JP2000114157A - Illuminator and projection aligner provided therewith - Google Patents
Illuminator and projection aligner provided therewithInfo
- Publication number
- JP2000114157A JP2000114157A JP10290118A JP29011898A JP2000114157A JP 2000114157 A JP2000114157 A JP 2000114157A JP 10290118 A JP10290118 A JP 10290118A JP 29011898 A JP29011898 A JP 29011898A JP 2000114157 A JP2000114157 A JP 2000114157A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- light source
- light
- birefringent
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は投影露光装置、特に
半導体集積回路等を製造するために好適な投影露光装置
及び該装置に搭載される照明装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus, and more particularly to a projection exposure apparatus suitable for manufacturing a semiconductor integrated circuit and the like, and an illumination device mounted on the apparatus.
【0002】[0002]
【従来の技術】近年、半導体集積回路の高集積化に伴
い、投影露光装置の光源波長が短波長化している。例え
ば、光源としてKrFエキシマレーザを用いる投影露光
装置は既に実用化されており、ArFエキシマレーザを
用いる装置は研究段階から実用段階に移行しつつある。
これらのレーザを光源とする投影露光装置では、光源の
波長が短いため、透過部材として使用できる硝材が石英
硝子と螢石とに制限される。そのため、投影露光装置の
投影レンズを光学設計するに際して、色収差の補正(色
消し)が極端に困難となってしまう。また、原理上エキ
シマレーザの発振波長は半値幅でコンマ数nm程度の波
長幅を有している。このため、色消しの諸条件を緩和す
るため、発振波長が半値幅でコンマ数pm程度になるよ
うに狭帯化を行なっている。ここで、回折格子等を用い
て発振波長の狭帯化を行うと、特定波長の増幅に加え
て、特定の偏光成分のみ増幅してしまう。そして、特定
の偏光成分を多く有する光束を用いて投影露光を行うと
以下に述べる問題を生ずる。2. Description of the Related Art In recent years, the light source wavelength of a projection exposure apparatus has been shortened with the increasing integration of semiconductor integrated circuits. For example, a projection exposure apparatus using a KrF excimer laser as a light source has already been put to practical use, and an apparatus using an ArF excimer laser is shifting from a research stage to a practical stage.
In a projection exposure apparatus using such a laser as a light source, the wavelength of the light source is short, so that glass materials usable as a transmission member are limited to quartz glass and fluorite. Therefore, when optically designing the projection lens of the projection exposure apparatus, it is extremely difficult to correct (achromatize) chromatic aberration. Further, in principle, the oscillation wavelength of the excimer laser has a half width and a wavelength width of about a few nanometers. For this reason, in order to alleviate various conditions of achromatism, the band is narrowed so that the oscillation wavelength is a half-value width and about several pm. Here, if the oscillation wavelength is narrowed using a diffraction grating or the like, only a specific polarization component is amplified in addition to amplification of a specific wavelength. When projection exposure is performed using a light beam having a large number of specific polarization components, the following problem occurs.
【0003】偏光した光束を光源として露光を行なう
と、最終的に形成される像がパターンの方向により異な
るという現象が生じる。例えば、メリジオナル方向に光
束が偏光している場合は、像面においてあたかも該方向
にNAが小さい像が形成される。また、サジタル方向に
偏光している場合は、該方向にあたかもNAが大きい像
が形成される。したがって、たとえ均一なNAの投影光
学系でマスク等に形成されたパターンを結像しても、照
明光束が偏光していると像面において偏ったNAで結像
してしまうので、パターンの方向により解像が異なって
しまう。かかる現象は、特に、高NAの場合に著しい。
詳しくは大木裕史:”フレッシュマンの為の現代光学、
焦点近傍の光学”、光学、21(1992)8月号に記
載されているので省略する。When exposure is performed using a polarized light beam as a light source, a phenomenon occurs that a finally formed image differs depending on the direction of a pattern. For example, when the light beam is polarized in the meridional direction, an image with a small NA is formed on the image plane as if in the direction. When the light is polarized in the sagittal direction, an image having a large NA is formed in the direction. Therefore, even if a pattern formed on a mask or the like is imaged by a projection optical system having a uniform NA, if the illuminating light beam is polarized, the image will be formed with a biased NA on the image plane. Causes a different resolution. Such a phenomenon is particularly remarkable in the case of high NA.
For details, see Hiroshi Oki: "Modern Optics for Freshman,
This is described in “Optics near Focus”, Optics, August 21 (1992).
【0004】一方、半導体集積回路はメモリ回路からロ
ジック回路へと主流が移行しつつある。ロジック回路用
の半導体集積回路は独立した単独のパターンを有してお
り、パターン線幅が均一であることが望ましい。ロジッ
ク回路用の半導体集積回路においてパターンの方向によ
り解像が異なると、ロジック回路の処理速度の低下を招
くので好ましくない。このため、ArF又はKrFエキ
シマレーザを光源として用いる、例えば特許第2679
319号公報に開示されている従来の投影露光装置で
は、以下に述べる方法で対応している。On the other hand, the mainstream of semiconductor integrated circuits is shifting from memory circuits to logic circuits. A semiconductor integrated circuit for a logic circuit has an independent single pattern, and it is desirable that the pattern line width is uniform. If the resolution differs depending on the direction of the pattern in the semiconductor integrated circuit for the logic circuit, the processing speed of the logic circuit is undesirably reduced. For this reason, an ArF or KrF excimer laser is used as a light source.
The conventional projection exposure apparatus disclosed in Japanese Patent Publication No. 319 corresponds to the following method.
【0005】図6は従来の投影露光装置の概略構成を示
す図である。射出する光束の断面形状が矩形であるエキ
シマレーザ1からの光束は、整形光学系2により適切な
形状、アスペクト比の光束に変換され、後述する水晶板
100,石英硝子101を透過した後、単レンズを並列
に高密度に配置した光学素子であるフライアイレンズ4
に入射する。図7はフライアイレンズを光束の進行方向
(x軸方向)より観察した図である。フライアイレンズ
4により各要素レンズ毎に分割された光束は、レンズ
6,視野絞り7、レンズ9を透過した後、反射ミラー8
で90度折り曲げられレンズ9’を透過して、マスク1
0上に集光される。ここで、レンズ6,9,9’により
コンデンサレンズ群を構成する。図8(a),(b)に
フライアイレンズ4入射面からマスク10に至るまでの
光線の様子を示す。なお、簡便のため図8において、レ
ンズ6からレンズ9に至る光学系を単にレンズLLと示
す。図8(a)において、フライアイレンズ4の入射面
に集光した光束aはコンデンサレンズLLによりマスク
10面上の位置a’に集光される。即ち、フライアイレ
ンズ4の各要素レンズ入射面とマスク10とは共役に構
成されている。また、図8(b)に示すように、フライ
アイレンズ4の射出面に集光した光束bは、レンズLL
で平行光に変換されてマスク10を照射する。この結
果、フライアイレンズ4に入射した光束は、要素レンズ
単位に波面分割され、マスク10上で重ねあわせる。そ
して、マスク10に供給された照明光に基づき、投影光
学系11によりマスク10上のパターンが、ウエハ15
に転写される。投影光学系11は、レンズL1,L2,
L3とミラー13,14と反射凹面鏡Mとから構成さ
れ、開口絞り12を有している。ここで、視野絞り7
は、コンデンサレンズ群6〜9の中の、マスク10と共
役な位置に配設され、照明範囲を規定している。また、
フライアイレンズ4射出面は、投影レンズの開口絞り1
2と共役であり、フライアイレンズ4の射出面に照明系
開口絞り5が配設されている。FIG. 6 is a diagram showing a schematic configuration of a conventional projection exposure apparatus. A light beam emitted from an excimer laser 1 having a rectangular cross-sectional shape is converted into a light beam having an appropriate shape and an aspect ratio by a shaping optical system 2. Fly-eye lens 4 which is an optical element in which lenses are arranged in high density in parallel
Incident on. FIG. 7 is a diagram in which the fly-eye lens is observed from the traveling direction of the light beam (x-axis direction). The light beam divided for each element lens by the fly-eye lens 4 passes through a lens 6, a field stop 7, and a lens 9, and then is reflected by a reflection mirror 8
Is bent 90 degrees and transmitted through the lens 9 ′.
It is focused on zero. Here, a condenser lens group is constituted by the lenses 6, 9, and 9 '. FIGS. 8A and 8B show the state of light rays from the incident surface of the fly-eye lens 4 to the mask 10. FIG. In FIG. 8, for convenience, the optical system from the lens 6 to the lens 9 is simply referred to as a lens LL. In FIG. 8A, the light beam a condensed on the incident surface of the fly-eye lens 4 is condensed at a position a ′ on the mask 10 by the condenser lens LL. That is, the entrance surface of each element lens of the fly-eye lens 4 and the mask 10 are conjugated. Further, as shown in FIG. 8B, the light beam b collected on the exit surface of the fly-eye lens 4 is
Is converted into parallel light, and the mask 10 is irradiated. As a result, the light beam incident on the fly-eye lens 4 is divided into wavefronts in units of element lenses, and is superimposed on the mask 10. Then, based on the illumination light supplied to the mask 10, the pattern on the mask 10 is changed by the projection optical system 11 to the wafer 15.
Is transferred to The projection optical system 11 includes lenses L1, L2,
It comprises an L3, mirrors 13 and 14, and a concave concave mirror M, and has an aperture stop 12. Here, the field stop 7
Is arranged at a position conjugate with the mask 10 in the condenser lens groups 6 to 9, and defines an illumination range. Also,
The exit surface of the fly-eye lens 4 is the aperture stop 1 of the projection lens.
2, an illumination system aperture stop 5 is provided on the exit surface of the fly-eye lens 4.
【0006】上述したようにエキシマレーザ1から射出
される光束の形状は一般に矩形であり、矩形の短辺に平
行に偏光している。また、照明の効率を極力高く保つた
めに、矩形形状のレーザ射出光束をシリンドリカルレン
ズ等で構成された整形光学系2によりフライアイレンズ
4の外形に極力フィットさせることが望ましい。図9
は、整形したレーザ射出光束αとフライアイレンズ4と
の関係を示す図である。偏光方向poは矩形の辺に平行
である。フライアイ要素レンズ入射面は、マスク10と
共役なので、照明範囲はフライアイ要素レンズの外径に
より規定される。このため、被照明面であるマスク10
上には、矩形形状の照明領域の辺に平行な偏光が供給さ
れるので、上述のような偏光方向に起因する結像光束の
NAの変化を生じるので好ましくない。As described above, the shape of the light beam emitted from the excimer laser 1 is generally rectangular and polarized in parallel to the short side of the rectangle. In addition, in order to keep the illumination efficiency as high as possible, it is desirable to fit the rectangular laser emission light beam to the outer shape of the fly-eye lens 4 as much as possible by the shaping optical system 2 composed of a cylindrical lens or the like. FIG.
FIG. 4 is a diagram showing the relationship between the shaped laser emission light beam α and the fly-eye lens 4. The polarization direction po is parallel to the sides of the rectangle. Since the fly-eye element lens entrance surface is conjugate to the mask 10, the illumination range is defined by the outer diameter of the fly-eye element lens. For this reason, the mask 10 which is the surface to be illuminated
On the upper side, polarized light parallel to the sides of the rectangular illumination area is supplied, which causes a change in the NA of the imaging light beam due to the above-described polarization direction, which is not preferable.
【0007】[0007]
【発明が解決しようとする課題】偏光に起因する問題を
解消するために、擬似的な自然光を得る構成について説
明する。楔状に加工した一軸結晶である水晶部材100
を光源1とフライアイレンズ4との間に配設する。そし
て、水晶部材100のみでは、屈折作用により光束の進
行方向が曲がってしまうので、進行方向を補正するた
め、水晶部材100と同様に楔状に加工した石英硝子1
01を図6のように配設する。An arrangement for obtaining pseudo natural light in order to solve the problem caused by polarization will be described. Quartz member 100, which is a uniaxial crystal processed into a wedge shape
Is disposed between the light source 1 and the fly-eye lens 4. In addition, since the traveling direction of the light beam is bent by the refraction effect only by the quartz member 100, the quartz glass 1 processed into a wedge shape in the same manner as the quartz member 100 to correct the traveling direction.
01 is arranged as shown in FIG.
【0008】水晶部材(一軸結晶)100の光学軸の方
向と、偏光方向と、フライアイレンズとの関係を図10
(a)〜(c)に示す。図10(a)はフライアイレン
ズ4に入射する光束αの断面形状、同図(b)は水晶部
材の光学軸opax、同図(c)はフライアイレンズ4
の形状をそれぞれ示している。水晶部材の光学軸opa
xは光束の進行方向に垂直で、かつ偏光方向poに対し
て45度の角度に設定する。かかる構成によれば、水晶
部材100は楔状に加工されているため、光束が入射す
る位置により水晶部材を透過する厚み(透過距離)が異
なる。このため、水晶への入射位置によって、射出する
光束の偏光状態が異なる。例えば、水晶部材100に入
射する入射光の偏光方向が図11(a)のような場合
に、射出光の偏光は、縦の直線偏光(図11(b))、
横の直線偏光(図11(d))、それらの中間の円偏光
(図11(c),(e))、さらには楕円偏光となる。
そして、フライアイレンズとコンデンサレンズとを透過
することで、様々な偏光状態の波面を分割、重ねあわせ
るため、マスク10上では、様々な方向の偏光が重なり
合った状態、すなわち擬似的な自然光を得ることができ
る。このように水晶部材100を用いることで特定の偏
光状態の光束に基づく、結像面(ウエハ15)における
NAの不均一、結像したパターンの解像のバラツキを防
止することができる。FIG. 10 shows the relationship between the direction of the optical axis of the quartz member (uniaxial crystal) 100, the polarization direction, and the fly-eye lens.
(A) to (c) are shown. 10A is a sectional view of a light beam α incident on the fly-eye lens 4, FIG. 10B is an optical axis opax of the quartz member, and FIG.
Are shown respectively. Opa axis of crystal member
x is set perpendicular to the traveling direction of the light beam and at an angle of 45 degrees with respect to the polarization direction po. According to this configuration, since the quartz member 100 is processed into a wedge shape, the thickness (transmission distance) of the light passing through the quartz member varies depending on the position where the light beam enters. For this reason, the polarization state of the emitted light beam differs depending on the position of incidence on the crystal. For example, when the polarization direction of the incident light incident on the quartz member 100 is as shown in FIG. 11A, the polarization of the emitted light is vertical linearly polarized light (FIG. 11B).
The light becomes horizontal linearly polarized light (FIG. 11D), intermediate circularly polarized light (FIGS. 11C and 11E), and furthermore, elliptically polarized light.
Then, since the wavefronts in various polarization states are divided and superimposed by transmitting through the fly-eye lens and the condenser lens, on the mask 10, a state in which polarized lights in various directions overlap, that is, pseudo natural light is obtained. be able to. By using the crystal member 100 in this way, it is possible to prevent unevenness in NA on the imaging plane (wafer 15) and variation in resolution of the formed pattern based on the light beam in a specific polarization state.
【0009】しかし、上記構成の投影露光装置は以下に
述べる問題点を有している。実際の投影露光装置は、装
置の小型化等の理由から、光束の進行方向を折り曲げる
ために複数の反射ミラーが用いられている。図6に示し
た投影露光装置は、4枚の反射ミラー3,8,13及び
14を有している。例えば、ミラー3,4の折り曲げを
無くして一直線状に光学系を配置すると、全長が非常に
長い光学系になってしまう。また、ミラー13の折り曲
げを無くしてしまうと、物理的に光学系の配置が不可能
になってしまう。However, the projection exposure apparatus having the above configuration has the following problems. In an actual projection exposure apparatus, a plurality of reflection mirrors are used to bend the traveling direction of a light beam for reasons such as miniaturization of the apparatus. The projection exposure apparatus shown in FIG. 6 has four reflection mirrors 3, 8, 13, and 14. For example, if the optical systems are arranged in a straight line without bending the mirrors 3 and 4, the entire length of the optical system will be very long. Further, if the bending of the mirror 13 is eliminated, it is impossible to physically arrange the optical system.
【0010】したがって、投影露光装置の光学系では反
射ミラーは不可欠な光学素子である。しかし、ArFエ
キシマレーザなどから発振される短波長の光に対して
は、P波とS波との反射率が等しい反射ミラーを製造す
ることが出来ない。このため、反射ミラーで光束を折り
曲げることにより、自然光でマスクを照明しても、ウエ
ハ等の被露光面上では光束が偏光気味となってしまうと
いう問題がある。従来装置のように、直線偏光のレーザ
発振光を水晶部材を透過させることでマスク面上で擬似
的な自然光に変換しても、その後の光学系において反射
ミラーで光路を折り曲げることでp成分又はs成分など
の特定の偏光成分を有する光束になってしまう。したが
って、特定の偏光成分に起因するウエハ上に結像する際
のNAの不均一によるパターン解像、線幅のバラツキを
生じてしまう。Therefore, the reflection mirror is an indispensable optical element in the optical system of the projection exposure apparatus. However, it is not possible to manufacture a reflecting mirror having the same reflectance of P-wave and S-wave for short-wavelength light emitted from an ArF excimer laser or the like. For this reason, there is a problem that even if the mask is illuminated with natural light by bending the light beam by the reflection mirror, the light beam tends to be polarized on the surface to be exposed such as a wafer. Even if linearly polarized laser oscillation light is converted into pseudo natural light on the mask surface by transmitting through a quartz member as in the conventional apparatus, the p-component or The light beam has a specific polarization component such as the s component. Therefore, pattern resolution and line width variation due to non-uniform NA at the time of imaging on the wafer due to a specific polarization component occur.
【0011】ここで、従来装置において光束の折り曲げ
による偏光成分の比率の変化を防止する為には、レーザ
光源及び整形光学系を回転させて、水晶部材への入射光
束そのものを回転させることで偏光の方向による比率を
変えることが考えられる。しかし、入射光束そのものを
回転させて、特定の偏光の方向をミラーの折り曲げ方向
に合わせると、光束の形状と偏光の方向が固定している
場合、矩形のフライアイレンズに対して矩形の光束が回
転して入射することになる。この結果、フライアイレン
ズの矩形領域と、光束の矩形領域とが一致せず、光束が
フライアイレンズでけられるので、有効に光量を使用す
ることができず照明効率の低下を招いてしまう。Here, in order to prevent a change in the ratio of the polarization component due to the bending of the light beam in the conventional device, the laser light source and the shaping optical system are rotated to rotate the light beam incident on the quartz member itself. It is conceivable to change the ratio depending on the direction. However, when the incident light beam itself is rotated and the direction of the specific polarization is adjusted to the bending direction of the mirror, when the shape of the light beam and the direction of the polarization are fixed, the rectangular light beam is generated with respect to the rectangular fly-eye lens. It will rotate and enter. As a result, the rectangular area of the fly-eye lens does not coincide with the rectangular area of the light beam, and the light beam is blurred by the fly-eye lens, so that the light amount cannot be used effectively and the illumination efficiency is reduced.
【0012】本発明は上記問題に鑑みてなされたもので
あり、光源の偏光の方向による比を、任意の方向に対し
て任意の強度比に簡便に調整できる照明装置及び該照明
装置を備える投影露光装置を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an illumination device capable of easily adjusting the ratio of the direction of polarization of a light source to an arbitrary intensity ratio with respect to an arbitrary direction, and a projection including the illumination device. An object of the present invention is to provide an exposure apparatus.
【0013】[0013]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明では、光束を供給する光源と、
該光源からの光束を波面分割し、該波面分割された光束
に基づいて複数の光源像を形成する波面分割部と、前記
複数の光源像からの光を被照射面上の所定照明領域へ導
くコンデンサ光学系と、前記光源部と前記波面分割部と
の間の光路中に配置されて、光束の進行方向を中心とし
て回転可能に設けられた複屈折部材と、を備えることを
特徴とする。In order to solve the above problems, according to the first aspect of the present invention, a light source for supplying a light beam;
A wavefront splitting unit that splits a light beam from the light source into a wavefront, and forms a plurality of light source images based on the wavefront-divided light beam; and guides light from the plurality of light source images to a predetermined illumination area on a surface to be irradiated. It is characterized by comprising a condenser optical system, and a birefringent member disposed in an optical path between the light source unit and the wavefront splitting unit and rotatably provided around a traveling direction of a light beam.
【0014】また、請求項2記載の発明では、前記複屈
折部材は、前記光束の断面方向において前記進行方向の
厚みが異なる形状を有していることを特徴とする。Further, the invention according to claim 2 is characterized in that the birefringent member has a shape whose thickness in the traveling direction is different in a cross-sectional direction of the light beam.
【0015】また、請求項3記載の発明では、前記複屈
折部材は、少なくとも2つの複屈折素子を含み、該少な
くとも2つの複屈折素子のうちの少なくとも1つは、前
記進行方向を中心として回転可能であることを特徴とす
る。[0015] In the invention described in claim 3, the birefringent member includes at least two birefringent elements, and at least one of the at least two birefringent elements rotates about the traveling direction. It is characterized by being possible.
【0016】また、請求項4記載の発明では、前記複屈
折素子のうちの少なくとも1つは、その光学軸の方向が
光束の進行方向に対して略垂直となるように配設されて
いることを特徴とする。In the invention according to claim 4, at least one of the birefringent elements is disposed such that the direction of the optical axis thereof is substantially perpendicular to the direction of travel of the light beam. It is characterized by.
【0017】また、請求項5記載の発明では、前記所定
照明領域は略矩形形状であり、前記複屈折素子のうちの
少なくとも一つは固設されており、前記固設された複屈
折素子の光学軸の方向は、前記矩形形状の辺の方向と平
行であることを特徴とする。In the invention described in claim 5, the predetermined illumination region is substantially rectangular, and at least one of the birefringent elements is fixed, and The direction of the optical axis is parallel to the direction of the side of the rectangular shape.
【0018】また、請求項6記載の発明では、前記固設
された複屈折素子は、前記回転可能な複屈折素子と前記
波面分割部との間に配置されていることを特徴とする。Further, in the invention according to claim 6, the fixed birefringent element is arranged between the rotatable birefringent element and the wavefront splitting portion.
【0019】また、請求項7記載の発明では、所定のパ
ターンが形成されたマスクを照明する請求項1乃至6の
何れか1項に記載の照明装置と、該照明されたマスクの
パターンを感光基板上に投影露光する投影光学系とを有
することを特徴とする。According to a seventh aspect of the present invention, there is provided the illumination device according to any one of the first to sixth aspects, wherein the mask on which the predetermined pattern is formed is illuminated, and the pattern of the illuminated mask is exposed. A projection optical system for projecting and exposing on a substrate.
【0020】[0020]
【発明の実施の形態】以下、添付図面に基づいて本発明
の実施の形態について説明する。 (第1実施形態)図1は、本発明の第1の実施の形態に
かかる照明装置と該照明装置を備える投影露光装置の構
成を示す図である。ArFエキシマレーザ(波長λ=約
193nm)等の光源1からの光束は、シリンドリカル
レンズ等を含む整形光学系2により光束径の拡大とアス
ペクト比の変更がなされる。なお、光源1は紙面に平行
な直線偏光を射出することが望ましい。次に、整形され
た光束は第1の楔型プリズムの組200,201を透過
し,さらに第2の楔型プリズムの組202,203を経
て、フライアイレンズ4に導かれる。プリズム200〜
203は光束の断面方向において進行方向の厚みが異な
るような楔形状に加工されている。プリズム200〜2
03についての詳細は後述する。次に、光源からの光束
は、フライアイレンズ4で波面分割され複数の光源像が
形成される。フライアイレンズ4の射出面には、ウエハ
面上での照明光の開口数を決定する為の開口絞り5が設
けられている。そして、複数の光源像からの光は、レン
ズ6、レンズ9を透過した後、反射ミラー8で90度折
り曲げられて、レンズ9’を透過しパターンを有するマ
スク10を照明する。ここで、レンズ6とレンズ9とレ
ンズ9’とでコンデンサ光学系を構成する。コンデンサ
光学系内のマスク10と共役な位置に視野絞り7が配置
されている。そして、マスク10に供給された照明光に
基づき、投影光学系11によりマスク10上のパターン
が、ウエハ15に転写される。投影光学系11は、レン
ズL1,L2,L3とミラー13,14と反射凹面鏡M
とから構成され、開口絞り12を有している。このよう
に本実施形態の投影光学系11は、ミラー13等の反射
面を有していることが望ましい。ここで、視野絞り7
は、コンデンサ光学系6〜9の中の、マスク10と共役
な位置に配設され、照明範囲を規定している。また、フ
ライアイレンズ4の射出面は、投影レンズの開口絞り1
2と共役である。Embodiments of the present invention will be described below with reference to the accompanying drawings. (First Embodiment) FIG. 1 is a diagram showing a configuration of an illumination device according to a first embodiment of the present invention and a projection exposure apparatus having the illumination device. The light beam from the light source 1 such as an ArF excimer laser (wavelength λ = about 193 nm) is expanded in the light beam diameter and the aspect ratio is changed by a shaping optical system 2 including a cylindrical lens and the like. It is desirable that the light source 1 emits linearly polarized light parallel to the paper surface. Next, the shaped light beam is transmitted through the first pair of wedge prisms 200 and 201, and further guided to the fly-eye lens 4 via the second pair of wedge prisms 202 and 203. Prism 200 ~
Reference numeral 203 denotes a wedge shape in which the thickness in the traveling direction differs in the cross-sectional direction of the light beam. Prism 200-2
03 will be described later in detail. Next, the luminous flux from the light source is wavefront-divided by the fly-eye lens 4 to form a plurality of light source images. The exit surface of the fly-eye lens 4 is provided with an aperture stop 5 for determining the numerical aperture of illumination light on the wafer surface. Then, the light from the plurality of light source images passes through the lenses 6 and 9, is then bent by 90 degrees by the reflection mirror 8, passes through the lens 9 ′, and illuminates the mask 10 having a pattern. Here, a condenser optical system is constituted by the lens 6, the lens 9, and the lens 9 '. The field stop 7 is arranged at a position conjugate with the mask 10 in the condenser optical system. Then, the pattern on the mask 10 is transferred to the wafer 15 by the projection optical system 11 based on the illumination light supplied to the mask 10. The projection optical system 11 includes lenses L1, L2, L3, mirrors 13, 14, and a concave concave mirror M.
And the aperture stop 12 is provided. Thus, it is desirable that the projection optical system 11 of the present embodiment has a reflecting surface such as the mirror 13. Here, the field stop 7
Is arranged at a position conjugate with the mask 10 in the condenser optical systems 6 to 9 and defines an illumination range. The exit surface of the fly-eye lens 4 is located at the aperture stop 1 of the projection lens.
Conjugate to 2.
【0021】次に、プリズム200〜203について説
明する。プリズム200とプリズム202とは、楔形状
に加工された水晶結晶から成っている。上記従来技術で
述べたように、水晶プリズムのみであると屈折作用で光
路が曲がるので、楔形状に加工された石英硝子201と
203とをそれぞれ組み合わせることで、光束の進行方
向を補正している。また、各プリズムの楔の角度は、プ
リズムに垂直に入射した光束が、ほぼ垂直に射出するよ
うに設定されている。そして、水晶プリズム200と石
英プリズム201とはモータMTにより一体として光軸
AXを中心として回転可能に構成されている。一方、水
晶プリズム202と石英プリズム203とは固定されて
いる。Next, the prisms 200 to 203 will be described. The prism 200 and the prism 202 are made of a quartz crystal processed into a wedge shape. As described in the above-described related art, since the optical path is bent by the refraction effect only with the quartz prism, the traveling direction of the light flux is corrected by combining the quartz glass 201 and 203 processed into the wedge shape. . Further, the angle of the wedge of each prism is set such that the light beam that has entered the prism vertically exits almost perpendicularly. The quartz prism 200 and the quartz prism 201 are integrally rotatable about the optical axis AX by a motor MT. On the other hand, the quartz prism 202 and the quartz prism 203 are fixed.
【0022】水晶プリズム200と202の光学軸の方
向を図2(a),(b)にそれぞれ示す。ここで、光軸
の方向をx、光軸に垂直でかつ図1の紙面内の方向を
y、図1の紙面に垂直な方向をzとする。また、水晶プ
リズム200の光学軸opaxとy軸とのなす角をψと
する。図2(b)に示すように、固定されている水晶プ
リズム202の光学軸opaxの方向はマスク上の照明
される矩形形状の領域の辺の方向と平行である。ただ
し、光束をミラーなどで折り曲げている場合は、折り曲
げが無いものとして考える。また、水晶プリズム200
と202とのうち少なくとも1つは、その光学軸の方向
が光束の進行方向に対して略垂直となるように配設され
ていることが望ましい。FIGS. 2A and 2B show the directions of the optical axes of the quartz prisms 200 and 202, respectively. Here, the direction of the optical axis is x, the direction perpendicular to the optical axis and in the plane of FIG. 1 is y, and the direction perpendicular to the plane of FIG. 1 is z. The angle between the optical axis opax of the quartz prism 200 and the y-axis is denoted by ψ. As shown in FIG. 2B, the direction of the optical axis opax of the fixed quartz prism 202 is parallel to the direction of the side of the rectangular area to be illuminated on the mask. However, when the light beam is bent by a mirror or the like, it is considered that there is no bending. Also, the quartz prism 200
And 202, it is desirable that the direction of the optical axis is substantially perpendicular to the traveling direction of the light beam.
【0023】本実施形態において反射ミラー8,13,
14等の折り曲げ方向は全て図1の紙面に垂直な軸に対
する回転方向となっている。このため、ウエハ15面上
における光束は、図1の紙面に平行な方向の偏光は弱め
に、紙面に垂直な方向の偏光は強めになる。このた
め、、プリズム200,202により形成される光束の
偏光の強度比が、y方向は強め、z方向は弱めに、かつ
その比を任意に選択できる必要がある。y方向の直線偏
光の光束がプリズム200,201を透過した後は、様
々な状態の偏光に変換される。そのうち直線偏光のみに
着目すると、図3に示すようにy方向の直線偏光と、y
軸と(ψ×2)の角度をなす偏光とに、強度比が1:1
で分離されている。さらに、プリズム202,203を
透過すると、y方向の直線偏光は全く変化を受けずにそ
のまま通過し、y軸と(ψ×2)の角度をなす偏光はy
軸に対して(ψ×2)の角度をなす偏光と、y軸に対し
て−(ψ×2)の角度をなす偏光とに強度1:1で分離
される。この様子を図4に示す。即ち、プリズム200
〜203を透過した後のy方向の偏光強度をA、z方向
の偏光強度をB、水晶プリズム200の回転角度をψと
おくと、A:B=1+cos(2ψ):sin(2ψ)
となる。このことより、本実施形態において、y方向が
多め、z方向が少なめの偏光を得る事ができることがわ
かる。さらに、回転角度ψは可変であるため、AとBと
の比は任意に選択する事ができる。好ましくは、ウエハ
15面上で偏光量を測定しながら、方向による偏光の量
の比が等しくなるように水晶プリズム200を回転し、
ψを選択することが望ましい。In this embodiment, the reflection mirrors 8, 13,
The bending directions such as 14 are all directions of rotation with respect to an axis perpendicular to the paper surface of FIG. For this reason, in the light flux on the surface of the wafer 15, the polarization in the direction parallel to the paper of FIG. 1 is weak, and the polarization in the direction perpendicular to the paper is strong. For this reason, it is necessary that the intensity ratio of the polarization of the light beam formed by the prisms 200 and 202 is stronger in the y direction and weaker in the z direction, and that the ratio can be arbitrarily selected. After the linearly polarized light beam in the y direction passes through the prisms 200 and 201, it is converted into polarized light in various states. Focusing only on the linearly polarized light among them, as shown in FIG.
An intensity ratio of 1: 1 to polarized light having an angle of (ψ × 2) with the axis.
Separated by Further, when the light passes through the prisms 202 and 203, the linearly polarized light in the y direction passes through without any change, and the polarized light having an angle of (ψ × 2) with the y axis is y.
Polarized light having an angle of (ψ × 2) with respect to the axis and polarized light having an angle of − (ψ × 2) with respect to the y-axis are separated with an intensity of 1: 1. This is shown in FIG. That is, the prism 200
A: B = 1 + cos (2y): sin (2ψ), where A is the polarization intensity in the y direction after transmission through 203, B is the polarization intensity in the z direction, and 回 転 is the rotation angle of the quartz prism 200.
Becomes From this, it is understood that in the present embodiment, it is possible to obtain polarized light with a large amount in the y direction and a small amount in the z direction. Further, since the rotation angle ψ is variable, the ratio between A and B can be arbitrarily selected. Preferably, while measuring the amount of polarization on the surface of the wafer 15, rotate the quartz prism 200 such that the ratio of the amount of polarization according to the direction is equal,
It is desirable to select ψ.
【0024】(第2実施形態)本発明の第2の実施の形
態にかかる照明装置及び該照明装置を備える投影露光装
置の基本的な構成は上記第1実施形態と同様であるの
で、図による説明は省略する。上記第1実施形態と異な
る点は、プリズム200〜203の代わりに第1の楔型
プリズムの組200,201のみを用いる点にある。水
晶プリズム200の光学軸の方向を光軸AXの回りにモ
ータMTにより回転させることで得られる偏光状態を図
5(a)から(c)に示す。尚、この場合円偏光は問題
にならないので直線偏光のみを図示する。(a)は光学
軸と偏光方向のなす角が45°の場合(図11と同じ
図)、(b)は30°の場合、(c)は60°の場合で
ある。図より明らかな様に、この方法では、特定の斜め
方向(光学軸の方向)の偏光を強くすることができる。
第1実施形態のように、ミラーで光束を折り曲げるに際
して、矩形の照野の何れかの辺に平行な軸に対して折り
曲げを行なう場合は、偏光の強度比は光束の矩形の辺に
平行な2方向(図1中の、y,z方向)の比のみが変化
することが必要である。しかし、ミラーによる折り曲げ
方向に制約が無い場合は、光学軸の方向と、偏光の強度
比を変化さたい方向とを水晶プリズム200を回転させ
て一致させることができる。したがって、1つの水晶プ
リズム200を回転させることで、望む方向の強度比を
変化させることができる。(Second Embodiment) The basic configuration of an illumination device and a projection exposure apparatus having the illumination device according to a second embodiment of the present invention is the same as that of the first embodiment, and is shown in FIG. Description is omitted. The difference from the first embodiment is that only the first pair of wedge prisms 200 and 201 are used instead of the prisms 200 to 203. FIGS. 5A to 5C show polarization states obtained by rotating the direction of the optical axis of the quartz prism 200 around the optical axis AX by the motor MT. In this case, only the linearly polarized light is shown because circularly polarized light does not matter. (A) shows the case where the angle between the optical axis and the polarization direction is 45 ° (the same figure as FIG. 11), (b) shows the case where it is 30 °, and (c) shows the case where it is 60 °. As is clear from the figure, this method can increase the polarization in a specific oblique direction (the direction of the optical axis).
As in the first embodiment, when the light beam is bent by the mirror, when the light beam is bent with respect to an axis parallel to any side of the rectangular illumination field, the intensity ratio of the polarized light is parallel to the rectangular side of the light beam. It is necessary that only the ratio in two directions (the y and z directions in FIG. 1) change. However, when there is no restriction on the bending direction by the mirror, the direction of the optical axis and the direction in which the intensity ratio of polarized light is desired to be changed can be matched by rotating the quartz prism 200. Therefore, by rotating one crystal prism 200, the intensity ratio in a desired direction can be changed.
【0025】なお、上記実施形態ではフライアイレンズ
を一つだけ用いた照明系を用いたが、フライアイレンズ
とコンデンサレンズとの組を直列に複数設け、光束の波
面分割と重ねあわせとを複数回行なう照明系を用いても
良い。例えば、フライアイレンズとコンデンサレンズと
の組を直列に二組配列した構成は、一般にダブルフライ
アイシステムと呼ばれる。かかる構成の場合、水晶部材
等の複屈折媒質は、光源側から順に数えて第1番目のフ
ライアイレンズよりも光源側に配置する事が望ましい。In the above embodiment, an illumination system using only one fly-eye lens is used. However, a plurality of sets of a fly-eye lens and a condenser lens are provided in series, and a plurality of wavefront divisions and superposition of a light beam are performed. An illumination system which performs the rotation twice may be used. For example, a configuration in which two sets of a fly-eye lens and a condenser lens are arranged in series is generally called a double fly-eye system. In the case of such a configuration, it is desirable that the birefringent medium such as a crystal member be disposed closer to the light source than the first fly-eye lens, counted in order from the light source.
【0026】[0026]
【発明の効果】以上説明したように、請求項1記載の発
明では、複屈折部材を回転することにより、特定の方向
の偏光の強度比を制御できる。従って、光束のミラーに
よる折り曲げ方に起因する被露光面(ウエハ)上に到達
する光の偏光の影響を無くすことができる。As described above, according to the first aspect of the present invention, the intensity ratio of polarized light in a specific direction can be controlled by rotating the birefringent member. Therefore, it is possible to eliminate the influence of the polarization of the light that reaches the surface to be exposed (wafer) due to the manner in which the light beam is bent by the mirror.
【0027】また、請求項2記載の発明では、複屈折部
材は光束の断面方向において、光束の進行方向の厚みが
異なっている。従って、直線偏光が入射した場合に、複
屈折部材に入射する光束の位置により該部材を透過する
距離が異なるので、射出側で様々な状態の偏光が得られ
る。According to the second aspect of the present invention, the birefringent member has a different thickness in the light beam traveling direction in the cross section direction of the light beam. Therefore, when linearly polarized light is incident, the distance of transmission through the birefringent member varies depending on the position of the light beam incident on the member, so that polarized light in various states can be obtained on the exit side.
【0028】また、請求項3記載の発明では、少なくと
も2つの複屈折素子を有しており、そのうち一方が回転
可能である。従って、任意の方向の偏光の強度比を制御
できる。According to the third aspect of the present invention, at least two birefringent elements are provided, one of which is rotatable. Therefore, the intensity ratio of polarized light in an arbitrary direction can be controlled.
【0029】また、請求項4記載の発明では、光学軸の
方向が光束の進行方向に対して略垂直になっている。従
って、偏光量の制御がさらに容易になる。According to the fourth aspect of the present invention, the direction of the optical axis is substantially perpendicular to the traveling direction of the light beam. Therefore, control of the amount of polarization is further facilitated.
【0030】また、請求項5記載の発明では、マスク上
の照明領域は略矩形形状であり、固設されている複屈折
素子の光学軸の方向が前記矩形形状の辺の方向と平行で
ある。従って、レーザ光源から射出し整形された光束の
断面形状が矩形形状の場合でも、光量の損失なく効率よ
く照明でき、かつ照明領域の辺の方向に合わせて偏光の
強度比を制御することができる。According to the fifth aspect of the present invention, the illumination area on the mask has a substantially rectangular shape, and the direction of the optical axis of the fixed birefringent element is parallel to the direction of the side of the rectangular shape. . Therefore, even when the cross-sectional shape of the light beam emitted from the laser light source and shaped is a rectangular shape, illumination can be efficiently performed without loss of light amount, and the intensity ratio of polarized light can be controlled in accordance with the direction of the side of the illumination area. .
【0031】また、請求項6記載の発明では、固設され
た複屈折素子は、回転可能な複屈折素子と波面分割部と
の間に配置されている。従って、ミラーの駆動回転部が
フライアイレンズ等の光学系から離れているので、安定
した照明を行うことできる。Further, in the invention according to claim 6, the fixed birefringent element is disposed between the rotatable birefringent element and the wavefront dividing portion. Therefore, since the drive rotation unit of the mirror is separated from the optical system such as the fly-eye lens, stable illumination can be performed.
【0032】また、請求項7記載の発明では、本発明に
係る照明装置を用いることで、光束の折り曲げ方向に依
存する偏光の影響を避けることができ、常に良好な解像
のパターンを投影、露光することができるAccording to the seventh aspect of the present invention, by using the illuminating device according to the present invention, it is possible to avoid the influence of polarization depending on the bending direction of the light beam, and to always project a good resolution pattern. Can be exposed
【図1】本発明の実施の形態に係る照明装置とそれを備
えた投影露光装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an illumination device according to an embodiment of the present invention and a projection exposure apparatus including the same.
【図2】水晶プリズムの光学軸の方向を説明する図であ
る。FIG. 2 is a diagram illustrating a direction of an optical axis of a quartz prism.
【図3】水晶プリズム200を透過した後の偏光の様子
を説明する図である。FIG. 3 is a diagram illustrating a state of polarized light after transmitting through a quartz prism 200;
【図4】水晶プリズム200と202を透過した後の偏
光の様子を説明する図である。FIG. 4 is a view for explaining the state of polarized light after passing through quartz crystal prisms 200 and 202.
【図5】水晶プリズム200を回転した場合の偏光の様
子を説明する図である。FIG. 5 is a diagram illustrating a state of polarized light when a quartz prism 200 is rotated.
【図6】従来の投影露光装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a conventional projection exposure apparatus.
【図7】フライアイレンズの構成を示す図である。FIG. 7 is a diagram illustrating a configuration of a fly-eye lens.
【図8】(a),(b)はフライアイレンズからマスク
に至る系を説明する図である。FIGS. 8A and 8B are diagrams illustrating a system from a fly-eye lens to a mask.
【図9】整形したレーザ射出光束αとフライアイレンズ
4との関係を示す図である。FIG. 9 is a diagram showing a relationship between a shaped laser emission light beam α and a fly-eye lens 4;
【図10】(a)〜(c)は、水晶部材(一軸結晶)1
00の光学軸の方向と、偏光方向と、フライアイレンズ
との関係を示す図である。FIGS. 10A to 10C are crystal members (uniaxial crystals) 1
FIG. 4 is a diagram illustrating a relationship among a direction of an optical axis of No. 00, a polarization direction, and a fly-eye lens.
【図11】(a)〜(e)は水晶部材100からの射出
光の偏光の状態を示す図である。FIGS. 11A to 11E are diagrams showing states of polarization of light emitted from the quartz member 100. FIGS.
1 光源 2 整形光学系 3,8,13,14 反射ミラー 200,202 水晶プリズム 201,203 石英プリズム 4 フライアイレンズ 5 開口絞り 6,9,9’ コンデンサレンズ 7 視野絞り 10 マスク L1,L2,L3 レンズ 11 投影光学系 12 開口絞り 15 ウエハ M 凹面ミラー Reference Signs List 1 light source 2 shaping optical system 3, 8, 13, 14 reflecting mirror 200, 202 quartz prism 201, 203 quartz prism 4 fly-eye lens 5 aperture stop 6, 9, 9 'condenser lens 7 field stop 10 mask L1, L2, L3 Lens 11 Projection optical system 12 Aperture stop 15 Wafer M Concave mirror
Claims (7)
に基づいて複数の光源像を形成する波面分割部と、 前記複数の光源像からの光を被照射面上の所定照明領域
へ導くコンデンサ光学系と、 前記光源部と前記波面分割部との間の光路中に配置され
て、光束の進行方向を中心として回転可能に設けられた
複屈折部材と、 を備えることを特徴とする照明装置。A light source that supplies a light beam; a wavefront dividing unit that divides a light beam from the light source into a wavefront, and forms a plurality of light source images based on the wavefront-divided light beam; A condenser optical system that guides light to a predetermined illumination area on a surface to be illuminated; and a condenser optical system that is disposed in an optical path between the light source unit and the wavefront splitting unit and that is rotatably provided around a traveling direction of a light beam. A lighting device, comprising: a refraction member.
において前記進行方向の厚みが異なる形状を有している
ことを特徴とする請求項1記載の照明装置。2. The illuminating device according to claim 1, wherein the birefringent member has a shape having a different thickness in the traveling direction in a sectional direction of the light beam.
屈折素子を含み、 該少なくとも2つの複屈折素子のうちの少なくとも1つ
は、前記進行方向を中心として回転可能であることを特
徴とする請求項1又は2記載の照明装置。3. The birefringent member includes at least two birefringent elements, and at least one of the at least two birefringent elements is rotatable about the traveling direction. The lighting device according to claim 1.
は、その光学軸の方向が光束の進行方向に対して略垂直
となるように配設されていることを特徴とする請求項3
記載の照明装置。4. The device according to claim 3, wherein at least one of the birefringent elements is disposed such that the direction of the optical axis thereof is substantially perpendicular to the direction of travel of the light beam.
The lighting device according to the above.
り、 前記固設された複屈折素子の光学軸の方向は、前記矩形
形状の辺の方向と平行であることを特徴とする請求項3
記載の照明装置。5. The predetermined illumination area has a substantially rectangular shape, at least one of the birefringent elements is fixed, and a direction of an optical axis of the fixed birefringent element is the rectangular shape. 4. The method according to claim 3, wherein the direction is parallel to the direction of the side of the shape.
The lighting device according to the above.
可能な複屈折素子と前記波面分割部との間に配置されて
いることを特徴とする請求項5記載の照明装置。6. The lighting device according to claim 5, wherein the fixed birefringent element is disposed between the rotatable birefringent element and the wavefront splitting unit.
明する請求項1乃至6の何れか1項に記載の照明装置
と、 該照明されたマスクのパターンを感光基板上に投影露光
する投影光学系とを有することを特徴とする投影露光装
置。7. The illuminating device according to claim 1, which illuminates a mask on which a predetermined pattern is formed, and projection optics that projects and exposes the illuminated mask pattern onto a photosensitive substrate. And a projection exposure apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29011898A JP4065923B2 (en) | 1998-09-29 | 1998-09-29 | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29011898A JP4065923B2 (en) | 1998-09-29 | 1998-09-29 | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000114157A true JP2000114157A (en) | 2000-04-21 |
JP4065923B2 JP4065923B2 (en) | 2008-03-26 |
Family
ID=17752045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29011898A Expired - Lifetime JP4065923B2 (en) | 1998-09-29 | 1998-09-29 | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4065923B2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005036619A1 (en) * | 2003-10-09 | 2005-04-21 | Nikon Corporation | Illumination optical device, and exposure device and method |
WO2005041277A1 (en) * | 2003-10-28 | 2005-05-06 | Nikon Corporation | Lighting optical device and projection aligner |
JP2005268489A (en) * | 2004-03-18 | 2005-09-29 | Canon Inc | Lighting device, aligner, and device manufacturing method |
JP2005311187A (en) * | 2004-04-23 | 2005-11-04 | Canon Inc | Lighting optical system, exposure device and device manufacturing method |
JP2007515768A (en) * | 2003-09-26 | 2007-06-14 | カール・ツァイス・エスエムティー・アーゲー | Microlithography illumination method and projection illumination system for performing the method |
JP2008544507A (en) * | 2005-06-13 | 2008-12-04 | エーエスエムエル ネザーランズ ビー.ブイ. | Polarization analyzer, polarization sensor and method for determining polarization characteristics of a lithographic apparatus |
JP2009065175A (en) * | 2008-10-02 | 2009-03-26 | Canon Inc | Lighting optical system |
JP2010010701A (en) * | 2002-12-03 | 2010-01-14 | Nikon Corp | Illumination optical system, exposure apparatus, and exposure method |
JP2010502003A (en) * | 2006-08-24 | 2010-01-21 | カール・ツァイス・エスエムティー・アーゲー | Illumination system for microlithographic projection exposure apparatus |
JP2010117516A (en) * | 2008-11-12 | 2010-05-27 | Nitto Denko Corp | Method for producing polarizing plate, polarizing plate, optical film and image display |
JP2011040646A (en) * | 2009-08-17 | 2011-02-24 | Nikon Corp | Illumination optical system, exposure device, and method of manufacturing device |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
CN102177424A (en) * | 2008-07-09 | 2011-09-07 | 维孚科技股份有限公司 | Rapid acquisition ellipsometry |
US8259393B2 (en) | 2004-01-16 | 2012-09-04 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8279524B2 (en) | 2004-01-16 | 2012-10-02 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9170498B2 (en) | 2005-02-25 | 2015-10-27 | Asml Netherlands B.V. | Lithographic apparatus and a method for determining a polarization property of a projection system using an adjustable polarizer and interferometric sensor |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9581911B2 (en) | 2004-01-16 | 2017-02-28 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US10451973B2 (en) | 2005-05-03 | 2019-10-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10495980B2 (en) | 2005-03-04 | 2019-12-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
-
1998
- 1998-09-29 JP JP29011898A patent/JP4065923B2/en not_active Expired - Lifetime
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010010701A (en) * | 2002-12-03 | 2010-01-14 | Nikon Corp | Illumination optical system, exposure apparatus, and exposure method |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
KR101119779B1 (en) | 2003-09-26 | 2012-03-23 | 칼 짜이스 에스엠티 게엠베하 | Microlithographic projection exposure |
JP2007515768A (en) * | 2003-09-26 | 2007-06-14 | カール・ツァイス・エスエムティー・アーゲー | Microlithography illumination method and projection illumination system for performing the method |
KR101119723B1 (en) * | 2003-09-26 | 2012-03-23 | 칼 짜이스 에스엠티 게엠베하 | Microlithographic projection exposure |
WO2005036619A1 (en) * | 2003-10-09 | 2005-04-21 | Nikon Corporation | Illumination optical device, and exposure device and method |
JP2013211558A (en) * | 2003-10-28 | 2013-10-10 | Nikon Corp | Illumination optical device and projection exposure device |
JP2015065441A (en) * | 2003-10-28 | 2015-04-09 | 株式会社ニコン | Illumination optical device and projection exposure device |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423697B2 (en) * | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
JPWO2005041277A1 (en) * | 2003-10-28 | 2007-08-23 | 株式会社ニコン | Illumination optical device and projection exposure apparatus |
JP2014179631A (en) * | 2003-10-28 | 2014-09-25 | Nikon Corp | Illumination optical device and projection exposure device |
JP2016053718A (en) * | 2003-10-28 | 2016-04-14 | 株式会社ニコン | Illumination optical device and projection exposure device |
JP4543331B2 (en) * | 2003-10-28 | 2010-09-15 | 株式会社ニコン | Illumination optical apparatus and projection exposure apparatus |
JP4543341B2 (en) * | 2003-10-28 | 2010-09-15 | 株式会社ニコン | Illumination optical apparatus, projection exposure apparatus, exposure method, and electronic device manufacturing method |
US9146476B2 (en) * | 2003-10-28 | 2015-09-29 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
TWI474132B (en) * | 2003-10-28 | 2015-02-21 | 尼康股份有限公司 | Optical illumination device, projection exposure device, exposure method and device manufacturing method |
US9140993B2 (en) * | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9140992B2 (en) * | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20130250268A1 (en) * | 2003-10-28 | 2013-09-26 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
JP2013191858A (en) * | 2003-10-28 | 2013-09-26 | Nikon Corp | Illumination optical device and projection aligner |
WO2005041277A1 (en) * | 2003-10-28 | 2005-05-06 | Nikon Corporation | Lighting optical device and projection aligner |
TWI609409B (en) * | 2003-10-28 | 2017-12-21 | 尼康股份有限公司 | Optical illumination device, exposure device, exposure method and device manufacturing method |
JP2015046604A (en) * | 2003-10-28 | 2015-03-12 | 株式会社ニコン | Illumination optical device and projection exposure device |
JP2010192914A (en) * | 2003-10-28 | 2010-09-02 | Nikon Corp | Illumination optical apparatus, and projection exposure apparatus |
JP2015046619A (en) * | 2003-10-28 | 2015-03-12 | 株式会社ニコン | Illumination optical device and projection exposure device |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20130242280A1 (en) * | 2003-10-28 | 2013-09-19 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
JP2008182266A (en) * | 2003-10-28 | 2008-08-07 | Nikon Corp | Illumination optical device, projection exposure apparatus, exposure method, and element producing method |
TWI573175B (en) * | 2003-10-28 | 2017-03-01 | 尼康股份有限公司 | Optical illumination device, exposure device, exposure method and device manufacturing method |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US8320043B2 (en) | 2004-01-16 | 2012-11-27 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithographyprojection system including polarization-modulating optical element |
US8289623B2 (en) | 2004-01-16 | 2012-10-16 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US9581911B2 (en) | 2004-01-16 | 2017-02-28 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8711479B2 (en) | 2004-01-16 | 2014-04-29 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithography projection system including polarization-modulating optical element |
US9316772B2 (en) | 2004-01-16 | 2016-04-19 | Carl Zeiss Smt Gmbh | Producing polarization-modulating optical element for microlithography system |
US8279524B2 (en) | 2004-01-16 | 2012-10-02 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8259393B2 (en) | 2004-01-16 | 2012-09-04 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8861084B2 (en) | 2004-01-16 | 2014-10-14 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
JP2005268489A (en) * | 2004-03-18 | 2005-09-29 | Canon Inc | Lighting device, aligner, and device manufacturing method |
JP4497968B2 (en) * | 2004-03-18 | 2010-07-07 | キヤノン株式会社 | Illumination apparatus, exposure apparatus, and device manufacturing method |
JP2005311187A (en) * | 2004-04-23 | 2005-11-04 | Canon Inc | Lighting optical system, exposure device and device manufacturing method |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
US9170498B2 (en) | 2005-02-25 | 2015-10-27 | Asml Netherlands B.V. | Lithographic apparatus and a method for determining a polarization property of a projection system using an adjustable polarizer and interferometric sensor |
US10495980B2 (en) | 2005-03-04 | 2019-12-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10495981B2 (en) | 2005-03-04 | 2019-12-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10488759B2 (en) | 2005-05-03 | 2019-11-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10451973B2 (en) | 2005-05-03 | 2019-10-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
JP4691594B2 (en) * | 2005-06-13 | 2011-06-01 | エーエスエムエル ネザーランズ ビー.ブイ. | Passive reticle tool, lithographic apparatus and method for patterning devices in a lithographic tool |
JP2008544507A (en) * | 2005-06-13 | 2008-12-04 | エーエスエムエル ネザーランズ ビー.ブイ. | Polarization analyzer, polarization sensor and method for determining polarization characteristics of a lithographic apparatus |
JP2008546218A (en) * | 2005-06-13 | 2008-12-18 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection system and projection lens polarization sensor |
JP2008547190A (en) * | 2005-06-13 | 2008-12-25 | エーエスエムエル ネザーランズ ビー.ブイ. | Passive reticle tool, lithographic apparatus and method for patterning devices in a lithographic tool |
JP4739411B2 (en) * | 2005-06-13 | 2011-08-03 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection system and projection lens polarization sensor |
JP4717112B2 (en) * | 2005-06-13 | 2011-07-06 | エーエスエムエル ネザーランズ ビー.ブイ. | Polarization analyzer, polarization sensor and method for determining polarization characteristics of a lithographic apparatus |
JP2010502003A (en) * | 2006-08-24 | 2010-01-21 | カール・ツァイス・エスエムティー・アーゲー | Illumination system for microlithographic projection exposure apparatus |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
CN102177424A (en) * | 2008-07-09 | 2011-09-07 | 维孚科技股份有限公司 | Rapid acquisition ellipsometry |
JP2009065175A (en) * | 2008-10-02 | 2009-03-26 | Canon Inc | Lighting optical system |
JP2010117516A (en) * | 2008-11-12 | 2010-05-27 | Nitto Denko Corp | Method for producing polarizing plate, polarizing plate, optical film and image display |
JP2011040646A (en) * | 2009-08-17 | 2011-02-24 | Nikon Corp | Illumination optical system, exposure device, and method of manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JP4065923B2 (en) | 2008-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4065923B2 (en) | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus | |
US6466303B1 (en) | Projection exposure apparatus with a catadioptric projection optical system | |
JP3927753B2 (en) | Exposure apparatus and device manufacturing method | |
US9760014B2 (en) | Illumination optical apparatus and projection exposure apparatus | |
KR100856976B1 (en) | Exposure apparatus and device manufacturing method | |
KR101624140B1 (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
KR100894303B1 (en) | Optical reduction system with control of illumination polarization | |
US20060203341A1 (en) | Polarization-optimized illumination system | |
KR100483981B1 (en) | Pulse width-extended optical systems and exposure units with these optical systems | |
US6238063B1 (en) | Illumination optical apparatus and projection exposure apparatus | |
KR100783669B1 (en) | Optical Reduction System With Elimination of Reticle Diffraction Induced Bias | |
US4795244A (en) | Projection type exposure apparatus | |
JPH09288251A (en) | Pulse width lengthening optical system and exposure device provided therewith | |
JP4178098B2 (en) | Optical system for projecting a pattern formed on a reticle onto a wafer, method for forming an image on a wafer, and method for optically transferring an image of a pattern onto a wafer | |
JP2002222754A (en) | Correcting device, aligner, method of manufacturing device, and device | |
JP2005311187A (en) | Lighting optical system, exposure device and device manufacturing method | |
JP2633028B2 (en) | Observation method and observation device | |
JPH08179202A (en) | Ultraviolet image forming optical system | |
JP2000114160A (en) | Optical system for circular-arcuate illumination and aligner using the same | |
US7099087B2 (en) | Catadioptric projection objective | |
JP3102087B2 (en) | Projection exposure apparatus and method, and circuit element forming method | |
JP3438730B2 (en) | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus | |
JPH11176741A (en) | Scanning type projection optical system and projection aligner | |
JPH0792557B2 (en) | Projection type exposure system | |
JPH11317362A (en) | Scanning aligner and manufacture of device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20190118 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |