JP2000121284A - Heat transfer tube and heat conveying system - Google Patents
Heat transfer tube and heat conveying systemInfo
- Publication number
- JP2000121284A JP2000121284A JP10290387A JP29038798A JP2000121284A JP 2000121284 A JP2000121284 A JP 2000121284A JP 10290387 A JP10290387 A JP 10290387A JP 29038798 A JP29038798 A JP 29038798A JP 2000121284 A JP2000121284 A JP 2000121284A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- heat
- medium
- transfer tube
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、伝熱管及びそれを
用いた熱交換器を備える熱搬送システムに関し、特に、
摩擦抵抗を低減する界面活性剤を添加した水溶液を熱搬
送媒体に用いる伝熱管及びそれを用いた熱交換器を備え
る熱搬送システムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer system including a heat transfer tube and a heat exchanger using the same.
The present invention relates to a heat transfer tube using an aqueous solution containing a surfactant for reducing frictional resistance as a heat transfer medium and a heat transfer system including a heat exchanger using the heat transfer tube.
【0002】[0002]
【従来の技術】従来の地域冷暖房システムにおいて、熱
搬送媒体である水を熱供給側プラントから熱利用側プラ
ントであるビルまで循環させるための配管の長さは、数
km以上になり、その水搬送動力は、かなり大きくな
る。このため、水を搬送するために使用されるコスト
は、地域冷暖房システムのランニングコストに占める電
気代の約60%〜70%を占めている。2. Description of the Related Art In a conventional district heating and cooling system, the length of a pipe for circulating water as a heat transfer medium from a heat supply side plant to a building as a heat utilization side plant is several kilometers or more. The transport power is quite large. For this reason, the cost used for conveying water accounts for about 60% to 70% of the electricity cost in the running cost of the district heating and cooling system.
【0003】最近、この水搬送動力を低減させる有効な
方法として、粘弾性を示す界面活性剤を添加した水溶液
を熱搬送媒体に用い、配管内の流動摩擦抵抗を著しく低
減させる方法が提案されている。Recently, as an effective method of reducing the power of water transport, a method has been proposed in which an aqueous solution containing a surfactant exhibiting viscoelasticity is used as a heat transport medium to significantly reduce the flow frictional resistance in a pipe. I have.
【0004】上記の流動摩擦抵抗の低減効果は、以下に
起因するといわれている。すなわち、配管内を流動する
水に所定の陽イオン性界面活性剤とサリチル酸ナトリウ
ム等の対イオンを数10〜数1000ppm溶解させる
と、界面活性剤は、水中で疎水基部を中心にして外周に
親水基部を配置してミセル(会合体)を形成し、そのミ
セルが、棒状の形態をなして高次に絡まり、粘弾性を示
すといわれている。It is said that the above-described effect of reducing the flow frictional resistance is caused by the following. That is, when several tens to several thousand ppm of a predetermined cationic surfactant and a counter ion such as sodium salicylate are dissolved in water flowing in the pipe, the surfactant becomes hydrophilic around the hydrophobic base in the water. It is said that the base is arranged to form micelles (associates), and the micelles are entangled in a higher order in a rod-like form and exhibit viscoelasticity.
【0005】このような特性を示す界面活性剤及び水搬
送配管内の摩擦低減方法として、例えば、特公平3−7
6360号公報、特公平4−6231号公報、特公平5
−47534号公報、特開平8−311431号公報等
に開示されるものがある。[0005] As a method for reducing the friction in the surface-active agent and water conveying pipe exhibiting such characteristics, for example, Japanese Patent Publication No. 3-7 / 1995
No. 6360, Japanese Patent Publication No. 4-6231, Japanese Patent Publication No. 5
And Japanese Patent Application Laid-Open No. 8-31431.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
界面活性剤を添加した水溶液の特性として、流動摩擦抵
抗の減少とともに、伝熱特性が低下することが知られて
いる。このため、上記の界面活性剤を添加した水溶液を
地域冷暖房システムやビル空調システム等の熱搬送シス
テムに利用した場合、流動摩擦抵抗の減少により水搬送
動力が削減され、省エネルギー型熱搬送システムを構築
することができるが、熱供給側プラント及び熱利用側プ
ラントの空調機内にそれぞれ設置されている熱交換器で
の伝熱性能が低下する。この結果、界面活性剤を添加し
た水溶液を用いた熱搬送システムでは、界面活性剤を添
加していない従来の水又は配管等の機器材料の腐食を防
止する添加物を溶解した水溶液を熱搬送媒体に用いた熱
搬送システムと比較して、熱供給側プラント及び熱利用
側プラント内の熱交換器の伝熱部分の面積が大きくな
り、熱交換器が大型化するという問題があった。However, it is known that the properties of an aqueous solution to which the above-mentioned surfactant is added are such that the heat transfer characteristics are reduced as the flow friction resistance is reduced. For this reason, when the aqueous solution to which the above-mentioned surfactant is added is used for a heat transfer system such as a district heating / cooling system or a building air conditioning system, the water transfer power is reduced due to a decrease in flow friction resistance, and an energy-saving heat transfer system is constructed. However, the heat transfer performance of the heat exchangers installed in the air conditioners of the heat supply-side plant and the heat utilization-side plant is reduced. As a result, in a heat transfer system using an aqueous solution to which a surfactant is added, a conventional aqueous solution in which an additive that prevents corrosion of equipment materials such as water or pipes to which no surfactant is added is dissolved in a heat transfer medium. As compared with the heat transfer system used in the above, there is a problem that the area of the heat transfer portion of the heat exchanger in the heat supply side plant and the heat utilization side plant becomes large, and the heat exchanger becomes large.
【0007】本発明の課題は、摩擦抵抗を低減する界面
活性剤を添加した水溶液を熱搬送媒体に用いた場合で
も、配管での摩擦抵抗を低減させたままで、熱交換器に
おける伝熱特性を低下させないで熱交換器を小型化でき
る伝熱管及びそれを用いた熱交換器を備える熱搬送シス
テムを提供することである。An object of the present invention is to improve the heat transfer characteristics in a heat exchanger while reducing the frictional resistance in piping even when an aqueous solution containing a surfactant for reducing frictional resistance is used for the heat transfer medium. An object of the present invention is to provide a heat transfer tube capable of reducing the size of a heat exchanger without lowering the heat exchanger, and a heat transfer system including a heat exchanger using the same.
【0008】[0008]
【課題を解決するための手段】本発明者らは、鋭意検討
を行い、種々の実験を行った結果、界面活性剤を添加し
た水溶液の伝熱性能は、伝熱管の内部形状により大きく
変化することを見出し、本発明を完成するに至った。Means for Solving the Problems The present inventors have conducted intensive studies and conducted various experiments. As a result, the heat transfer performance of the aqueous solution to which the surfactant was added greatly changed depending on the internal shape of the heat transfer tube. This led to the completion of the present invention.
【0009】すなわち、本発明の伝熱管は、摩擦抵抗を
低減する界面活性剤を添加した水溶液を熱搬送媒体に用
いる伝熱管であって、前記伝熱管内を流動する前記熱搬
送媒体に剪断力を加えて撹拌する撹拌手段を備えるもの
である。That is, the heat transfer tube of the present invention is a heat transfer tube using an aqueous solution to which a surfactant for reducing frictional resistance is added as a heat transfer medium, wherein the heat transfer medium flowing in the heat transfer tube is subjected to a shear force. And a stirring means for stirring.
【0010】また、前記撹拌手段は、前記伝熱管の内側
に固定されたねじり平板であることが好ましい。It is preferable that the stirring means is a twisted flat plate fixed inside the heat transfer tube.
【0011】また、本発明の熱搬送システムは、摩擦抵
抗を低減する界面活性剤を添加した水溶液を熱搬送媒体
に用いる熱搬送システムであって、前記熱搬送媒体に熱
を供給する熱供給側プラントと、前記熱搬送媒体の熱を
利用する熱利用側プラントと、前記熱供給側プラントと
前記熱利用側プラントとの間で前記熱搬送媒体を循環さ
せる配管とを備え、前記熱供給側プラント及び前記熱利
用側プラントの少なくとも一方は、上記いずれかの伝熱
管を有し、前記配管を介して前記伝熱管により構成され
る前記熱搬送媒体を加熱又は冷却する熱交換器を備える
ものである。Further, the heat transfer system of the present invention is a heat transfer system using an aqueous solution to which a surfactant for reducing frictional resistance is added as a heat transfer medium, wherein a heat supply side for supplying heat to the heat transfer medium. A plant that uses heat from the heat transfer medium, and a pipe that circulates the heat transfer medium between the heat supply side plant and the heat use side plant, wherein the heat supply side plant And at least one of the heat utilization side plants includes any one of the heat transfer tubes described above, and includes a heat exchanger that heats or cools the heat transfer medium formed by the heat transfer tubes via the pipes. .
【0012】[0012]
【発明の実施の形態】以下、本発明の一実施の形態の伝
熱管を有する熱交換器を備えた熱搬送システムについて
図面を参照しながら説明する。図1は、本発明の一実施
の形態の伝熱管を有する熱交換器を備えた熱搬送システ
ムの構成を示す図である。なお、以下の説明では、ビル
等の空調を行う空調システムを例に説明するが、本発明
の熱搬送システムは、この例に特に限定されず、地域冷
暖房システム、ごみ焼却場、工場等の排熱システム、河
川水、海水、下水処理水等の温度差エネルギーを利用し
た熱利用システム等に同様に適用することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heat transfer system having a heat exchanger having heat transfer tubes according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a heat transfer system including a heat exchanger having a heat transfer tube according to an embodiment of the present invention. In the following description, an air-conditioning system for air-conditioning a building or the like will be described as an example. However, the heat transfer system of the present invention is not particularly limited to this example, and is not limited to a district cooling and heating system, a waste incineration plant, a factory, or the like. The present invention can be similarly applied to a heat system, a heat utilization system utilizing temperature difference energy of river water, seawater, sewage treatment water, and the like.
【0013】図1に示すように、熱搬送システムは、熱
供給側プラント1、ビル等の熱利用側プラント2、配管
3を備える。熱供給側プラント1は、冷凍機4を備え
る。配管3の内部には、摩擦抵抗を低減させる特性を有
する陽イオン系界面活性剤を添加した水溶液である熱搬
送媒体が流れ、熱搬送媒体は、冷凍機4の内部で冷却さ
れ、熱供給側プラント1から熱利用側プラント2へ搬送
される。冷却された熱搬送媒体は、熱利用側プラント2
で冷房の冷熱として利用され、その後、加熱された熱搬
送媒体が再び熱供給側プラント1に搬送され、熱供給側
プラント1と熱利用側プラント2との間を循環する。As shown in FIG. 1, the heat transfer system includes a heat supply side plant 1, a heat utilization side plant 2 such as a building, and a pipe 3. The heat supply-side plant 1 includes a refrigerator 4. A heat transfer medium, which is an aqueous solution to which a cationic surfactant having a property of reducing frictional resistance is added, flows inside the pipe 3, and the heat transfer medium is cooled inside the refrigerator 4, It is transported from the plant 1 to the heat utilization side plant 2. The cooled heat transfer medium is supplied to the heat utilization side plant 2
Is used as cooling heat for cooling, and then the heated heat transfer medium is again transferred to the heat supply side plant 1 and circulates between the heat supply side plant 1 and the heat use side plant 2.
【0014】次に、冷凍機4の内部に備えられる熱交換
器について詳細に説明する。図2は、冷凍機4の内部に
備えられる熱交換器の構造を示す一部断面斜視図であ
る。Next, the heat exchanger provided inside the refrigerator 4 will be described in detail. FIG. 2 is a partial cross-sectional perspective view showing the structure of the heat exchanger provided inside the refrigerator 4.
【0015】冷凍機内で発生する冷熱を熱搬送媒体に伝
達する部分は、一般に蒸発器と呼ばれ、その内部には、
シェルアンドチューブ型熱交換器である熱交換器が備え
られる。図2に示すように、熱交換器10は、シェル1
1、伝熱管12を備える。熱交換器10のシェル11内
は、減圧下に保持され、多数の伝熱管12が一定方向に
平行に設置されている。熱搬送媒体は、各伝熱管12の
内部を連続的に流動し、シェル11内では、吸収式冷凍
機の場合には水が、電動式ターボ冷凍機の場合にはフロ
ン液がそれぞれ、連続的に噴水され、水又はフロン液が
伝熱管12の外側をたれ落ちながら蒸発(気化)する。
伝熱管12内の熱搬送媒体は、このときの気化熱により
冷却される。冷却された熱搬送媒体は、伝熱管11に繋
がる配管3を介してポンプ(図示省略)により熱利用側
プラント2の熱交換器に供給され、熱利用側プラント2
で冷房用の冷熱として利用される。[0015] The portion for transmitting the cold generated in the refrigerator to the heat transfer medium is generally called an evaporator.
A heat exchanger that is a shell and tube heat exchanger is provided. As shown in FIG. 2, the heat exchanger 10 includes a shell 1
1. A heat transfer tube 12 is provided. The inside of the shell 11 of the heat exchanger 10 is kept under reduced pressure, and a number of heat transfer tubes 12 are installed in parallel in a certain direction. The heat transfer medium continuously flows inside each of the heat transfer tubes 12, and in the shell 11, water in the case of the absorption refrigerator and Freon liquid in the case of the electric turbo refrigerator continuously flow. The water or the chlorofluorocarbon liquid evaporates (vaporizes) while dripping on the outside of the heat transfer tube 12.
The heat transfer medium in the heat transfer tube 12 is cooled by the heat of vaporization at this time. The cooled heat transfer medium is supplied to a heat exchanger of the heat utilization side plant 2 by a pump (not shown) via a pipe 3 connected to the heat transfer pipe 11, and is supplied to the heat utilization side plant 2.
It is used as cooling for cooling.
【0016】次に、伝熱管12について詳細に説明す
る。図3は、図2に示す伝熱管の構造を示す一部断面斜
視図である。図4は、図3に示す伝熱管のI−I線断面
を示す図である。なお、伝熱管の外周には、通常の伝熱
管と同様に放熱用のフィン等が設けられているが、簡略
化のため、図示及び説明を省略する。Next, the heat transfer tube 12 will be described in detail. FIG. 3 is a partially sectional perspective view showing the structure of the heat transfer tube shown in FIG. FIG. 4 is a diagram illustrating a cross section taken along line II of the heat transfer tube illustrated in FIG. 3. In addition, fins and the like for radiating heat are provided on the outer periphery of the heat transfer tube in the same manner as a normal heat transfer tube, but illustration and description are omitted for simplification.
【0017】図3及び図4に示すように、円筒形状の伝
熱管12の内側には、伝熱管12の管内径に等しい幅を
有するねじり平板13が挿入されて固定されている。ね
じり平板12は、テープ状の平板にねじり加工を施し、
所定ピッチでねじられたものである。ねじり平板13の
ねじりピッチは、特に限定されるものではないが、ねじ
り状態が半回転するピッチとして、200mm以下であ
ることが好ましく、100mm以下であることがより好
ましく、65mm以下であることがさらに好ましい。ま
た、ねじり平板13の長さも特に限定されるものではな
いが、伝熱管の長さの1/10倍〜1倍の範囲であるこ
とが好ましく、1/10倍〜1/2倍の範囲であること
がより好ましく、1/10倍〜1/4倍の範囲であるこ
とがさらに好ましい。また、ねじり平板13の材質及び
厚みも、特に限定されるものではなく、使用される熱搬
送プラントの仕様等に応じて種々のものを採用すること
ができる。As shown in FIGS. 3 and 4, a torsion flat plate 13 having a width equal to the inner diameter of the heat transfer tube 12 is inserted and fixed inside the cylindrical heat transfer tube 12. The twisted flat plate 12 is formed by twisting a tape-shaped flat plate,
It is twisted at a predetermined pitch. The twist pitch of the twisted flat plate 13 is not particularly limited, but is preferably 200 mm or less, more preferably 100 mm or less, and further preferably 65 mm or less, as the pitch at which the twisted state rotates half a turn. preferable. The length of the twisted flat plate 13 is not particularly limited, but is preferably in the range of 1/10 to 1 times the length of the heat transfer tube, and is preferably in the range of 1/10 to 1/2 time. More preferably, it is more preferably in the range of 1/10 to 1/4. Further, the material and thickness of the torsion flat plate 13 are not particularly limited, and various types can be adopted according to the specifications of the heat transfer plant used.
【0018】上記の構成により、伝熱管12を流動する
熱搬送媒体がねじり平板13により撹拌され、熱搬送媒
体の伝熱性能が改善される。これは、以下の理由による
ものと推定される。一般に、界面活性剤を添加した水溶
液では、疎水基部と親水基部からなる界面活性剤が、疎
水基部を中心に外周を親水基部が取り巻くように自己集
合して棒状ミセルを形成し、この棒状ミセルが高次に絡
まることにより粘弾性を示す。しかしながら、伝熱管1
2内に設けられたねじり平板13により、管内を流動す
る熱搬送媒体にかなりの剪断力が印加されて撹拌され
る。このため、ミセルの絡まりが解きほぐされ、その結
果、粘弾性は発現しなくなり、伝熱性能は低下しない。With the above configuration, the heat transfer medium flowing through the heat transfer tube 12 is agitated by the twisted flat plate 13, and the heat transfer performance of the heat transfer medium is improved. This is presumed to be due to the following reasons. In general, in an aqueous solution to which a surfactant is added, a surfactant consisting of a hydrophobic base and a hydrophilic base is self-assembled to form a rod-shaped micelle so that the hydrophilic base surrounds the periphery of the hydrophobic base, and the rod-shaped micelle is formed. It shows viscoelasticity by being entangled in high order. However, heat transfer tube 1
Due to the twisted flat plate 13 provided in the tube 2, a considerable shear force is applied to the heat transfer medium flowing in the tube and the heat transfer medium is stirred. For this reason, the entanglement of the micelles is loosened, and as a result, the viscoelasticity does not appear and the heat transfer performance does not decrease.
【0019】従って、空調システムの熱供給側プラント
の冷凍機に一般に使用される配管口径(内径)10〜2
0mmの範囲内の伝熱管を用い、1.0〜2.5m/s
の流速範囲内で界面活性剤を添加した水溶液を熱搬送媒
体として使用しても、水を熱搬送媒体として用いた場合
と同等の伝熱性能(熱伝達率)を得ることができる。こ
の結果、上記のようにねじり平板13を備える伝熱管1
2を有する熱交換器10を、図1に示す熱搬送システム
に使用する場合、伝熱管以外の配管3では、従来と同様
に界面活性剤を添加した水溶液の流動摩擦抵抗低減効果
により水搬送動力を低減することができるとともに、熱
供給側プラント1の熱交換器10内の伝熱管12では、
伝熱性能が低下しないため、熱搬送媒体から効率よく熱
交換を行うことができ、熱交換器を小型化することがで
きる。Therefore, the pipe diameter (inner diameter) generally used for the refrigerator of the plant on the heat supply side of the air conditioning system is 10 to 2 mm.
1.0 to 2.5 m / s using a heat transfer tube within the range of 0 mm
Even when an aqueous solution to which a surfactant is added is used as the heat transfer medium within the flow rate range of, the same heat transfer performance (heat transfer coefficient) as when water is used as the heat transfer medium can be obtained. As a result, the heat transfer tube 1 having the twisted flat plate 13 as described above
1 is used in the heat transfer system shown in FIG. 1, the pipe 3 other than the heat transfer pipe has a water transfer power due to the effect of reducing the flow frictional resistance of the aqueous solution to which the surfactant has been added as in the conventional case. Can be reduced, and the heat transfer tubes 12 in the heat exchanger 10 of the heat supply-side plant 1
Since the heat transfer performance does not decrease, heat can be efficiently exchanged from the heat transfer medium, and the heat exchanger can be downsized.
【0020】また、上記のねじり平板によりミセルの絡
まりが解きほぐされた状態は、伝熱管内にねじり平板が
なくても数秒間は継続するが、その後さらにねじり平板
がなければ、界面活性剤の分子は、再び自己集合して棒
状ミセルを生成し、粘弾性が復活する。一方、一般的な
冷凍機内の熱交換器における熱搬送媒体の滞留時間は、
数十秒間であるため、熱交換器の伝熱管の熱交換部の手
前にねじり平板を設ければ、ミセルの絡まりが解きほぐ
された状態のまま熱交換器内を通過し、その後、再びミ
セルの絡まりが発生して粘弾性が復活することになる。
このため、少なくとも熱交換器の伝熱管の熱交換部の手
前にねじり平板を設ければ、熱搬送媒体は、熱交換器内
では伝熱性能を低下させる粘弾性状態ではなくなり、伝
熱性能は低下しない。従って、ねじり平板13が伝熱管
12に固定される位置も特に限定されるものでなく、伝
熱管全体にねじり平板を設けてもよいし、熱交換が行わ
れる伝熱管の熱交換部の上流側の一部分であってもよい
し、又は、伝熱管の熱交換部のすぐ手前の部分であって
もよい。Further, the state in which the entanglement of the micelles is unraveled by the above-mentioned twisted flat plate continues for several seconds without the twisted flat plate in the heat transfer tube. The molecules self-assemble again to form rod-like micelles, and viscoelasticity is restored. On the other hand, the residence time of the heat transfer medium in a heat exchanger in a general refrigerator is
Because it is several tens of seconds, if a twisted flat plate is provided in front of the heat exchange part of the heat exchanger tubes of the heat exchanger, the micelles will pass through the heat exchanger with the entanglement untangled, and then And the viscoelasticity is restored.
For this reason, if a twisted flat plate is provided at least in front of the heat exchange part of the heat transfer tube of the heat exchanger, the heat transfer medium will not be in a viscoelastic state in which the heat transfer performance is reduced in the heat exchanger, and the heat transfer performance will be reduced. Does not drop. Therefore, the position at which the torsion plate 13 is fixed to the heat transfer tube 12 is not particularly limited, and the torsion plate may be provided on the entire heat transfer tube, or may be provided upstream of the heat exchange portion of the heat transfer tube where heat exchange is performed. Or a portion immediately before the heat exchange portion of the heat transfer tube.
【0021】また、上記のようなねじり平板を内部に備
える伝熱管として、工業的に市販されて主に液体の混
合、撹拌、又は化学反応促進に用いられるスタティック
ミキサー、例えば、ノリタケカンパニー社製、N10−
331−1を用いてもよい。このスタティックミキサー
は、円管内にねじられた金属等の平板が挿入されて固定
されているものであり、図3に示す伝熱管12と、同様
に伝熱管内を流動する熱搬送媒体に剪断力を加えて撹拌
することができ、同様の効果を得ることができる。As a heat transfer tube having the above-mentioned twisted flat plate therein, a static mixer commercially available and mainly used for mixing, stirring, or accelerating a chemical reaction, such as Noritake Co., Ltd. N10-
331-1 may be used. In this static mixer, a twisted flat plate of metal or the like is inserted and fixed in a circular tube, and a shear force is applied to the heat transfer tube 12 shown in FIG. Can be added and stirred, and the same effect can be obtained.
【0022】なお、上記の実施の形態では、熱供給側プ
ラント1の熱交換器10に本発明の伝熱管を用いた場合
について説明したが、本発明の伝熱管は、熱利用側プラ
ントの熱交換器にも同様に適用でき、上記と同様の効果
を得ることができる。In the above embodiment, the case where the heat transfer tube of the present invention is used for the heat exchanger 10 of the heat supply side plant 1 has been described. The same can be applied to the exchanger, and the same effects as above can be obtained.
【0023】[0023]
【実施例】以下、実施例をあげて、本発明の伝熱管の伝
熱特性を具体的に説明する。なお、本発明は、以下の実
施例に限定されるものではない。EXAMPLES Hereinafter, the heat transfer characteristics of the heat transfer tube of the present invention will be specifically described with reference to examples. Note that the present invention is not limited to the following embodiments.
【0024】図5は、伝熱管の伝熱特性を評価するため
の評価装置の構成を示す図である。図5に示すように、
10℃に調整した熱搬送媒体を媒体タンク21に充填
し、ポンプ22により媒体タンク21内の熱搬送媒体を
配管23〜25を介して伝熱特性計測部26に導入す
る。伝熱特性計測部26は、伝熱管12と、伝熱管12
の周りを覆う円管27とを備え、円管27は、ステンレ
ス製の呼び径40Aの円管である。伝熱管12と円管2
7とから構成される二重管の内側、すなわち円管27と
伝熱管12との間の環状部分には、伝熱管12の管壁の
温度が8℃になるように、約2〜3℃の冷水が常時流入
される。この冷水により伝熱管12内に流動する10℃
の熱搬送媒体が冷却される。FIG. 5 is a diagram showing a configuration of an evaluation device for evaluating the heat transfer characteristics of the heat transfer tube. As shown in FIG.
The heat transfer medium adjusted to 10 ° C. is filled in the medium tank 21, and the heat transfer medium in the medium tank 21 is introduced into the heat transfer characteristic measuring unit 26 via the pipes 23 to 25 by the pump 22. The heat transfer characteristic measuring unit 26 includes the heat transfer tube 12 and the heat transfer tube 12.
And a circular pipe 27 covering the periphery of the circular pipe. The circular pipe 27 is a circular pipe made of stainless steel and having a nominal diameter of 40A. Heat transfer tube 12 and circular tube 2
7, that is, an annular portion between the circular tube 27 and the heat transfer tube 12, about 2-3 ° C. so that the temperature of the tube wall of the heat transfer tube 12 becomes 8 ° C. Of cold water always flows in. 10 ° C. flowing into the heat transfer tube 12 by the cold water
Is cooled.
【0025】上記の操作により、本評価装置では、冷却
時の伝熱管12の内側の伝熱特性として熱伝達率を算出
する。なお、実際の冷凍機内の蒸発器と上記の評価装置
とでは、伝熱管内を流動する熱搬送媒体を冷却する方法
が異なるが、この相違点は、伝熱管の外側に関するもの
であり、本発明で議論する伝熱管の内側を流動する熱搬
送媒体の伝熱特性には何ら影響しない。By the above operation, the evaluation apparatus calculates the heat transfer coefficient as the heat transfer characteristic inside the heat transfer tube 12 during cooling. The method of cooling the heat transfer medium flowing in the heat transfer tube differs between the actual evaporator in the refrigerator and the above-described evaluation device. This difference relates to the outside of the heat transfer tube. It has no effect on the heat transfer characteristics of the heat transfer medium flowing inside the heat transfer tube discussed in the above.
【0026】また、比較する熱搬送媒体としては、上水
に亜硝酸系の配管腐食防錆剤クリサワーI−108(栗
田工業社製)を750ppm溶解した水溶液(以下、従
来型媒体という)と、この従来型媒体にオレイル−ビス
(2−ヒドロキシエチル)メチルアンモニウムクロライ
ドを主成分とする界面活性剤エソカードO−12(ライ
オン社製)を750ppm、サリチル酸ナトリウム(和
光純薬社製)を450ppm溶解した水溶液(以下、界
面活性剤媒体という)とを使用し、両者による伝熱特性
の相違を評価した。As a heat transfer medium to be compared, an aqueous solution (hereinafter, referred to as a conventional medium) in which 750 ppm of a nitrous acid-based pipe corrosion inhibitor, Kurisawa I-108 (manufactured by Kurita Industry Co., Ltd.) is dissolved in tap water, In this conventional medium, 750 ppm of surfactant Esocard O-12 (manufactured by Lion Corporation) containing oleyl-bis (2-hydroxyethyl) methylammonium chloride as a main component and 450 ppm of sodium salicylate (manufactured by Wako Pure Chemical Industries) were dissolved. An aqueous solution (hereinafter referred to as a surfactant medium) was used, and the difference in heat transfer characteristics between the two was evaluated.
【0027】(実施例1)伝熱管として、一般に冷凍機
の伝熱管として使用されている、管内径14.0mm、
長さ1000mmの平滑銅管を使用し、この伝熱管の内
部に、幅14.0mm、厚さ1.0mm、長さ300m
mのステンレス製の平板を50mmの半回転ピッチにな
るようにねじり加工したものを、熱搬送媒体の流動方向
を基準として伝熱管の上流入り口に固定し、上記の評価
装置に設置した。この伝熱管に界面活性剤媒体に流動さ
せ、そのときの熱伝達率(W/m2・℃)と流速(m/
s)とを測定し、その結果を図6に黒丸で示す。(Example 1) As a heat transfer tube, a tube inner diameter of 14.0 mm, which is generally used as a heat transfer tube of a refrigerator,
A smooth copper tube having a length of 1000 mm was used. Inside this heat transfer tube, a width of 14.0 mm, a thickness of 1.0 mm, and a length of 300 m were used.
A stainless steel plate having a thickness of 50 m was twisted so as to have a half-rotation pitch of 50 mm, and was fixed to the upstream entrance of the heat transfer tube with reference to the flow direction of the heat transfer medium, and installed in the above-described evaluation device. In this heat transfer tube, a surfactant medium is caused to flow, and the heat transfer coefficient (W / m 2 · ° C.) and the flow rate (m /
s), and the results are shown in FIG. 6 by black circles.
【0028】(実施例2)伝熱管として、一般に冷凍機
の伝熱管として使用されている、高さ0.5mm、幅
0.7mmの矩形形状の断面を有するリッジを内周面に
1.7mmの等間隔でスパイラル状に形成した管内径1
4.6mm(リッジの高さを含まず)の銅管に、幅が1
3.6mmである点を除き実施例1と同様のねじり板を
固定した以外は、実施例1と同様の条件で、熱搬送媒体
として界面活性剤媒体を用いた場合の熱伝達率と流速と
を測定し、その結果を図7に黒丸で示す。(Example 2) As a heat transfer tube, a ridge having a rectangular cross section of 0.5 mm in height and 0.7 mm in width, which is generally used as a heat transfer tube of a refrigerator, is 1.7 mm in inner circumferential surface. Spiral tube diameter 1 formed at equal intervals
4.6mm (excluding ridge height) copper tube, width 1
Except that the torsion plate was fixed in the same manner as in Example 1 except that it was 3.6 mm, the heat transfer coefficient, the flow rate, and the flow rate when a surfactant medium was used as the heat transfer medium under the same conditions as in Example 1. Was measured, and the results are shown by black circles in FIG.
【0029】(比較例1)ねじり平板がない以外は、実
施例1と同様の伝熱管を上記の評価装置に設置し、熱搬
送媒体として従来型媒体と用いた場合と界面活性剤媒体
を用いた場合との各熱伝達率と流速とを測定し、従来型
媒体を用いた場合を白丸で、界面活性剤媒体を用いた場
合を白三角でそれぞれ図6に示す。(Comparative Example 1) A heat transfer tube similar to that of Example 1 was installed in the above-described evaluation apparatus except that the twisted flat plate was not used, and a heat transfer medium using a conventional medium and a heat transfer medium using a surfactant medium were used. The heat transfer coefficient and the flow rate were measured when the conventional medium was used, and a white circle when the conventional medium was used and a white triangle when the surfactant medium was used, respectively, are shown in FIG.
【0030】(比較例2)ねじり平板がない以外は、実
施例2と同様の伝熱管を上記の評価装置に設置し、熱搬
送媒体として従来型媒体と用いた場合と界面活性剤媒体
を用いた場合との各熱伝達率と流速とを測定し、従来型
媒体を用いた場合を白丸で、界面活性剤媒体を用いた場
合を白三角でそれぞれ図7に示す。(Comparative Example 2) A heat transfer tube similar to that of Example 2 was installed in the above-described evaluation apparatus except that there was no twisted flat plate, and a conventional medium was used as a heat transport medium and a surfactant medium was used. The heat transfer coefficient and the flow rate were measured when the conventional medium was used, and a white circle when the conventional medium was used, and a white triangle when the surfactant medium was used, are shown in FIG.
【0031】図6及び図7に示すように、一般に熱搬送
システムで使用される流速範囲1.0〜2.5m/sに
おいて、比較例1及び比較例2の条件で界面活性剤媒体
を用いた場合は、伝熱特性が低下するが、実施例1及び
実施例2の条件で界面活性剤媒体を用いた場合は、伝熱
特性は低下せず、比較例1及び比較例2の条件で従来型
媒体を用いた場合と同等の伝熱特性を得ることができ、
界面活性剤媒体を用いた場合でも、ねじり平板を用いる
ことにより、摩擦低減効果はなくなり、伝熱特性も低下
することがないことが確認された。As shown in FIGS. 6 and 7, a surfactant medium was used under the conditions of Comparative Examples 1 and 2 in a flow rate range of 1.0 to 2.5 m / s generally used in a heat transfer system. However, when the surfactant medium was used under the conditions of Examples 1 and 2, the heat transfer characteristics did not decrease, and under the conditions of Comparative Examples 1 and 2. The same heat transfer characteristics as when using a conventional medium can be obtained,
Even when a surfactant medium was used, it was confirmed that the use of a twisted flat plate did not reduce the friction reducing effect and did not lower the heat transfer characteristics.
【0032】[0032]
【発明の効果】本発明の伝熱管は、伝熱管内を流動する
熱搬送媒体に剪断力を加えて撹拌することにより、界面
活性剤を添加した水溶液を熱搬送媒体に用いた場合で
も、伝熱管における伝熱特性が低下しないので、熱交換
器を小型化することができる。According to the heat transfer tube of the present invention, the heat transfer medium flowing in the heat transfer tube is agitated by applying a shearing force. Since the heat transfer characteristics of the heat tube do not deteriorate, the heat exchanger can be downsized.
【0033】また、本発明の熱搬送システムは、上記伝
熱管を熱交換器に用いることにより、伝熱管以外の配管
では、従来と同様に界面活性剤水溶液の流動摩擦抵抗低
減効果により水搬送動力を低減することができるととも
に、熱交換器内の伝熱管では、伝熱性能が低下しないた
め、小型化した熱交換器を用いて熱搬送システムを構築
することができる。Further, the heat transfer system of the present invention uses the above-mentioned heat transfer tube for a heat exchanger, so that the pipes other than the heat transfer tube use the water transfer power due to the effect of reducing the flow frictional resistance of the aqueous surfactant solution as in the conventional case. Can be reduced, and the heat transfer performance of the heat transfer tubes in the heat exchanger does not decrease. Therefore, a heat transfer system can be constructed using a downsized heat exchanger.
【図1】本発明の一実施の形態の伝熱管を有する熱交換
器を備えた熱搬送システムの構成を示すブロック図であ
る。FIG. 1 is a block diagram illustrating a configuration of a heat transfer system including a heat exchanger having heat transfer tubes according to an embodiment of the present invention.
【図2】図1に示す冷凍機の内部に備えられる熱交換器
の構造を示す一部断面斜視図である。FIG. 2 is a partial cross-sectional perspective view showing a structure of a heat exchanger provided inside the refrigerator shown in FIG.
【図3】図2に示す伝熱管の構造を示す一部断面斜視図
である。FIG. 3 is a partially sectional perspective view showing the structure of the heat transfer tube shown in FIG.
【図4】図3に示す伝熱管のI−I線断面を示す図であ
る。FIG. 4 is a view showing a cross section taken along line II of the heat transfer tube shown in FIG. 3;
【図5】伝熱管の伝熱特性を評価するための評価装置の
構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of an evaluation device for evaluating the heat transfer characteristics of the heat transfer tube.
【図6】実施例1及び比較例1の伝熱特性を示すグラフ
である。FIG. 6 is a graph showing heat transfer characteristics of Example 1 and Comparative Example 1.
【図7】実施例2及び比較例2の伝熱特性を示すグラフ
である。FIG. 7 is a graph showing heat transfer characteristics of Example 2 and Comparative Example 2.
1 熱供給側プラント 2 熱利用側プラント 3 配管 4 冷凍機 10 熱交換器 11 シェル 12 伝熱管 13 ねじり平板 DESCRIPTION OF SYMBOLS 1 Heat supply side plant 2 Heat utilization side plant 3 Piping 4 Refrigerator 10 Heat exchanger 11 Shell 12 Heat transfer tube 13 Twisted flat plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 正晃 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 嘉数 隆敬 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 薄井 洋基 兵庫県伊丹市行基町二丁目86番地 伊丹合 同宿舎2211 (72)発明者 五町 善雄 大阪府大阪市中央区北浜東4番33号 株式 会社大林組内 (72)発明者 小野島 一 大阪府大阪市中央区北浜東4番33号 株式 会社大林組内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaaki Yoshikawa 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. 1-2 1-2 Osaka Gas Co., Ltd. No. 33 Obayashi Gumi Co., Ltd. (72) Inventor Hajime Onojima 4-33 Kitahama Higashi, Chuo-ku, Osaka
Claims (3)
た水溶液を熱搬送媒体に用いる伝熱管であって、 前記伝熱管内を流動する前記熱搬送媒体に剪断力を加え
て撹拌する撹拌手段を備える伝熱管。1. A heat transfer tube using an aqueous solution to which a surfactant for reducing frictional resistance is added as a heat transfer medium, wherein a stirring means for applying a shearing force to the heat transfer medium flowing in the heat transfer tube and stirring the heat transfer medium. Heat transfer tube with.
定されたねじり平板である請求項1記載の伝熱管。2. The heat transfer tube according to claim 1, wherein said stirring means is a twisted flat plate fixed inside said heat transfer tube.
た水溶液を熱搬送媒体に用いる熱搬送システムであっ
て、 前記熱搬送媒体に熱を供給する熱供給側プラントと、 前記熱搬送媒体の熱を利用する熱利用側プラントと、 前記熱供給側プラントと前記熱利用側プラントとの間で
前記熱搬送媒体を循環させる配管とを備え、 前記熱供給側プラント及び前記熱利用側プラントの少な
くとも一方は、請求項1又は2記載の伝熱管を有し、前
記配管を介して前記伝熱管により構成される前記熱搬送
媒体を加熱又は冷却する熱交換器を備える熱搬送システ
ム。3. A heat transfer system that uses, as a heat transfer medium, an aqueous solution to which a surfactant that reduces frictional resistance is added, wherein a heat supply side plant that supplies heat to the heat transfer medium; A heat utilization side plant utilizing heat, and a pipe for circulating the heat transfer medium between the heat supply side plant and the heat utilization side plant, wherein at least the heat supply side plant and the heat utilization side plant 3. A heat transfer system comprising: the heat transfer tube according to claim 1; and a heat exchanger configured to heat or cool the heat transfer medium formed by the heat transfer tube via the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10290387A JP2000121284A (en) | 1998-10-13 | 1998-10-13 | Heat transfer tube and heat conveying system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10290387A JP2000121284A (en) | 1998-10-13 | 1998-10-13 | Heat transfer tube and heat conveying system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000121284A true JP2000121284A (en) | 2000-04-28 |
Family
ID=17755364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10290387A Pending JP2000121284A (en) | 1998-10-13 | 1998-10-13 | Heat transfer tube and heat conveying system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000121284A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002277189A (en) * | 2001-03-23 | 2002-09-25 | Osaka Gas Co Ltd | Heat transfer pipe and heat carrying system |
JP2006112777A (en) * | 2004-10-14 | 2006-04-27 | Nova Chem Internatl Sa | External ribbed furnace tube |
JP2007132873A (en) * | 2005-11-11 | 2007-05-31 | Nippon Soda Co Ltd | Analytical method, separation method, mixer, and analyzer |
JP2009068826A (en) * | 2006-12-25 | 2009-04-02 | Jfe Engineering Kk | Method and apparatus for producing clathrate hydrate slurry and method of operating the production apparatus |
JP2010078187A (en) * | 2008-09-24 | 2010-04-08 | Chubu Shatai Kk | Refrigerant diffuser for air conditioning device, and air conditioning device using the same |
CN102425975A (en) * | 2011-12-02 | 2012-04-25 | 北京化工大学 | Internal grooving helical blade rotor for heat exchange tube |
JP2013057899A (en) * | 2011-09-09 | 2013-03-28 | Fuji Xerox Co Ltd | Manufacturing method and manufacturing apparatus of toner for electrostatic charge image development |
WO2014128826A1 (en) * | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Heat exchanger and cooling cycle device using same |
CN106225551A (en) * | 2016-08-30 | 2016-12-14 | 张家港市金腾化工机械制造有限公司 | A kind of disturbing flow device in heat exchanger tube |
CN110160390A (en) * | 2019-05-08 | 2019-08-23 | 中国石油大学(北京) | Pipeline drag reduction flows contactless efficient augmentation of heat transfer system and method |
-
1998
- 1998-10-13 JP JP10290387A patent/JP2000121284A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4508450B2 (en) * | 2001-03-23 | 2010-07-21 | 大阪瓦斯株式会社 | Heat transfer tube and heat transfer system |
JP2002277189A (en) * | 2001-03-23 | 2002-09-25 | Osaka Gas Co Ltd | Heat transfer pipe and heat carrying system |
JP2006112777A (en) * | 2004-10-14 | 2006-04-27 | Nova Chem Internatl Sa | External ribbed furnace tube |
JP2007132873A (en) * | 2005-11-11 | 2007-05-31 | Nippon Soda Co Ltd | Analytical method, separation method, mixer, and analyzer |
JP4690864B2 (en) * | 2005-11-11 | 2011-06-01 | 日本曹達株式会社 | Analysis method, separation method, mixer, and analyzer |
JP2009068826A (en) * | 2006-12-25 | 2009-04-02 | Jfe Engineering Kk | Method and apparatus for producing clathrate hydrate slurry and method of operating the production apparatus |
JP2010078187A (en) * | 2008-09-24 | 2010-04-08 | Chubu Shatai Kk | Refrigerant diffuser for air conditioning device, and air conditioning device using the same |
JP2013057899A (en) * | 2011-09-09 | 2013-03-28 | Fuji Xerox Co Ltd | Manufacturing method and manufacturing apparatus of toner for electrostatic charge image development |
CN102425975A (en) * | 2011-12-02 | 2012-04-25 | 北京化工大学 | Internal grooving helical blade rotor for heat exchange tube |
WO2014128826A1 (en) * | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Heat exchanger and cooling cycle device using same |
GB2525536A (en) * | 2013-02-19 | 2015-10-28 | Mitsubishi Electric Corp | Heat exchanger and cooling cycle device using same |
JP6067094B2 (en) * | 2013-02-19 | 2017-01-25 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle apparatus using the same |
GB2525536B (en) * | 2013-02-19 | 2019-05-08 | Mitsubishi Electric Corp | Heat exchanger having concentric pipes including intermediate heat transfer pipe and refrigeration cycle apparatus including the heat exchanger |
CN106225551A (en) * | 2016-08-30 | 2016-12-14 | 张家港市金腾化工机械制造有限公司 | A kind of disturbing flow device in heat exchanger tube |
CN110160390A (en) * | 2019-05-08 | 2019-08-23 | 中国石油大学(北京) | Pipeline drag reduction flows contactless efficient augmentation of heat transfer system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050189094A1 (en) | Helical coil-on-tube heat exchanger | |
JP2000121284A (en) | Heat transfer tube and heat conveying system | |
TW201042230A (en) | Heat exchanger | |
US20140166238A1 (en) | Liquid-cryogen injection cooling devices and methods for using same | |
JP2011027285A (en) | Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger | |
TW201727171A (en) | Heat exchanger for a vapor compression system | |
JP2009186063A (en) | Heat exchanger and its manufacturing method | |
JP2006189249A (en) | Double pipe heat exchanger | |
JP4508450B2 (en) | Heat transfer tube and heat transfer system | |
KR20110122534A (en) | Heat exchanger for carbon dioxide coolant enhanced heat exchange efficiency | |
JP2000121283A (en) | Heat exchanger and heat conveying system | |
JP2009264644A (en) | Heat exchanger | |
JP2004085166A (en) | Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger | |
JP2003269884A (en) | Heat exchanger and heat transfer system | |
JP2000121271A (en) | Heat transfer tube and heat conveying system | |
JP2005009833A (en) | Double pipe type heat exchanger | |
JP2005009832A (en) | Double pipe type heat exchanger | |
JP2008175450A (en) | Heat exchanger | |
JP2001248991A (en) | Heat transfer pipe and heat transferring system | |
JP2005016896A (en) | Heat transporting medium and heat transporting system using the same | |
JP3671450B2 (en) | Fluid flow promoter and thermal energy transfer method using the same | |
KR100565505B1 (en) | Heat exchanger of air conditioner | |
KR100255472B1 (en) | Heat exchanger and its manufacture method | |
Akhavan-Behabadi et al. | Augmentation of forced convection condensation heat transfer inside a horizontal tube using spiral spring inserts | |
Kishimoto et al. | Influences of the inner-surface conditions of circular tubes on the heat transfer in a surfactant drag-reduction system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070620 |