JP2000135492A - Decomposition method of hydrogen peroxide - Google Patents
Decomposition method of hydrogen peroxideInfo
- Publication number
- JP2000135492A JP2000135492A JP10310224A JP31022498A JP2000135492A JP 2000135492 A JP2000135492 A JP 2000135492A JP 10310224 A JP10310224 A JP 10310224A JP 31022498 A JP31022498 A JP 31022498A JP 2000135492 A JP2000135492 A JP 2000135492A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- hydrogen peroxide
- fluidized bed
- water
- raw water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000000354 decomposition reaction Methods 0.000 title description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 182
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 103
- 239000002351 wastewater Substances 0.000 abstract description 9
- 238000006386 neutralization reaction Methods 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 3
- 239000003513 alkali Substances 0.000 abstract description 3
- 238000010979 pH adjustment Methods 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 239000012459 cleaning agent Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
(57)【要約】
【課題】 酸・アルカリなどによるpH調整や中和処理
をすることなく、排水中に高濃度に含有する過酸化水素
を連続的かつ効率よく、しかも短時間で分解処理するこ
とができる過酸化水素の分解処理方法を提供することを
課題とする。
【解決手段】 原水中に含有する高濃度な過酸化水素を
流動床式活性炭塔で分解処理する方法であって、原水を
循環水で希釈・混合してから流動床式活性炭塔に供給す
るとともに、その流動床式活性炭塔内の上向流速度を4
0m/h以上、過酸化水素負荷を50kgH2 O2 /m
3 活性炭・h以下にする。
(57) [Problem] To continuously and efficiently decompose hydrogen peroxide contained in a high concentration in wastewater in a short time without performing pH adjustment or neutralization treatment with an acid, an alkali or the like. An object of the present invention is to provide a method for decomposing hydrogen peroxide which can be performed. SOLUTION: This is a method for decomposing high concentration hydrogen peroxide contained in raw water by a fluidized bed activated carbon tower, wherein the raw water is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. , The upward flow velocity in the fluidized bed activated carbon tower is 4
0 m / h or more, hydrogen peroxide load 50 kgH 2 O 2 / m
3 Activated carbon ・ h or less
Description
【0001】[0001]
【発明の属する技術分野】本発明は原水中に高濃度に含
有する過酸化水素を、活性炭の触媒作用を利用して効率
よく分解処理して除去する過酸化水素の分解処理方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing hydrogen peroxide, which efficiently removes hydrogen peroxide contained in raw water by using the catalytic action of activated carbon. .
【0002】[0002]
【従来の技術】従来、例えば半導体産業における集積回
路素子の単結晶の洗浄方法には、基板に付着している汚
れの種類、性質に応じて最適な洗浄剤あるいは洗浄法が
採用されている。すなわち、例えば有機物質からなる汚
れなどについては、トリクレン類などのような塩素系有
機溶剤や中性界面活性剤などとの併用が有効であるし、
重金属などの付着汚れなどについては酸やアンモニアな
どが有効である。しかし、近年排水規制が一段と厳しく
なって塩素系有機溶剤などの使用が禁止されると、強力
な酸化作用を有するものの比較的分解しやすい過酸化水
素が主たる洗浄剤として登場してきた。そして、半導体
産業において、かかる過酸化水素を洗浄剤として使用す
ると、そもそも半導体産業から発生する排水中には各種
のイオン、微粒子懸濁物、各種有機物などが含有してい
るのが一般的なので、これら排水を中和処理する工程に
おいて、洗浄剤として使用した過酸化水素の残留分が作
用して沈殿したり、汚泥物などを浮遊・浮上せしめて、
排水の処理効果を著しく阻害してしまう。2. Description of the Related Art Conventionally, for example, in the semiconductor industry, a single crystal cleaning method for an integrated circuit element employs an optimum cleaning agent or cleaning method according to the type and nature of dirt adhering to a substrate. That is, for example, for dirt or the like made of an organic substance, it is effective to use a chlorine-based organic solvent such as trichlene or the like or a neutral surfactant in combination.
Acid and ammonia are effective for the adhesion of heavy metals and the like. However, in recent years, as wastewater regulations have become more severe and the use of chlorine-based organic solvents has been banned, hydrogen peroxide, which has a strong oxidizing effect but is relatively easily decomposed, has emerged as a main cleaning agent. And, in the semiconductor industry, when such hydrogen peroxide is used as a cleaning agent, the wastewater generated from the semiconductor industry generally contains various ions, fine particle suspensions, various organic substances, and the like, In the process of neutralizing these wastewaters, residual hydrogen peroxide used as a cleaning agent acts and precipitates, and sludge and other substances float and float,
It significantly impairs the wastewater treatment effect.
【0003】また、医療用薬品や注射液などの製造工程
に敷設された配管の内壁を洗浄するために、多量の過酸
化水素を使用するケースがあるが、多量に発生する過酸
化水素を含有した廃液は水質汚濁防止法の規制により、
そのままの状態では下水道などへ放流することはできな
い。したがって、かかる過酸化水素を極力除去するため
に、例えば重亜硫酸ソーダなどによる還元反応によって
過酸化水素を分解処理する方法があるが、この方法によ
ると、重亜硫酸ソーダ以外に当然ながら発生する酸を中
和するための中和剤が必要となるので、過酸化水素を処
理するために新たに化学物質を追加投入しなければなら
ないといった事態になり、排水中に多量の化学物質を投
入することは排水規制上あるいは公害防止上はもちろ
ん、経済的にも大いに問題があった。In some cases, a large amount of hydrogen peroxide is used to clean the inner wall of a pipe laid in a manufacturing process of a medical drug, an injection solution, or the like. Waste water is subject to the regulations of the Water Pollution Control Law,
As it is, it cannot be discharged into sewers. Therefore, in order to remove such hydrogen peroxide as much as possible, for example, there is a method of decomposing hydrogen peroxide by a reduction reaction with sodium bisulfite or the like, but according to this method, naturally generated acid other than sodium bisulfite is used. Since a neutralizing agent for neutralization is required, additional chemical substances must be added to treat hydrogen peroxide. There were great problems economically, as well as wastewater regulations and pollution prevention.
【0004】そこで、以前から上記したような問題点を
解決すべく、過酸化水素を活性炭で分解処理する技術が
いろいろと検討・開発されてきている。例えば、特開昭
63−39695号公報には、過酸化水素含有水に鉄塩
を添加し、pH2〜3.5に調整して活性炭と接触させ
る処理方法が提案されている。また、実公平2−435
15号公報には、pH10以上に調整した過酸化水素を
含む水溶液を固定粒状活性炭充填層の上面に直接散布し
て、活性炭層によって接触分解する過酸化水素の除去装
置が記載されている。しかしながら、前者の処理方法
は、上記したようにアルカリで中和処理する必要がある
ので、各種薬剤費とpH調整器ならびにそれに伴う複雑
な制御系装置が必要となるので、コスト的に問題があ
り、後者の除去装置は、苛性ソーダなどでpH10以上
に調整しなければならないので、上記した問題点が未解
決のまま残っているうえに、粒状活性炭充填層は固定床
式なので、過酸化水素濃度に限界があり、あまり高濃度
な過酸化水素の分解処理には不適である。In order to solve the above-mentioned problems, various techniques for decomposing hydrogen peroxide with activated carbon have been studied and developed. For example, JP-A-63-39695 proposes a treatment method in which an iron salt is added to hydrogen peroxide-containing water, the pH is adjusted to 2 to 3.5, and the mixture is brought into contact with activated carbon. In addition, actual fairness 2-435
No. 15 discloses a device for removing hydrogen peroxide which is sprayed directly on an upper surface of a fixed granular activated carbon packed bed with an aqueous solution containing hydrogen peroxide adjusted to pH 10 or higher, and catalytically decomposed by the activated carbon bed. However, the former treatment method requires a neutralization treatment with an alkali as described above, and thus requires various chemical costs, a pH adjuster, and a complicated control system associated therewith. However, the latter removal device must be adjusted to pH 10 or more with caustic soda, etc., so that the above-mentioned problems remain unsolved. Due to its limitations, it is not suitable for the decomposition of very high concentrations of hydrogen peroxide.
【0005】一方、実用新案登録第2560167号公
報には、処理水槽に貯留された過酸化水素を含んだ廃液
が循環管路系を通って粒状活性炭フィルターへ循環・通
水して過酸化水素を分解処理する過酸化水素水の分解装
置が記載されている。この装置によれば、確かに各種薬
剤を一切使用せずに、粒状活性炭フィルターで過酸化水
素を分解処理するものではあるが、この分解処理装置は
バッチ方式なので、大量に発生する排水を処理するため
には膨大な設備が必要となり、過酸化水素を高濃度に含
有する排水の処理は不可能であり、また、分解処理にか
なりの時間がかかるといった致命的な問題が残ってい
る。On the other hand, Japanese Utility Model Registration No. 2560167 discloses that waste liquid containing hydrogen peroxide stored in a treated water tank is circulated and passed through a circulation pipe system to a granular activated carbon filter to remove hydrogen peroxide. A device for decomposing hydrogen peroxide water to be decomposed is described. According to this device, hydrogen peroxide is decomposed by a granular activated carbon filter without using various chemicals at all. However, since this decomposition device is a batch type, it treats a large amount of wastewater generated. For this purpose, enormous equipment is required, and it is impossible to treat wastewater containing a high concentration of hydrogen peroxide, and there remains a fatal problem that a considerable time is required for the decomposition treatment.
【0006】[0006]
【発明が解決しようとする課題】そこで、本発明は、上
記したような従来技術の欠点に鑑み、これらの問題点を
解決するためになされたものであって、酸・アルカリな
どによるpH調整や中和処理をすることなく、排水中に
高濃度に含有する過酸化水素を連続的かつ効率よく、し
かも短時間で分解処理することができる過酸化水素の分
解処理方法を提供することを目的とするものである。In view of the above-mentioned drawbacks of the prior art, the present invention has been made to solve these problems. An object of the present invention is to provide a method for decomposing hydrogen peroxide which can continuously and efficiently decompose hydrogen peroxide contained in a high concentration in wastewater without performing a neutralization process, and in a short time. Is what you do.
【0007】[0007]
【課題を解決するための手段】以上のような目的を達成
するために、本発明では次のような過酸化水素の分解処
理方法を提供するものである。すなわち、本発明になる
過酸化水素の分解処理方法は、原水中に含有する高濃度
な過酸化水素を流動床式活性炭塔で分解処理する方法で
あって、原水を循環水で希釈・混合してから流動床式活
性炭塔に供給するとともに、その流動床式活性炭塔内の
上向流速度を40m/h以上、過酸化水素負荷を50k
gH2 O2 /m 3 活性炭・h以下にしたことを特徴とす
るものである。Means for Solving the Problems Achieving the above objects
Therefore, in the present invention, the following decomposition treatment of hydrogen peroxide is performed.
It provides a management method. That is, the present invention
Decomposition method of hydrogen peroxide is high concentration in raw water
Of hydrogen peroxide in a fluidized bed activated carbon tower
And then dilute and mix the raw water with circulating water before
To the activated carbon tower, and in the fluidized bed activated carbon tower.
Upflow velocity of 40m / h or more, hydrogen peroxide load of 50k
gHTwoOTwo/ M ThreeActivated carbon, less than h
Things.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を図面
に示す実施例を基に説明する。図1は本発明に係わる過
酸化水素水の分解処理装置の一実施態様例を示す概略説
明図である。(1)は原水槽であり、原水槽(1)には
過酸化水素を高濃度に含有する原水(以下、単に原水と
略称する)が配管(10)を経て供給されてくる。
(2)は粒状活性炭(9)を所定量充填した流動床式活
性炭塔であり、原水はスタティックミキサー(3)で循
環水と混合されて所定倍率に希釈され、流動床式活性炭
塔(2)の底部に複数設けられた噴出口(5)から連続
的に通水される。流動床式活性炭塔(2)内で粒状活性
炭(9)に過酸化水素が接触すると、水と酸素に分解さ
れ、酸素は気泡となって上向流循環水に同伴されて上昇
し、流動床式活性炭塔(2)上部にて大気へ放出され
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below based on examples shown in the drawings. FIG. 1 is a schematic explanatory view showing an embodiment of an apparatus for decomposing hydrogen peroxide water according to the present invention. (1) is a raw water tank, and raw water containing a high concentration of hydrogen peroxide (hereinafter simply referred to as raw water) is supplied to the raw water tank (1) through a pipe (10).
Reference numeral (2) denotes a fluidized bed activated carbon tower filled with a predetermined amount of granular activated carbon (9). Raw water is mixed with circulating water by a static mixer (3) and diluted to a predetermined magnification, and the fluidized bed activated carbon tower (2) is used. Water is continuously passed through a plurality of ejection ports (5) provided at the bottom of the container. When hydrogen peroxide comes in contact with the granular activated carbon (9) in the fluidized bed activated carbon tower (2), it is decomposed into water and oxygen, and the oxygen rises as bubbles along with the upward circulating water, and the fluidized bed It is released to the atmosphere at the top of the activated carbon tower (2).
【0009】流動床式活性炭塔(2)内を上向流して粒
状活性炭(9)と接触し、過酸化水素が分解処理された
循環水(処理水)は、流動床式活性炭塔(2)から溢流
して、配管(11)を経て循環槽(4)に送られる。循
環槽(4)の下部より抜き出された循環水は配管(1
4)を経てスタティックミキサー(3)へ送られ、配管
(15)を経て供給されてくる原水を希釈する。そし
て、循環水と混合して希釈された原水は流動床式活性炭
塔(2)に配管(16)を経て連続的に供給される。循
環槽(4)に送られた循環水のうち、原水供給量に見合
う処理水は、上部より溢流し、配管(12)を経て処理
水槽(6)へ送られ、配管(13)を経て系外へ放流さ
れる。なお、図中(7)はポンプ、(8)は流量調節計
である。[0009] The circulating water (treated water), which flows upward in the fluidized bed activated carbon tower (2), comes into contact with the granular activated carbon (9), and is subjected to decomposition treatment of hydrogen peroxide, is fluidized bed activated carbon tower (2). And is sent to the circulation tank (4) via the pipe (11). The circulating water extracted from the lower part of the circulation tank (4)
The raw water sent to the static mixer (3) via 4) and supplied through the pipe (15) is diluted. The raw water mixed and diluted with the circulating water is continuously supplied to the fluidized bed activated carbon tower (2) via a pipe (16). Of the circulating water sent to the circulation tank (4), treated water corresponding to the amount of raw water supplied overflows from the upper part, is sent to the treated water tank (6) via the pipe (12), and flows through the pipe (13). Released outside. In the drawing, (7) is a pump, and (8) is a flow controller.
【0010】本発明に係わる分解処理装置は、以上のよ
うな構成になっており、次にその一連の処理工程を説明
すると、まず、原水の分解処理に先立って、流動床式活
性炭塔(2)および循環槽(4)に通常の水を所定量貯
留しておき、ポンプ(7)を作動して循環槽(4)内の
水を配管(14)→スタティックミキサー(3)→配管
(16)→流動床式活性炭塔(2)→配管(11)と循
環させた後、配管(10)から原水槽(1)へ連続的に
送られてくる原水を配管(15)を経てスタティックミ
キサー(3)へ供給する。そして、配管(15)からの
原水は配管(14)からの循環水で希釈・混合されて、
流動床式活性炭塔(2)へ送られる。[0010] The decomposition treatment apparatus according to the present invention is configured as described above. Next, a series of treatment steps will be described. First, prior to raw water decomposition treatment, a fluidized bed activated carbon tower (2) is used. ) And a predetermined amount of ordinary water are stored in the circulation tank (4), and the pump (7) is operated to supply water in the circulation tank (4) to the pipe (14) → the static mixer (3) → the pipe (16). ) → fluidized bed activated carbon tower (2) → circulate through pipe (11), and then feed raw water continuously sent from pipe (10) to raw water tank (1) through pipe (15) through static mixer ( Supply to 3). And the raw water from the pipe (15) is diluted and mixed with the circulating water from the pipe (14),
It is sent to a fluidized bed activated carbon tower (2).
【0011】流動床式活性炭塔(2)内には粒状活性炭
(9)が所定量充填されて流動状態となっており、流動
床式活性炭塔(2)内の底部に配設された噴出口(5)
は上方に向かって吹き出るようになっているので、噴出
口(5)から吹き出す原水と循環水との混合水は上向流
となって粒状活性炭(9)と接触し、混合水に含有して
いる過酸化水素が分解される。そして、分解された酸素
ガスは上向流循環水に同伴されて系外へ放出される。過
酸化水素を分解して流動床式活性炭塔(2)から溢流
し、配管(11)を経て循環槽(4)へ送られる循環水
(処理水)に含有する過酸化水素の濃度は、既に十分に
低下しているので、原水供給量に見合う処理水は沈殿槽
の構造をもった循環槽(4)の上部より清澄水となって
溢流し、配管(12)を経て処理水槽(6)へ送られ
て、そのままの状態で配管(13)を経て系外へ放流さ
れる。The fluidized bed activated carbon tower (2) is filled with a predetermined amount of granular activated carbon (9) in a fluidized state, and is provided at a bottom of the fluidized bed activated carbon tower (2). (5)
Is blown upward, so that the mixed water of the raw water and the circulating water blown out from the outlet (5) flows upward and comes into contact with the granular activated carbon (9), and is contained in the mixed water. Hydrogen peroxide is decomposed. Then, the decomposed oxygen gas is discharged out of the system together with the upward circulating water. The concentration of hydrogen peroxide contained in the circulating water (treated water) which decomposes hydrogen peroxide, overflows from the fluidized bed activated carbon tower (2), and is sent to the circulation tank (4) via the pipe (11) Since it has been sufficiently lowered, the treated water corresponding to the amount of raw water supplied becomes clear water from the upper part of the circulation tank (4) having a sedimentation tank structure, overflows, and flows through the pipe (12) to the treated water tank (6). And discharged as it is through the pipe (13) to the outside of the system.
【0012】一方、循環槽(4)内の循環水は、循環槽
(4)の下部より浮遊する微粒子状態の活性炭も同伴さ
せて、配管(14)を経てスタティックミキサー(3)
へ送られ、配管(15)から送られてくる原水を希釈す
る。そして、循環水で希釈・混合された原水は、流動床
式活性炭塔(2)へ連続的に供給され、原水中の過酸化
水素は連続的に分解処理されていくものである。On the other hand, the circulating water in the circulating tank (4) is accompanied by activated carbon in the form of fine particles floating from the lower part of the circulating tank (4), and the static mixer (3) is passed through a pipe (14).
To dilute the raw water sent from the pipe (15). Then, the raw water diluted and mixed with the circulating water is continuously supplied to the fluidized bed activated carbon tower (2), and the hydrogen peroxide in the raw water is continuously decomposed.
【0013】以上のような分解処理装置において、本発
明になる過酸化水素の分解処理方法の特徴は、過酸化水
素を高濃度(例えば50, 000mg/l以上)に含有
している原水を循環水で希釈・混合してから流動床式活
性炭塔(2)に供給して分解処理するとともに、その流
動床式活性炭塔(2)内の底部に配設された噴出口
(5)から吹き出す原水と循環水との混合水による流動
床式活性炭塔(2)内の上向流速度を40m/h以上と
し、かつ、流動床式活性炭塔(2)における過酸化水素
の負荷を50kgH2 O2 /m3 活性炭・h以下、すな
わち、1時間に1m3 の活性炭で分解処理する過酸化水
素の量を50kg以下にしたことにある。In the above-described decomposition apparatus, the feature of the method for decomposing hydrogen peroxide according to the present invention is to circulate raw water containing high concentration of hydrogen peroxide (for example, 50,000 mg / l or more). After being diluted and mixed with water, it is supplied to a fluidized bed activated carbon tower (2) for decomposition treatment, and raw water blown out from a jet port (5) disposed at the bottom in the fluidized bed activated carbon tower (2). The upward flow velocity in the fluidized-bed activated carbon tower (2) by the mixed water of water and circulating water is 40 m / h or more, and the load of hydrogen peroxide in the fluidized-bed activated carbon tower (2) is 50 kg H 2 O 2. / M 3 activated carbon · h or less, that is, the amount of hydrogen peroxide decomposed with 1 m 3 of activated carbon per hour was reduced to 50 kg or less.
【0014】原水中の過酸化水素を分解処理する活性炭
の能力は、その粒度、細孔構造および吸着平衡時の吸着
能力によって決まり、とりわけ過酸化水素と活性炭粒子
との接触機会を如何に増大させるかが重要である。した
がって、固定床式活性炭塔ではその構造上から過酸化水
素と活性炭粒子との接触がどうしても制約されるので、
活性炭を浮遊状態に保つことによって過酸化水素との接
触の機会を増大させることができ、かつ分解生成した酸
素ガスの放出が容易な流動床式活性炭塔(2)を採用す
るのが好ましい。The ability of activated carbon to decompose hydrogen peroxide in raw water depends on its particle size, pore structure and adsorption capacity at the time of adsorption equilibrium, and in particular, how to increase the chance of contact between hydrogen peroxide and activated carbon particles. Is important. Therefore, in the fixed-bed type activated carbon tower, the contact between the hydrogen peroxide and the activated carbon particles is inevitably restricted due to its structure.
By maintaining the activated carbon in a floating state, it is preferable to employ a fluidized bed activated carbon tower (2) which can increase the chance of contact with hydrogen peroxide and can easily release oxygen gas generated by decomposition.
【0015】また、活性炭の粒径サイズはあまり粗いと
流動床式活性炭塔(2)内において安定した流動層を得
ることができないし、あまり微細な活性炭では流動床式
活性炭塔(2)内においていたずらに浮遊して、過酸化
水素との接触機会が減少したり、あるいは流動床式活性
炭塔(2)から溢流した循環水(処理水)と一緒に塔外
へ流出してしまうので、活性炭の粒径サイズは0.8m
m〜1.6mm程度が好ましい。また、流動床式活性炭
塔(2)内の底部に配設された噴出口(5)から吹き出
す原水と循環水との混合水による流動床式活性炭塔
(2)内の上向流速度があまり低いと、活性炭が流動床
式活性炭塔(2)内で好ましい状態で浮遊せずに分解し
た酸素ガスによる、いわゆるスラッキング現象が生じる
おそれがあるので、流動床式活性炭塔(2)内における
上向流速度は最低でも40m/h以上に維持しておくの
が好ましい。If the particle size of the activated carbon is too coarse, a stable fluidized bed cannot be obtained in the fluidized bed activated carbon tower (2). Activated carbon, which floats unnecessarily and decreases the chance of contact with hydrogen peroxide, or flows out of the fluidized bed activated carbon tower (2) together with the circulating water (treated water) overflowing from the tower. 0.8m particle size
m to about 1.6 mm is preferable. Also, the upward flow velocity in the fluidized bed activated carbon tower (2) due to the mixed water of the raw water and the circulating water blown out from the jet port (5) disposed at the bottom in the fluidized bed activated carbon tower (2) is too low. When it is low, the so-called slacking phenomenon may occur due to oxygen gas which is decomposed without floating in a favorable state in the fluidized bed activated carbon tower (2). It is preferable to maintain the countercurrent velocity at least 40 m / h or more.
【0016】更に、流動床式活性炭塔(2)内で過酸化
水素が分解処理されて溢流した循環水(処理水)の過酸
化水素濃度と、流動床式活性炭塔(2)内における過酸
化水素負荷とは、ほぼ比例関係にあり、過酸化水素負荷
を小さくすれば、処理水の過酸化水素濃度が低くなり、
過酸化水素負荷を大きくすれば、処理水の過酸化水素濃
度が高くなる。そして、過酸化水素負荷があまり大きい
と、酸素ガスの気泡が活性炭界面において激しく発生
し、活性炭の巻き上げも大きくなって過酸化水素の分解
処理効率が急激に低下する。したがって、流動床式活性
炭塔(2)内における過酸化水素負荷は、50kgH2
O2 /m3 活性炭・h以下に留めるのが望ましい。な
お、当然ながら、活性炭を長時間使用していると、活性
炭が微細に分解されたり、過酸化水素を分解処理する能
力が低下してくるので、定期的にメイクアップする必要
がある。Further, the concentration of hydrogen peroxide in the circulating water (treated water) which has overflowed due to the decomposition of hydrogen peroxide in the fluidized bed type activated carbon tower (2) and the hydrogen peroxide concentration in the fluidized bed type activated carbon tower (2). There is an almost proportional relationship with the hydrogen oxide load, and if the hydrogen peroxide load is reduced, the hydrogen peroxide concentration of the treated water decreases,
Increasing the hydrogen peroxide load increases the concentration of hydrogen peroxide in the treated water. If the hydrogen peroxide load is too large, bubbles of oxygen gas are violently generated at the interface of the activated carbon, and the activated carbon is greatly wound up, so that the efficiency of hydrogen peroxide decomposition treatment is rapidly reduced. Therefore, the hydrogen peroxide load in the fluidized bed activated carbon tower (2) is 50 kgH 2
It is desirable to keep O 2 / m 3 activated carbon · h or less. Naturally, if the activated carbon is used for a long time, the activated carbon is finely decomposed or the ability to decompose hydrogen peroxide is reduced, so it is necessary to make up periodically.
【0017】また、過酸化水素を高濃度に含有している
原水を直接流動床式活性炭塔(2)内に通水せずに、一
旦循環水で希釈・混合してから流動床式活性炭塔(2)
に供給する方式、すなわち、流動床式活性炭塔(2)内
で過酸化水素を分解処理した処理水を循環水として利用
し、供給されてくる原水を連続的に希釈・混合してから
再度流動床式活性炭塔(2)へ供給することによって、
原水中の過酸化水素を連続的に分解処理するようにして
いるが、流動床式活性炭塔(2)内へ通水する際の原水
と循環水との混合水の過酸化水素濃度は1, 000mg
/l以下とするのが好ましく、例えば原水の過酸化水素
濃度が50, 000mg/lの場合は循環水で約50倍
に(過酸化水素濃度が1, 000mg/l以下になるま
で)希釈してから、流動床式活性炭塔(2)内に通水す
るのが望ましい。Also, the raw water containing a high concentration of hydrogen peroxide is not directly passed through the fluidized bed activated carbon tower (2), but is once diluted and mixed with circulating water, and then is fluidized bed activated carbon tower. (2)
In this method, treated water obtained by decomposing hydrogen peroxide in a fluidized bed activated carbon tower (2) is used as circulating water, and the supplied raw water is continuously diluted and mixed, and then reflowed By supplying to the activated carbon tower (2),
Although hydrogen peroxide in raw water is continuously decomposed, the concentration of hydrogen peroxide in the mixed water of raw water and circulating water when flowing into the fluidized bed activated carbon tower (2) is 1, 000mg
/ L or less, for example, when the hydrogen peroxide concentration of the raw water is 50,000 mg / l, dilute with circulating water about 50 times (until the hydrogen peroxide concentration becomes 1,000 mg / l or less). After that, it is desirable to pass water through the fluidized bed activated carbon tower (2).
【0018】次に、図1の説明図に基づいて製作した試
験装置で、下記の運転条件で確認したデータを表1に示
す。 流動床式活性炭塔:直径146mm×高さ2000mm 活性炭層:高さ1000mm 使用活性炭:武田工業製 X−7100球形炭 平均粒径1.3mm〜1.6mm 循環槽:直径100mm×高さ1000mm 原水中の過酸化水素濃度:10wt% 循環水量:770l/h 流動床式活性炭塔内の上向流速度:46m/h 活性炭展開率:31%Next, Table 1 shows data confirmed by the test apparatus manufactured based on the explanatory view of FIG. 1 under the following operating conditions. Fluidized bed activated carbon tower: 146 mm in diameter x 2,000 mm in height Activated carbon layer: 1000 mm in height Activated carbon used: X-7100 spherical charcoal manufactured by Takeda Kogyo Average particle size 1.3 mm to 1.6 mm Circulation tank: 100 mm in diameter x 1000 mm in height Raw water Hydrogen peroxide concentration: 10 wt% Circulating water volume: 770 l / h Upflow velocity in a fluidized bed activated carbon tower: 46 m / h Activated carbon development rate: 31%
【0019】[0019]
【表1】 [Table 1]
【0020】ここで、上記の試験結果をケース3を例に
とって説明すると、まず、循環ポンプ(7)を作動し
て、循環水を、循環槽(4)→スタティックミキサー
(3)→流動床式活性炭塔(2)の順路で循環させてお
く。そして、原水槽(1)から、過酸化水素濃度10w
t%の原水を6.3l/hで供給するとともに、この原
水をスタティックミキサー(3)で循環水と混合し、過
酸化水素濃度を121倍に希釈してから流動床式活性炭
塔(2)に通水する。このとき、流動床式活性炭塔
(2)の底部に配設された噴出口(5)から吹き出す原
水と循環水との混合水の過酸化水素濃度は、920mg
/lであった。そして、流動床式活性炭塔(2)で過酸
化水素を分解処理して、その流動床式活性炭塔(2)か
ら溢流した処理水の過酸化水素濃度を測定したら、90
mg/lとなった。なお、このときの流動床式活性炭塔
(2)内における過酸化水素負荷は38kgH2 O2 /
m3 活性炭・hであった。Here, the above test results will be described by taking Case 3 as an example. First, the circulating pump (7) is operated to circulate the circulating water into the circulating tank (4) → the static mixer (3) → the fluidized bed type. It is circulated in the route of the activated carbon tower (2). Then, from the raw water tank (1), a hydrogen peroxide concentration of 10 w
While supplying t% of raw water at 6.3 l / h, this raw water was mixed with circulating water by a static mixer (3) to dilute the hydrogen peroxide concentration to 121 times, and then a fluidized bed activated carbon tower (2) Water. At this time, the hydrogen peroxide concentration of the mixed water of the raw water and the circulating water blown out from the jet port (5) disposed at the bottom of the fluidized bed activated carbon tower (2) is 920 mg.
/ L. Then, hydrogen peroxide is decomposed in the fluidized bed activated carbon tower (2), and the hydrogen peroxide concentration of the treated water overflowing from the fluidized bed activated carbon tower (2) is measured.
mg / l. The hydrogen peroxide load in the fluidized bed activated carbon tower (2) at this time was 38 kgH 2 O 2 /
m 3 activated carbon · h.
【0021】[0021]
【発明の効果】以上のように、本発明になる過酸化水素
の分解処理方法は、過酸化水素を高濃度に含有する原水
を循環水で希釈・混合してから流動床式活性炭塔に供給
し、その流動床式活性炭塔内の底部から吹き出す原水と
循環水との混合水による上向流にて活性炭を流動させ
て、原水中の過酸化水素を分解処理するが、このときの
流動床式活性炭塔内の上向流速度を40m/h以上とし
たので、スラッキング現象が発生することはなく、ま
た、活性炭1m3 あたりの過酸化水素分解量を示す過酸
化水素負荷を50kgH2 O2 /m3 活性炭・h以下と
したので、効率よく分解処理することができる。本発明
によれば、従来技術のようにアルカリなどによるpH調
整や中和処理を一切必要とせずに、過酸化水素を例えば
50, 000mg/l以上含有するような高濃度な原水
でも連続的に、かつ短時間に効率よく分解処理すること
ができるようになるので、当業界に及ぼす効果には著し
いものがある。As described above, in the method for decomposing hydrogen peroxide according to the present invention, raw water containing high concentration of hydrogen peroxide is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. Then, the activated carbon is caused to flow in an upward flow by a mixed water of raw water and circulating water blown out from the bottom in the fluidized bed activated carbon tower to decompose hydrogen peroxide in the raw water. Since the upward flow velocity in the activated carbon tower was set to 40 m / h or more, the slacking phenomenon did not occur, and the hydrogen peroxide load indicating the decomposition amount of hydrogen peroxide per 1 m 3 of activated carbon was 50 kgH 2 O. Since it is not more than 2 / m 3 activated carbon · h, it can be efficiently decomposed. According to the present invention, high-concentration raw water containing, for example, 50,000 mg / l or more of hydrogen peroxide can be continuously used without requiring any pH adjustment or neutralization treatment with an alkali or the like as in the prior art. The decomposition can be performed efficiently in a short period of time, and the effect on the industry is remarkable.
【図1】本発明に係わる過酸化水素水の分解処理装置の
一例を示す概略説明図FIG. 1 is a schematic explanatory view showing one example of a hydrogen peroxide water decomposition treatment apparatus according to the present invention.
1 原水槽 2 流動床式活性炭塔 3 スタティックミキサー 4 循環槽 5 噴出口 6 処理水槽 7 ポンプ 8 流量調節計 9 活性炭 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Fluid bed activated carbon tower 3 Static mixer 4 Circulation tank 5 Spouting port 6 Treatment water tank 7 Pump 8 Flow controller 9 Activated carbon
───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 英二 東京都港区港南4−1−8 リバージュ品 川ビル 旭エンジニアリング株式会社内 (72)発明者 榎本 俊 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D038 AA08 AB26 BA02 BA06 BB06 4D050 AA13 AB33 BC05 BD02 BD08 CA06 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Eiji Amano 4-1-8 Konan, Minato-ku, Tokyo Reverage Shinagawa Building Asahi Engineering Co., Ltd. (72) Shun Enomoto 3-4 Nishishinjuku, Shinjuku-ku, Tokyo No. 7 F-term in Kurita Water Industries Ltd. (reference) 4D038 AA08 AB26 BA02 BA06 BB06 4D050 AA13 AB33 BC05 BD02 BD08 CA06
Claims (1)
流動床式活性炭塔で分解処理する方法であって、原水を
循環水で希釈・混合してから流動床式活性炭塔に供給す
るとともに、その流動床式活性炭塔内の上向流速度を4
0m/h以上、過酸化水素負荷を50kgH2 O2 /m
3 活性炭・h以下にしたことを特徴とする過酸化水素の
分解処理方法。1. A method for decomposing high-concentration hydrogen peroxide contained in raw water in a fluidized bed activated carbon tower, wherein the raw water is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. At the same time, the upward flow velocity in the fluidized bed activated carbon
0 m / h or more, hydrogen peroxide load 50 kgH 2 O 2 / m
A method for decomposing hydrogen peroxide, characterized in that the activated carbon is not more than 3 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10310224A JP2000135492A (en) | 1998-10-30 | 1998-10-30 | Decomposition method of hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10310224A JP2000135492A (en) | 1998-10-30 | 1998-10-30 | Decomposition method of hydrogen peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000135492A true JP2000135492A (en) | 2000-05-16 |
Family
ID=18002693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10310224A Withdrawn JP2000135492A (en) | 1998-10-30 | 1998-10-30 | Decomposition method of hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000135492A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065527A3 (en) * | 2003-01-24 | 2005-04-28 | Eng-Chye Teoh | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
JP2006000827A (en) * | 2004-06-21 | 2006-01-05 | Japan Organo Co Ltd | Wastewater treatment method |
JP2009154109A (en) * | 2007-12-27 | 2009-07-16 | Ebara Jitsugyo Co Ltd | Residual oxidant removal apparatus, residual oxidant removal method, and water sterilization system |
KR20180051250A (en) * | 2016-11-08 | 2018-05-16 | 한국과학기술연구원 | Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide |
KR20190013998A (en) * | 2016-06-02 | 2019-02-11 | 에보쿠아 워터 테크놀로지스 엘엘씨 | Treatment of high-content peroxide waste streams |
WO2024100922A1 (en) * | 2022-11-10 | 2024-05-16 | 日本メクトロン株式会社 | Hydrogen peroxide decomposition system, hydrogen peroxide decomposition device, and decomposition method for hydrogen peroxide |
-
1998
- 1998-10-30 JP JP10310224A patent/JP2000135492A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100335421C (en) * | 2003-01-24 | 2007-09-05 | 张英顺 | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
AU2004205860B2 (en) * | 2003-01-24 | 2008-09-18 | Teoh, Eng Soon | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
US7666314B2 (en) | 2003-01-24 | 2010-02-23 | Eng Soon Teoh | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
WO2004065527A3 (en) * | 2003-01-24 | 2005-04-28 | Eng-Chye Teoh | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
JP2006000827A (en) * | 2004-06-21 | 2006-01-05 | Japan Organo Co Ltd | Wastewater treatment method |
JP2009154109A (en) * | 2007-12-27 | 2009-07-16 | Ebara Jitsugyo Co Ltd | Residual oxidant removal apparatus, residual oxidant removal method, and water sterilization system |
JP6995785B2 (en) | 2016-06-02 | 2022-01-17 | エヴォクア ウォーター テクノロジーズ エルエルシー | Treatment of high hydrogen peroxide waste stream |
KR20190013998A (en) * | 2016-06-02 | 2019-02-11 | 에보쿠아 워터 테크놀로지스 엘엘씨 | Treatment of high-content peroxide waste streams |
JP2019517385A (en) * | 2016-06-02 | 2019-06-24 | エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC | Treatment of high hydrogen peroxide waste streams |
KR102480516B1 (en) | 2016-06-02 | 2022-12-22 | 에보쿠아 워터 테크놀로지스 엘엘씨 | Treatment of high peroxide waste streams |
KR20180051250A (en) * | 2016-11-08 | 2018-05-16 | 한국과학기술연구원 | Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide |
KR102018645B1 (en) * | 2016-11-08 | 2019-09-05 | 한국과학기술연구원 | Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide |
WO2024100922A1 (en) * | 2022-11-10 | 2024-05-16 | 日本メクトロン株式会社 | Hydrogen peroxide decomposition system, hydrogen peroxide decomposition device, and decomposition method for hydrogen peroxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer | |
US7713426B2 (en) | Water treatment | |
JP3350364B2 (en) | Wastewater treatment method and wastewater treatment device | |
EP0698579A2 (en) | Apparatus and method for treatment of waste water and/or exhaust gases containing fluorine and surface active agents | |
JP2873254B2 (en) | Contact method | |
US8057676B2 (en) | Drainage water-treating method | |
JP2000135492A (en) | Decomposition method of hydrogen peroxide | |
JP6534245B2 (en) | Breeding water circulation system for closed circulation type breeding | |
JP3129945B2 (en) | Semiconductor manufacturing exhaust gas treatment method | |
JP2655299B2 (en) | How to remove hydrogen peroxide | |
JPS6328429A (en) | Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility | |
JP4014679B2 (en) | Wastewater treatment method | |
JP2007253132A (en) | Wastewater treatment method and wastewater treatment equipment | |
JPH091160A (en) | Oxidizing substance removing method and wet flue gas desulfurization apparatus | |
JP2013006155A (en) | Defoaming device and method of used discharged seawater and discharge system of used discharged seawater | |
JPS6320093A (en) | Treatment of fluorine-containing waste water | |
JP3387190B2 (en) | Biological sludge ozonation equipment | |
JPS6218230B2 (en) | ||
JP3316959B2 (en) | Biological sludge ozonation equipment | |
KR101993680B1 (en) | Treatment System of The Wastewater Containing Silica | |
KR100733332B1 (en) | Wastewater treatment method containing high concentration hydrofluoric acid and nitric acid | |
JPS5820223A (en) | Apparatus for treating waste ozone | |
JP2006281041A (en) | Organic substance-containing water treatment apparatus and operation method thereof | |
JPH11114372A (en) | Wet denitrification method | |
JPH057075B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060110 |