Tungsten sintered material sputtering target |
JP5243541B2 (en) * | 2008-06-02 | 2013-07-24 | Jx日鉱日石金属株式会社 | Tungsten sintered sputtering target |
CN102046822B (en) * | 2008-06-02 | 2016-02-10 | Jx日矿日石金属株式会社 | Tungsten sinter sputtering target |
US10047433B2 (en) | 2012-03-02 | 2018-08-14 | Jx Nippon Mining & Metals Corporation | Tungsten sintered compact sputtering target and tungsten film formed using same target |
US9812301B2 (en) | 2013-03-22 | 2017-11-07 | Jx Nippon Mining & Metals Corporation | Tungsten sintered compact sputtering target and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP3086447B1 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6328927B1 (en) | Method of making high-density, high-purity tungsten sputter targets | |
JP5243541B2 (en) | Tungsten sintered sputtering target | |
JP3721014B2 (en) | Method for manufacturing tungsten target for sputtering | |
US6165413A (en) | Method of making high density sputtering targets | |
JPH06322529A (en) | Silicide target for sputtering and production thereof | |
JP5684821B2 (en) | Method for manufacturing tungsten target | |
US9689067B2 (en) | Method for producing molybdenum target | |
JP2007314883A (en) | Method for producing tungsten sintered compact target for sputtering | |
JP2757287B2 (en) | Manufacturing method of tungsten target | |
JP2003055758A (en) | Tungsten sintered compact target for sputtering, and its manufacturing method | |
JP2015196885A (en) | Manufacturing method of ultra-low oxygen/ultra-high pure chromium target and ultra-low oxygen/ultra-high pure chromium target | |
JP3244167B2 (en) | Tungsten or molybdenum target | |
JP3086447B1 (en) | Tungsten target for sputtering and method for producing the same | |
TW201631170A (en) | Cr-Ti alloy sputtering target material and method for producing same | |
US12043892B2 (en) | Method for producing molybdenum alloy targets | |
JP2003226964A (en) | Method of producing tungsten target for sputtering | |
JP3998972B2 (en) | Method for producing sputtering tungsten target | |
JP5886473B2 (en) | Ti-Al alloy sputtering target | |
JP2005171389A (en) | Method for manufacturing tungsten target for sputtering | |
WO2021241522A1 (en) | METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD | |
JPH04116161A (en) | Titanium target material and production thereof | |
JP4354721B2 (en) | Method for producing silicon sintered body | |
JPH03173704A (en) | Production of target for sputtering | |
JPH04160104A (en) | Production of tungsten target | |
JP2003082453A (en) | Mo SPUTTERING TARGET HARDLY CAUSING PARTICLE GENERATION, AND ITS MANUFACTURING METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000627 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080707 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080707 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 13 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |