[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000132692A - Method for extracting feature point of curve and recording medium recording the method - Google Patents

Method for extracting feature point of curve and recording medium recording the method

Info

Publication number
JP2000132692A
JP2000132692A JP10301819A JP30181998A JP2000132692A JP 2000132692 A JP2000132692 A JP 2000132692A JP 10301819 A JP10301819 A JP 10301819A JP 30181998 A JP30181998 A JP 30181998A JP 2000132692 A JP2000132692 A JP 2000132692A
Authority
JP
Japan
Prior art keywords
curve
vector
search
pixel
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10301819A
Other languages
Japanese (ja)
Inventor
Koichi Kokado
康一 古角
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10301819A priority Critical patent/JP2000132692A/en
Publication of JP2000132692A publication Critical patent/JP2000132692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To make efficiently executable an approximation in a curve approximation such as spline interpolation by detecting the appearance of feature points by means of the increase/decrease of the intersections of a search line with the curve and detecting the feature point from the positions of the intersections of the search lines before and after the detected search line with the curve. SOLUTION: Search is executed by successively shifting the search lines from L=1 in order to extract the point of a projecting part in the curve which is made into a picture and the point which is not smooth on the curve as the feature points (S1 and S10), the number of intersections of the search line with the curve and their positions are detected (S4-S6), the increased/decreased intersections are extracted from the relation of the intersection positions of the curve with the before and after search lines (S8) concerning the search line where the number of intersections are increased/decreased (S7) and the extracted intersections are made to be the feature points (S9).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、実験データや画像
の輪郭線などを滑らかな曲線で近似するための前処理と
して曲線の特徴点を抽出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting characteristic points of a curve as preprocessing for approximating experimental data and contour lines of an image with a smooth curve.

【0002】[0002]

【従来の技術】曲線を関数で近似する方法は、例えば、
bit別冊「インターネット時代の数学」第3部5章ス
プライン(吉本 富士市 著)に記載されるように、S
pline補間やB−Splineを用いる方法があ
る。
2. Description of the Related Art A method of approximating a curve by a function is, for example, as follows.
As described in the separate volume “Mathematics in the Internet Age”, Part 3, Chapter 5, Spline (by Fujiichi Yoshimoto),
There are methods using plane interpolation and B-Spline.

【0003】[0003]

【発明が解決しようとする課題】曲線をSpline補
間や、B−Splineで近似しようとするとき、曲線
内に節点を決定し、該節点間でSpline補間などを
行うが、その節点決定方法において、曲線の特徴点であ
る曲線の凸部分や曲線の滑らかでない部分に節点を集め
ると効率が良い。しかしながら、節点になり得る曲線の
特徴点を抽出するのは困難であった。
When approximating a curve by Spline interpolation or B-Spline, nodes are determined in the curve, and Spline interpolation is performed between the nodes. It is efficient to collect nodes at convex portions of the curve, which are characteristic points of the curve, and at portions where the curve is not smooth. However, it has been difficult to extract characteristic points of a curve that can be nodes.

【0004】また、画像の輪郭線抽出方法として、各画
素を中心にして前後左右4近傍や斜めを含めた8近傍に
拡大し、この拡大領域内の画素で抽出領域に含まれない
画素を輪郭線画素とし、この輪郭線画素を基準にしてそ
の近傍をラスタスキャンで探索することで順次輪郭線画
素を順番付けして検出する方法を本願出願人は同日出願
している。この方法により、順番付けされて抽出された
輪郭線画素間をSpline補間などで近似する方法が
考えられるが、輪郭線が複数抽出されていても、1本の
輪郭線と間違えて近似してしまう恐れがある。
As a method of extracting the contour line of an image, the image is enlarged to four neighbors (front, rear, right and left, and eight neighbors including oblique) with each pixel as a center, and pixels within the enlarged area that are not included in the extraction area are extracted. The applicant of the present application filed a method on the same day as a line pixel, and sequentially searching for the contour pixels by searching the vicinity thereof by raster scan with reference to the contour pixels. According to this method, a method of approximating the extracted contour line pixels by Spline interpolation or the like can be considered. However, even if a plurality of contour lines are extracted, they are mistakenly approximated as one contour line. There is fear.

【0005】本発明の目的は、上記の問題点を解決し、
効率良く曲線の特徴点を抽出する方法及びこの方法を記
録した記録媒体を提供することにある。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide a method for efficiently extracting characteristic points of a curve and a recording medium on which the method is recorded.

【0006】[0006]

【課題を解決するための手段】本発明は、画像内の曲線
の特徴点である、凸部分の点や、曲線上の滑らかでない
点を抽出するために、ライン単位で探索し、探索ライン
と該曲線との交点の増減で特徴点の出現を検出し、検出
した探索ラインの前後の探索ラインと該曲線との交差点
の位置から特徴点を検出するようにしたもので、以下の
方法及び記録媒体を特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a search is performed on a line-by-line basis to extract a convex point or a non-smooth point on a curve, which is a characteristic point of a curve in an image. The appearance of a feature point is detected by increasing or decreasing the intersection with the curve, and the feature point is detected from the position of the intersection of the curve with the search line before and after the detected search line. Features media.

【0007】画像化された曲線の凸部分の点や該曲線上
で滑らかでない点を特徴点として抽出する方法であっ
て、画像内を1ラインずつ探索していき、該探索ライン
と曲線との交差点の個数とその位置を検出し、前記交差
点個数の増減があった探索ラインについて、前後の探索
ラインでの曲線の交差点位置の関係から増減した交差点
を抽出し、該抽出した交差点を特徴点とすることを特徴
とする曲線の特徴点抽出方法。
[0007] This is a method for extracting a point of a convex portion of an imaged curve or a point that is not smooth on the curve as a feature point. The image is searched line by line, and the search line and the curve are compared. The number of intersections and their positions are detected, and for search lines in which the number of intersections has increased or decreased, intersections that have increased or decreased have been extracted from the relationship between the intersection positions of the curves in the preceding and following search lines, and the extracted intersections have been identified as feature points. And extracting a characteristic point of a curve.

【0008】また、前記探索ラインは、縦、横、斜の何
れか1つの探索方向にすることを特徴とする曲線の特徴
点抽出方法。
[0008] In addition, the method of the present invention is characterized in that the search line is set to one of vertical, horizontal and diagonal search directions.

【0009】また、前記探索ラインは、ライン幅及び探
索間隔を任意にとることを特徴とする曲線の特徴点抽出
方法。
[0009] A method for extracting characteristic points of a curve, wherein the search line has an arbitrary line width and search interval.

【0010】また、前記曲線の特徴点抽出方法における
処理手順をコンピュータに実行させるプログラムとし
て、該コンピュータが読み取り可能に記録したことを特
徴とする曲線の特徴点抽出方法を記録した記録媒体。
[0010] Also, as a program for causing a computer to execute the processing procedure in the method for extracting characteristic points of a curve, a recording medium which records the characteristic point extraction method of a curve, which is readable by the computer.

【0011】また、本発明は、曲線の輪郭線が順番付け
された画素のつながりとして検出される場合に順番付け
の開始点と終了点を特徴点として抽出し、さらに、順番
付けされた輪郭線が複数抽出された場合に順番付け通り
各画素間の距離Dを計算し、該距離Dがある閾値Pより
大きい2点に終点と始点の符号を付与して特徴点として
検出し、さらにまた、ある画素から前後N番離れた画素
からベクトルを生成し、該生成ベクトルの角度や大きさ
がある閾値より大きい場合その画素を特徴点として抽出
するようにしたもので、以下の方法及び記録媒体を特徴
とする。
Further, according to the present invention, when a contour line of a curve is detected as a connection of ordered pixels, a start point and an end point of the ordering are extracted as feature points, and the ordered contour line is further extracted. When a plurality of are extracted, the distance D between each pixel is calculated according to the order, and two points larger than a certain threshold value P are assigned end point and start point signs and detected as feature points. A vector is generated from a pixel that is Nth pixels before and after a certain pixel, and when the angle and magnitude of the generated vector are larger than a certain threshold value, the pixel is extracted as a feature point. Features.

【0012】画像化された曲線の輪郭線が順番付けされ
た画素のつながりとして検出されている曲線において、
順番付けの開始点と終了点を特徴点として抽出すること
を特徴とする曲線の特徴点抽出方法。
In a curve where the contour of the imaged curve is detected as a sequence of ordered pixels,
A feature point extracting method for a curve, wherein a starting point and an ending point of ordering are extracted as feature points.

【0013】また、前記曲線において、前記順番通りに
各画素間の距離Dを計算し、該距離Dがある閾値Pより
大きくなる2点を特徴点として抽出することを特徴とす
る曲線の特徴点抽出方法。
In the curve, a distance D between pixels is calculated in the order described above, and two points at which the distance D is greater than a certain threshold value P are extracted as characteristic points. Extraction method.

【0014】また、前記順番付けした画素をもつ曲線上
のある画素Aに対して、すでにつけられた順番付けでN
番前の画素をBとし、すでにつけられた順番付けでN番
後の画素をCとして、画素A,B,C間のBAベクトル
とACベクトルを生成し、前記BAベクトルの始点を画
素Aまで平行移動したベクトルをBA’とし、該BA’
ベクトルと前記ACベクトルの角度θを計算し、該角度
θがある閾値Qより大きい場合に画素Aを特徴点として
抽出することを特徴とする曲線の特徴点抽出方法。
Further, for a certain pixel A on the curve having the ordered pixels, N
The BA pixel and the AC vector between the pixels A, B, and C are generated by setting the first pixel as B and the Nth pixel in the already assigned order as C, and starting the BA vector up to the pixel A. The translated vector is defined as BA ′, and the BA ′
A feature point extraction method for a curve, comprising calculating an angle θ between a vector and the AC vector, and extracting the pixel A as a feature point when the angle θ is larger than a certain threshold Q.

【0015】また、前記ACベクトルからBA’ベクト
ルを引いてB'Cベクトルを生成し、該B'Cベクトルの
大きさXがある閾値Rより大きい場合に画素Aを特徴点
として抽出することを特徴とする曲線の特徴点抽出方
法。
Further, a B′C vector is generated by subtracting a BA ′ vector from the AC vector, and a pixel A is extracted as a feature point when the size X of the B′C vector is larger than a threshold value R. A feature point extraction method for a characteristic curve.

【0016】また、前記曲線の特徴点抽出方法における
処理手順をコンピュータに実行させるプログラムとし
て、該コンピュータが読み取り可能に記録したことを特
徴とする曲線の特徴点抽出方法を記録した記録媒体。
Further, a recording medium which records a method for extracting characteristic points of a curve, characterized in that it is recorded as a program readable by the computer as a program for causing a computer to execute the processing procedure in the method for extracting characteristic points of a curve.

【0017】[0017]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の実施形態を示す特徴点抽出アルゴリズムであり、探
索ラインと曲線との交差点から特徴点を抽出する方法で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a feature point extraction algorithm according to an embodiment of the present invention, which is a method for extracting a feature point from an intersection between a search line and a curve.

【0018】図2のような曲線の特徴点は、同図中の丸
印の部分である。このような特徴点を含む曲線を構成す
る画素のつながり部分を図3に拡大して示す。探索ライ
ンとしては図4のように1ラインとし、この探索ライン
を探索方向に1ラインずつ移動させていく。本実施形態
では、この探索ラインによる探索で曲線と新しく交差し
たり、最後に交差した点を特徴点して抽出する。以下、
図1の手順を詳細に説明する。
The characteristic points of the curve as shown in FIG. 2 are indicated by circles in FIG. FIG. 3 is an enlarged view of a connected portion of pixels forming a curve including such a feature point. The search line is one line as shown in FIG. 4, and the search line is moved one line at a time in the search direction. In the present embodiment, a new intersection with the curve or the last intersection point is extracted as a feature point in the search using the search line. Less than,
The procedure of FIG. 1 will be described in detail.

【0019】図1において、探索ラインの探索段数L=
1を初期設定する(ステップS1)。この探索段数L
は、探索ラインを1ライン移動させる毎に初期値1から
順次増加させる(ステップS10)。
In FIG. 1, the number of search steps L of a search line is L =
1 is initialized (step S1). This search stage number L
Is sequentially increased from the initial value 1 every time the search line is moved by one line (step S10).

【0020】探索ラインの移動において、現在の探索ラ
インが探索範囲内であるか否かをチェックし(ステップ
S2)、探索範囲を越えたときに探索を終了する(ステ
ップS3)。
In moving the search line, it is checked whether or not the current search line is within the search range (step S2), and when the current search line exceeds the search range, the search is terminated (step S3).

【0021】現在の探索ラインが探索範囲内にあると
き、探索ラインの移動で探索ライン内の画素に曲線を構
成する画素があるか否かをチェックする(ステップS
4)。すなわち、探索ラインが曲線の一部と交差したか
否かをチェックする。このチェックで曲線との交差点が
ない場合は探索段数Lを+1すること、すなわち探索ラ
インを1段ずらす(ステップS10)。
When the current search line is within the search range, it is checked whether or not the pixels within the search line include pixels forming a curve by moving the search line (step S).
4). That is, it is checked whether or not the search line crosses a part of the curve. If there is no intersection with the curve in this check, the number of search steps L is incremented by 1, that is, the search line is shifted by one step (step S10).

【0022】探索ライン内の画素と曲線の画素が交差し
たとき、探索ラインと曲線との交差点の個数S(L)を
計算する。このとき、図5に丸内で示す交差領域のよう
に、探索ライン上で画素が連続して検出される交差点は
1点とみなす(ステップS5)。この交差点の個数S
(L)の計算に続けて、交差点の位置T(L)を検出す
る(ステップS6)。
When a pixel in the search line and a pixel on the curve intersect, the number S (L) of intersections between the search line and the curve is calculated. At this time, an intersection where pixels are continuously detected on the search line is regarded as one point, such as an intersection area indicated by a circle in FIG. 5 (step S5). The number S of this intersection
Following the calculation of (L), the position T (L) of the intersection is detected (step S6).

【0023】次に、ステップS5で求めた交差点の個数
S(L)と1ライン前の交差点の個数S(L−1)を一
致するか否かをチェックする(ステップS7)。このチ
ェックで一致した場合、すなわち交差点の個数が同じで
あるとき、この交差点を特徴点として抽出することな
く、探索ラインを1段ずらす(ステップS10)。
Next, it is checked whether or not the number of intersections S (L) obtained in step S5 matches the number of intersections S (L-1) one line before (step S7). If there is a match in this check, that is, if the number of intersections is the same, the search line is shifted by one step without extracting this intersection as a feature point (step S10).

【0024】交差点の個数が増減しているとき、交差点
の現在位置T(L)と1ライン前の交差点位置T(L−
1)になる交差点同士の関係を調べ、関係付けられない
画素を検出し(ステップS8)、この検出された画素を
特徴点として抽出し(ステップS9)、ステップS10
に戻って探索ラインが画像内全てを探索するまで、探索
する。
When the number of intersections increases or decreases, the current position T (L) of the intersection and the intersection position T (L-
The relationship between the intersections in 1) is checked, pixels that are not related are detected (step S8), and the detected pixels are extracted as feature points (step S9), and step S10 is performed.
And the search is continued until the search line has searched all over the image.

【0025】以上の方法を具体例を用いて説明する。図
6の探索ライン位置では交差点数が0から1に増えてお
り、図7では交差点数が1から2に増えている。したが
って、図6の検出画素を特徴点として抽出する。
The above method will be described using a specific example. At the search line position in FIG. 6, the number of intersections increases from 0 to 1, and in FIG. 7, the number of intersections increases from 1 to 2. Therefore, the detection pixels in FIG. 6 are extracted as feature points.

【0026】また、図8の場合は交差点数が2から3に
増え、図9では交差点数が3から4に増えている。した
がって、図8の中央の交差点の画素を特徴点として抽出
する。
In the case of FIG. 8, the number of intersections increases from 2 to 3, and in FIG. 9, the number of intersections increases from 3 to 4. Therefore, the pixel at the central intersection in FIG. 8 is extracted as a feature point.

【0027】複数の交差点から特徴点を決定するのは、
前後の探索ライン上での交差点の関係から決定する。例
えば、前の探索ラインの画素と現在の探索ラインの画素
との距離を計算し、一番近いものを関連付ける。そし
て、関連付けられない画素を特徴点と決定する。
Determining a feature point from a plurality of intersections is as follows.
It is determined from the relationship between intersections on the preceding and following search lines. For example, the distance between the pixel of the previous search line and the pixel of the current search line is calculated, and the closest one is associated. Then, a pixel that is not associated is determined as a feature point.

【0028】なお、本実施形態では、探索方向として縦
又は横の探索ラインを用いたが、例えば図10のよう
に、探索ラインのラインの幅を太く(図示では2倍)し
てもよいし、図11のように探索方向として斜めの探索
ラインを用いてもよいし、探索ラインの進む画素数(探
索間隔)を任意にとってもよい。
In this embodiment, a vertical or horizontal search line is used as the search direction. However, as shown in FIG. 10, the width of the search line may be increased (doubled in the figure). As shown in FIG. 11, a diagonal search line may be used as the search direction, or the number of pixels (search interval) that the search line advances may be arbitrarily set.

【0029】(第2の実施形態)本実施形態は、画像化
された曲線の輪郭線が順番付けされた画素のつながりと
して検出されている曲線において、この順番付け曲線に
スプライン補間などをする場合、曲線を構成する画素の
うち、最初と最後の画素は補間の上で重要であるため、
最初と最後の画素2点を特徴点とする。
(Second Embodiment) In this embodiment, in a case where the contour of an imaged curve is detected as a connection of ordered pixels, spline interpolation or the like is performed on the ordered curve. , Among the pixels that make up the curve, the first and last pixels are important for interpolation,
The first and last two pixels are set as feature points.

【0030】また、本実施形態では、複数の曲線をスプ
ライン補間などで近似する時は、曲線の分割点が重要で
ある。分割点を抽出するためにI番目とI+1番目の画
素間で距離Dを計算し、該距離Dがある閾値Pより大き
い場合その2点を分割点とする。そして、2点を特徴点
として抽出する。
In this embodiment, when a plurality of curves are approximated by spline interpolation or the like, the division points of the curves are important. In order to extract a division point, a distance D is calculated between the I-th pixel and the (I + 1) -th pixel. If the distance D is larger than a certain threshold value P, the two points are set as division points. Then, two points are extracted as feature points.

【0031】さらにまた、本実施形態では、ある画素か
ら前後N番離れた画素からベクトルを生成し、該生成ベ
クトルの角度や大きさがある閾値より大きい場合その画
素を特徴点として抽出する。
Further, in the present embodiment, a vector is generated from a pixel which is N pixels before and after a certain pixel, and when the angle or magnitude of the generated vector is larger than a certain threshold, the pixel is extracted as a feature point.

【0032】図12は、曲線を構成する画素から輪郭線
画素を順番付けして検出する輪郭線の抽出方法におい
て、抽出された輪郭線の特徴点を順番付けした画素間を
結ぶベクトルの角度の大小から抽出するアルゴリズムで
ある。
FIG. 12 shows a contour extraction method for sequentially detecting contour pixels from pixels constituting a curve and detecting the angle of a vector connecting the pixels in which the feature points of the extracted contour are ordered. It is an algorithm that extracts from large and small.

【0033】図13のように、矢印の順ですでに順番付
けされた画素で構成される曲線がある場合、図14のよ
うに、M番目の画素Aに対して、AよりN番(図示では
5番)前の画素をB、AよりN番(図示では5番)後の
画素をCとする。そして、画素A・B・Cから、図15
のように、BAベクトル、ACベクトルを生成し、BA
ベクトルの始点を画素Aまで平行移動したベクトルB
A’を生成する。さらに、図16に示すように、BA’
ベクトルとACベクトルの角度θを計算し、該角度θが
ある閾値Qより大きい場合,M番目の点Aを特徴点とし
て抽出する。以下、図12の手順を詳細に説明する。
As shown in FIG. 13, when there is a curve composed of pixels that have already been ordered in the order of the arrows, as shown in FIG. In this case, the pixel before (No. 5) is B, and the pixel after N (No. 5 in the figure) is A. Then, from the pixels A, B, and C, FIG.
Generate a BA vector and an AC vector, as in
Vector B translated from the starting point of the vector to pixel A
Generate A '. Further, as shown in FIG.
The angle θ between the vector and the AC vector is calculated, and if the angle θ is larger than a certain threshold Q, the M-th point A is extracted as a feature point. Hereinafter, the procedure of FIG. 12 will be described in detail.

【0034】図12において、特徴点抽出対象となる画
素の番号M=1を初期設定する(ステップS21)。こ
の番号Mは、1つの画素について抽出判定処理される毎
に初期値1から順次増加させる(ステップS30)。
In FIG. 12, the number M = 1 of the pixel from which the feature point is to be extracted is initialized (step S21). This number M is sequentially increased from the initial value 1 each time the extraction determination processing is performed for one pixel (step S30).

【0035】番号Mに任意に設定する数値Nを加えた値
が最終の番号より大きいか否かをチェックし(ステップ
S22)、大きい場合には特徴点抽出を終了する(ステ
ップS23)。M+Nの値が最終の番号よりも小さい場
合、M−N<0であるか否かをチェックする(ステップ
S24)。これらチェックは、図14のように、画素A
に対して画素B,Cが存在することを抽出条件とするた
めのものである。
It is checked whether or not the value obtained by adding the numerical value N arbitrarily set to the number M is larger than the last number (step S22). If the value is larger, the feature point extraction is terminated (step S23). If the value of M + N is smaller than the last number, it is checked whether M−N <0 (step S24). These checks are performed on the pixel A as shown in FIG.
, The presence of pixels B and C is used as an extraction condition.

【0036】また、他の実施例として、輪郭線が複数に
分離している場合、前記の特徴点抽出で分離点を抽出し
ているが、この分離点の始点と終点の間の輪郭線を線分
と考え、線分で特徴点を抽出する。すなわち、M+Nが
分離点の終点の順番より大きい場合、特徴点抽出を次の
線分に移す。そして、M−Nが分離点の始点より小さい
場合、Mを次の点に移動する。
As another embodiment, when the contour is separated into a plurality of parts, the separation point is extracted by the above-described feature point extraction, but the contour between the start point and the end point of the separation point is extracted. Consider a line segment and extract feature points with the line segment. That is, when M + N is larger than the order of the end points of the separation points, the feature point extraction is moved to the next line segment. If M−N is smaller than the start point of the separation point, M is moved to the next point.

【0037】画素Aに対して画素B,Cが存在する場
合、M番目の画素Aと、M−N番目の画素Bと、M+N
番目の画素Cの各座標を検出する(ステップS25)。
この座標から、図15のように、BAベクトル、ACベ
クトルを生成し、さらにBAベクトルの始点を画素Aま
で平行移動したベクトルBA’を生成する(ステップS
26)。
When the pixels B and C exist for the pixel A, the M-th pixel A, the M-N-th pixel B, and M + N
Each coordinate of the pixel C is detected (step S25).
From these coordinates, as shown in FIG. 15, a BA vector and an AC vector are generated, and a vector BA ′ in which the start point of the BA vector is translated to the pixel A is generated (step S).
26).

【0038】この後、図16のように、BA’ベクトル
とACベクトルの角度θを計算し(ステップS27)、
該角度θがある閾値Qより大きいか否かをチェックする
(ステップ(S28)。このチェックで角度θがある閾
値Qより大きい場合にM番目の点Aを特徴点として抽出
する(ステップS29)。
Thereafter, as shown in FIG. 16, the angle θ between the BA ′ vector and the AC vector is calculated (step S27),
It is checked whether or not the angle θ is larger than a certain threshold Q (step (S28). If the angle θ is larger than a certain threshold Q, the M-th point A is extracted as a feature point (step S29).

【0039】本実施形態では、角度θを用いているが、
内積など二つのベクトルの相関をあらわす指標でもよ
い。また、本実施形態では、Mは1ずつ増加している
が、増加量は任意である。
In this embodiment, the angle θ is used.
An index representing the correlation between two vectors, such as an inner product, may be used. In the present embodiment, M is increased by one, but the amount of increase is arbitrary.

【0040】また、他の実施形態として、ベクトルの大
きさから特徴点を抽出することもできる。この方法は、
図17のように、ACベクトルからAB’ベクトルを引
き、B’Cベクトルを生成し、このB'Cベクトルの大
きさXを計算し、この値Xがある閾値Rより大きい場
合、M番目の点Aを特徴点として抽出する。
As another embodiment, a feature point can be extracted from the magnitude of a vector. This method
As shown in FIG. 17, the AB ′ vector is subtracted from the AC vector to generate a B′C vector, the size X of the B′C vector is calculated. Point A is extracted as a feature point.

【0041】このベクトルの大きさから特徴点を抽出す
るアルゴリズムは、図18のようになる。同図が図12
と異なる部分は、ステップS26〜S29に代えて、ス
テップS31〜S33とした点にある。
The algorithm for extracting a feature point from the magnitude of this vector is as shown in FIG. FIG.
The difference from the above is that steps S31 to S33 are performed instead of steps S26 to S29.

【0042】ベクトルBA,AC,BA’を生成し(ス
テップS26)、この後、ACベクトルからAB’ベク
トルを引き、B'Cベクトルを生成し、このB'Cベクト
ルの大きさXを計算し(ステップ(S31)、この値X
がある閾値Rより大きいか否かをチェックし(ステップ
(S32)、大きい場合にM番目の画素Aを特徴点とし
て抽出する(ステップS33)。
The vectors BA, AC, and BA 'are generated (step S26). Thereafter, the AB' vector is subtracted from the AC vector to generate a B'C vector, and the size X of the B'C vector is calculated. (Step (S31), this value X
It is checked whether or not is larger than a certain threshold R (step (S32)). If it is larger, the M-th pixel A is extracted as a feature point (step S33).

【0043】なお、本発明は、近似対象となる曲線のデ
ータを保存し、図1、図12、図18のフローチャート
等で示した本発明の特徴点の抽出方法の処理手順ないし
アルゴリズムをコンピュータ等に実行させるためのプロ
グラムとし、該コンピュータが読み取り可能な記録媒
体、例えばフロッピーディスクやメモリカード、MO、
CD、DVDなどに記録して配布することが可能であ
る。
According to the present invention, data of a curve to be approximated is stored, and the processing procedure or algorithm of the feature point extracting method of the present invention shown in the flowcharts of FIGS. And a computer-readable recording medium such as a floppy disk, a memory card, an MO,
It can be recorded on a CD or DVD and distributed.

【0044】[0044]

【発明の効果】以上のとおり、本発明によれば、探索ラ
インと該曲線との交点の増減で特徴点の出現を検出し、
検出した探索ラインの前後の探索ラインと該曲線との交
差点の位置から特徴点を検出するようにしたため、Sp
line補間などの曲線近似を行うのに、効率良く近似
を行うことができる。
As described above, according to the present invention, the appearance of a feature point is detected by increasing or decreasing the intersection between the search line and the curve.
Since the feature point is detected from the position of the intersection between the search line before and after the detected search line and the curve, the Sp
In order to perform curve approximation such as line interpolation, approximation can be performed efficiently.

【0045】また、本発明は、曲線の輪郭線が順番付け
された画素のつながりとして検出される場合に順番付け
の開始点と終了点を特徴点として抽出し、さらに、順番
付けされた輪郭線が複数抽出された場合に順番付け通り
各画素間の距離Dを計算し、該距離Dがある閾値Pより
大きい2点に終点と始点の符号を付与して特徴点として
検出し、さらにまた、ある画素から前後N番離れた画素
からベクトルを生成し、該生成ベクトルの角度や大きさ
がある閾値より大きい場合その画素を特徴点として抽出
するようにしたため、Spline補間などの曲線近似
を行うのに、効率良く近似を行うことができる。
Further, according to the present invention, when a contour of a curve is detected as a connection of ordered pixels, a start point and an end point of ordering are extracted as feature points, and further, the ordered contour is extracted. When a plurality of are extracted, the distance D between each pixel is calculated according to the order, and two points larger than a certain threshold value P are assigned end point and start point signs and detected as feature points. Since a vector is generated from a pixel which is Nth anteroposterior from a certain pixel and the generated vector is extracted as a feature point when the angle or magnitude of the generated vector is larger than a certain threshold value, curve approximation such as Spline interpolation is performed. In addition, the approximation can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す探索ラインによる特徴
点抽出アルゴリズム。
FIG. 1 is a feature point extraction algorithm using a search line according to an embodiment of the present invention.

【図2】曲線の特徴点の説明図。FIG. 2 is an explanatory diagram of characteristic points of a curve.

【図3】曲線を画素レベルに拡大した図。FIG. 3 is an enlarged view of a curve at a pixel level.

【図4】探索ラインと探索方向の例。FIG. 4 is an example of a search line and a search direction.

【図5】探索ラインと曲線の交差領域の説明図。FIG. 5 is an explanatory diagram of an intersection area between a search line and a curve.

【図6】探索ラインと曲線の交差点の例。FIG. 6 is an example of an intersection between a search line and a curve.

【図7】探索ラインと曲線の交差点の例。FIG. 7 is an example of an intersection between a search line and a curve.

【図8】探索ラインが曲線と複数箇所で交差する例。FIG. 8 is an example in which a search line intersects a curve at a plurality of locations.

【図9】探索ラインが曲線と複数箇所で交差する例。FIG. 9 is an example in which a search line intersects a curve at a plurality of locations.

【図10】探索ラインの幅を2倍にした例。FIG. 10 is an example in which the width of a search line is doubled.

【図11】探索ラインの探索方向を斜めにした例。FIG. 11 is an example in which the search direction of a search line is oblique.

【図12】本発明の実施形態を示すベクトルの角度によ
る特徴点抽出アルゴリズム。
FIG. 12 shows a feature point extraction algorithm based on a vector angle according to the embodiment of the present invention.

【図13】順番付けされた画素のつながりとした曲線の
例。
FIG. 13 is an example of a curve as a connection of ordered pixels.

【図14】ベクトル角度による特徴点抽出を説明する画
素A,B,Cの位置関係図。
FIG. 14 is a positional relationship diagram of pixels A, B, and C for explaining feature point extraction based on vector angles.

【図15】画素A,B,C間のベクトル関係図。FIG. 15 is a vector relation diagram between pixels A, B, and C.

【図16】画素A,B,Cのベクトル角度θの説明図。FIG. 16 is an explanatory diagram of a vector angle θ of pixels A, B, and C.

【図17】画素A,B,Cのベクトル大きさB'Cの説
明図。
FIG. 17 is an explanatory diagram of a vector size B′C of pixels A, B, and C.

【図18】本発明の実施形態を示すベクトルの大きさに
よる特徴点抽出アルゴリズム。
FIG. 18 is a feature point extraction algorithm based on the magnitude of a vector according to the embodiment of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 画像化された曲線の凸部分の点や該曲線
上で滑らかでない点を特徴点として抽出する方法であっ
て、 画像内を1ラインずつ探索していき、該探索ラインと曲
線との交差点の個数とその位置を検出し、 前記交差点個数の増減があった探索ラインについて、前
後の探索ラインでの曲線の交差点位置の関係から増減し
た交差点を抽出し、該抽出した交差点を特徴点とするこ
とを特徴とする曲線の特徴点抽出方法。
1. A method for extracting a point of a convex portion of an imaged curve or a point which is not smooth on the curve as a feature point, wherein the image is searched line by line, and the search line and the curve The number of intersections and the position of the intersection are detected, and for the search line in which the number of intersections has increased or decreased, intersections that have been increased or decreased are extracted from the relationship between the intersection positions of the curves on the preceding and following search lines, and the extracted intersections are characterized. A method for extracting characteristic points of a curve, wherein the characteristic points are points.
【請求項2】 前記探索ラインは、縦、横、斜の何れか
1つの探索方向にすることを特徴とする請求項1に記載
の曲線の特徴点抽出方法。
2. The method according to claim 1, wherein the search line is set to one of vertical, horizontal, and oblique search directions.
【請求項3】 前記探索ラインは、ライン幅及び探索間
隔を任意にとることを特徴とする請求項1又は2の何れ
か1項に記載の曲線の特徴点抽出方法。
3. The method according to claim 1, wherein the search line has an arbitrary line width and a search interval.
【請求項4】 画像化された曲線の輪郭線が順番付けさ
れた画素のつながりとして検出されている曲線におい
て、順番付けの開始点と終了点を特徴点として抽出する
ことを特徴とする曲線の特徴点抽出方法。
4. In a curve in which the contour of an imaged curve is detected as a series of ordered pixels, a start point and an end point of the ordering are extracted as feature points. Feature point extraction method.
【請求項5】 前記曲線において、前記順番通りに各画
素間の距離Dを計算し、該距離Dがある閾値Pより大き
くなる2点を特徴点として抽出することを特徴とする請
求項4に記載の曲線の特徴点抽出方法。
5. The method according to claim 4, wherein a distance D between pixels in the curve is calculated in the order, and two points at which the distance D is larger than a certain threshold value P are extracted as feature points. The feature point extraction method of the described curve.
【請求項6】 前記順番付けした画素をもつ曲線上のあ
る画素Aに対して、すでにつけられた順番付けでN番前
の画素をBとし、すでにつけられた順番付けでN番後の
画素をCとして、画素A,B,C間のBAベクトルとA
Cベクトルを生成し、 前記BAベクトルの始点を画素Aまで平行移動したベク
トルをBA’とし、該BA’ベクトルと前記ACベクト
ルの角度θを計算し、該角度θがある閾値Qより大きい
場合に画素Aを特徴点として抽出することを特徴とする
請求項4又は5の何れか1項に記載の曲線の特徴点抽出
方法。
6. For a certain pixel A on the curve having the ordered pixels, the N-th pixel in the already assigned order is set to B, and the N-th pixel in the already assigned order is N-th pixel. Let C be the BA vector between pixels A, B, and C and A
A C vector is generated, and a vector obtained by translating the start point of the BA vector to the pixel A is defined as BA ′, an angle θ between the BA ′ vector and the AC vector is calculated, and when the angle θ is larger than a certain threshold Q, The method according to claim 4, wherein the pixel A is extracted as a feature point.
【請求項7】 前記ACベクトルからBA’ベクトルを
引いてB'Cベクトルを生成し、該B'Cベクトルの大き
さXがある閾値Rより大きい場合に画素Aを特徴点とし
て抽出することを特徴とする請求項6に記載の曲線の特
徴点抽出方法。
7. A method for generating a B′C vector by subtracting a BA ′ vector from the AC vector, and extracting a pixel A as a feature point when the size X of the B′C vector is larger than a threshold value R. 7. The method for extracting characteristic points of a curve according to claim 6, wherein:
【請求項8】 請求項1、2、3のいずれか1項に記載
の曲線の特徴点抽出方法における処理手順をコンピュー
タに実行させるプログラムとして、該コンピュータが読
み取り可能に記録したことを特徴とする曲線の特徴点抽
出方法を記録した記録媒体。
8. A program for causing a computer to execute a processing procedure in the method for extracting characteristic points of a curve according to claim 1, wherein the program is recorded so as to be readable by the computer. A recording medium that records a method for extracting characteristic points of a curve.
【請求項9】 請求項4、5、6、7のいずれか1項に
記載の曲線の特徴点抽出方法における処理手順をコンピ
ュータに実行させるプログラムとして、該コンピュータ
が読み取り可能に記録したことを特徴とする曲線の特徴
点抽出方法を記録した記録媒体。
9. A program for causing a computer to execute the processing procedure in the method for extracting characteristic points of a curve according to claim 4, wherein the program is recorded so as to be readable by the computer. A recording medium that records a method for extracting characteristic points of a curve.
JP10301819A 1998-10-23 1998-10-23 Method for extracting feature point of curve and recording medium recording the method Pending JP2000132692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301819A JP2000132692A (en) 1998-10-23 1998-10-23 Method for extracting feature point of curve and recording medium recording the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301819A JP2000132692A (en) 1998-10-23 1998-10-23 Method for extracting feature point of curve and recording medium recording the method

Publications (1)

Publication Number Publication Date
JP2000132692A true JP2000132692A (en) 2000-05-12

Family

ID=17901554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301819A Pending JP2000132692A (en) 1998-10-23 1998-10-23 Method for extracting feature point of curve and recording medium recording the method

Country Status (1)

Country Link
JP (1) JP2000132692A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423503B1 (en) * 2001-09-14 2004-03-18 삼성전자주식회사 Apparatus for disposing digital image and a method using the same
JP2009009287A (en) * 2007-06-27 2009-01-15 Dainippon Printing Co Ltd Electronic pen, scanner, and program for use therewith
JP2009026095A (en) * 2007-07-20 2009-02-05 Dainippon Printing Co Ltd Terminal unit and program to be used therefor
WO2014104455A1 (en) * 2012-12-26 2014-07-03 전남대학교 산학협력단 Method for tracking curve using tensor voting and device therefor
WO2018079851A1 (en) * 2016-10-31 2018-05-03 株式会社ディー・ディー・エス Skin information processing program and skin information processing device
CN109952596A (en) * 2016-10-31 2019-06-28 株式会社Dds skin information processing program and skin information processing device
US10733416B2 (en) 2016-10-07 2020-08-04 Kabushiki Kaisha Dds Information processing method, information processing device, and non-transitory computer-readable medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423503B1 (en) * 2001-09-14 2004-03-18 삼성전자주식회사 Apparatus for disposing digital image and a method using the same
JP2009009287A (en) * 2007-06-27 2009-01-15 Dainippon Printing Co Ltd Electronic pen, scanner, and program for use therewith
JP2009026095A (en) * 2007-07-20 2009-02-05 Dainippon Printing Co Ltd Terminal unit and program to be used therefor
WO2014104455A1 (en) * 2012-12-26 2014-07-03 전남대학교 산학협력단 Method for tracking curve using tensor voting and device therefor
US10733416B2 (en) 2016-10-07 2020-08-04 Kabushiki Kaisha Dds Information processing method, information processing device, and non-transitory computer-readable medium
KR20190067914A (en) * 2016-10-31 2019-06-17 가부시끼가이샤 디디에스 Skin information processing program and skin information processing device
CN109923581A (en) * 2016-10-31 2019-06-21 株式会社Dds skin information processing program and skin information processing device
CN109952596A (en) * 2016-10-31 2019-06-28 株式会社Dds skin information processing program and skin information processing device
JPWO2018079851A1 (en) * 2016-10-31 2019-10-10 株式会社ディー・ディー・エス Skin information processing program and skin information processing apparatus
WO2018079851A1 (en) * 2016-10-31 2018-05-03 株式会社ディー・ディー・エス Skin information processing program and skin information processing device
US10740589B2 (en) 2016-10-31 2020-08-11 Kabushiki Kaisha Dds Skin information processing method, skin information processing device, and non-transitory computer-readable medium
US10740590B2 (en) 2016-10-31 2020-08-11 Kabushiki Kaisha Dds Skin information processing method, skin information processing device, and non-transitory computer-readable medium
KR102226583B1 (en) 2016-10-31 2021-03-11 가부시끼가이샤 디디에스 Skin information processing program and skin information processing device
CN109923581B (en) * 2016-10-31 2022-12-02 株式会社Dds Skin information processing method and skin information processing device
CN109952596B (en) * 2016-10-31 2023-07-07 株式会社Dds Skin information processing method and skin information processing device

Similar Documents

Publication Publication Date Title
KR102192830B1 (en) Method for acquiring bounding box corresponding to an object in an image by using convolutional neural network including tracking network and computing device using the same
JP6972757B2 (en) Control programs, control methods, and information processing equipment
JP6972756B2 (en) Control programs, control methods, and information processing equipment
EP0506327B1 (en) A system and method for ranking and extracting salient contours for target recognition
JP4597391B2 (en) Facial region detection apparatus and method, and computer-readable recording medium
US6128410A (en) Pattern matching apparatus and method that considers distance and direction
JP2008269471A (en) Similar image decision device, similar image decision method, program, and recording medium
CN110399826B (en) End-to-end face detection and identification method
KR101018299B1 (en) Apparatus and method for detecting a plurality of objects in an image
EP2423850B1 (en) Object recognition system and method
JP2001076161A (en) Method and device for image processing and storage medium
JP5192437B2 (en) Object region detection apparatus, object region detection method, and object region detection program
JP2000132692A (en) Method for extracting feature point of curve and recording medium recording the method
EP3043315B1 (en) Method and apparatus for generating superpixels for multi-view images
JP4133246B2 (en) Image deformation information generation apparatus, image deformation information generation method, and image deformation information generation program
JP4550398B2 (en) Method for representing movement of objects appearing in a sequence of images, method for identifying selection of objects in images in a sequence of images, method for searching a sequence of images by processing signals corresponding to the images, and apparatus
JP4449483B2 (en) Image analysis apparatus, image analysis method, and computer program
JPH1139477A (en) Corresponding point search device
JP5111269B2 (en) Image processing apparatus and image processing method
JP2001337990A (en) Image retrieval system and image retrieval method
JP3022330B2 (en) Moving image recognition device and moving image recognition method
CN114241586B (en) Face detection method and device, storage medium and electronic equipment
US20230196752A1 (en) Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
JP2005071125A (en) Object detector, object detection method, object data selection program and object position detection program
JPH07193716A (en) Edge emphasizing device