[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000135492A - Decomposition method of hydrogen peroxide - Google Patents

Decomposition method of hydrogen peroxide

Info

Publication number
JP2000135492A
JP2000135492A JP10310224A JP31022498A JP2000135492A JP 2000135492 A JP2000135492 A JP 2000135492A JP 10310224 A JP10310224 A JP 10310224A JP 31022498 A JP31022498 A JP 31022498A JP 2000135492 A JP2000135492 A JP 2000135492A
Authority
JP
Japan
Prior art keywords
activated carbon
hydrogen peroxide
fluidized bed
water
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10310224A
Other languages
Japanese (ja)
Inventor
Eiji Araki
栄治 荒木
Eiji Amano
英二 天野
Takashi Enomoto
俊 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Asahi Kasei Engineering Corp
Original Assignee
Asahi Engineering Co Ltd Osaka
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd Osaka, Kurita Water Industries Ltd filed Critical Asahi Engineering Co Ltd Osaka
Priority to JP10310224A priority Critical patent/JP2000135492A/en
Publication of JP2000135492A publication Critical patent/JP2000135492A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】 【課題】 酸・アルカリなどによるpH調整や中和処理
をすることなく、排水中に高濃度に含有する過酸化水素
を連続的かつ効率よく、しかも短時間で分解処理するこ
とができる過酸化水素の分解処理方法を提供することを
課題とする。 【解決手段】 原水中に含有する高濃度な過酸化水素を
流動床式活性炭塔で分解処理する方法であって、原水を
循環水で希釈・混合してから流動床式活性炭塔に供給す
るとともに、その流動床式活性炭塔内の上向流速度を4
0m/h以上、過酸化水素負荷を50kgH2 2 /m
3 活性炭・h以下にする。
(57) [Problem] To continuously and efficiently decompose hydrogen peroxide contained in a high concentration in wastewater in a short time without performing pH adjustment or neutralization treatment with an acid, an alkali or the like. An object of the present invention is to provide a method for decomposing hydrogen peroxide which can be performed. SOLUTION: This is a method for decomposing high concentration hydrogen peroxide contained in raw water by a fluidized bed activated carbon tower, wherein the raw water is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. , The upward flow velocity in the fluidized bed activated carbon tower is 4
0 m / h or more, hydrogen peroxide load 50 kgH 2 O 2 / m
3 Activated carbon ・ h or less

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原水中に高濃度に含
有する過酸化水素を、活性炭の触媒作用を利用して効率
よく分解処理して除去する過酸化水素の分解処理方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing hydrogen peroxide, which efficiently removes hydrogen peroxide contained in raw water by using the catalytic action of activated carbon. .

【0002】[0002]

【従来の技術】従来、例えば半導体産業における集積回
路素子の単結晶の洗浄方法には、基板に付着している汚
れの種類、性質に応じて最適な洗浄剤あるいは洗浄法が
採用されている。すなわち、例えば有機物質からなる汚
れなどについては、トリクレン類などのような塩素系有
機溶剤や中性界面活性剤などとの併用が有効であるし、
重金属などの付着汚れなどについては酸やアンモニアな
どが有効である。しかし、近年排水規制が一段と厳しく
なって塩素系有機溶剤などの使用が禁止されると、強力
な酸化作用を有するものの比較的分解しやすい過酸化水
素が主たる洗浄剤として登場してきた。そして、半導体
産業において、かかる過酸化水素を洗浄剤として使用す
ると、そもそも半導体産業から発生する排水中には各種
のイオン、微粒子懸濁物、各種有機物などが含有してい
るのが一般的なので、これら排水を中和処理する工程に
おいて、洗浄剤として使用した過酸化水素の残留分が作
用して沈殿したり、汚泥物などを浮遊・浮上せしめて、
排水の処理効果を著しく阻害してしまう。
2. Description of the Related Art Conventionally, for example, in the semiconductor industry, a single crystal cleaning method for an integrated circuit element employs an optimum cleaning agent or cleaning method according to the type and nature of dirt adhering to a substrate. That is, for example, for dirt or the like made of an organic substance, it is effective to use a chlorine-based organic solvent such as trichlene or the like or a neutral surfactant in combination.
Acid and ammonia are effective for the adhesion of heavy metals and the like. However, in recent years, as wastewater regulations have become more severe and the use of chlorine-based organic solvents has been banned, hydrogen peroxide, which has a strong oxidizing effect but is relatively easily decomposed, has emerged as a main cleaning agent. And, in the semiconductor industry, when such hydrogen peroxide is used as a cleaning agent, the wastewater generated from the semiconductor industry generally contains various ions, fine particle suspensions, various organic substances, and the like, In the process of neutralizing these wastewaters, residual hydrogen peroxide used as a cleaning agent acts and precipitates, and sludge and other substances float and float,
It significantly impairs the wastewater treatment effect.

【0003】また、医療用薬品や注射液などの製造工程
に敷設された配管の内壁を洗浄するために、多量の過酸
化水素を使用するケースがあるが、多量に発生する過酸
化水素を含有した廃液は水質汚濁防止法の規制により、
そのままの状態では下水道などへ放流することはできな
い。したがって、かかる過酸化水素を極力除去するため
に、例えば重亜硫酸ソーダなどによる還元反応によって
過酸化水素を分解処理する方法があるが、この方法によ
ると、重亜硫酸ソーダ以外に当然ながら発生する酸を中
和するための中和剤が必要となるので、過酸化水素を処
理するために新たに化学物質を追加投入しなければなら
ないといった事態になり、排水中に多量の化学物質を投
入することは排水規制上あるいは公害防止上はもちろ
ん、経済的にも大いに問題があった。
In some cases, a large amount of hydrogen peroxide is used to clean the inner wall of a pipe laid in a manufacturing process of a medical drug, an injection solution, or the like. Waste water is subject to the regulations of the Water Pollution Control Law,
As it is, it cannot be discharged into sewers. Therefore, in order to remove such hydrogen peroxide as much as possible, for example, there is a method of decomposing hydrogen peroxide by a reduction reaction with sodium bisulfite or the like, but according to this method, naturally generated acid other than sodium bisulfite is used. Since a neutralizing agent for neutralization is required, additional chemical substances must be added to treat hydrogen peroxide. There were great problems economically, as well as wastewater regulations and pollution prevention.

【0004】そこで、以前から上記したような問題点を
解決すべく、過酸化水素を活性炭で分解処理する技術が
いろいろと検討・開発されてきている。例えば、特開昭
63−39695号公報には、過酸化水素含有水に鉄塩
を添加し、pH2〜3.5に調整して活性炭と接触させ
る処理方法が提案されている。また、実公平2−435
15号公報には、pH10以上に調整した過酸化水素を
含む水溶液を固定粒状活性炭充填層の上面に直接散布し
て、活性炭層によって接触分解する過酸化水素の除去装
置が記載されている。しかしながら、前者の処理方法
は、上記したようにアルカリで中和処理する必要がある
ので、各種薬剤費とpH調整器ならびにそれに伴う複雑
な制御系装置が必要となるので、コスト的に問題があ
り、後者の除去装置は、苛性ソーダなどでpH10以上
に調整しなければならないので、上記した問題点が未解
決のまま残っているうえに、粒状活性炭充填層は固定床
式なので、過酸化水素濃度に限界があり、あまり高濃度
な過酸化水素の分解処理には不適である。
In order to solve the above-mentioned problems, various techniques for decomposing hydrogen peroxide with activated carbon have been studied and developed. For example, JP-A-63-39695 proposes a treatment method in which an iron salt is added to hydrogen peroxide-containing water, the pH is adjusted to 2 to 3.5, and the mixture is brought into contact with activated carbon. In addition, actual fairness 2-435
No. 15 discloses a device for removing hydrogen peroxide which is sprayed directly on an upper surface of a fixed granular activated carbon packed bed with an aqueous solution containing hydrogen peroxide adjusted to pH 10 or higher, and catalytically decomposed by the activated carbon bed. However, the former treatment method requires a neutralization treatment with an alkali as described above, and thus requires various chemical costs, a pH adjuster, and a complicated control system associated therewith. However, the latter removal device must be adjusted to pH 10 or more with caustic soda, etc., so that the above-mentioned problems remain unsolved. Due to its limitations, it is not suitable for the decomposition of very high concentrations of hydrogen peroxide.

【0005】一方、実用新案登録第2560167号公
報には、処理水槽に貯留された過酸化水素を含んだ廃液
が循環管路系を通って粒状活性炭フィルターへ循環・通
水して過酸化水素を分解処理する過酸化水素水の分解装
置が記載されている。この装置によれば、確かに各種薬
剤を一切使用せずに、粒状活性炭フィルターで過酸化水
素を分解処理するものではあるが、この分解処理装置は
バッチ方式なので、大量に発生する排水を処理するため
には膨大な設備が必要となり、過酸化水素を高濃度に含
有する排水の処理は不可能であり、また、分解処理にか
なりの時間がかかるといった致命的な問題が残ってい
る。
On the other hand, Japanese Utility Model Registration No. 2560167 discloses that waste liquid containing hydrogen peroxide stored in a treated water tank is circulated and passed through a circulation pipe system to a granular activated carbon filter to remove hydrogen peroxide. A device for decomposing hydrogen peroxide water to be decomposed is described. According to this device, hydrogen peroxide is decomposed by a granular activated carbon filter without using various chemicals at all. However, since this decomposition device is a batch type, it treats a large amount of wastewater generated. For this purpose, enormous equipment is required, and it is impossible to treat wastewater containing a high concentration of hydrogen peroxide, and there remains a fatal problem that a considerable time is required for the decomposition treatment.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、上
記したような従来技術の欠点に鑑み、これらの問題点を
解決するためになされたものであって、酸・アルカリな
どによるpH調整や中和処理をすることなく、排水中に
高濃度に含有する過酸化水素を連続的かつ効率よく、し
かも短時間で分解処理することができる過酸化水素の分
解処理方法を提供することを目的とするものである。
In view of the above-mentioned drawbacks of the prior art, the present invention has been made to solve these problems. An object of the present invention is to provide a method for decomposing hydrogen peroxide which can continuously and efficiently decompose hydrogen peroxide contained in a high concentration in wastewater without performing a neutralization process, and in a short time. Is what you do.

【0007】[0007]

【課題を解決するための手段】以上のような目的を達成
するために、本発明では次のような過酸化水素の分解処
理方法を提供するものである。すなわち、本発明になる
過酸化水素の分解処理方法は、原水中に含有する高濃度
な過酸化水素を流動床式活性炭塔で分解処理する方法で
あって、原水を循環水で希釈・混合してから流動床式活
性炭塔に供給するとともに、その流動床式活性炭塔内の
上向流速度を40m/h以上、過酸化水素負荷を50k
gH2 2 /m 3 活性炭・h以下にしたことを特徴とす
るものである。
Means for Solving the Problems Achieving the above objects
Therefore, in the present invention, the following decomposition treatment of hydrogen peroxide is performed.
It provides a management method. That is, the present invention
Decomposition method of hydrogen peroxide is high concentration in raw water
Of hydrogen peroxide in a fluidized bed activated carbon tower
And then dilute and mix the raw water with circulating water before
To the activated carbon tower, and in the fluidized bed activated carbon tower.
Upflow velocity of 40m / h or more, hydrogen peroxide load of 50k
gHTwoOTwo/ M ThreeActivated carbon, less than h
Things.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に示す実施例を基に説明する。図1は本発明に係わる過
酸化水素水の分解処理装置の一実施態様例を示す概略説
明図である。(1)は原水槽であり、原水槽(1)には
過酸化水素を高濃度に含有する原水(以下、単に原水と
略称する)が配管(10)を経て供給されてくる。
(2)は粒状活性炭(9)を所定量充填した流動床式活
性炭塔であり、原水はスタティックミキサー(3)で循
環水と混合されて所定倍率に希釈され、流動床式活性炭
塔(2)の底部に複数設けられた噴出口(5)から連続
的に通水される。流動床式活性炭塔(2)内で粒状活性
炭(9)に過酸化水素が接触すると、水と酸素に分解さ
れ、酸素は気泡となって上向流循環水に同伴されて上昇
し、流動床式活性炭塔(2)上部にて大気へ放出され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below based on examples shown in the drawings. FIG. 1 is a schematic explanatory view showing an embodiment of an apparatus for decomposing hydrogen peroxide water according to the present invention. (1) is a raw water tank, and raw water containing a high concentration of hydrogen peroxide (hereinafter simply referred to as raw water) is supplied to the raw water tank (1) through a pipe (10).
Reference numeral (2) denotes a fluidized bed activated carbon tower filled with a predetermined amount of granular activated carbon (9). Raw water is mixed with circulating water by a static mixer (3) and diluted to a predetermined magnification, and the fluidized bed activated carbon tower (2) is used. Water is continuously passed through a plurality of ejection ports (5) provided at the bottom of the container. When hydrogen peroxide comes in contact with the granular activated carbon (9) in the fluidized bed activated carbon tower (2), it is decomposed into water and oxygen, and the oxygen rises as bubbles along with the upward circulating water, and the fluidized bed It is released to the atmosphere at the top of the activated carbon tower (2).

【0009】流動床式活性炭塔(2)内を上向流して粒
状活性炭(9)と接触し、過酸化水素が分解処理された
循環水(処理水)は、流動床式活性炭塔(2)から溢流
して、配管(11)を経て循環槽(4)に送られる。循
環槽(4)の下部より抜き出された循環水は配管(1
4)を経てスタティックミキサー(3)へ送られ、配管
(15)を経て供給されてくる原水を希釈する。そし
て、循環水と混合して希釈された原水は流動床式活性炭
塔(2)に配管(16)を経て連続的に供給される。循
環槽(4)に送られた循環水のうち、原水供給量に見合
う処理水は、上部より溢流し、配管(12)を経て処理
水槽(6)へ送られ、配管(13)を経て系外へ放流さ
れる。なお、図中(7)はポンプ、(8)は流量調節計
である。
[0009] The circulating water (treated water), which flows upward in the fluidized bed activated carbon tower (2), comes into contact with the granular activated carbon (9), and is subjected to decomposition treatment of hydrogen peroxide, is fluidized bed activated carbon tower (2). And is sent to the circulation tank (4) via the pipe (11). The circulating water extracted from the lower part of the circulation tank (4)
The raw water sent to the static mixer (3) via 4) and supplied through the pipe (15) is diluted. The raw water mixed and diluted with the circulating water is continuously supplied to the fluidized bed activated carbon tower (2) via a pipe (16). Of the circulating water sent to the circulation tank (4), treated water corresponding to the amount of raw water supplied overflows from the upper part, is sent to the treated water tank (6) via the pipe (12), and flows through the pipe (13). Released outside. In the drawing, (7) is a pump, and (8) is a flow controller.

【0010】本発明に係わる分解処理装置は、以上のよ
うな構成になっており、次にその一連の処理工程を説明
すると、まず、原水の分解処理に先立って、流動床式活
性炭塔(2)および循環槽(4)に通常の水を所定量貯
留しておき、ポンプ(7)を作動して循環槽(4)内の
水を配管(14)→スタティックミキサー(3)→配管
(16)→流動床式活性炭塔(2)→配管(11)と循
環させた後、配管(10)から原水槽(1)へ連続的に
送られてくる原水を配管(15)を経てスタティックミ
キサー(3)へ供給する。そして、配管(15)からの
原水は配管(14)からの循環水で希釈・混合されて、
流動床式活性炭塔(2)へ送られる。
[0010] The decomposition treatment apparatus according to the present invention is configured as described above. Next, a series of treatment steps will be described. First, prior to raw water decomposition treatment, a fluidized bed activated carbon tower (2) is used. ) And a predetermined amount of ordinary water are stored in the circulation tank (4), and the pump (7) is operated to supply water in the circulation tank (4) to the pipe (14) → the static mixer (3) → the pipe (16). ) → fluidized bed activated carbon tower (2) → circulate through pipe (11), and then feed raw water continuously sent from pipe (10) to raw water tank (1) through pipe (15) through static mixer ( Supply to 3). And the raw water from the pipe (15) is diluted and mixed with the circulating water from the pipe (14),
It is sent to a fluidized bed activated carbon tower (2).

【0011】流動床式活性炭塔(2)内には粒状活性炭
(9)が所定量充填されて流動状態となっており、流動
床式活性炭塔(2)内の底部に配設された噴出口(5)
は上方に向かって吹き出るようになっているので、噴出
口(5)から吹き出す原水と循環水との混合水は上向流
となって粒状活性炭(9)と接触し、混合水に含有して
いる過酸化水素が分解される。そして、分解された酸素
ガスは上向流循環水に同伴されて系外へ放出される。過
酸化水素を分解して流動床式活性炭塔(2)から溢流
し、配管(11)を経て循環槽(4)へ送られる循環水
(処理水)に含有する過酸化水素の濃度は、既に十分に
低下しているので、原水供給量に見合う処理水は沈殿槽
の構造をもった循環槽(4)の上部より清澄水となって
溢流し、配管(12)を経て処理水槽(6)へ送られ
て、そのままの状態で配管(13)を経て系外へ放流さ
れる。
The fluidized bed activated carbon tower (2) is filled with a predetermined amount of granular activated carbon (9) in a fluidized state, and is provided at a bottom of the fluidized bed activated carbon tower (2). (5)
Is blown upward, so that the mixed water of the raw water and the circulating water blown out from the outlet (5) flows upward and comes into contact with the granular activated carbon (9), and is contained in the mixed water. Hydrogen peroxide is decomposed. Then, the decomposed oxygen gas is discharged out of the system together with the upward circulating water. The concentration of hydrogen peroxide contained in the circulating water (treated water) which decomposes hydrogen peroxide, overflows from the fluidized bed activated carbon tower (2), and is sent to the circulation tank (4) via the pipe (11) Since it has been sufficiently lowered, the treated water corresponding to the amount of raw water supplied becomes clear water from the upper part of the circulation tank (4) having a sedimentation tank structure, overflows, and flows through the pipe (12) to the treated water tank (6). And discharged as it is through the pipe (13) to the outside of the system.

【0012】一方、循環槽(4)内の循環水は、循環槽
(4)の下部より浮遊する微粒子状態の活性炭も同伴さ
せて、配管(14)を経てスタティックミキサー(3)
へ送られ、配管(15)から送られてくる原水を希釈す
る。そして、循環水で希釈・混合された原水は、流動床
式活性炭塔(2)へ連続的に供給され、原水中の過酸化
水素は連続的に分解処理されていくものである。
On the other hand, the circulating water in the circulating tank (4) is accompanied by activated carbon in the form of fine particles floating from the lower part of the circulating tank (4), and the static mixer (3) is passed through a pipe (14).
To dilute the raw water sent from the pipe (15). Then, the raw water diluted and mixed with the circulating water is continuously supplied to the fluidized bed activated carbon tower (2), and the hydrogen peroxide in the raw water is continuously decomposed.

【0013】以上のような分解処理装置において、本発
明になる過酸化水素の分解処理方法の特徴は、過酸化水
素を高濃度(例えば50, 000mg/l以上)に含有
している原水を循環水で希釈・混合してから流動床式活
性炭塔(2)に供給して分解処理するとともに、その流
動床式活性炭塔(2)内の底部に配設された噴出口
(5)から吹き出す原水と循環水との混合水による流動
床式活性炭塔(2)内の上向流速度を40m/h以上と
し、かつ、流動床式活性炭塔(2)における過酸化水素
の負荷を50kgH2 2 /m3 活性炭・h以下、すな
わち、1時間に1m3 の活性炭で分解処理する過酸化水
素の量を50kg以下にしたことにある。
In the above-described decomposition apparatus, the feature of the method for decomposing hydrogen peroxide according to the present invention is to circulate raw water containing high concentration of hydrogen peroxide (for example, 50,000 mg / l or more). After being diluted and mixed with water, it is supplied to a fluidized bed activated carbon tower (2) for decomposition treatment, and raw water blown out from a jet port (5) disposed at the bottom in the fluidized bed activated carbon tower (2). The upward flow velocity in the fluidized-bed activated carbon tower (2) by the mixed water of water and circulating water is 40 m / h or more, and the load of hydrogen peroxide in the fluidized-bed activated carbon tower (2) is 50 kg H 2 O 2. / M 3 activated carbon · h or less, that is, the amount of hydrogen peroxide decomposed with 1 m 3 of activated carbon per hour was reduced to 50 kg or less.

【0014】原水中の過酸化水素を分解処理する活性炭
の能力は、その粒度、細孔構造および吸着平衡時の吸着
能力によって決まり、とりわけ過酸化水素と活性炭粒子
との接触機会を如何に増大させるかが重要である。した
がって、固定床式活性炭塔ではその構造上から過酸化水
素と活性炭粒子との接触がどうしても制約されるので、
活性炭を浮遊状態に保つことによって過酸化水素との接
触の機会を増大させることができ、かつ分解生成した酸
素ガスの放出が容易な流動床式活性炭塔(2)を採用す
るのが好ましい。
The ability of activated carbon to decompose hydrogen peroxide in raw water depends on its particle size, pore structure and adsorption capacity at the time of adsorption equilibrium, and in particular, how to increase the chance of contact between hydrogen peroxide and activated carbon particles. Is important. Therefore, in the fixed-bed type activated carbon tower, the contact between the hydrogen peroxide and the activated carbon particles is inevitably restricted due to its structure.
By maintaining the activated carbon in a floating state, it is preferable to employ a fluidized bed activated carbon tower (2) which can increase the chance of contact with hydrogen peroxide and can easily release oxygen gas generated by decomposition.

【0015】また、活性炭の粒径サイズはあまり粗いと
流動床式活性炭塔(2)内において安定した流動層を得
ることができないし、あまり微細な活性炭では流動床式
活性炭塔(2)内においていたずらに浮遊して、過酸化
水素との接触機会が減少したり、あるいは流動床式活性
炭塔(2)から溢流した循環水(処理水)と一緒に塔外
へ流出してしまうので、活性炭の粒径サイズは0.8m
m〜1.6mm程度が好ましい。また、流動床式活性炭
塔(2)内の底部に配設された噴出口(5)から吹き出
す原水と循環水との混合水による流動床式活性炭塔
(2)内の上向流速度があまり低いと、活性炭が流動床
式活性炭塔(2)内で好ましい状態で浮遊せずに分解し
た酸素ガスによる、いわゆるスラッキング現象が生じる
おそれがあるので、流動床式活性炭塔(2)内における
上向流速度は最低でも40m/h以上に維持しておくの
が好ましい。
If the particle size of the activated carbon is too coarse, a stable fluidized bed cannot be obtained in the fluidized bed activated carbon tower (2). Activated carbon, which floats unnecessarily and decreases the chance of contact with hydrogen peroxide, or flows out of the fluidized bed activated carbon tower (2) together with the circulating water (treated water) overflowing from the tower. 0.8m particle size
m to about 1.6 mm is preferable. Also, the upward flow velocity in the fluidized bed activated carbon tower (2) due to the mixed water of the raw water and the circulating water blown out from the jet port (5) disposed at the bottom in the fluidized bed activated carbon tower (2) is too low. When it is low, the so-called slacking phenomenon may occur due to oxygen gas which is decomposed without floating in a favorable state in the fluidized bed activated carbon tower (2). It is preferable to maintain the countercurrent velocity at least 40 m / h or more.

【0016】更に、流動床式活性炭塔(2)内で過酸化
水素が分解処理されて溢流した循環水(処理水)の過酸
化水素濃度と、流動床式活性炭塔(2)内における過酸
化水素負荷とは、ほぼ比例関係にあり、過酸化水素負荷
を小さくすれば、処理水の過酸化水素濃度が低くなり、
過酸化水素負荷を大きくすれば、処理水の過酸化水素濃
度が高くなる。そして、過酸化水素負荷があまり大きい
と、酸素ガスの気泡が活性炭界面において激しく発生
し、活性炭の巻き上げも大きくなって過酸化水素の分解
処理効率が急激に低下する。したがって、流動床式活性
炭塔(2)内における過酸化水素負荷は、50kgH2
2 /m3 活性炭・h以下に留めるのが望ましい。な
お、当然ながら、活性炭を長時間使用していると、活性
炭が微細に分解されたり、過酸化水素を分解処理する能
力が低下してくるので、定期的にメイクアップする必要
がある。
Further, the concentration of hydrogen peroxide in the circulating water (treated water) which has overflowed due to the decomposition of hydrogen peroxide in the fluidized bed type activated carbon tower (2) and the hydrogen peroxide concentration in the fluidized bed type activated carbon tower (2). There is an almost proportional relationship with the hydrogen oxide load, and if the hydrogen peroxide load is reduced, the hydrogen peroxide concentration of the treated water decreases,
Increasing the hydrogen peroxide load increases the concentration of hydrogen peroxide in the treated water. If the hydrogen peroxide load is too large, bubbles of oxygen gas are violently generated at the interface of the activated carbon, and the activated carbon is greatly wound up, so that the efficiency of hydrogen peroxide decomposition treatment is rapidly reduced. Therefore, the hydrogen peroxide load in the fluidized bed activated carbon tower (2) is 50 kgH 2
It is desirable to keep O 2 / m 3 activated carbon · h or less. Naturally, if the activated carbon is used for a long time, the activated carbon is finely decomposed or the ability to decompose hydrogen peroxide is reduced, so it is necessary to make up periodically.

【0017】また、過酸化水素を高濃度に含有している
原水を直接流動床式活性炭塔(2)内に通水せずに、一
旦循環水で希釈・混合してから流動床式活性炭塔(2)
に供給する方式、すなわち、流動床式活性炭塔(2)内
で過酸化水素を分解処理した処理水を循環水として利用
し、供給されてくる原水を連続的に希釈・混合してから
再度流動床式活性炭塔(2)へ供給することによって、
原水中の過酸化水素を連続的に分解処理するようにして
いるが、流動床式活性炭塔(2)内へ通水する際の原水
と循環水との混合水の過酸化水素濃度は1, 000mg
/l以下とするのが好ましく、例えば原水の過酸化水素
濃度が50, 000mg/lの場合は循環水で約50倍
に(過酸化水素濃度が1, 000mg/l以下になるま
で)希釈してから、流動床式活性炭塔(2)内に通水す
るのが望ましい。
Also, the raw water containing a high concentration of hydrogen peroxide is not directly passed through the fluidized bed activated carbon tower (2), but is once diluted and mixed with circulating water, and then is fluidized bed activated carbon tower. (2)
In this method, treated water obtained by decomposing hydrogen peroxide in a fluidized bed activated carbon tower (2) is used as circulating water, and the supplied raw water is continuously diluted and mixed, and then reflowed By supplying to the activated carbon tower (2),
Although hydrogen peroxide in raw water is continuously decomposed, the concentration of hydrogen peroxide in the mixed water of raw water and circulating water when flowing into the fluidized bed activated carbon tower (2) is 1, 000mg
/ L or less, for example, when the hydrogen peroxide concentration of the raw water is 50,000 mg / l, dilute with circulating water about 50 times (until the hydrogen peroxide concentration becomes 1,000 mg / l or less). After that, it is desirable to pass water through the fluidized bed activated carbon tower (2).

【0018】次に、図1の説明図に基づいて製作した試
験装置で、下記の運転条件で確認したデータを表1に示
す。 流動床式活性炭塔:直径146mm×高さ2000mm 活性炭層:高さ1000mm 使用活性炭:武田工業製 X−7100球形炭 平均粒径1.3mm〜1.6mm 循環槽:直径100mm×高さ1000mm 原水中の過酸化水素濃度:10wt% 循環水量:770l/h 流動床式活性炭塔内の上向流速度:46m/h 活性炭展開率:31%
Next, Table 1 shows data confirmed by the test apparatus manufactured based on the explanatory view of FIG. 1 under the following operating conditions. Fluidized bed activated carbon tower: 146 mm in diameter x 2,000 mm in height Activated carbon layer: 1000 mm in height Activated carbon used: X-7100 spherical charcoal manufactured by Takeda Kogyo Average particle size 1.3 mm to 1.6 mm Circulation tank: 100 mm in diameter x 1000 mm in height Raw water Hydrogen peroxide concentration: 10 wt% Circulating water volume: 770 l / h Upflow velocity in a fluidized bed activated carbon tower: 46 m / h Activated carbon development rate: 31%

【0019】[0019]

【表1】 [Table 1]

【0020】ここで、上記の試験結果をケース3を例に
とって説明すると、まず、循環ポンプ(7)を作動し
て、循環水を、循環槽(4)→スタティックミキサー
(3)→流動床式活性炭塔(2)の順路で循環させてお
く。そして、原水槽(1)から、過酸化水素濃度10w
t%の原水を6.3l/hで供給するとともに、この原
水をスタティックミキサー(3)で循環水と混合し、過
酸化水素濃度を121倍に希釈してから流動床式活性炭
塔(2)に通水する。このとき、流動床式活性炭塔
(2)の底部に配設された噴出口(5)から吹き出す原
水と循環水との混合水の過酸化水素濃度は、920mg
/lであった。そして、流動床式活性炭塔(2)で過酸
化水素を分解処理して、その流動床式活性炭塔(2)か
ら溢流した処理水の過酸化水素濃度を測定したら、90
mg/lとなった。なお、このときの流動床式活性炭塔
(2)内における過酸化水素負荷は38kgH2 2
3 活性炭・hであった。
Here, the above test results will be described by taking Case 3 as an example. First, the circulating pump (7) is operated to circulate the circulating water into the circulating tank (4) → the static mixer (3) → the fluidized bed type. It is circulated in the route of the activated carbon tower (2). Then, from the raw water tank (1), a hydrogen peroxide concentration of 10 w
While supplying t% of raw water at 6.3 l / h, this raw water was mixed with circulating water by a static mixer (3) to dilute the hydrogen peroxide concentration to 121 times, and then a fluidized bed activated carbon tower (2) Water. At this time, the hydrogen peroxide concentration of the mixed water of the raw water and the circulating water blown out from the jet port (5) disposed at the bottom of the fluidized bed activated carbon tower (2) is 920 mg.
/ L. Then, hydrogen peroxide is decomposed in the fluidized bed activated carbon tower (2), and the hydrogen peroxide concentration of the treated water overflowing from the fluidized bed activated carbon tower (2) is measured.
mg / l. The hydrogen peroxide load in the fluidized bed activated carbon tower (2) at this time was 38 kgH 2 O 2 /
m 3 activated carbon · h.

【0021】[0021]

【発明の効果】以上のように、本発明になる過酸化水素
の分解処理方法は、過酸化水素を高濃度に含有する原水
を循環水で希釈・混合してから流動床式活性炭塔に供給
し、その流動床式活性炭塔内の底部から吹き出す原水と
循環水との混合水による上向流にて活性炭を流動させ
て、原水中の過酸化水素を分解処理するが、このときの
流動床式活性炭塔内の上向流速度を40m/h以上とし
たので、スラッキング現象が発生することはなく、ま
た、活性炭1m3 あたりの過酸化水素分解量を示す過酸
化水素負荷を50kgH2 2 /m3 活性炭・h以下と
したので、効率よく分解処理することができる。本発明
によれば、従来技術のようにアルカリなどによるpH調
整や中和処理を一切必要とせずに、過酸化水素を例えば
50, 000mg/l以上含有するような高濃度な原水
でも連続的に、かつ短時間に効率よく分解処理すること
ができるようになるので、当業界に及ぼす効果には著し
いものがある。
As described above, in the method for decomposing hydrogen peroxide according to the present invention, raw water containing high concentration of hydrogen peroxide is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. Then, the activated carbon is caused to flow in an upward flow by a mixed water of raw water and circulating water blown out from the bottom in the fluidized bed activated carbon tower to decompose hydrogen peroxide in the raw water. Since the upward flow velocity in the activated carbon tower was set to 40 m / h or more, the slacking phenomenon did not occur, and the hydrogen peroxide load indicating the decomposition amount of hydrogen peroxide per 1 m 3 of activated carbon was 50 kgH 2 O. Since it is not more than 2 / m 3 activated carbon · h, it can be efficiently decomposed. According to the present invention, high-concentration raw water containing, for example, 50,000 mg / l or more of hydrogen peroxide can be continuously used without requiring any pH adjustment or neutralization treatment with an alkali or the like as in the prior art. The decomposition can be performed efficiently in a short period of time, and the effect on the industry is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる過酸化水素水の分解処理装置の
一例を示す概略説明図
FIG. 1 is a schematic explanatory view showing one example of a hydrogen peroxide water decomposition treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 原水槽 2 流動床式活性炭塔 3 スタティックミキサー 4 循環槽 5 噴出口 6 処理水槽 7 ポンプ 8 流量調節計 9 活性炭 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Fluid bed activated carbon tower 3 Static mixer 4 Circulation tank 5 Spouting port 6 Treatment water tank 7 Pump 8 Flow controller 9 Activated carbon

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 英二 東京都港区港南4−1−8 リバージュ品 川ビル 旭エンジニアリング株式会社内 (72)発明者 榎本 俊 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D038 AA08 AB26 BA02 BA06 BB06 4D050 AA13 AB33 BC05 BD02 BD08 CA06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Eiji Amano 4-1-8 Konan, Minato-ku, Tokyo Reverage Shinagawa Building Asahi Engineering Co., Ltd. (72) Shun Enomoto 3-4 Nishishinjuku, Shinjuku-ku, Tokyo No. 7 F-term in Kurita Water Industries Ltd. (reference) 4D038 AA08 AB26 BA02 BA06 BB06 4D050 AA13 AB33 BC05 BD02 BD08 CA06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水中に含有する高濃度な過酸化水素を
流動床式活性炭塔で分解処理する方法であって、原水を
循環水で希釈・混合してから流動床式活性炭塔に供給す
るとともに、その流動床式活性炭塔内の上向流速度を4
0m/h以上、過酸化水素負荷を50kgH2 2 /m
3 活性炭・h以下にしたことを特徴とする過酸化水素の
分解処理方法。
1. A method for decomposing high-concentration hydrogen peroxide contained in raw water in a fluidized bed activated carbon tower, wherein the raw water is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower. At the same time, the upward flow velocity in the fluidized bed activated carbon
0 m / h or more, hydrogen peroxide load 50 kgH 2 O 2 / m
A method for decomposing hydrogen peroxide, characterized in that the activated carbon is not more than 3 hours.
JP10310224A 1998-10-30 1998-10-30 Decomposition method of hydrogen peroxide Withdrawn JP2000135492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10310224A JP2000135492A (en) 1998-10-30 1998-10-30 Decomposition method of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10310224A JP2000135492A (en) 1998-10-30 1998-10-30 Decomposition method of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JP2000135492A true JP2000135492A (en) 2000-05-16

Family

ID=18002693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10310224A Withdrawn JP2000135492A (en) 1998-10-30 1998-10-30 Decomposition method of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP2000135492A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065527A3 (en) * 2003-01-24 2005-04-28 Eng-Chye Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
JP2006000827A (en) * 2004-06-21 2006-01-05 Japan Organo Co Ltd Wastewater treatment method
JP2009154109A (en) * 2007-12-27 2009-07-16 Ebara Jitsugyo Co Ltd Residual oxidant removal apparatus, residual oxidant removal method, and water sterilization system
KR20180051250A (en) * 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
KR20190013998A (en) * 2016-06-02 2019-02-11 에보쿠아 워터 테크놀로지스 엘엘씨 Treatment of high-content peroxide waste streams
WO2024100922A1 (en) * 2022-11-10 2024-05-16 日本メクトロン株式会社 Hydrogen peroxide decomposition system, hydrogen peroxide decomposition device, and decomposition method for hydrogen peroxide

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335421C (en) * 2003-01-24 2007-09-05 张英顺 Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
AU2004205860B2 (en) * 2003-01-24 2008-09-18 Teoh, Eng Soon Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
US7666314B2 (en) 2003-01-24 2010-02-23 Eng Soon Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
WO2004065527A3 (en) * 2003-01-24 2005-04-28 Eng-Chye Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
JP2006000827A (en) * 2004-06-21 2006-01-05 Japan Organo Co Ltd Wastewater treatment method
JP2009154109A (en) * 2007-12-27 2009-07-16 Ebara Jitsugyo Co Ltd Residual oxidant removal apparatus, residual oxidant removal method, and water sterilization system
JP6995785B2 (en) 2016-06-02 2022-01-17 エヴォクア ウォーター テクノロジーズ エルエルシー Treatment of high hydrogen peroxide waste stream
KR20190013998A (en) * 2016-06-02 2019-02-11 에보쿠아 워터 테크놀로지스 엘엘씨 Treatment of high-content peroxide waste streams
JP2019517385A (en) * 2016-06-02 2019-06-24 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Treatment of high hydrogen peroxide waste streams
KR102480516B1 (en) 2016-06-02 2022-12-22 에보쿠아 워터 테크놀로지스 엘엘씨 Treatment of high peroxide waste streams
KR20180051250A (en) * 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
KR102018645B1 (en) * 2016-11-08 2019-09-05 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
WO2024100922A1 (en) * 2022-11-10 2024-05-16 日本メクトロン株式会社 Hydrogen peroxide decomposition system, hydrogen peroxide decomposition device, and decomposition method for hydrogen peroxide

Similar Documents

Publication Publication Date Title
Huang et al. Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer
US7713426B2 (en) Water treatment
JP3350364B2 (en) Wastewater treatment method and wastewater treatment device
EP0698579A2 (en) Apparatus and method for treatment of waste water and/or exhaust gases containing fluorine and surface active agents
JP2873254B2 (en) Contact method
US8057676B2 (en) Drainage water-treating method
JP2000135492A (en) Decomposition method of hydrogen peroxide
JP6534245B2 (en) Breeding water circulation system for closed circulation type breeding
JP3129945B2 (en) Semiconductor manufacturing exhaust gas treatment method
JP2655299B2 (en) How to remove hydrogen peroxide
JPS6328429A (en) Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility
JP4014679B2 (en) Wastewater treatment method
JP2007253132A (en) Wastewater treatment method and wastewater treatment equipment
JPH091160A (en) Oxidizing substance removing method and wet flue gas desulfurization apparatus
JP2013006155A (en) Defoaming device and method of used discharged seawater and discharge system of used discharged seawater
JPS6320093A (en) Treatment of fluorine-containing waste water
JP3387190B2 (en) Biological sludge ozonation equipment
JPS6218230B2 (en)
JP3316959B2 (en) Biological sludge ozonation equipment
KR101993680B1 (en) Treatment System of The Wastewater Containing Silica
KR100733332B1 (en) Wastewater treatment method containing high concentration hydrofluoric acid and nitric acid
JPS5820223A (en) Apparatus for treating waste ozone
JP2006281041A (en) Organic substance-containing water treatment apparatus and operation method thereof
JPH11114372A (en) Wet denitrification method
JPH057075B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110