[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000130506A - Three-dimensional base isolation device - Google Patents

Three-dimensional base isolation device

Info

Publication number
JP2000130506A
JP2000130506A JP10310745A JP31074598A JP2000130506A JP 2000130506 A JP2000130506 A JP 2000130506A JP 10310745 A JP10310745 A JP 10310745A JP 31074598 A JP31074598 A JP 31074598A JP 2000130506 A JP2000130506 A JP 2000130506A
Authority
JP
Japan
Prior art keywords
vertical
plate
laminate
horizontal
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10310745A
Other languages
Japanese (ja)
Inventor
Tatsuji Matsumoto
達治 松本
Shoji Kono
昌次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP10310745A priority Critical patent/JP2000130506A/en
Publication of JP2000130506A publication Critical patent/JP2000130506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make three-dimensional base isolation so as to be well-balanceably and smoothly performable, insomuch that a vertical spring constant is sharply reducible as an average horizontal spring constant, and a vertical shake in time of an earthquake is made to be long-periodizable at the same level as that in the horizontal direction, etc. SOLUTION: A horizontal motion base isolating body 3 and a vertical motion base isolating body 5 are vertically connected together. This horizontal motion base isolating body 3 is provided with a first layered product wherein both horizontal hard and soft plates 6 and 7 are alternately laminated. Likewise, the vertical motion base isolating body 5 is provided with a second layered product 4 wherein both vertical hard and soft plates are alternately laminated at the outside from the inside, the outer periphery of a vertical center axis 14A, and a mounting base 17 with a recess 16 inserting this second layered product 4 and supporting its outer periphery, respectively. This center axis 14A is integrated with a mounting plate part 14B to be attached to a structural body 10U. There is a gap provided in a space between an innermost surface of the recess 16 and the second layered product 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地震の際、上下方
向の揺れに対しても水平方向と同様のスムーズな免震効
果を発揮しうる三次元免震装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional seismic isolation device capable of exerting the same smooth seismic isolation effect as in a horizontal direction even in the event of an earthquake.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般
に、通常の地震では、周期が1秒以下の短周期成分が卓
越している場合が多いが、非免震の中低層ビルでは、こ
の地震波の周期に近い固有振動数を有しているため、大
きな地震力を受けやすい。従って、建物の固有周期を超
高層並に延ばして、地震力を低減することが必要であ
り、そのために、例えば鋼板などの硬質板とゴム弾性状
の軟質板とを交互に重ね合わせて加硫接着した積層ゴム
支承が提案されている。
2. Description of the Related Art Generally, in a normal earthquake, a short-period component having a period of 1 second or less is predominant in many cases. Because of having a natural frequency close to the period of, it is easy to receive a large seismic force. Therefore, it is necessary to reduce the seismic force by extending the natural period of the building to the level of a super-high-rise building. For this purpose, vulcanization is performed by alternately stacking hard plates such as steel plates and rubber-elastic soft plates. Glued laminated rubber bearings have been proposed.

【0003】このものは、軟質板によって水平方向に軟
らかいバネ性を有するため、水平方向に周期が長く、地
震時の水平方向の応答加速度を低減するのに有効であ
る。又鉛直荷重に対しては、それと直角に広がろうとす
るのを硬質板が拘束するため剛性が高く、従って、建物
の重量を長期間安定して支える特性を備える反面、上下
方向に対しては非免震の場合と略同じ挙動をとることに
なる。
[0003] Since this type has a soft spring property in the horizontal direction due to a soft plate, it has a long cycle in the horizontal direction, and is effective in reducing the horizontal response acceleration during an earthquake. Also, for vertical loads, the rigid plate restrains it from spreading at a right angle to it, so it has high rigidity, so it has the property of stably supporting the weight of the building for a long period of time, but on the vertical direction The behavior is almost the same as in the case of non-seismic isolation.

【0004】しかし、近年の報告によれば、水平動だけ
でなく上下動も極めて大きい地震も観測されており、例
えば先の阪神大震災等においては、最大加速度が上下で
最大507Gal(水平では833Gal)と大きく、
又10〜15秒程度と短時間で水平動、上下動とも略同
時に発生したと報告されている。即ち、瞬間的に大きな
力が水平方向、上下方向の双方からかかったと考えられ
る。
However, according to recent reports, earthquakes that have extremely large vertical and vertical motions have been observed. For example, in the case of the Great Hanshin Earthquake, the maximum acceleration was 507 Gal at maximum in the vertical direction (833 Gal in the horizontal direction). And big,
It is also reported that horizontal movement and vertical movement occurred almost simultaneously in a short time of about 10 to 15 seconds. That is, it is considered that a large force was instantaneously applied from both the horizontal direction and the vertical direction.

【0005】そこで、近年、このような都市直下型地震
に対する対応手段が強く望まれている。
Therefore, in recent years, means for responding to such an earthquake directly under the city has been strongly desired.

【0006】なお、例えば特開平6−264643号公
報等には、図10に略示するように、従来と略同構成を
なす水平動免震用の積層ゴム支承(薄肉積層ゴムa)の
上部に、ゴム厚さが大な軟質板b1を用いて鉛直剛性を
減じた上下動免震用の積層ゴム支承(厚肉積層ゴムb)
を連結した三次元免震装置が提案されている。
Japanese Patent Laid-Open Publication No. 6-264643, for example, discloses, as schematically shown in FIG. 10, an upper portion of a laminated rubber bearing (thin laminated rubber a) for horizontal motion seismic isolation having substantially the same configuration as the conventional one. And a vertical rubber seismic isolation rubber bearing (thick laminated rubber b) with reduced vertical rigidity using a soft plate b1 with a large rubber thickness
Have been proposed.

【0007】しかしこのものでは、前記上下動免震用の
厚肉積層ゴムbの鉛直バネ定数が前記軟質板b1のゴム
圧縮弾性に依存するために、この鉛直バネ定数が前記薄
肉積層ゴムaの水平バネ定数に比して非常に大きくなっ
てしまう。その結果、地震時の三次元的な揺れに対する
免震においてスムーズさを損ねるという問題があった。
However, in this case, the vertical spring constant of the thick laminated rubber b for vertical seismic isolation depends on the rubber compression elasticity of the soft plate b1. It becomes very large compared to the horizontal spring constant. As a result, there is a problem in that the seismic isolation against three-dimensional shaking during an earthquake impairs smoothness.

【0008】そこで本発明は、構造簡易に鉛直バネ定数
を水平バネ定数並みに大巾に減じ、地震時の上下方向の
揺れを水平方向と同レベルで長周期化することにより、
三次元的な免震をバランス良くスムーズに行いうる三次
元免震装置の提供を目的としている。
Accordingly, the present invention provides a structure in which the vertical spring constant is reduced substantially to the same level as the horizontal spring constant, and the vertical sway during an earthquake is made longer at the same level as the horizontal direction.
The purpose is to provide a three-dimensional seismic isolation device that can smoothly perform three-dimensional seismic isolation in a well-balanced manner.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本願の請求項1の発明は、上下の構造体の相対水平
動、垂直動を免震する三次元免震装置であって、水平な
硬質板と軟質板とを交互に上下に積層した第1の積層体
を有する水平動免震体、及び垂直な中心軸部の外周に内
側から外側に垂直な硬質板と軟質板とを交互に外向きに
積層した第2の積層体と、この第2の積層体を挿入でき
かつその外周を支持する凹部を有する取付基台とを具え
た上下動免震体を上下に連結するとともに、前記中心軸
部を、前記構造体に取り付けられる取付板部に一体化
し、かつ前記凹部の奥面と前記第2の積層体との間に間
隙を設けたことを特徴としている。
In order to achieve the above object, the invention of claim 1 of the present application is a three-dimensional seismic isolation device for isolating relative horizontal and vertical movements of upper and lower structures, A horizontal seismic isolator having a first laminate in which horizontal hard plates and soft plates are alternately stacked up and down; and a vertical hard plate and a soft plate extending from the inside to the outside on the outer periphery of the vertical center shaft portion. A vertically moving seismic isolator having a second laminated body alternately laminated outward and a mounting base having a recessed portion into which the second laminated body can be inserted and which supports the outer periphery thereof is vertically connected. The central shaft portion is integrated with a mounting plate portion attached to the structure, and a gap is provided between the inner surface of the concave portion and the second laminate.

【0010】又請求項2の三次元免震装置の発明では、
前記第1の積層体と第2の積層体の軟質板は、高減衰ゴ
ムからなるか、又は第1の積層体を上下に貫通する通り
孔と、第2の積層体を前記中心軸部と取付基台との間で
水平に貫通する通り孔とに減衰材を装填したことを特徴
としている。
[0010] In the invention of claim 3 of the present invention,
The soft plates of the first laminate and the second laminate are made of high-damping rubber, or through holes vertically penetrating the first laminate, and the second laminate is defined as the central shaft portion. It is characterized in that an attenuating material is loaded in a through-hole passing through horizontally with the mounting base.

【0011】又請求項3の三次元免震装置の発明では、
前記取付板部と前記取付基台との間に、弾塑性材からな
る緩衝部材を介在させたことを特徴としている。
In the invention of claim 3,
A cushioning member made of an elastic-plastic material is interposed between the mounting plate and the mounting base.

【0012】又請求項4の三次元免震装置の発明では、
前記第2の積層体の硬質板と軟質板とは円筒状をなす
か、又は平板状の硬質板と軟質板とからなりかつ前記中
心軸部から等角度ピッチで放射状に配される積層体片か
らなることを特徴としている。
Further, in the invention of the three-dimensional seismic isolation device of claim 4,
The hard plate and the soft plate of the second laminate are formed in a cylindrical shape, or are composed of a flat hard plate and a soft plate, and are radially arranged at an equal angular pitch from the central axis portion. It is characterized by consisting of.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、図
示例とともに説明する。図1において、本発明の三次元
免震装置1は、第1の積層体2を有する水平動免震体3
と、第2の積層体4を有しかつ前記水平動免震体3の上
又は下に連結される上下動免震体5とから形成される。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a three-dimensional seismic isolation device 1 of the present invention includes a horizontal seismic isolator 3 having a first laminate 2.
And a vertical seismic isolator 5 having a second laminated body 4 and connected above or below the horizontal seismic isolator 3.

【0014】前記水平動免震体3は、水平な複数の硬質
板6と軟質板7とを交互に積層しかつ接着した前記第1
の積層体2と、この第1の積層体2の上下に例えばボル
ト等によって固定される支持板9U、9Lとを具え、本
例では、この上下の支持板9U、9Lを介して、前記上
下動免震体5及び例えば建築物の基礎である下の構造体
10Lに一体に連結している。
The horizontal vibration isolator 3 comprises a plurality of horizontal hard plates 6 and soft plates 7 alternately laminated and bonded to each other.
, And supporting plates 9U and 9L fixed above and below the first laminated body 2 by, for example, bolts. In this example, the upper and lower supporting plates 9U and 9L It is integrally connected to the motion isolator 5 and a lower structure 10L which is a foundation of a building, for example.

【0015】又前記第1の積層体2は、前記軟質板7の
剪断方向のゴム弾性により水平方向に軟らかいバネ性を
有し、水平方向に周期が長く、水平方向の応答加速度を
効果的に低減する。又上下方向の鉛直荷重に対しては、
軟質板7に接着する硬質板6が圧縮によるゴムの広がり
を拘束するため剛性が高く、従って、建物の重量を長期
間安定して支持しえる。
The first laminate 2 has a soft spring property in the horizontal direction due to rubber elasticity in the shearing direction of the soft plate 7, has a long cycle in the horizontal direction, and effectively reduces the response acceleration in the horizontal direction. Reduce. For vertical load in the vertical direction,
Since the hard plate 6 bonded to the soft plate 7 restrains the spread of rubber due to compression, the rigid plate has high rigidity, and therefore can stably support the weight of the building for a long period of time.

【0016】なお前記硬質板6は、剛性を有する例えば
鋼板などの金属製板体からなり、最上段及び最下段に配
される上下の硬質板6U、6Lは、中間の硬質板6Mよ
り厚肉、例えば前記支持板9U、9Lと略同程度の厚さ
で形成している。なお金属製板体と同程度の剛性及び強
度を有するものであるならば、例えばセラミックス、合
成樹脂等の種々の材料の板体が使用できる。又硬質板6
は、種々な方向の揺れにも対応できるように、その外周
面の形状、すなわち外縁の輪郭形状を、方向性のない円
形形状とすることが好ましいが、要求により、四角形、
五角形等の多角形状で形成することもできる。
The hard plate 6 is made of a rigid metal plate such as a steel plate. The upper and lower hard plates 6U and 6L disposed at the uppermost and lowermost stages are thicker than the intermediate hard plate 6M. For example, the support plates 9U and 9L are formed to have substantially the same thickness. As long as the plate has the same rigidity and strength as the metal plate, plates made of various materials such as ceramics and synthetic resin can be used. Hard plate 6
It is preferable that the shape of the outer peripheral surface, that is, the contour shape of the outer edge is a circular shape without directivity, so that it can cope with shaking in various directions.
It can also be formed in a polygonal shape such as a pentagon.

【0017】又前記軟質板7としては、ゴム弾性を有す
る各種のゴム組成物が使用できるが、機械的強度、弾性
率の長期安定性、変形能力の長期安定性、耐クリープ性
などに優れることが必要であり、例えば天然ゴム(NR)、
クロロプレンゴム(CR)などが好ましく使用できる。この
軟質板7の厚さは、通常、前記中間の硬質板6Mの厚さ
の1.0〜2.5倍程度であって、本例では1.0〜1
0.0mm程度のゴムを用いている。
As the soft plate 7, various rubber compositions having rubber elasticity can be used, but they are excellent in mechanical strength, long-term stability of elastic modulus, long-term stability of deformability, creep resistance, and the like. Is required, for example, natural rubber (NR),
Chloroprene rubber (CR) can be preferably used. The thickness of the soft plate 7 is usually about 1.0 to 2.5 times the thickness of the intermediate hard plate 6M, and in this example, 1.0 to 1 times.
Rubber of about 0.0 mm is used.

【0018】さらに本例では、前記水平動免震体3に
は、前記第1の積層体2を上下に貫通する通り孔11が
設けられ、この通り孔11内に、例えば鉛プラグや高減
衰ゴムなどの高い減衰性能を有する減衰材12を装填す
ることによって、水平方向の揺れの振幅を制限しかつそ
の迅速な収束を図っている。この減衰材12は、前記通
り孔11の上下端に配されるキャップ13によって封止
される。なお減衰材12の装填に代え、前記軟質板7自
体を高減衰性ゴムで形成することもできる。
Further, in the present embodiment, the horizontal motion isolator 3 is provided with a through hole 11 vertically penetrating the first laminated body 2, and in this through hole 11, for example, a lead plug or a high attenuation By loading the damping material 12 having a high damping performance such as rubber, the amplitude of the horizontal swing is limited and the quick convergence is achieved. The damping material 12 is sealed by the caps 13 disposed at the upper and lower ends of the hole 11 as described above. Instead of loading the damping material 12, the soft plate 7 itself may be formed of high damping rubber.

【0019】次に、前記上下動免震体5は、図2に拡大
して示すように、上の構造体10Uに取り付けられる取
付板14と、この取付板14の中心軸部14Aの外周に
配される第2の積層体4と、この第2の積層体4を挿入
しかつその外周を支持する凹部16を有する取付基台1
7とを具えている。
Next, as shown in an enlarged view in FIG. 2, the vertical seismic isolation body 5 has a mounting plate 14 mounted on the upper structure 10U and an outer periphery of a central shaft portion 14A of the mounting plate 14. Mounting base 1 having a second laminated body 4 to be arranged and a concave portion 16 for inserting the second laminated body 4 and supporting the outer periphery thereof
7 and so on.

【0020】前記取付板14は、建築物である上の構造
体10Uに例えばボルト等で固定される取付板部14B
と、この取付板部14Bに一体化されて垂直にのびる本
例では円柱状の前記中心軸部14Aとから形成される。
なお取付板部14Bと中心軸部14Aとは、一体成形す
ることも又ボルト等で一体固定しても良い。
The mounting plate 14 is a mounting plate portion 14B fixed to the upper structure 10U, which is a building, for example, by bolts or the like.
In this example, the central shaft portion 14A is formed integrally with the mounting plate portion 14B and extends vertically.
The mounting plate portion 14B and the central shaft portion 14A may be formed integrally or may be fixed integrally with bolts or the like.

【0021】又前記取付基台17は、下端のフランジ部
17Aを用いて前記上の支持板9Uにボルト止めされる
とともに、上端には第2の積層体4を収容する凹部16
を形成している。
The mounting base 17 is bolted to the upper support plate 9U using a lower flange portion 17A, and has a concave portion 16 for accommodating the second laminated body 4 at the upper end.
Is formed.

【0022】なお前記取付板部14Bと取付基台部17
との間には、本例では、常時の長期鉛直荷重(建築物の
重量等)を担持する緩衝部材21がリング状に介在し、
これによって、凹部16の奥面(底面)16Sと中心軸
部14A下端面との間に間隙G1を形成している。この
緩衝部材21は、前記長期鉛直荷重を超える上下の衝撃
が地震時に作用したとき、圧縮の塑性変形を起こしてそ
の衝撃エネルギーの一部を吸収しうる弾塑性材からな
り、例えば未加硫ゴム、高減衰プラスチック、天然ゴム
等が用いられる。
The mounting plate portion 14B and the mounting base portion 17
In this example, a cushioning member 21 that carries a normal long-term vertical load (such as the weight of a building) is interposed in a ring shape.
Thereby, a gap G1 is formed between the inner surface (bottom surface) 16S of the recess 16 and the lower end surface of the central shaft portion 14A. The shock absorbing member 21 is made of an elasto-plastic material capable of causing a plastic deformation of compression and absorbing a part of the impact energy when a vertical shock exceeding the long-term vertical load acts upon an earthquake. , High-attenuation plastic, natural rubber and the like are used.

【0023】又前記第2の積層体4は、垂直な複数の硬
質板19と軟質板20とを、前記中心軸部14Aのまわ
りで内側から外側に交互に積層しかつ接着することによ
り形成され、最内側の軟質板20が前記中心軸部14A
に接着することにより、第2の積層体4の内周が中心軸
部14Aの外周に支持される。又最外側の硬質板19A
は、他の硬質板19Bに比して厚肉であり、この最外側
の硬質板19Aが、前記凹部16内周面にボルト止めさ
れることにより、第2の積層体4の外周が凹部16に支
持される。
The second laminate 4 is formed by alternately laminating and bonding a plurality of vertical hard plates 19 and soft plates 20 from the inside to the outside around the central shaft portion 14A. , The innermost soft plate 20 is the central shaft portion 14A.
, The inner periphery of the second laminate 4 is supported on the outer periphery of the central shaft portion 14A. Also the outermost hard plate 19A
Is thicker than the other hard plate 19B, and the outermost hard plate 19A is bolted to the inner peripheral surface of the recess 16 so that the outer periphery of the second laminate 4 is Supported by

【0024】このとき前記第2の積層体4には、その上
端面と前記取付板部14Bとの間、及び下端面と前記凹
部16の奥面16Sとの間に、それぞれ上下振動用の間
隙G2、G3を形成することが必要である。なお本例で
は、前記最外側の硬質板19Aを強固に支持して前記間
隙G3を安定確保するために、この硬質板19Aの下端
面を受ける台座部分16Aを凹部16の奥面16Sから
隆起させている。本例では、又、前記第2の積層体4と
中心軸部14Aとの各下端面が略整一することにより、
間隙G1、G3が略一致する場合を例示している。
At this time, a gap for vertical vibration is provided between the upper end surface of the second laminate 4 and the mounting plate portion 14B, and between the lower end surface and the inner surface 16S of the recess 16 respectively. It is necessary to form G2 and G3. In this example, in order to firmly support the outermost hard plate 19A and secure the gap G3, the pedestal portion 16A that receives the lower end surface of the hard plate 19A is raised from the inner surface 16S of the recess 16. ing. In this example, the lower end surfaces of the second laminated body 4 and the central shaft portion 14A are substantially aligned, so that
The case where the gaps G1 and G3 substantially match is illustrated.

【0025】又前記硬質板19及び軟質板20は、図3
に示すように、前記中心軸部14Aと同心な円筒状のも
のを用いることが好ましい。しかし、例えば図4に示す
ように、前記中心軸部14Aが例えば断面正方形等の多
角形状の場合には、平板状の硬質板19と軟質板20と
を用い、これらを中心軸部14Aから等角度ピッチで放
射状に配してなる複数の積層体片22によって第2の積
層体4を形成することもできる。この複数の積層体片2
2を用いる構造は、製造が簡易であり生産効率及び生産
コストの向上に大きなメリットがある。
The hard plate 19 and the soft plate 20 are the same as those shown in FIG.
It is preferable to use a cylindrical member concentric with the central shaft portion 14A as shown in FIG. However, as shown in FIG. 4, for example, when the central shaft portion 14A has a polygonal shape, such as a square cross section, a flat hard plate 19 and a soft plate 20 are used, and these are removed from the central shaft portion 14A. The second laminate 4 can be formed by a plurality of laminate pieces 22 radially arranged at an angular pitch. This plurality of laminate pieces 2
The structure using 2 is simple in manufacturing, and has a great advantage in improving production efficiency and production cost.

【0026】なお前記硬質板19は、前記硬質板6と同
様、剛性を有する例えば鋼板などの金属製板体が好まし
く使用できる。又軟質板20も前記軟質板7と同様、ゴ
ム弾性を有する各種のゴム組成物が使用でき、このとき
前記硬質板19と軟質板20との厚さの比も1.0〜
2.5の範囲とするのが良い。なお軟質板20の厚さ
は、通常1.0〜10.0mmに設定される。
As the hard plate 19, similarly to the hard plate 6, a rigid metal plate such as a steel plate can be preferably used. As the soft plate 20, various rubber compositions having rubber elasticity can be used as in the case of the soft plate 7. At this time, the thickness ratio between the hard plate 19 and the soft plate 20 is 1.0 to 1.0.
It is better to be in the range of 2.5. The thickness of the soft plate 20 is usually set to 1.0 to 10.0 mm.

【0027】このような第2の積層体4は、第1の積層
体2とは反対に、前記軟質板20のゴム弾性により上下
方向に軟らかいバネ性を有し、上下方向に長周期化して
そのの応答加速度を効果的に低減する。又積層方向とな
る水平方向には剛性が高いため変動がなく、従って、専
用の案内手段を設けることなく、取付板14すなわち上
の構造体10Uを取付基台17に対して上下に安定して
案内しうる。
The second laminated body 4 has a soft elasticity in the vertical direction due to the rubber elasticity of the soft plate 20 and has a long period in the vertical direction, contrary to the first laminated body 2. The response acceleration is effectively reduced. Also, there is no fluctuation because the rigidity is high in the horizontal direction which is the laminating direction, and therefore, the mounting plate 14, that is, the upper structure 10U is stably moved up and down with respect to the mounting base 17 without providing a dedicated guide means. I can guide you.

【0028】なお前記上下動免震体5には、図7、8に
示す如く、前記第2の積層体4に、前記中心軸部14A
と取付基台17との間で水平に貫通する通り孔24を設
け、この通り孔24内に、前記減衰材12と同様の減衰
材25を装填することによって、上下方向の揺れの振幅
を制限しかつその迅速な収束を図ることが好ましい。こ
の減衰材25の装填に代え、前記軟質板20自体を高減
衰性ゴムで形成することもできる。
As shown in FIGS. 7 and 8, the vertical motion isolator 5 is attached to the second shaft 4 by the central shaft portion 14A.
A through-hole 24 is provided between the mounting base 17 and the mounting base 17, and a damping material 25 similar to the damping material 12 is loaded in the through-hole 24 to limit the amplitude of the vertical swing. It is preferable to achieve quick convergence. Instead of loading the damping material 25, the soft plate 20 itself may be formed of high damping rubber.

【0029】然して、上下動免震体5は、常時の長期鉛
直荷重を弾塑性体からなる前記緩衝部材21により安定
して支持する。従って、この長期鉛直荷重は、第2の積
層体4に実質的に負荷されず、第2の積層体4の粘弾性
特性を疲労劣化を招くことなく長期に亘って維持するこ
とができる。
However, the vertically-moving seismic isolation body 5 stably supports the normal long-term vertical load by the cushioning member 21 made of an elastic-plastic body. Therefore, the long-term vertical load is not substantially applied to the second laminate 4 and the viscoelastic properties of the second laminate 4 can be maintained for a long time without causing fatigue deterioration.

【0030】又前記長期鉛直荷重を越える上下の衝撃が
加わった場合には、図5に示すように、緩衝部材21が
圧縮の塑性変形を起こし、その衝撃エネルギーの一部を
吸収する。このとき第2の積層体4は、衝撃緩和にも有
効であり、又初期衝撃緩和後においては、低い鉛直バネ
定数により柔らかに動き出すなど非常にスムーズな応答
をし上下の揺れを長周期化する。
When a vertical impact exceeding the long-term vertical load is applied, as shown in FIG. 5, the cushioning member 21 undergoes plastic deformation by compression and absorbs a part of the impact energy. At this time, the second laminated body 4 is also effective for shock relaxation, and after the initial shock relaxation, has a very smooth response such as starting to move softly due to a low vertical spring constant and prolonging the vertical swing. .

【0031】特に、この鉛直バネ定数と前記第1の積層
体2の水平バネ定数とが近い値を成し得るため、上下方
向の揺れを水平方向の揺れと略同レベルで長周期化で
き、その結果、三次元的な免震をバランス良くかつ滑ら
かに行うことが可能になる。
In particular, since the vertical spring constant and the horizontal spring constant of the first laminate 2 can be close to each other, the vertical oscillation can be made longer at substantially the same level as the horizontal oscillation. As a result, three-dimensional seismic isolation can be performed in a well-balanced and smooth manner.

【0032】なお三次元免震装置1では、図6に示すよ
うに、上下動免震体5の外周を覆い内部の軟質板20や
緩衝部材21等を火炎等から保護する保護部材26を設
けることができる。このとき、保護部材26は、上下動
免震体5の鉛直バネ定数に影響を与えないように配慮す
る必要がある。
In the three-dimensional seismic isolation device 1, as shown in FIG. 6, a protection member 26 is provided to cover the outer periphery of the vertically movable seismic isolator 5 and protect the soft plate 20 and the buffer member 21 and the like inside from a flame or the like. be able to. At this time, it is necessary to take care that the protection member 26 does not affect the vertical spring constant of the vertical seismic isolation body 5.

【0033】又本発明の三次元免震装置1は、図9に示
すように、複数の上下動免震体5を取付基台17の中心
周りに形成しても良く、又複数の水平動免震体3を支持
板9の中心周りに形成することもできる。
In the three-dimensional seismic isolation device 1 of the present invention, as shown in FIG. 9, a plurality of vertically movable seismic isolation bodies 5 may be formed around the center of the mounting base 17, and a plurality of horizontally movable The seismic isolation body 3 can be formed around the center of the support plate 9.

【0034】又前記上下動免震体5を水平動免震体3の
下側に連結しても良い。さらには、上下動免震体5を上
下逆向きに、すなわち中心軸部14Aが上方に向かって
のびかつ凹部16が下開口する如く形成しうる等、本願
の三次元免震装置1は種々の態様に変化することができ
る。
The vertical seismic isolator 5 may be connected to the lower side of the horizontal seismic isolator 3. Further, the three-dimensional seismic isolation device 1 of the present application can be formed in various forms, such as the up-down motion seismic isolator 5 can be formed upside down, that is, the central shaft portion 14A extends upward and the recess 16 opens downward. It can be changed to an aspect.

【0035】[0035]

【発明の効果】本発明は叙上の如く構成しているため、
構造簡易に鉛直バネ定数を水平バネ定数並みに大巾に減
じることができ、地震時の上下方向の揺れを水平方向と
同レベルで長周期化しうるなど、三次元的な免震をバラ
ンス良くスムーズに行いうる。
Since the present invention is configured as described above,
Structurally, the vertical spring constant can be reduced as much as the horizontal spring constant, and the vertical shaking during an earthquake can be lengthened at the same level as the horizontal direction. Can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の免震装置の縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a seismic isolation device according to an embodiment of the present invention.

【図2】その上下動免震体を拡大して示す縦断面図であ
る。
FIG. 2 is an enlarged vertical sectional view of the vertical motion seismic isolation body.

【図3】第2の積層体の一例を示す横断面図である。FIG. 3 is a cross-sectional view illustrating an example of a second laminate.

【図4】第2の積層体の他の例を示す横断面図である。FIG. 4 is a cross-sectional view showing another example of the second laminate.

【図5】上下動免震体の作用を誇張して示す縦断面図で
ある。
FIG. 5 is an exaggerated longitudinal sectional view showing the operation of the vertical motion isolators.

【図6】上下動免震体の他の例を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing another example of the vertical seismic isolation body.

【図7】第2の積層体のさらに他の例を示す横断面図で
ある。
FIG. 7 is a cross-sectional view showing still another example of the second laminate.

【図8】第2の積層体のさらに他の例を示す横断面図で
ある。
FIG. 8 is a cross-sectional view showing still another example of the second laminate.

【図9】免震装置の他の例を示す横断面図である。FIG. 9 is a cross-sectional view showing another example of the seismic isolation device.

【図10】従来技術を示す免震装置の縦断面図である。FIG. 10 is a longitudinal sectional view of a seismic isolation device showing a conventional technique.

【符号の説明】[Explanation of symbols]

2 第1の積層体 3 水平動免震体 4 第2の積層体 5 上下動免震体 6 硬質板 7 軟質板 10U、10L 上下の構造体 11、24 通り孔 12、25 減衰材 14A 中心軸部 14B 取付板部 16 凹部 17 取付基台 19 硬質板 20 軟質板 21 緩衝部材 22 積層体片 G1、G2、G3 間隙 2 First laminated body 3 Horizontal seismic isolator 4 Second laminated body 5 Vertical seismic isolator 6 Hard plate 7 Soft plate 10U, 10L Upper and lower structures 11, 24 Through holes 12, 25 Damping material 14A Central axis Part 14B Mounting plate part 16 Concave part 17 Mounting base 19 Hard plate 20 Soft plate 21 Buffer member 22 Laminate piece G1, G2, G3 Gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】上下の構造体の相対水平動、垂直動を免震
する三次元免震装置であって、 水平な硬質板と軟質板とを交互に上下に積層した第1の
積層体を有する水平動免震体、及び垂直な中心軸部の外
周に内側から外側に垂直な硬質板と軟質板とを交互に外
向きに積層した第2の積層体と、この第2の積層体を挿
入できかつその外周を支持する凹部を有する取付基台と
を具えた上下動免震体を上下に連結するとともに、 前記中心軸部を、前記構造体に取り付けられる取付板部
に一体化し、かつ前記凹部の奥面と前記第2の積層体と
の間に間隙を設けたことを特徴とする三次元免震装置。
1. A three-dimensional seismic isolator for isolating relative horizontal and vertical movements of upper and lower structures, comprising: a first stacked body in which horizontal hard plates and soft plates are alternately stacked up and down. A horizontal seismic isolation body having a second laminated body in which a hard plate and a soft plate which are vertically arranged from the inside to the outside are alternately and outwardly laminated on the outer periphery of a vertical central shaft portion, and the second laminated body A vertically movable seismic isolator including a mounting base having a concave portion that can be inserted and supports the outer periphery thereof is vertically connected, and the central shaft portion is integrated with a mounting plate portion mounted on the structure, and A three-dimensional seismic isolation device, wherein a gap is provided between an inner surface of the recess and the second laminate.
【請求項2】前記第1の積層体と第2の積層体の軟質板
は高減衰ゴムからなるか、又は第1の積層体を上下に貫
通する通り孔と、第2の積層体を前記中心軸部と取付基
台との間で水平に貫通する通り孔とに減衰材を装填した
ことを特徴とする請求項1記載の三次元免震装置。
2. The soft plate of the first laminate and the second laminate is made of high-damping rubber, or a through hole vertically penetrating the first laminate, and The three-dimensional seismic isolation device according to claim 1, wherein a damping material is loaded in a through hole that horizontally penetrates between the central shaft portion and the mounting base.
【請求項3】前記取付板部と前記取付基台との間に、弾
塑性材からなる緩衝部材を介在させたことを特徴とする
請求項1又は2記載の三次元免震装置。
3. The three-dimensional seismic isolation device according to claim 1, wherein a cushioning member made of an elastic-plastic material is interposed between the mounting plate and the mounting base.
【請求項4】前記第2の積層体の硬質板と軟質板とは円
筒状をなすか、又は平板状の硬質板と軟質板とからなり
かつ前記中心軸部から等角度ピッチで放射状に配される
積層体片からなることを特徴とする請求項1、2又は3
記載の三次元免震装置。
4. The hard plate and the soft plate of the second laminate are cylindrical or consist of a flat hard plate and a soft plate, and are arranged radially at an equal angular pitch from the central axis. 4. A laminated piece to be formed.
The three-dimensional seismic isolation device described.
JP10310745A 1998-10-30 1998-10-30 Three-dimensional base isolation device Pending JP2000130506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10310745A JP2000130506A (en) 1998-10-30 1998-10-30 Three-dimensional base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10310745A JP2000130506A (en) 1998-10-30 1998-10-30 Three-dimensional base isolation device

Publications (1)

Publication Number Publication Date
JP2000130506A true JP2000130506A (en) 2000-05-12

Family

ID=18008984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10310745A Pending JP2000130506A (en) 1998-10-30 1998-10-30 Three-dimensional base isolation device

Country Status (1)

Country Link
JP (1) JP2000130506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185539A (en) * 2009-02-13 2010-08-26 Kajima Corp Three-dimensional base isolation unit
CN102367674A (en) * 2011-11-08 2012-03-07 北京工业大学 Suspension type multi-dimensional input horizontal multi-directional shearing model casing device
CN102926321A (en) * 2012-11-21 2013-02-13 浙江秦山橡胶工程股份有限公司 Wind-resisting support
CN103276830A (en) * 2013-06-03 2013-09-04 中南大学 Lead shear damper
CN115012546A (en) * 2022-05-20 2022-09-06 清华大学 Assembled combined three-dimensional vibration isolation support and processing and assembling method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185539A (en) * 2009-02-13 2010-08-26 Kajima Corp Three-dimensional base isolation unit
CN102367674A (en) * 2011-11-08 2012-03-07 北京工业大学 Suspension type multi-dimensional input horizontal multi-directional shearing model casing device
CN102367674B (en) * 2011-11-08 2014-02-12 北京工业大学 Suspension type multi-dimensional input horizontal multi-directional shearing model casing device
CN102926321A (en) * 2012-11-21 2013-02-13 浙江秦山橡胶工程股份有限公司 Wind-resisting support
CN102926321B (en) * 2012-11-21 2015-01-07 浙江秦山橡胶工程股份有限公司 Wind-resisting support
CN103276830A (en) * 2013-06-03 2013-09-04 中南大学 Lead shear damper
CN103276830B (en) * 2013-06-03 2015-09-30 中南大学 A kind of lead shear damper
CN115012546A (en) * 2022-05-20 2022-09-06 清华大学 Assembled combined three-dimensional vibration isolation support and processing and assembling method thereof

Similar Documents

Publication Publication Date Title
US9394967B2 (en) Three-dimensional shock-absorbing device
JPH04221142A (en) Earthquake-proof supporting device
CN112281641B (en) Grid damping support
JP2002021927A (en) Base isolation device
US5161338A (en) Laminated rubber support assembly
JP2000130506A (en) Three-dimensional base isolation device
JP5797067B2 (en) Anti-vibration stopper for vibration isolation frame
KR102281791B1 (en) Seismic Device for solar module structure
KR20110072410A (en) Seismic isolating apparatus
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JPH08240033A (en) Base isolation structure
JP6420012B1 (en) Passive vibration control device for buildings
JP3026446B2 (en) Seismic isolation device
JP2888807B2 (en) Vertical shock absorbing laminated rubber bearing
JP2024529591A (en) Seismic isolation device equipped with ball-type actuators
JP7096685B2 (en) Buffer and mounting structure of buffer
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP2011220010A (en) Foundation structure
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP2000045561A (en) Brace damper
JP2801693B2 (en) Laminated rubber bearing
JP2000055119A (en) Stopper device for base isolated structure and base isolation of lightweight structure equipped therewith
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
CN111945892B (en) Vertical shock insulation/support that shakes
JPH03249443A (en) Microvibration mass damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819