JP2000244030A - Piezoelectric thin film element - Google Patents
Piezoelectric thin film elementInfo
- Publication number
- JP2000244030A JP2000244030A JP11044815A JP4481599A JP2000244030A JP 2000244030 A JP2000244030 A JP 2000244030A JP 11044815 A JP11044815 A JP 11044815A JP 4481599 A JP4481599 A JP 4481599A JP 2000244030 A JP2000244030 A JP 2000244030A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- piezoelectric thin
- film
- substrate
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 180
- 239000010408 film Substances 0.000 claims abstract description 157
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 239000013078 crystal Substances 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 26
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 25
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 4
- 239000004020 conductor Substances 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract description 2
- 238000001039 wet etching Methods 0.000 abstract description 2
- 229910004205 SiNX Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000002585 base Substances 0.000 description 76
- 239000007789 gas Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000005530 etching Methods 0.000 description 12
- 238000001755 magnetron sputter deposition Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000010897 surface acoustic wave method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004121 SrRuO Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910002115 bismuth titanate Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、通信用フィルタ、
各種センサなどの広範な分野で用いられている圧電体薄
膜を応用した素子に関する。TECHNICAL FIELD The present invention relates to a communication filter,
The present invention relates to an element using a piezoelectric thin film used in various fields such as various sensors.
【0002】[0002]
【従来の技術】圧電現象を応用した素子は広範な分野で
用いられている。圧電体薄膜を用いた素子は、基板上
に、主に圧電体薄膜と、圧電体を駆動する電極を形成し
たものである。必要によってはさらに基板上に下地膜を
加えて、素子の特性を向上する。このような圧電体薄膜
素子は次のようにして製造される。半導体単結晶などの
基板上に種々の薄膜形成方法にて誘電体薄膜または導電
体薄膜からなる下地膜を形成する。下地膜上に圧電体薄
膜を形成し、さらに必要に応じて上部構造を形成する。
各層の形成後に、または全層を形成した後に、各膜に物
理的処理または化学的処理を施すことによりパターニン
グを行う。最後に1素子単位に分離することにより圧電
体薄膜素子を得る。特に圧電体薄膜のバルク振動による
超音波を利用する素子の場合には、圧電体薄膜の振動を
容易にするために、基板から振動部の下に位置する部分
を除去した浮き構造を採用している。たとえば、特開平
6-350154号公報に記載された圧電体薄膜素子
は、基板上に下地膜、下部電極、圧電体薄膜、上部電極
を形成した後で、基板裏面から振動部となる部分の下に
ある基板部分を除去する。2. Description of the Related Art Devices utilizing the piezoelectric phenomenon are used in a wide range of fields. An element using a piezoelectric thin film is one in which a piezoelectric thin film and an electrode for driving the piezoelectric body are mainly formed on a substrate. If necessary, a base film may be further added on the substrate to improve the characteristics of the device. Such a piezoelectric thin film element is manufactured as follows. A base film made of a dielectric thin film or a conductive thin film is formed on a substrate such as a semiconductor single crystal by various thin film forming methods. A piezoelectric thin film is formed on the base film, and an upper structure is formed as necessary.
After forming each layer or after forming all layers, patterning is performed by subjecting each film to a physical treatment or a chemical treatment. Finally, a piezoelectric thin film device is obtained by separating the device into single devices. In particular, in the case of an element that uses ultrasonic waves due to bulk vibration of the piezoelectric thin film, a floating structure that removes the portion under the vibrating part from the substrate is adopted to facilitate the vibration of the piezoelectric thin film. I have. For example, a piezoelectric thin film element described in Japanese Patent Application Laid-Open No. Hei 6-350154 discloses a method in which a base film, a lower electrode, a piezoelectric thin film, and an upper electrode are formed on a substrate, and the lower portion of the substrate becomes a vibrating portion from the rear surface of the substrate. Remove the substrate portion at.
【0003】[0003]
【発明が解決しようとする課題】ところで、圧電体薄膜
を応用した素子において、下地膜は、素子の特性を向上
させるために用いられる。下地膜に対しては、素子特性
及び信頼性の上で電気的絶縁性、機械的強度、引張応
力、上部構造、例えば電極膜との良好な密着性、雰囲気
に対する化学的安定性などの多くの機能を有しているこ
とが必要とされる。たとえば、下地膜は、圧電体の音響
損失を生じるものであってはならないし、また、圧電体
に応力を生じるものであってはならない。また、素子の
製造、使用環境において化学的に安定でなければならな
い。しかし、全ての要求を満足させ得る下地膜を得るこ
とはきわめて困難であった。また、圧電体薄膜素子にお
いて浮き構造を形成するためには、多くの場合、基板の
裏面から基板をエッチングするプロセスがとられる。下
地膜にはこのエッチングプロセスに耐える化学的安定性
が必要となる。下地膜に高いプロセス耐性を求め、これ
を優先した場合には、下地膜の主成分が限定される。し
かし、プロセス耐性を優先させた下地膜を用いた場合に
は、エッチングプロセスの安定性は増大する一方で、導
電体薄膜及び圧電体薄膜に対する密着性、またはこれら
の膜の高品質形成を促す特性に必ずしも十分ではない。By the way, in a device to which a piezoelectric thin film is applied, a base film is used to improve the characteristics of the device. For the base film, many characteristics such as electrical insulation, mechanical strength, tensile stress, superstructure, good adhesion with the electrode film, chemical stability to the atmosphere, etc. It is necessary to have a function. For example, the underlayer should not cause acoustic loss of the piezoelectric body and should not cause stress on the piezoelectric body. In addition, it must be chemically stable in the environment in which the device is manufactured and used. However, it has been extremely difficult to obtain a base film that satisfies all requirements. Further, in order to form a floating structure in the piezoelectric thin film element, a process of etching the substrate from the back surface of the substrate is often adopted. The base film needs to have chemical stability to withstand this etching process. When high process resistance is required for the underlayer, and priority is given to this, the main components of the underlayer are limited. However, when using an underlayer that gives priority to process resistance, the stability of the etching process is increased, but the adhesion to the conductive thin film and the piezoelectric thin film, or the characteristic that promotes the high quality formation of these films. Is not always enough.
【0004】本発明の目的は、圧電体薄膜の性能が向上
し素子の信頼性が高い圧電体薄膜素子を提供することで
ある。An object of the present invention is to provide a piezoelectric thin film element having improved piezoelectric thin film performance and high element reliability.
【0005】[0005]
【課題を解決するための手段】本発明に係る第1の圧電
体薄膜素子は、基板と、基板上に順次形成した複数の下
地膜と、下地膜上に形成した、圧電体を駆動する第1電
極である導電体薄膜と、導電体薄膜上に形成した圧電体
薄膜と、圧電体薄膜上に形成した少なくとも1つの第2
電極とからなる。また、本発明に係る第2の圧電体薄膜
素子は、基板と、基板上に順次形成した複数の下地膜
と、下地膜上に形成した圧電体薄膜と、圧電体薄膜の片
面に形成した少なくとも1つの電極とからなる。好まし
くは、上記の複数の下地膜の1つが、窒化シリコン、酸
化シリコン、酸化タンタル、酸化アルミニウムおよび酸
化マグネシウムのいずれか1つ以上を主成分とする。ま
た、好ましくは、上記の圧電体薄膜がチタン酸鉛、チタ
ン酸ジルコン酸鉛、酸化亜鉛および窒化アルミニウムの
いずれか1つ以上を主成分とすることを特徴とする。ま
た、好ましくは、上記の導電体薄膜がチタン並びに白
金、イリジウム、ルテニウム及び酸化ルテニウムのなか
の少なくとも1つを主成分とする。また、好ましくは、
上記の基板が単結晶シリコンまたは単結晶ガリウム砒素
からなる。また、好ましくは、上記の基板が圧電体薄膜
の少なくとも振動部に接する部分を除去した形状を有す
る。ここで、好ましくは、基板が単結晶シリコンからな
り、上記の複数の下地膜のなかの基板に接する下地膜が
窒化シリコンを主成分とし、導電体薄膜に接する下地膜
が酸化シリコンを主成分とし、導電体薄膜がチタン及び
白金を主成分とし、圧電体薄膜がチタン酸鉛を主成分と
する。According to a first aspect of the present invention, there is provided a piezoelectric thin film element comprising: a substrate; a plurality of base films sequentially formed on the substrate; A conductor thin film as one electrode, a piezoelectric thin film formed on the conductor thin film, and at least one second electrode formed on the piezoelectric thin film;
And electrodes. Further, a second piezoelectric thin film element according to the present invention includes a substrate, a plurality of base films sequentially formed on the substrate, a piezoelectric thin film formed on the base film, and at least one formed on one surface of the piezoelectric thin film. And one electrode. Preferably, one of the plurality of base films contains one or more of silicon nitride, silicon oxide, tantalum oxide, aluminum oxide, and magnesium oxide as main components. Preferably, the piezoelectric thin film is mainly composed of at least one of lead titanate, lead zirconate titanate, zinc oxide and aluminum nitride. Preferably, the conductive thin film contains titanium and at least one of platinum, iridium, ruthenium, and ruthenium oxide as main components. Also, preferably,
The substrate is made of single crystal silicon or single crystal gallium arsenide. Preferably, the substrate has a shape in which at least a portion of the piezoelectric thin film in contact with the vibrating portion is removed. Here, preferably, the substrate is made of single-crystal silicon, and among the plurality of base films, the base film in contact with the substrate has silicon nitride as a main component, and the base film in contact with the conductive thin film has silicon oxide as a main component. The conductive thin film mainly contains titanium and platinum, and the piezoelectric thin film mainly contains lead titanate.
【0006】[0006]
【発明の実施の形態】本発明に係る第1の圧電体薄膜素
子は、基板と、基板上に順次形成した複数の下地膜と、
下地膜上に形成した、圧電体を駆動する第1電極(下部
電極)である導電体薄膜と、導電体薄膜上に形成した圧
電体薄膜と、圧電体薄膜上に形成した少なくとも1つの
第2電極(上部電極)とからなる。この圧電体薄膜素子
は、たとえば共振器、フィルタ、発振器である。電圧制
御発振器は、共振器と電圧発生回路と組み合わせること
により構成できる。また、フィルタとしては、複数の電
極を組み合わせることにより、最低1対の電極の組み合
わせで特定の周波数の濾波や除去を行うフィルタを形成
でき、複数対の電極を組み合わせることにより多段接続
フィルタを形成できる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first piezoelectric thin film element according to the present invention comprises a substrate, a plurality of base films sequentially formed on the substrate,
A conductive thin film formed on the base film as a first electrode (lower electrode) for driving the piezoelectric body, a piezoelectric thin film formed on the conductive thin film, and at least one second thin film formed on the piezoelectric thin film (Upper electrode). The piezoelectric thin film element is, for example, a resonator, a filter, or an oscillator. The voltage controlled oscillator can be configured by combining a resonator and a voltage generation circuit. Further, as a filter, a filter for filtering or removing a specific frequency can be formed by combining at least one pair of electrodes by combining a plurality of electrodes, and a multi-stage connection filter can be formed by combining a plurality of pairs of electrodes. .
【0007】また、本発明に係る第2の圧電体薄膜素子
は、基板と、基板上に順次形成した複数の下地膜と、圧
電体薄膜の片面に形成した少なくとも1つの電極とから
なる。この圧電体薄膜素子は、たとえば圧電体表面に2
つの櫛形電極を形成した弾性表面波素子である。[0007] A second piezoelectric thin film element according to the present invention comprises a substrate, a plurality of base films sequentially formed on the substrate, and at least one electrode formed on one surface of the piezoelectric thin film. This piezoelectric thin-film element has, for example,
This is a surface acoustic wave device having two comb-shaped electrodes.
【0008】これらの圧電体薄膜素子では、下地膜を複
数層により構成するので、それぞれの下地膜がその機能
を分担でき、素子諸特性に対する最適構成が実現され
る。このような構造をとることは、圧電体薄膜の性能の
高品質化、素子の信頼性向上に有効であり、また、歩留
まりを向上できる。たとえば、2層の下地膜を用いる場
合、基板上に形成する化学的に安定な第1下地膜の上
に、第1下地膜よりも緻密性、導電体薄膜または圧電体
薄膜などとの密着性、これらの膜の高品質化を促す特性
などに優れた第2下地膜を形成することによって、下地
膜に要求される特性を満足し得る構成を実現する。これ
により、高性能かつプロセス安定性に優れ、信頼性及び
歩留まりの高い圧電体薄膜素子を提供する。また、3層
の下地膜を用いる場合、導電体薄膜からなる下部電極ま
たは圧電体薄膜に接する第3下地膜として、密着性に優
れた膜を用いることにより下地膜とその上層の膜との密
着性に優れた圧電体薄膜素子を提供する。In these piezoelectric thin-film devices, the underlying film is composed of a plurality of layers, so that each underlying film can share its function, and an optimal configuration for various device characteristics is realized. Such a structure is effective for improving the quality of the performance of the piezoelectric thin film and improving the reliability of the element, and can improve the yield. For example, when a two-layered base film is used, on a chemically stable first base film formed on a substrate, denser than the first base film, adhesion with a conductive thin film, a piezoelectric thin film, or the like. By forming the second underlayer having excellent properties for promoting the quality of these films, a configuration capable of satisfying the characteristics required for the underlayer is realized. Accordingly, a piezoelectric thin film element having high performance, excellent process stability, high reliability and high yield is provided. When a three-layer underlayer is used, a film having excellent adhesion is used as the third underlayer in contact with the lower electrode made of a conductive thin film or the piezoelectric thin film, whereby the adhesion between the underlayer and the upper layer film is improved. Provided is a piezoelectric thin film element having excellent performance.
【0009】また、電極などとの密着性や、上部の構成
膜の高品質化をサポートする材質としては、平滑性を重
視すれば、酸化シリコン、窒化シリコンなどが好まし
く、結晶性、配向性を重視すれば酸化マグネシウム、酸
化アルミニウムなどを挙げることができる。Further, as a material that supports adhesion to electrodes and the like and high quality of the upper constituent film, silicon oxide, silicon nitride, and the like are preferable if smoothness is emphasized. If emphasis is given, magnesium oxide, aluminum oxide and the like can be mentioned.
【0010】さらに、応力調整を必要とする場合には、
一般的な膜は圧縮応力が存在するため、これを相殺する
ために引張応力を有する窒化シリコンまたは酸化タンタ
ルなどが有効である。これらの膜はその応用状況により
適切に組み合わせて適用を行う。Further, when stress adjustment is required,
Since a general film has a compressive stress, silicon nitride or tantalum oxide having a tensile stress is effective for canceling the compressive stress. These films are applied in an appropriate combination depending on the application.
【0011】ここで、「圧電体」の用語は、圧電現象を
生ずる材料全てを指すものとして用いており、電気信号
を機械振動に変換する機能またはこの逆機能を主として
用いている材料種にのみ限定するものではない。従っ
て、ここで記述した圧電体の中には、強誘電性、焦電性
を主体とした機能を持つ材料として応用されている材料
種をも含む。Here, the term "piezoelectric material" is used to refer to all materials that cause a piezoelectric phenomenon, and is limited to a material type that mainly uses a function of converting an electric signal into mechanical vibration or a reverse function thereof. It is not limited. Therefore, the piezoelectric materials described here include material types that are applied as materials having a function mainly of ferroelectricity and pyroelectricity.
【0012】また、適用し得る圧電体薄膜としても特に
制限はなく、ニオブ酸リチウム、水晶、チタン酸ビスマ
ス、ニオブ酸カリウムなど多くが挙げられる。中でも、
チタン酸ジルコン酸鉛、チタン酸鉛、酸化亜鉛、窒化ア
ルミニウムなどが形成温度などから薄膜形成が容易であ
り好適である。There is no particular limitation on the applicable piezoelectric thin film, and examples thereof include lithium niobate, quartz, bismuth titanate, and potassium niobate. Among them,
Lead zirconate titanate, lead titanate, zinc oxide, aluminum nitride, and the like are preferable because a thin film can be easily formed from the formation temperature and the like.
【0013】これらの圧電体薄膜を作製する上で導電性
薄膜電極材として、成膜環境において安定なPt、I
r、Ru、RuO2、IrO2、SrRuO2、または、
これらとTi、Cr、Ta、W、Zr、Nbなどを密着
層として組み合わせた2層構成が良好である。特に、化
学的に最も安定で抵抗の低いPt、Ir、Ru及びRu
O2のなかの少なくとも1つと強い密着性を示すTiと
の組み合わせが好適である。In producing these piezoelectric thin films, Pt and I which are stable in a film forming environment are used as conductive thin film electrode materials.
r, Ru, RuO 2 , IrO 2 , SrRuO 2 , or
A two-layer structure in which these are combined with Ti, Cr, Ta, W, Zr, Nb, etc. as an adhesion layer is preferable. In particular, Pt, Ir, Ru and Ru which are chemically most stable and have low resistance
A combination of at least one of O 2 and Ti showing strong adhesion is preferable.
【0014】上記の浮き構造を有する素子構造の場合に
は、基板除去を必要とするので、基板に接する下部下地
膜は、化学的に安定で耐エッチング性に優れた膜であ
り、また、その上に形成される上部下地膜は、その上部
の構成を構造上、特性上サポートし得る膜となる。この
場合、上部下地膜の形成により下部下地膜の変質が生じ
る場合には、両下地膜の中間の下地膜として、反応抑制
層を挟むことが有効である。また、構造体全体の残留応
力による変形が問題となる場合には、上部層、下部層ま
たは中間層を応力調整層として用いることもきわめて有
効である。このような下地膜として最適な材質として
は、上述の浮き構造形成に多用されるアルカリ溶液に対
する耐性を必要とされるため、窒化シリコン、熱酸化シ
リコン、酸化タンタル、酸化マグネシウム、酸化アルミ
ニウムなどを挙げることができる。In the case of the element structure having the above-mentioned floating structure, since the substrate needs to be removed, the lower base film in contact with the substrate is a film which is chemically stable and has excellent etching resistance. The upper base film formed on the upper base film is a film capable of supporting the structure of the upper structure in terms of structure and characteristics. In this case, when the lower underlayer is deteriorated by the formation of the upper underlayer, it is effective to sandwich the reaction suppression layer as an intermediate underlayer between the two underlayers. When deformation due to residual stress in the entire structure becomes a problem, it is extremely effective to use an upper layer, a lower layer, or an intermediate layer as a stress adjusting layer. As an optimal material for such a base film, silicon nitride, thermally oxidized silicon, tantalum oxide, magnesium oxide, aluminum oxide, and the like are given because resistance to an alkali solution frequently used for forming the above-described floating structure is required. be able to.
【0015】浮き構造を有する素子を作製する上では、
アルカリ溶液による基板エッチングが有効である。この
際に、基板にシリコン単結晶またはガリウムヒ素単結晶
を用いることは、周辺素子との集積性または豊富な既存
のプロセスデータを利用できるという点で有効である。In manufacturing an element having a floating structure,
Substrate etching with an alkali solution is effective. At this time, using a silicon single crystal or a gallium arsenide single crystal for the substrate is effective in that it can be integrated with peripheral elements or that abundant existing process data can be used.
【0016】特に浮き構造を有する素子は、圧電共振を
応用する素子に対して基板部への振動エネルギーの漏出
を防止できるため、極めて有効である。圧電共振を利用
する素子の具体的構成としては、シリコン単結晶、窒化
シリコン、酸化シリコン、白金/チタン及びチタン酸鉛
が優れた特性を有する組み合わせとして挙げることがで
きる。また、これらの素子の共振部と共振部外部との電
気的接続をエアブリッジによる空中配線により行えば、
表面配線を行った場合に発生する寄生容量の増大の防
止、高段差配線による断線防止に対し有効である。In particular, an element having a floating structure is extremely effective because it can prevent leakage of vibration energy to a substrate portion with respect to an element utilizing piezoelectric resonance. As a specific configuration of an element utilizing piezoelectric resonance, a combination of silicon single crystal, silicon nitride, silicon oxide, platinum / titanium, and lead titanate having excellent characteristics can be given. Also, if the electrical connection between the resonance part of these elements and the outside of the resonance part is made by aerial wiring by an air bridge,
This is effective for preventing an increase in parasitic capacitance that occurs when surface wiring is performed, and for preventing disconnection due to high step wiring.
【0017】以下、添付の図面を参照して本発明を実施
の形態により具体的に説明する。なお、図面において、
同じ参照記号は同一または同等のものを示す。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings according to embodiments. In the drawings,
The same reference symbols indicate the same or equivalent ones.
【0018】図1は、本発明の第1の実施の形態の第1
例における圧電体薄膜素子の構造を図式的に示す。この
圧電体薄膜素子は、圧電体薄膜と導電体薄膜からなる共
振部を有する共振器である。まず、Si単結晶基板10
1上にSiNxからなる下部下地膜102を形成した。
成膜方法にはp−CVD法を用い、膜厚を100nmと
した。反応ガスにはSiH4、NH3及び窒素を用いた。
SiH4とNH3の流量比を制御してSiNx膜が引張応
力を持つようにした。成膜時の基板温度を350℃とし
た。FIG. 1 shows a first embodiment of the present invention.
1 schematically shows the structure of a piezoelectric thin film element in an example. This piezoelectric thin-film element is a resonator having a resonance section composed of a piezoelectric thin film and a conductive thin film. First, the Si single crystal substrate 10
A lower underlayer 102 made of SiN x was formed on the substrate 1.
A p-CVD method was used for the film formation method, and the film thickness was set to 100 nm. SiH 4 , NH 3 and nitrogen were used as reaction gases.
The flow rate ratio between SiH 4 and NH 3 was controlled so that the SiN x film had a tensile stress. The substrate temperature during film formation was 350 ° C.
【0019】次に、下部下地膜102上に、SiO2か
らなる上部下地膜103を形成した。成膜方法はp−C
VD法を用い、原料にはTEOSを用いた。膜厚を2μ
mとした。成膜時の基板温度を300℃とした。下地膜
の形成手法には特に制限はないが、CVD法は、条件変
更による応力調整の容易さ、厚い膜厚が必要な場合にも
容易に実現できること、それを実現する成膜速度の速
さ、スループットの高さから、特に有効である。ここ
で、下地膜102、103内に吸蔵した残留反応ガスを
放出させるために1000℃、3時間、N2雰囲気中に
てベーキングを行った。Next, an upper underlayer 103 made of SiO 2 was formed on the lower underlayer 102. The film formation method is p-C
The VD method was used, and TEOS was used as a raw material. 2μ thickness
m. The substrate temperature during film formation was set to 300 ° C. There is no particular limitation on the method of forming the underlayer, but the CVD method is easy to adjust the stress by changing the conditions, can be easily realized even when a thick film is required, and has a high film forming speed to realize it. This is particularly effective because of the high throughput. Here, baking was performed at 1000 ° C. for 3 hours in an N 2 atmosphere in order to release the residual reaction gas occluded in the base films 102 and 103.
【0020】その後、上部下地膜103上に、下部電極
104としてPt/Ti膜を形成した。TiはSiO2
膜とPtとの間の密着層として形成した。膜厚はTi:
50nm、Pt:150nmとした。成膜はRFマグネ
トロンスパッタ法を用い、スパッタガスにはArを使用
した。成膜時の温度は600℃とした。Thereafter, a Pt / Ti film was formed as the lower electrode 104 on the upper base film 103. Ti is SiO 2
It was formed as an adhesion layer between the film and Pt. The film thickness is Ti:
50 nm and Pt: 150 nm. The film was formed by RF magnetron sputtering, and Ar was used as a sputtering gas. The temperature at the time of film formation was 600 ° C.
【0021】次に、下部電極104上にPtTiO3を
形成して圧電体薄膜105を形成した。成膜方法にはR
Fマグネトロンスパッタ法を用いた。成膜時の基板温度
は600℃、スパッタガスにはArとO2の混合ガスを
用いた。圧電体薄膜105の膜厚を1μmとした。Next, PtTiO 3 was formed on the lower electrode 104 to form a piezoelectric thin film 105. R
The F magnetron sputtering method was used. The substrate temperature during film formation was 600 ° C., and a mixed gas of Ar and O 2 was used as a sputtering gas. The thickness of the piezoelectric thin film 105 was 1 μm.
【0022】次に、圧電体薄膜105の上にPt/Ti
膜からなる上部電極106を形成した。上部電極106
は蒸着法により形成し、リフトオフ法により所定形状に
形成した。ここでは100μm*100μmの形状とし
た。上部電極106の膜厚はPt:70nm、Ti:30
nmとした。基板温度25℃で成膜を行った。Next, Pt / Ti is deposited on the piezoelectric thin film 105.
An upper electrode 106 made of a film was formed. Upper electrode 106
Was formed by a vapor deposition method and formed into a predetermined shape by a lift-off method. Here, the shape was 100 μm * 100 μm. The thickness of the upper electrode 106 is Pt: 70 nm, Ti: 30
nm. Film formation was performed at a substrate temperature of 25 ° C.
【0023】次に、基板表面をガラスとワックスにより
カバーして、基板101において、上部電極106を形
成した部分に対応する部分を裏面から湿式エッチングに
より完全に除去した。これにより、基板101から圧電
体薄膜の少なくとも振動部に接する部分を除去した。エ
ッチング液には5wt%KOH水溶液を用い、液温70℃
にて異方性エッチングを行い、バイアホール107を形
成した。基板が完全に溶解された際、下地膜102によ
りエッチングを停止することができた。こうして、圧電
体薄膜素子を作製した。Next, the surface of the substrate was covered with glass and wax, and a portion of the substrate 101 corresponding to the portion where the upper electrode 106 was formed was completely removed from the back surface by wet etching. Thus, at least a portion of the piezoelectric thin film in contact with the vibrating portion was removed from the substrate 101. A 5 wt% KOH aqueous solution is used as the etching solution, and the liquid temperature is 70 ° C.
Was performed to form a via hole 107. When the substrate was completely dissolved, the etching could be stopped by the base film 102. Thus, a piezoelectric thin film element was manufactured.
【0024】図2は、作製した圧電体薄膜素子の断面を
走査電子顕微鏡(SEM)で観察した像を示す。図2か
ら、上部下地膜103の存在により緻密な圧電体薄膜を
形成できたことがわかる。また、上部下地膜103と下
部電極(Ti)104の間で剥離や膨れの発生がなく、
密着性に優れていることがわかる。FIG. 2 shows an image obtained by observing a cross section of the manufactured piezoelectric thin film element with a scanning electron microscope (SEM). FIG. 2 shows that a dense piezoelectric thin film could be formed due to the presence of the upper base film 103. Further, there is no peeling or swelling between the upper base film 103 and the lower electrode (Ti) 104,
It turns out that it is excellent in adhesiveness.
【0025】次に、1層の下地層を用いた第1比較例を
説明する。図3は、第1比較例において作製した圧電体
薄膜素子の図式的な断面図を示す。基板101上にSi
Nxからなる下地膜102を形成し、下地膜102上に
Pt/Ti膜からなる下部電極104を形成した。下地
膜103を形成しないこと以外は全て上述の実施の形態
と同様にして圧電体薄膜素子を作製した。Next, a first comparative example using one underlayer will be described. FIG. 3 is a schematic cross-sectional view of the piezoelectric thin film element manufactured in the first comparative example. Si on the substrate 101
Forming a base film 102 made of N x, to form a lower electrode 104 made of Pt / Ti film on the base film 102. A piezoelectric thin-film element was manufactured in the same manner as in the above-described embodiment except that the base film 103 was not formed.
【0026】図4に、得られた圧電体薄膜の断面のSE
M像を示す。第1比較例の圧電体薄膜は、第1の実施の
形態の素子の圧電体薄膜を示す図2と比較して、緻密で
ないことが明らかである。しかも、図5において、矢印
で示すような膨れ110を発生した。この膨れ110は
SiNx膜からなる下地膜102とTiの密着性が良く
ないために発生したものである。FIG. 4 shows the SE of the cross section of the obtained piezoelectric thin film.
An M image is shown. It is clear that the piezoelectric thin film of the first comparative example is not dense as compared with FIG. 2 showing the piezoelectric thin film of the element of the first embodiment. In addition, a bulge 110 as shown by an arrow in FIG. 5 was generated. The swelling 110 is generated due to poor adhesion between the underlying film 102 made of a SiN x film and Ti.
【0027】次に、本発明の第1の実施の形態における
圧電体薄膜素子の第2例について説明する。Si単結晶
基板101上にSiNx膜からなる下部下地膜102を
膜厚100nm形成した。下部下地膜102上に、RF
マグネトロンスパッタ法によりAl2O3からなる上部下
地膜103を200nm形成した。ターゲットにはAl
を用い、反応ガスにはNH3、O2、N2及びArの混合
ガスを用いた。成膜温度は300℃とした。その他の作
製方法は第1例と同様にして圧電体薄膜素子を作製し
た。走査電子顕微鏡により圧電体薄膜の断面を観察し
た。図示しないが、剥離もなく緻密な圧電体薄膜を形成
していることが判った。Next, a second example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. The lower base film 102 made of the SiN x film on the Si single crystal substrate 101 was a thickness 100nm formed. RF on the lower base film 102
An upper underlayer 103 made of Al 2 O 3 was formed to a thickness of 200 nm by magnetron sputtering. The target is Al
And a mixed gas of NH 3 , O 2 , N 2 and Ar was used as a reaction gas. The film formation temperature was 300 ° C. The other manufacturing method was the same as that of the first example to manufacture the piezoelectric thin film element. The cross section of the piezoelectric thin film was observed with a scanning electron microscope. Although not shown, it was found that a dense piezoelectric thin film was formed without peeling.
【0028】次に、本発明の第1の実施の形態における
圧電体薄膜素子の第3例について説明する。Si単結晶
基板101上に、SiO2膜からなる下部下地膜102
を膜厚200nm形成した。下部下地膜102上にRF
マグネトロンスパッタ法によりMgOからなる上部下地
膜103を500nm形成した。ターゲットにはMgを
用い、反応ガスにはO2とArの混合ガスを用いた。成
膜温度は300℃とした。その他の作製方法は第1例と
同様にして圧電体薄膜素子を作製した。走査電子顕微鏡
により圧電体薄膜の断面を観察した。図示しないが、下
地膜103と下部電極104の間の密着性はよく、緻密
な圧電体薄膜を形成していること判った。Next, a third example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. A lower base film 102 made of a SiO 2 film on a Si single crystal substrate 101
Was formed to a thickness of 200 nm. RF on the lower base film 102
An upper underlayer 103 made of MgO was formed to a thickness of 500 nm by magnetron sputtering. Mg was used as a target, and a mixed gas of O 2 and Ar was used as a reaction gas. The film formation temperature was 300 ° C. The other manufacturing method was the same as that of the first example to manufacture the piezoelectric thin film element. The cross section of the piezoelectric thin film was observed with a scanning electron microscope. Although not shown, the adhesion between the base film 103 and the lower electrode 104 was good, and it was found that a dense piezoelectric thin film was formed.
【0029】次に、本発明の第1の実施の形態における
第4例の圧電体薄膜素子について説明する。GaAs単
結晶基板を用いて、裏面から基板に対し硫酸系エッチン
グ液により等方エッチングを行った。他の作製方法は、
第1の実施の形態と同様に行い圧電体薄膜素子を作製し
た。図示しないが、得られた圧電体薄膜素子は、下地膜
103と下部電極104間の密着性はよく、緻密な圧電
体薄膜を形成していることが判った。また、下地膜10
3が引張応力を持ち、応力調整の効果があることが判っ
た。Next, a fourth example of a piezoelectric thin film element according to the first embodiment of the present invention will be described. Using a GaAs single crystal substrate, the substrate was isotropically etched from the back surface with a sulfuric acid-based etchant. Other fabrication methods are:
A piezoelectric thin film element was manufactured in the same manner as in the first embodiment. Although not shown, it was found that the obtained piezoelectric thin film element had good adhesion between the base film 103 and the lower electrode 104 and formed a dense piezoelectric thin film. In addition, the base film 10
No. 3 has a tensile stress, and it was found that there was an effect of adjusting the stress.
【0030】次に、第2の比較例における圧電体薄膜素
子について説明する。GaAs単結晶基板を用いて、S
iO2からなる下地膜102を100nm形成した。他
は第1の実施の形態の第4例と同様に圧電体薄膜素子を
作製した。下地膜102と下部電極104間で剥離は生
じなかったが、圧電体薄膜は第1比較例と同様に緻密で
はないことが判った。さらに、下地膜102、下部電極
104及び圧電体薄膜105の内部応力が全て同方向で
あることから、基板に多大な応力が加わったため基板が
変形し、素子信頼性に劣るという問題が生じた。Next, a piezoelectric thin film element according to a second comparative example will be described. Using a GaAs single crystal substrate, S
An underlayer 102 made of iO 2 was formed to a thickness of 100 nm. Otherwise, a piezoelectric thin film element was manufactured in the same manner as in the fourth example of the first embodiment. No peeling occurred between the base film 102 and the lower electrode 104, but it was found that the piezoelectric thin film was not dense as in the first comparative example. Furthermore, since the internal stresses of the base film 102, the lower electrode 104, and the piezoelectric thin film 105 are all in the same direction, a large stress is applied to the substrate, which deforms the substrate, resulting in a problem that device reliability is deteriorated.
【0031】本発明の第1の実施の形態における圧電体
薄膜素子の第5例について説明する。第1例と同様に、
下地膜102、103を形成した後、Ir/Tiからな
る下部電極104を形成した。下部電極の形成方法はR
Fマグネトロンスパッタ法で行い、基板温度300℃に
て、Arガスを用いた。各膜厚をIr:200nm、T
i:50nmとした。さらに、上部電極にはAu/Ti
膜を用いた。膜厚はAu:70nm、Ti:30nmとし
た。成膜方法は蒸着法を用いた。圧電体薄膜形成工程、
基板エッチング工程などは全て第1の実施の形態の第1
例と同様に行い、圧電体薄膜素子を作製した。図示しな
いが、下地膜103と下部電極104間に剥離は生じな
かった。また、緻密な圧電体薄膜を得られていることが
判った。A fifth example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. As in the first example,
After forming the base films 102 and 103, a lower electrode 104 made of Ir / Ti was formed. The method of forming the lower electrode is R
Argon gas was used at a substrate temperature of 300 ° C. by F magnetron sputtering. Each film thickness is Ir: 200 nm, T
i: 50 nm. Further, Au / Ti is used for the upper electrode.
A membrane was used. The film thickness was set to 70 nm for Au and 30 nm for Ti. The deposition method was an evaporation method. Piezoelectric thin film forming process,
The substrate etching process and the like are all the same as those of the first embodiment.
In the same manner as in the example, a piezoelectric thin film element was manufactured. Although not shown, separation did not occur between the base film 103 and the lower electrode 104. It was also found that a dense piezoelectric thin film was obtained.
【0032】本発明の第1の実施の形態における圧電体
薄膜素子の第6例について説明する。第1例と同様に下
地膜102、103を形成した後、Pt/Tiからなる
下部電極104を形成した。下部電極の形成方法はRF
マグネトロンスパッタ法で行い、基板温度600℃、A
rガスを用いた。各膜厚をPt:150nm、Ti:30
nmとした。さらに、上部電極にはAu/Ti膜を用い
た。膜厚はAu:70nm、Ti:30nmとした。成膜
方法は蒸着法を用いた。圧電体薄膜形成工程、基板エッ
チング工程などは全て第1例と同様に行い、圧電体薄膜
素子を作製した。図示しないが、下地膜103と下部電
極104間に剥離は生じなかった。また、緻密な圧電体
薄膜を得られていることが判った。A sixth example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. After forming the base films 102 and 103 in the same manner as in the first example, a lower electrode 104 made of Pt / Ti was formed. The method of forming the lower electrode is RF
Performed by magnetron sputtering, substrate temperature 600 ° C, A
r gas was used. Each film thickness is Pt: 150 nm, Ti: 30
nm. Further, an Au / Ti film was used for the upper electrode. The film thickness was set to 70 nm for Au and 30 nm for Ti. The deposition method was an evaporation method. The piezoelectric thin film forming step, the substrate etching step, and the like were all performed in the same manner as in the first example, to produce a piezoelectric thin film element. Although not shown, separation did not occur between the base film 103 and the lower electrode 104. It was also found that a dense piezoelectric thin film was obtained.
【0033】本発明の第1の実施の形態における圧電体
薄膜素子の第7例について説明する。第1例と同様に下
地膜102、103を形成した後、RuO2からなる下
部電極104を形成した。下部電極の形成方法はRFマ
グネトロンスパッタ法で行い、基板温度300℃、Ar
とO2の混合ガスを用い、膜厚を100nmとした。さ
らに、上部電極にはAl膜を用いた。膜厚は10nmと
した。成膜方法は蒸着法を用いた。圧電体薄膜形成工
程、基板エッチング工程などは全て第1例と同様に行
い、圧電体薄膜素子を作製した。図示しないが、下地膜
103と下部電極104の間に剥離は生じなかった。ま
た、緻密な圧電体薄膜を得られていることが判った。A seventh example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. After forming the base films 102 and 103 as in the first example, a lower electrode 104 made of RuO 2 was formed. The lower electrode is formed by an RF magnetron sputtering method.
Using a mixed gas of O 2 and O 2 , the film thickness was 100 nm. Further, an Al film was used for the upper electrode. The film thickness was 10 nm. The deposition method was an evaporation method. The piezoelectric thin film forming step, the substrate etching step, and the like were all performed in the same manner as in the first example, to produce a piezoelectric thin film element. Although not shown, separation did not occur between the base film 103 and the lower electrode 104. It was also found that a dense piezoelectric thin film was obtained.
【0034】本発明の第1の実施の形態における圧電体
薄膜素子の第8例について説明する。第1例と同様にS
i単結晶基板101上に下地膜102、103、下部電
極104を形成した後、PZTからなる圧電体薄膜10
5をRFマグネトロンスパッタ法により形成した。圧電
体薄膜105はPZTの焼結体をターゲットとして用
い、ArとO2の混合ガス、基板温度650℃、膜厚8
00nmに成膜した。上部電極106およびSi基板の
エッチングを第1例と同様に行い、圧電体薄膜素子を作
製した。図示しないが、下地膜103と下部電極104
との間の密着性は良好であり、また、緻密な圧電体薄膜
105が得られた。An eighth example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. S as in the first example
After forming base films 102 and 103 and a lower electrode 104 on an i single crystal substrate 101, a piezoelectric thin film 10 made of PZT is formed.
5 was formed by RF magnetron sputtering. The piezoelectric thin film 105 uses a PZT sintered body as a target, a mixed gas of Ar and O 2 , a substrate temperature of 650 ° C., and a film thickness of 8
A film was formed to a thickness of 00 nm. The upper electrode 106 and the Si substrate were etched in the same manner as in the first example, to produce a piezoelectric thin film element. Although not shown, the base film 103 and the lower electrode 104
Was good, and a dense piezoelectric thin film 105 was obtained.
【0035】本発明の第1の実施の形態における圧電体
薄膜素子の第9例について説明する。第8例と同様に圧
電体薄膜素子を作製した。ここで、圧電体薄膜105に
はZnO薄膜を用いた。ZnO薄膜はRFマグネトロン
スパッタ法にて形成した。ターゲットにはZnを用い、
スパッタガスにはO2を用いた。基板温度は500℃、
膜厚は5μmとした。その結果、下地膜103と下部電
極104との間の密着性は良好であり、また、緻密な圧
電体薄膜105が得られた。A ninth example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. A piezoelectric thin film element was manufactured in the same manner as in the eighth example. Here, a ZnO thin film was used for the piezoelectric thin film 105. The ZnO thin film was formed by an RF magnetron sputtering method. Using Zn for the target,
O 2 was used as a sputtering gas. The substrate temperature is 500 ° C,
The film thickness was 5 μm. As a result, the adhesion between the underlying film 103 and the lower electrode 104 was good, and a dense piezoelectric thin film 105 was obtained.
【0036】本発明の第1の実施の形態における圧電体
薄膜素子の第10例について説明する。第9例と同様に
圧電体薄膜素子を作製した。ここで、圧電体薄膜105
にはAlN薄膜を用いた。AlN薄膜はRFマグネトロ
ンスパッタにより形成した。ターゲットにはAlを用
い、N2をスパッタガスとし、基板温度600℃、膜厚
を1μmとした。図示しないが、下地膜103と下部電
極104との間の密着性は良好であり、また、緻密な圧
電体薄膜105が得られた。A tenth example of the piezoelectric thin film element according to the first embodiment of the present invention will be described. A piezoelectric thin-film element was produced in the same manner as in the ninth example. Here, the piezoelectric thin film 105
Used an AlN thin film. The AlN thin film was formed by RF magnetron sputtering. Al was used as the target, N 2 was used as a sputtering gas, the substrate temperature was 600 ° C., and the film thickness was 1 μm. Although not shown, the adhesion between the base film 103 and the lower electrode 104 was good, and a dense piezoelectric thin film 105 was obtained.
【0037】次に、本発明の第2の実施の形態における
フィルタについて説明する。図6は、作製したフィルタ
の構造を示す。このフィルタの作成において、Si単結
晶基板101上に、第1の実施の形態の第1例と同様
に、2層の下地膜102、103、下部電極104及び
圧電体薄膜105を形成した。上部電極106の形状を
20μm*100μmとして2個並列させた。上部電極
106の成膜条件は第1例と同様にした。各々の上部電
極106からAu/Tiメッキにより形成したエアブリ
ッジ108を用いて、電極取り出し用パッド109と接
続させて入出力用電極とした。Si単結晶基板101の
裏面を第1例と同様に異方性エッチングにて溶解した。
こうして、圧電体薄膜素子を応用したフィルタを作製し
た。その結果、下地膜102にてエッチングを停止する
ことができ、下地膜103と下部電極104との密着性
は良好であり、かつ、緻密な圧電体薄膜105を得るこ
とができた。Next, a filter according to a second embodiment of the present invention will be described. FIG. 6 shows the structure of the manufactured filter. In making this filter, two layers of base films 102 and 103, a lower electrode 104, and a piezoelectric thin film 105 were formed on a Si single crystal substrate 101, as in the first example of the first embodiment. Two upper electrodes 106 having a shape of 20 μm * 100 μm were arranged in parallel. The film forming conditions for the upper electrode 106 were the same as in the first example. Each upper electrode 106 was connected to an electrode take-out pad 109 using an air bridge 108 formed by Au / Ti plating to form an input / output electrode. The back surface of the Si single crystal substrate 101 was dissolved by anisotropic etching as in the first example.
Thus, a filter using the piezoelectric thin film element was manufactured. As a result, the etching could be stopped at the base film 102, the adhesion between the base film 103 and the lower electrode 104 was good, and a dense piezoelectric thin film 105 could be obtained.
【0038】前記の第1の実施の形態の第1例において
示した共振器と第1比較例において作製した共振器より
測定された共振器の圧電膜のQ値を測定値より解析した
ところ、前者が220であったのに対し、後者は65で
あった。ここで示したQ値とは、弾性波の伝搬の際に生
じる損失の大きさを表す指標であり、Q=1/損失の式
で表され、数値が大きいほど、低損失であることを意味
する。このように、化学的に安定な下部下地膜102以
外に、緻密でかつ音響的損失の少ない材質の上部下地膜
103を持ち、複数層からなる下地膜を形成することに
より圧電体薄膜素子の音響的損失を低減できる効果もあ
ることがわかった。The Q value of the piezoelectric film of the resonator measured from the resonator shown in the first example of the first embodiment and the resonator manufactured in the first comparative example was analyzed from the measured values. The former was 220, while the latter was 65. The Q value shown here is an index indicating the magnitude of the loss that occurs during the propagation of an elastic wave, and is expressed by the equation of Q = 1 / loss, and the larger the value, the lower the loss. I do. As described above, in addition to the chemically stable lower base film 102, the upper base film 103 made of a material that is dense and has low acoustic loss is formed. It was also found that there was an effect of reducing the mechanical loss.
【0039】次に、本発明の第3の実施の形態における
フィルタについて説明する。図7は、作製したフィルタ
の構造を示す。まず、Si単結晶基板101上に、Si
Nx膜からなる下部下地膜102を膜厚100nmに形
成した。下部下地膜102上にAlNからなる中間下地
膜103を膜厚2μmに形成した。ここで、下部下地膜
102は第1の実施の形態の第1例と同様の方法にて形
成した。中間下地膜103の形成方法はRFマグネトロ
ンスパッタ法により、Alターゲットを使用した。基板
温度を650℃、スパッタガスとしてArとO2の混合
ガスを用いた。さらに中間下地膜103上にSiO2か
らなる上部下地膜111を膜厚2.5μmに形成した。
上部下地膜111は第1の実施の形態の第1例と同様の
方法で形成した。下地膜111上に第2の実施の形態と
同様に各膜を積層してフィルタを作製した。その結果、
第2の実施の形態と同様に、緻密な圧電体薄膜を持ち、
音響的損失の少ない特性を持つフィルタが得られた。Next, a filter according to a third embodiment of the present invention will be described. FIG. 7 shows the structure of the manufactured filter. First, a Si single crystal substrate 101 is
The lower base film 102 consisting of N x film was formed to a thickness of 100 nm. An intermediate base film 103 made of AlN was formed on the lower base film 102 to a thickness of 2 μm. Here, the lower base film 102 was formed by the same method as in the first example of the first embodiment. The intermediate base film 103 was formed using an RF target by an RF magnetron sputtering method. The substrate temperature was 650 ° C., and a mixed gas of Ar and O 2 was used as a sputtering gas. Further, an upper base film 111 made of SiO 2 was formed on the intermediate base film 103 to a thickness of 2.5 μm.
The upper underlayer 111 was formed in the same manner as in the first example of the first embodiment. Each film was laminated on the base film 111 in the same manner as in the second embodiment to produce a filter. as a result,
As in the second embodiment, a dense piezoelectric thin film is provided,
A filter having characteristics with low acoustic loss was obtained.
【0040】本発明の第4の実施の形態における弾性表
面波素子について説明する。図8は、弾性表面波素子の
構造を示す。まず、Si単結晶基板101上に、SiN
xからなる下部下地膜102と、SiO2からなる上部下
地膜103を第1の実施の形態の第1例と同様の方法で
形成した。次に、上部下地膜103上にPtTiO 3を
形成して圧電体薄膜105を形成した。次に、圧電体薄
膜105の上にPt/Tiからなる交差指電極114、
115を形成した。こうして、圧電体薄膜素子を作製し
た。An elasticity table according to the fourth embodiment of the present invention
The surface wave element will be described. FIG. 8 shows a surface acoustic wave element.
The structure is shown. First, a SiN single crystal substrate
xA lower base film 102 made of SiOTwoConsisting of upper and lower
The ground film 103 is formed in the same manner as in the first example of the first embodiment.
Formed. Next, PtTiO is formed on the upper underlayer 103. ThreeTo
Thus, a piezoelectric thin film 105 was formed. Next, the piezoelectric thin
A cross finger electrode 114 made of Pt / Ti on the film 105;
115 was formed. Thus, a piezoelectric thin-film element was produced.
Was.
【0041】なお、第1の実施の形態では共振器につい
て説明し、第2と第3の実施の形態ではフィルタについ
て説明し、第4の実施の形態では弾性表面波素子につい
て説明したが、本発明は電極の構成により他の種々の素
子へも適用可能である。The first embodiment has described the resonator, the second and third embodiments have described the filter, and the fourth embodiment has described the surface acoustic wave element. The invention can be applied to other various elements depending on the configuration of the electrodes.
【0042】[0042]
【発明の効果】本発明に係る第1の圧電体薄膜素子は、
基板と、基板上に順次形成した複数の下地膜と、下地膜
上に形成した、圧電体を駆動する第1電極である導電体
薄膜と、導電体薄膜上に形成した圧電体薄膜と、圧電体
薄膜上に形成した少なくとも1つの第2電極とからな
り、また、本発明に係る第2の圧電体薄膜素子は、基板
と、基板上に順次形成した複数の下地膜と、下地膜上に
形成した圧電体薄膜と、圧電体薄膜の片面に形成した少
なくとも1つの電極とからなる。すなわち、下地膜が複
数層にて構成される。これにより、下地膜とその上層の
膜の間の密着性と圧電体薄膜の品質を向上できた。ま
た、圧電体薄膜を緻密化したことや圧電体薄膜に接する
下地膜が緻密であることから圧電体薄膜素子の音響的損
失が低減されるという新たな効果が得られる。また、各
下地膜の残留応力を調整することにより圧電体薄膜素子
全体の残留応力を調整できる。その結果、圧電体薄膜素
子の性能、信頼性及び歩留まりを飛躍的に向上できた。The first piezoelectric thin film element according to the present invention has the following features.
A substrate, a plurality of base films sequentially formed on the substrate, a conductive thin film formed on the base film as a first electrode for driving the piezoelectric body, a piezoelectric thin film formed on the conductive thin film, The second piezoelectric thin film element according to the present invention includes at least one second electrode formed on a body thin film, a substrate, a plurality of base films sequentially formed on the substrate, and a base film on the base film. It comprises a formed piezoelectric thin film and at least one electrode formed on one surface of the piezoelectric thin film. That is, the base film is composed of a plurality of layers. Thereby, the adhesion between the base film and the film on the base film and the quality of the piezoelectric thin film could be improved. Further, since the piezoelectric thin film is densified and the underlying film in contact with the piezoelectric thin film is dense, a new effect that acoustic loss of the piezoelectric thin film element is reduced can be obtained. Further, the residual stress of the entire piezoelectric thin film element can be adjusted by adjusting the residual stress of each base film. As a result, the performance, reliability, and yield of the piezoelectric thin-film element could be dramatically improved.
【0043】下地膜の1つが窒化シリコン、酸化シリコ
ン、酸化タンタル、酸化アルミニウムおよび酸化マグネ
シウムのいずれか1つ以上を主成分とするので、下地膜
のアルカリ溶液に対する耐性が高い。また、圧電体薄膜
がチタン酸鉛、チタン酸ジルコン酸鉛、酸化亜鉛および
窒化アルミニウムのいずれか1つ以上を主成分とするの
で、薄膜作成が容易である。また、導電体薄膜がチタン
並びに白金、イリジウム、ルテニウム及び酸化ルテニウ
ムのなかの少なくとも1つを主成分とするので、導電体
薄膜は、化学的に安定であり、かつ、密着性にすぐれ
る。また、基板が単結晶シリコンまたは単結晶ガリウム
砒素からなるので、種々の特性の下地膜が選択できる。
また、上記の基板が圧電体薄膜の少なくとも振動部に接
する部分を除去した形状を有するので、この形状により
基板部への振動エネルギーの漏出を防止する。また、基
板が単結晶シリコンからなり、複数の下地膜のなかの基
板に接する下地膜が窒化シリコンを主成分とし、導電体
薄膜に接する下地膜が酸化シリコンを主成分とし、導電
体薄膜がチタン及び白金を主成分とし、圧電体薄膜がチ
タン酸鉛を主成分とするので、基板に接する下地膜を化
学的に安定な膜として、性能の優れた素子が得られる。Since one of the base films mainly contains at least one of silicon nitride, silicon oxide, tantalum oxide, aluminum oxide and magnesium oxide, the base film has high resistance to an alkaline solution. Further, since the piezoelectric thin film mainly contains at least one of lead titanate, lead zirconate titanate, zinc oxide and aluminum nitride, the thin film can be easily formed. In addition, since the conductive thin film mainly contains titanium and at least one of platinum, iridium, ruthenium and ruthenium oxide, the conductive thin film is chemically stable and has excellent adhesion. Further, since the substrate is made of single crystal silicon or single crystal gallium arsenide, a base film having various characteristics can be selected.
Further, since the substrate has a shape in which at least a portion of the piezoelectric thin film in contact with the vibrating portion is removed, leakage of vibration energy to the substrate portion is prevented by this shape. Further, the substrate is made of single crystal silicon, and among the plurality of base films, the base film in contact with the substrate is mainly composed of silicon nitride, the base film in contact with the conductive thin film is mainly composed of silicon oxide, and the conductive thin film is titanium. In addition, since the main component is platinum and the piezoelectric thin film is mainly composed of lead titanate, an element having excellent performance can be obtained by making the base film in contact with the substrate a chemically stable film.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本発明の第1の実施形態における発振器の図
式的断面図である。FIG. 1 is a schematic sectional view of an oscillator according to a first embodiment of the present invention.
【図2】 この圧電体薄膜素子における圧電体薄膜の断
面SEM像の図である。FIG. 2 is a view of a cross-sectional SEM image of a piezoelectric thin film in the piezoelectric thin film element.
【図3】 第1比較例における圧電体薄膜素子の構造を
示す図式的断面図である。FIG. 3 is a schematic cross-sectional view illustrating a structure of a piezoelectric thin film element according to a first comparative example.
【図4】 この圧電体薄膜素子における圧電体薄膜素子
の断面SEM像の図である。FIG. 4 is a diagram of a cross-sectional SEM image of the piezoelectric thin film element in the piezoelectric thin film element.
【図5】 第2比較例の圧電体薄膜素子の断面SEM像
の図である。FIG. 5 is a diagram of a cross-sectional SEM image of a piezoelectric thin film element of a second comparative example.
【図6】 本発明の第2実施形態のフィルタの図式的平
面図である。FIG. 6 is a schematic plan view of a filter according to a second embodiment of the present invention.
【図7】 本発明の第3実施形態のフィルタの図式的断
面図である。FIG. 7 is a schematic sectional view of a filter according to a third embodiment of the present invention.
【図8】 本発明の第4実施形態の弾性表面波素子の図
式的断面図である。FIG. 8 is a schematic sectional view of a surface acoustic wave device according to a fourth embodiment of the present invention.
101 基板、 102 下地膜、 103 下地膜、
104 下部電極、 105 圧電体薄膜、 106、
106’ 上部電極、107 バイアホール、 108
エアブリッジ、 109 パッド、 110 剥離、
111 下地膜、 114、115 電極。101 substrate, 102 base film, 103 base film,
104 lower electrode, 105 piezoelectric thin film, 106,
106 'top electrode, 107 via hole, 108
Air bridge, 109 pad, 110 peel,
111 base film, 114, 115 electrodes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内川 英興 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 三須 幸一郎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 和高 修三 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5J108 AA07 AA09 BB04 CC01 CC04 EE03 EE04 EE07 KK01 KK07 ──────────────────────────────────────────────────続 き Continued on the front page (72) Hideko Uchikawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Koichiro Misu 2-3-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Shuzo Wadaka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5J108 AA07 AA09 BB04 CC01 CC04 EE03 EE04 EE07 KK01 KK07
Claims (8)
導電体薄膜と、 導電体薄膜上に形成した圧電体薄膜と、 圧電体薄膜上に形成した少なくとも1つの第2電極とか
らなる圧電体薄膜素子。1. A substrate, a plurality of base films sequentially formed on the substrate, a conductive thin film formed on the base film as a first electrode for driving a piezoelectric body, and a piezoelectric thin film formed on the conductive thin film A piezoelectric thin film element comprising: a body thin film; and at least one second electrode formed on the piezoelectric thin film.
らなる圧電体薄膜素子。2. A piezoelectric thin-film element comprising: a substrate; a plurality of base films sequentially formed on the substrate; a piezoelectric thin film formed on the base film; and at least one electrode formed on one surface of the piezoelectric thin film. .
シリコン、酸化シリコン、酸化タンタル、酸化アルミニ
ウムおよび酸化マグネシウムのいずれか1つ以上を主成
分とすることを特徴とした請求項1または請求項2に記
載された圧電体薄膜素子。3. The semiconductor device according to claim 1, wherein one of the plurality of base films mainly contains at least one of silicon nitride, silicon oxide, tantalum oxide, aluminum oxide, and magnesium oxide. Alternatively, the piezoelectric thin film element according to claim 2.
酸ジルコン酸鉛、酸化亜鉛および窒化アルミニウムのい
ずれか1つ以上を主成分とすることを特徴とする請求項
1から請求項3のいずれかに記載された圧電体薄膜素
子。4. The piezoelectric thin film according to claim 1, wherein the piezoelectric thin film mainly contains at least one of lead titanate, lead zirconate titanate, zinc oxide and aluminum nitride. The piezoelectric thin film element according to any one of the above.
イリジウム、ルテニウム及び酸化ルテニウムのなかの少
なくとも1つを主成分とすることを特徴とする請求項1
から請求項4のいずれかに記載された圧電体薄膜素子。5. The method according to claim 1, wherein the conductive thin film is titanium or platinum,
2. The method according to claim 1, wherein at least one of iridium, ruthenium and ruthenium oxide is a main component.
A piezoelectric thin-film element according to any one of claims 1 to 4.
晶ガリウム砒素からなることを特徴とする請求項1から
請求項5のいずれかに記載された圧電体薄膜素子。6. The piezoelectric thin-film element according to claim 1, wherein said substrate is made of single-crystal silicon or single-crystal gallium arsenide.
動部に接する部分を除去した形状を有することを特徴と
する請求項1に記載された圧電体薄膜素子。7. The piezoelectric thin film element according to claim 1, wherein the substrate has a shape in which at least a portion of the piezoelectric thin film that is in contact with the vibrating portion is removed.
複数の下地膜の中の基板に接する下地膜が窒化シリコン
を主成分とし、導電体薄膜に接する下地膜が酸化シリコ
ンを主成分とし、導電体薄膜がチタン及び白金を主成分
とし、圧電体薄膜がチタン酸鉛を主成分とすることを特
徴とする請求項7に記載された圧電体薄膜素子。8. A substrate is made of single-crystal silicon, an underlying film in contact with the substrate among the plurality of underlying films is mainly composed of silicon nitride, an underlying film in contact with the conductive thin film is mainly composed of silicon oxide, 8. The piezoelectric thin film element according to claim 7, wherein the conductive thin film mainly contains titanium and platinum, and the piezoelectric thin film mainly contains lead titanate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11044815A JP2000244030A (en) | 1999-02-23 | 1999-02-23 | Piezoelectric thin film element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11044815A JP2000244030A (en) | 1999-02-23 | 1999-02-23 | Piezoelectric thin film element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000244030A true JP2000244030A (en) | 2000-09-08 |
Family
ID=12701939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11044815A Pending JP2000244030A (en) | 1999-02-23 | 1999-02-23 | Piezoelectric thin film element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000244030A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002185285A (en) * | 2000-12-08 | 2002-06-28 | Murata Mfg Co Ltd | Electrode structure and forming method of piezoelectric thin film resonator |
WO2002093740A1 (en) * | 2001-05-11 | 2002-11-21 | Ube Electronics, Ltd. | Film bulk acoustic resonator |
JP2003198319A (en) * | 2001-12-26 | 2003-07-11 | Ube Electronics Ltd | Aluminum nitride thin film-metallic electrode stack, and thin film piezoelectric resonator using it |
JP2004048639A (en) * | 2002-05-17 | 2004-02-12 | Murata Mfg Co Ltd | Piezo-resonator and manufacturing method of the same |
WO2004042921A1 (en) * | 2002-11-08 | 2004-05-21 | Murata Manufacturing Co., Ltd. | Demultiplexer and communication device |
JP2004221622A (en) * | 2002-01-08 | 2004-08-05 | Murata Mfg Co Ltd | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and manufacturing method of piezoelectric resonator |
US6906451B2 (en) | 2002-01-08 | 2005-06-14 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator |
JP2006510296A (en) * | 2002-12-13 | 2006-03-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroacoustic resonator |
JP2007110281A (en) * | 2005-10-12 | 2007-04-26 | Ube Ind Ltd | Aluminum nitride thin film and piezoelectric thin film resonator using same |
US7323953B2 (en) | 2003-08-27 | 2008-01-29 | Fujitsu Media Devices Limited | Film bulk acoustic resonator and method of producing the same |
JP2011103327A (en) * | 2009-11-10 | 2011-05-26 | Seiko Epson Corp | Piezoelectric element, piezoelectric actuator, liquid injection head, and liquid injection device |
EP2624451A1 (en) * | 2010-09-28 | 2013-08-07 | Murata Manufacturing Co., Ltd. | Piezoelectric device and method for manufacturing piezoelectric device |
US9924924B2 (en) | 2014-07-31 | 2018-03-27 | Seiko Epson Corporation | Piezoelectric device, and ultrasonic device, as well as probe, and electronic apparatus |
WO2018178562A1 (en) * | 2017-03-31 | 2018-10-04 | Soitec | Method for adjusting the stress state of a piezoelectric film and acoustic wave device employing such a film |
-
1999
- 1999-02-23 JP JP11044815A patent/JP2000244030A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002185285A (en) * | 2000-12-08 | 2002-06-28 | Murata Mfg Co Ltd | Electrode structure and forming method of piezoelectric thin film resonator |
WO2002093740A1 (en) * | 2001-05-11 | 2002-11-21 | Ube Electronics, Ltd. | Film bulk acoustic resonator |
US6936837B2 (en) | 2001-05-11 | 2005-08-30 | Ube Industries, Ltd. | Film bulk acoustic resonator |
KR100865652B1 (en) * | 2001-05-11 | 2008-10-29 | 우베 고산 가부시키가이샤 | Film bulk acoustic resonator |
JP2003198319A (en) * | 2001-12-26 | 2003-07-11 | Ube Electronics Ltd | Aluminum nitride thin film-metallic electrode stack, and thin film piezoelectric resonator using it |
JP2004221622A (en) * | 2002-01-08 | 2004-08-05 | Murata Mfg Co Ltd | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and manufacturing method of piezoelectric resonator |
US6906451B2 (en) | 2002-01-08 | 2005-06-14 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator |
US7240410B2 (en) | 2002-01-08 | 2007-07-10 | Murata Manufacturing Co., Ltd. | Method for manufacturing a piezoelectric resonator |
JP2004048639A (en) * | 2002-05-17 | 2004-02-12 | Murata Mfg Co Ltd | Piezo-resonator and manufacturing method of the same |
WO2004042921A1 (en) * | 2002-11-08 | 2004-05-21 | Murata Manufacturing Co., Ltd. | Demultiplexer and communication device |
US7304551B2 (en) | 2002-11-08 | 2007-12-04 | Murata Manufacturing Co., Ltd. | Branching filter and communication device |
JP2006510296A (en) * | 2002-12-13 | 2006-03-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroacoustic resonator |
US7323953B2 (en) | 2003-08-27 | 2008-01-29 | Fujitsu Media Devices Limited | Film bulk acoustic resonator and method of producing the same |
JP2007110281A (en) * | 2005-10-12 | 2007-04-26 | Ube Ind Ltd | Aluminum nitride thin film and piezoelectric thin film resonator using same |
US7482737B2 (en) | 2005-10-12 | 2009-01-27 | Ube Industries, Ltd. | Aluminum nitride thin film, composite film containing the same and piezoelectric thin film resonator using the same |
JP2011103327A (en) * | 2009-11-10 | 2011-05-26 | Seiko Epson Corp | Piezoelectric element, piezoelectric actuator, liquid injection head, and liquid injection device |
US8708463B2 (en) | 2009-11-10 | 2014-04-29 | Seiko Epson Corporation | Piezoelectric device, piezoelectric actuator, liquid ejecting head, and liquid ejecting apparatus |
EP2624451A1 (en) * | 2010-09-28 | 2013-08-07 | Murata Manufacturing Co., Ltd. | Piezoelectric device and method for manufacturing piezoelectric device |
EP2624451A4 (en) * | 2010-09-28 | 2015-03-11 | Murata Manufacturing Co | Piezoelectric device and method for manufacturing piezoelectric device |
US9924924B2 (en) | 2014-07-31 | 2018-03-27 | Seiko Epson Corporation | Piezoelectric device, and ultrasonic device, as well as probe, and electronic apparatus |
WO2018178562A1 (en) * | 2017-03-31 | 2018-10-04 | Soitec | Method for adjusting the stress state of a piezoelectric film and acoustic wave device employing such a film |
CN110476263A (en) * | 2017-03-31 | 2019-11-19 | 索泰克公司 | Adjust the method for the stress state of piezoelectric film and the acoustic wave device using this film |
US11462676B2 (en) | 2017-03-31 | 2022-10-04 | Soitec | Method for adjusting the stress state of a piezoelectric film and acoustic wave device employing such a film |
CN110476263B (en) * | 2017-03-31 | 2023-08-25 | 索泰克公司 | Method of adjusting stress state of piezoelectric film and acoustic wave device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6842089B2 (en) | Film bulk acoustic resonator (FBAR) device | |
CN107317560B (en) | Temperature compensation surface acoustic wave device and preparation method thereof | |
US9450167B2 (en) | Temperature compensated acoustic resonator device having an interlayer | |
JP4534158B2 (en) | Method for manufacturing piezoelectric thin film device | |
CN102301590B (en) | Thin-film piezoelectric resonator and thin-film piezoelectric filter using same | |
US7477001B2 (en) | Piezoelectric resonator element and method of manufacturing same | |
CN100499366C (en) | Piezoelectric thin-film resonator and filter and fabricating method | |
US20080129417A1 (en) | Ladder type filter | |
US20070284971A1 (en) | Electronic device | |
JP2000244030A (en) | Piezoelectric thin film element | |
CN104242862B (en) | Acoustic wave device | |
WO2007119643A1 (en) | Film bulk acoustic resonator, piezoelectric thin film device and method for manufacturing the piezoelectric thin film device | |
US20100231330A1 (en) | Component Working with Guided Bulk Acoustic Waves | |
JP4775445B2 (en) | Thin film piezoelectric resonator and thin film piezoelectric filter | |
JP2007208728A (en) | Piezoelectric thin-film resonator, filter, and method of manufacturing the piezoelectric thin-film resonator | |
CN205657657U (en) | Film bulk acoustic wave syntonizer and wave filter of many mode of resonances | |
WO2019201521A1 (en) | Bulk acoustic wave resonator and method for manufacturing the same | |
JP2009290369A (en) | Baw resonance device | |
JP4730126B2 (en) | Bulk acoustic wave resonance element, manufacturing method thereof, and filter circuit | |
JP2008211392A (en) | Resonator and manufacturing method thereof | |
JP2002076824A (en) | Piezoelectric thin film resonator, filter and electronic device | |
JP2001196892A (en) | Surface acoustic wave device | |
JP4471443B2 (en) | Piezoelectric resonator | |
CN103825574B (en) | Acoustic wave device and its manufacture method | |
JP2002374145A (en) | Piezoelectric thin-film resonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061017 |