JP2000109308A - Method for producing carbon nanotube film - Google Patents
Method for producing carbon nanotube filmInfo
- Publication number
- JP2000109308A JP2000109308A JP10282214A JP28221498A JP2000109308A JP 2000109308 A JP2000109308 A JP 2000109308A JP 10282214 A JP10282214 A JP 10282214A JP 28221498 A JP28221498 A JP 28221498A JP 2000109308 A JP2000109308 A JP 2000109308A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon carbide
- silicon
- thin film
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002238 carbon nanotube film Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000013078 crystal Substances 0.000 claims abstract description 94
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 63
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 58
- 239000010703 silicon Substances 0.000 claims abstract description 58
- 239000010409 thin film Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 238000005530 etching Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 35
- 238000007654 immersion Methods 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- 239000002041 carbon nanotube Substances 0.000 description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910017855 NH 4 F Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- -1 that is Inorganic materials 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】
【課題】 自立しており、かつ大面積のカーボンナノチ
ューブ膜および多様な表面形状を有するカーボンナノチ
ューブ膜を安価に製造可能な、カーボンナノチューブ膜
の製造方法を提供する。
【解決手段】 シリコンウェハ3上に、炭化ケイ素結晶
をエピタキシャル成長させることにより炭化ケイ素単結
晶薄膜4を形成させ、次いで、上記炭化ケイ素単結晶薄
膜4が形成された上記シリコンウェハ3を腐食液に浸す
エッチング処理により上記炭化ケイ素単結晶薄膜4を上
記シリコンウェハ3から分離し、さらに、微量酸素を含
む真空中あるいは酸素を含む不活性ガス中において上記
炭化ケイ素単結晶薄膜4を高温に加熱する高温加熱処理
により、上記炭化ケイ素単結晶薄膜4をカーボンナノチ
ューブ膜2に変換する。
PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon nanotube film, which is self-supporting and capable of manufacturing a carbon nanotube film having a large area and a carbon nanotube film having various surface shapes at low cost. SOLUTION: A silicon carbide single crystal thin film 4 is formed on a silicon wafer 3 by epitaxially growing a silicon carbide crystal, and then the silicon wafer 3 on which the silicon carbide single crystal thin film 4 is formed is immersed in an etchant. The silicon carbide single-crystal thin film 4 is separated from the silicon wafer 3 by an etching process, and is further heated to a high temperature in a vacuum containing a trace amount of oxygen or in an inert gas containing oxygen. By the treatment, the silicon carbide single crystal thin film 4 is converted into the carbon nanotube film 2.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、配向した多数本の
カーボンナノチューブから構成されるカーボンナノチュ
ーブ膜の製造方法に関し、特に、下地層から分離された
(すなわち、自立した)カーボンナノチューブ膜を製造
する方法に関する。本発明は、電子放出源およびガス分
離膜用のカーボンナノチューブ膜を製造する方法として
好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon nanotube film composed of a large number of oriented carbon nanotubes, and more particularly to a method for producing a carbon nanotube film separated from an underlayer (that is, freestanding). About the method. The present invention is suitable as a method for producing a carbon nanotube membrane for an electron emission source and a gas separation membrane.
【0002】[0002]
【従来の技術】炭素原子が筒状に配列した構造で寸法が
数nmから十数nmのものはカーボンナノチューブと呼
ばれ、飯島澄男により1991年に発見された(Nat
ure,354(1991)56−58.)。カーボン
ナノチューブを製造する方法として、グラファイト電極
をアーク放電する方法、炭化水素を気相熱分解する方
法、グラファイトをレーザーで昇華する方法などが広く
用いられている。しかしこれらの方法では生成したグラ
ファイトの「すす」からナノチューブを分離する必要が
あり膜形状を作成することはできなかった。2. Description of the Related Art A structure in which carbon atoms are arranged in a cylindrical shape and have a size of several nm to several tens of nm is called a carbon nanotube, and was discovered by Sumio Iijima in 1991 (Nat).
ure, 354 (1991) 56-58. ). As a method for producing carbon nanotubes, a method of arc discharging a graphite electrode, a method of pyrolyzing hydrocarbons in a gas phase, a method of sublimating graphite with a laser, and the like are widely used. However, in these methods, it was necessary to separate the nanotubes from the generated graphite “soot”, and the film shape could not be formed.
【0003】[0003]
【発明が解決しようとする課題】一方、出願人は先に、
配向した多数本のカーボンナノチューブからなる「カー
ボンナノチューブ膜」を製造する方法として、炭化ケイ
素単結晶を真空中で高温加熱する方法を発明し、この方
法に関して特許出願を行っている(特願平9−8751
8号)。この出願におけるカーボンナノチューブ膜の製
造方法の概略を図4に示す。図4において、1は炭化ケ
イ素単結晶であり、これを微量の酸素を含む真空中で1
000℃〜2000℃の高温に加熱すると、炭化ケイ素
単結晶1の表面部分に、配向したカーボンナノチューブ
が密に形成されたカーボンナノチューブ膜2が形成され
る。SUMMARY OF THE INVENTION On the other hand, the applicant first
As a method for producing a “carbon nanotube film” composed of a number of aligned carbon nanotubes, a method of heating a silicon carbide single crystal at a high temperature in a vacuum has been invented, and a patent application has been filed with respect to this method (Japanese Patent Application No. Hei 9 (1994) -108). -8751
No. 8). FIG. 4 shows an outline of a method for manufacturing a carbon nanotube film in this application. In FIG. 4, reference numeral 1 denotes a silicon carbide single crystal, which is placed in a vacuum containing a trace amount of oxygen.
When heated to a high temperature of 000 ° C. to 2000 ° C., a carbon nanotube film 2 in which oriented carbon nanotubes are densely formed is formed on the surface of silicon carbide single crystal 1.
【0004】しかし、上記のカーボンナノチューブ膜の
製造方法は、生成したカーボンナノチューブ膜を下地の
炭化ケイ素単結晶から分離することが困難であるので、
電子放出源あるいはガス分離膜として使用するためのカ
ーボンナノチューブ膜を製造する方法としては不都合な
場合がある。また、炭化ケイ素単結晶は高価であるた
め、大面積なカーボンナノチューブ膜を安価に製造でき
ないという間題点があった。さらに、上記製造方法によ
ると、生成するカーボンナノチューブ膜の表面は平坦で
あるため、このカーボンナノチューブ膜を電子放出源と
して用いる場合の放出効率が低い。However, in the above-described method for producing a carbon nanotube film, it is difficult to separate the formed carbon nanotube film from the underlying silicon carbide single crystal.
It may be inconvenient as a method for producing a carbon nanotube membrane for use as an electron emission source or a gas separation membrane. In addition, since the silicon carbide single crystal is expensive, there is a problem that a large-area carbon nanotube film cannot be manufactured at low cost. Furthermore, according to the above manufacturing method, the surface of the carbon nanotube film to be formed is flat, so that the emission efficiency when this carbon nanotube film is used as an electron emission source is low.
【0005】そこで本発明の目的は、上述した従来法の
欠点をなくし、自立しており、かつ大面積のカーボンナ
ノチューブ膜および多様な表面形状を有するカーボンナ
ノチューブ膜を安価に製造可能な、カーボンナノチュー
ブ膜の製造方法を提供することにある。Accordingly, an object of the present invention is to provide a carbon nanotube that eliminates the above-mentioned drawbacks of the conventional method, is self-supporting, and can produce a carbon nanotube film having a large area and various surface shapes at low cost. It is to provide a method for manufacturing a film.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載のカーボンナノチューブ膜の製造方法
は、シリコン単結晶基板上に、炭化ケイ素結晶をエピタ
キシャル成長させることにより炭化ケイ素単結晶薄膜を
形成させ、次いで、上記炭化ケイ素単結晶薄膜が形成さ
れた上記シリコン単結晶基板を腐食液に浸すエッチング
処理により上記炭化ケイ素単結晶薄膜を上記シリコン単
結晶基板から分離し、さらに、微量酸素を含む真空中あ
るいは酸素を含む不活性ガス中において上記炭化ケイ素
単結晶薄膜を高温に加熱する高温加熱処理により、上記
炭化ケイ素単結晶薄膜からカーボンナノチューブ膜を形
成させることを特徴とする。According to a first aspect of the present invention, there is provided a method for manufacturing a carbon nanotube film, comprising the steps of: growing a silicon carbide single crystal thin film on a silicon single crystal substrate by epitaxial growth; Is formed, and then the silicon carbide single crystal thin film is formed on the silicon single crystal substrate, and the silicon carbide single crystal thin film is separated from the silicon single crystal substrate by an etching treatment in which the silicon carbide single crystal substrate is immersed in an etchant. A carbon nanotube film is formed from the silicon carbide single crystal thin film by high-temperature heat treatment of heating the silicon carbide single crystal thin film to a high temperature in a vacuum containing oxygen or an inert gas containing oxygen.
【0007】また、請求項2記載のカーボンナノチュー
ブ膜の製造方法は、請求項1記載の方法において、上記
シリコン単結晶基板はSOI(Silicon on
insulator)構造を有することを特徴とする。According to a second aspect of the present invention, in the method for manufacturing a carbon nanotube film, the silicon single crystal substrate is made of SOI (silicon on silicon).
(insulator) structure.
【0008】請求項1または2記載の方法によると、シ
リコンウェハまたはSOI構造シリコン単結晶基板など
の上に炭化ケイ素単結晶薄膜を形成した後、これを腐食
液で処理して上記炭化ケイ素単結晶薄膜をシリコン単結
晶基板から分離し、引き続く工程でこの分離された炭化
ケイ素単結晶薄膜を高温加熱処理してカーボンナノチュ
ーブ膜化するので、自立したカーボンナノチューブ膜が
得られる。According to the method of claim 1 or 2, a silicon carbide single crystal thin film is formed on a silicon wafer or a silicon single crystal substrate having an SOI structure, and the silicon carbide single crystal thin film is treated with an etchant to form the silicon carbide single crystal thin film. The thin film is separated from the silicon single crystal substrate, and in a subsequent step, the separated silicon carbide single crystal thin film is heated at a high temperature to form a carbon nanotube film, so that a self-supporting carbon nanotube film is obtained.
【0009】また、請求項3記載のカーボンナノチュー
ブ膜の製造方法は、請求項1または2記載の方法におい
て、上記炭化ケイ素単結晶薄膜が形成される上記シリコ
ン単結晶基板の表面には、あらかじめ微細な凹凸形状が
形成されていることを特徴とする。According to a third aspect of the present invention, there is provided a method of manufacturing a carbon nanotube film according to the first or second aspect, wherein the surface of the silicon single crystal substrate on which the silicon carbide single crystal thin film is formed is finely divided in advance. It is characterized in that a rough shape is formed.
【0010】請求項3記載の方法によると、あらかじめ
凹凸が形成されたシリコン単結晶基板の表面に炭化ケイ
素単結晶薄膜を形成し、この炭化ケイ素単結晶薄膜から
カーボンナノチューブ膜を形成させるので、表面に凹凸
のある電子放出効率の高いカーボンナノチューブ膜を得
ることができる。According to the third aspect of the present invention, a silicon carbide single crystal thin film is formed on a surface of a silicon single crystal substrate on which irregularities have been formed in advance, and a carbon nanotube film is formed from the silicon carbide single crystal thin film. A carbon nanotube film having unevenness and high electron emission efficiency can be obtained.
【0011】[0011]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のカーボンナノチューブ膜の製造方法において
は、第1の工程で、シリコン単結晶基板あるいはSOI
構造シリコン単結晶基板の上に、分子線エピタキシー
(MBE)法あるいは気相エピタキシー(VPE)法な
どによって炭化ケイ素薄膜を形成すると、シリコン単結
晶基板表面のシリコン結晶の格子配列を引き継いで炭化
ケイ素単結晶が成長するため、基板の結晶方位に配向し
た炭化ケイ素単結晶薄膜を形成させることができる。こ
の炭化ケイ素単結晶薄膜の厚さは、成長時間などによっ
て容易に制御することができる。また基板表面を意図的
に凹凸加工しておくと、この形状と相似な表面形状を炭
化ケイ素薄膜の表面に付与できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the method for producing a carbon nanotube film of the present invention, in the first step, a silicon single crystal substrate or SOI
When a silicon carbide thin film is formed on a structure silicon single crystal substrate by a molecular beam epitaxy (MBE) method or a vapor phase epitaxy (VPE) method, the silicon carbide single crystal substrate takes over the silicon crystal lattice arrangement on the surface of the silicon single crystal substrate. Since the crystal grows, a silicon carbide single crystal thin film oriented in the crystal orientation of the substrate can be formed. The thickness of the silicon carbide single crystal thin film can be easily controlled by a growth time or the like. If the substrate surface is intentionally roughened, a surface shape similar to this shape can be given to the surface of the silicon carbide thin film.
【0012】第2の工程では、表面に炭化ケイ素単結晶
薄膜が形成されたシリコン単結晶基板を腐食液に浸すこ
とによりシリコン単結晶基板を選択的にエッチングし、
これによりシリコン単結晶基板から分離された炭化ケイ
素結晶の自立膜を得る。該第2の工程において使用する
腐食液としては、シリコン単結晶基板がシリコンウエハ
である場合にはKOH、NaOH、HNO3−HFなど
の溶液を用いることができ、KOH溶液を用いることが
好ましい。この腐食液に対して、シリコンウェハはエッ
チングされるが炭化ケイ素は全く反応しない。また、シ
リコン単結晶基板がSOI構造(表面シリコン層/埋め
込み酸化層/シリコン単結晶基板)を有する場合には、
腐食液としてNH4F、HFなどの溶液を用いることが
でき、NH4F溶液を用いることが好ましい。上記埋め
込み酸化層(SiO2からなる)は、NH4Fなどの腐食
液に対して選択的に高速でエッチングされるので、シリ
コン単結晶基板全体をエッチング除去する場合に比べて
短時間で炭化ケイ素単結晶薄膜が分離され、この工程に
要する時間を短縮することができる。In the second step, the silicon single crystal substrate having a silicon carbide single crystal thin film formed on its surface is immersed in an etchant to selectively etch the silicon single crystal substrate,
Thus, a free-standing film of silicon carbide crystal separated from the silicon single crystal substrate is obtained. The etchant used in the second step, when a silicon single crystal substrate is a silicon wafer can be used KOH, NaOH, a solution such as HNO 3 -HF, it is preferable to use a KOH solution. The silicon wafer is etched by this etchant but silicon carbide does not react at all. When the silicon single crystal substrate has an SOI structure (surface silicon layer / buried oxide layer / silicon single crystal substrate),
A solution such as NH 4 F or HF can be used as the etchant, and it is preferable to use an NH 4 F solution. The buried oxide layer (consisting of SiO 2 ) is selectively etched at a high speed with respect to a corrosive solution such as NH 4 F, so that silicon carbide can be etched in a shorter time than when the entire silicon single crystal substrate is etched off. The single crystal thin film is separated, and the time required for this step can be reduced.
【0013】第3の工程では、分離した炭化ケイ素単結
晶薄膜を微量の酸素を含む真空中で高温に加熱すると、
Siが酸化されてSiOとして蒸発し、残ったCが筒状
のカーボンナノチューブ構造をとって緻密に配列するこ
とにより、炭化ケイ素単結晶薄膜がカーボンナノチュー
ブ膜に変換される。該第3の工程において、真空中の代
わりに不活性ガス雰囲気中であっても、SiOが蒸発す
るので同様な作用がある。この高温加熱処理を微量の酸
素を含む真空中で行う場合、その真空度及び加熱温度
は、炭化ケイ素単結晶薄膜中からSiを除去可能な限り
において特に限定されない。好ましい真空度は10-3〜
10-10Torr(より好ましくは10-6 〜10-8To
rr)の範囲であり、また、好ましい加熱温度は120
0〜2200℃(より好ましくは1400〜2000
℃)の範囲である。また、上記高温加熱処理を酸素を含
む不活性ガス中で行う場合、一般に圧力1〜760To
rr(好ましくは10〜760Torr)の下で行うこ
とができ、加熱温度は1200〜2200℃(好ましく
は1400〜2000℃)とすることができる。また、
上記「酸素を含む不活性ガス」中における酸素の含有量
は1〜10-6体積%とすることができる。In the third step, the separated silicon carbide single bond
Heating a crystalline thin film to a high temperature in a vacuum containing a small amount of oxygen,
Si is oxidized and evaporated as SiO, and the remaining C is cylindrical.
The carbon nanotube structure of
With this, the silicon carbide single crystal thin film
It is converted to a membrane. In the third step, a vacuum
Instead, even in an inert gas atmosphere, SiO evaporates
Therefore, there is a similar effect. This high-temperature heat treatment
When performing in a vacuum containing nitrogen, the degree of vacuum and heating temperature
As far as possible to remove Si from the silicon carbide single crystal thin film
Is not particularly limited. Preferred vacuum is 10-3~
10-TenTorr (more preferably 10-6 -10-8To
rr) and the preferred heating temperature is 120
0 to 2200 ° C (more preferably 1400 to 2000
° C). In addition, the high-temperature heat treatment includes oxygen.
When performed in an inert gas, the pressure is generally 1 to 760 To
rr (preferably 10 to 760 Torr)
And the heating temperature is 1200 to 2200 ° C. (preferably
Can be set to 1400 to 2000 ° C.). Also,
Oxygen content in the above "inert gas containing oxygen"
Is 1 to 10-6% By volume.
【0014】上述した本発明の方法によれば、炭化ケイ
素単結晶薄膜をシリコンウェハなどの上に形成し、この
薄膜をシリコンウェハなどから分離した後に熱処理して
カーボンナノチューブ膜化するので、従来法では製造で
きなかった自立膜が容易に製造できる。基板としては比
較的安価であり入手しやすいシリコンウェハなどを用い
ることができ、また大面積のカーボンナノチューブ膜を
製造することが可能である。さらに、電子放出効率が低
いという間題点も、あらかじめ凹凸形状を付与したシリ
コン単結晶基板を用いることにより解決できる。According to the method of the present invention described above, a silicon carbide single crystal thin film is formed on a silicon wafer or the like, and the thin film is separated from the silicon wafer or the like and then heat-treated to form a carbon nanotube film. A self-supporting film that could not be manufactured can be easily manufactured. A relatively inexpensive and easily available silicon wafer or the like can be used as the substrate, and a large-area carbon nanotube film can be manufactured. Further, the problem that the electron emission efficiency is low can be solved by using a silicon single crystal substrate provided with a concavo-convex shape in advance.
【0015】なお、本発明の製造方法によると、たとえ
ば厚さ0.01〜2μm(好ましくは0.025〜0.
6μm)、面積300cm2以上(好ましくは3cm2以
上)のカーボンナノチューブ膜を得ることが可能であ
る。According to the manufacturing method of the present invention, for example, the thickness is 0.01 to 2 μm (preferably 0.025 to 0.2 μm).
6 μm) and a carbon nanotube film having an area of 300 cm 2 or more (preferably 3 cm 2 or more) can be obtained.
【0016】[0016]
【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例1)実施例1の製造方法の概略を図1に示す。
なお、実施例1で用いたシリコンウェハの表面(図1に
おける上側面)は(111)面である。まず、シリコン
単結晶基板シリコンウェハ3の表面に炭化ケイ素結晶を
エピタキシャル成長させて炭化ケイ素単結晶薄膜4を形
成する。すなわち、シリコンウェハ3を弗酸溶液に浸し
て自然酸化膜を除去し、次いでこのシリコンウェハ3を
VPE反応炉に入れてC2H2雰囲気中で1000℃まで
加熱した後にSiH2Cl2を供給した。C2H2およびS
iH2Cl2の供給量はそれぞれ1.2SCCMとし、こ
の他にキャリアガスとしてH2を500SCCM供給し
た。10分間のSiH2Cl2供給により、厚さ約0.3
11μmの(111)面の炭化ケイ素単結晶薄膜が形成
したことを、反射高速電子線回折および走査型電子顕微
鏡観察により確認した。続いて、シリコンウェハ3およ
び炭化ケイ素単結晶薄膜4からなる試料を70℃のKO
H溶液に浸して50時間放置した。このエッチング処理
によりシリコンウェハ3は溶け、炭化ケイ素単結晶薄膜
4が残った。その後、残った炭化ケイ素単結晶薄膜4を
グラファイト網ですくい取って高温炉に入れ、真空度
0.01Paに排気しながら1700℃まで加熱し、こ
の温度を60分間保った。この高温加熱処理により、炭
化ケイ素単結晶薄膜4からカーボンナノチューブ膜2を
形成させた。このようにして製造した自立膜(カーボン
ナノチューブ膜2)を透過電子顕微鏡で観察したとこ
ろ、カーボンナノチューブの束が膜厚方向に密集して配
列した連続膜であることが確認できた。The present invention will be described more specifically with reference to the following examples. (Embodiment 1) An outline of the manufacturing method of Embodiment 1 is shown in FIG.
The surface (upper surface in FIG. 1) of the silicon wafer used in Example 1 is the (111) plane. First, a silicon carbide single crystal thin film 4 is formed by epitaxially growing a silicon carbide crystal on the surface of a silicon single crystal substrate silicon wafer 3. That is, the silicon wafer 3 is immersed in a hydrofluoric acid solution to remove a natural oxide film, and then the silicon wafer 3 is placed in a VPE reactor, heated to 1000 ° C. in a C 2 H 2 atmosphere, and then supplied with SiH 2 Cl 2 . did. C 2 H 2 and S
The supply amount of iH 2 Cl 2 was 1.2 SCCM, and 500 SCCM of H 2 was supplied as a carrier gas. By supplying SiH 2 Cl 2 for 10 minutes, a thickness of about 0.3
The formation of an 11 μm (111) silicon carbide single crystal thin film was confirmed by reflection high-speed electron diffraction and observation with a scanning electron microscope. Subsequently, a sample consisting of the silicon wafer 3 and the silicon carbide single crystal thin film 4 was
H solution and left for 50 hours. The silicon wafer 3 was melted by this etching treatment, and the silicon carbide single crystal thin film 4 remained. Thereafter, the remaining silicon carbide single crystal thin film 4 was scooped with a graphite net, placed in a high-temperature furnace, heated to 1700 ° C. while evacuating to a vacuum of 0.01 Pa, and kept at this temperature for 60 minutes. By this high-temperature heat treatment, the carbon nanotube film 2 was formed from the silicon carbide single crystal thin film 4. Observation of the self-supported film (carbon nanotube film 2) thus produced with a transmission electron microscope confirmed that the film was a continuous film in which bundles of carbon nanotubes were densely arranged in the film thickness direction.
【0017】(実施例2)実施例2の製造方法の概略を
図2に示す。この実施例では、シリコン単結晶基板とし
て、シリコンウェハ3の一方の面に厚さ200nmの酸
化シリコン層6を有し、その表面に厚さ30nmのシリ
コン単結晶層5を有するSOI構造基板を用いた。この
基板の方位は(100)面を用いた。炭化ケイ素単結晶
薄膜の形成は実施例1と同様の方法により、シリコン単
結晶層5の表面に炭化ケイ素結晶をエピタキシャル成長
させて(100)面の炭化ケイ素単結晶薄膜を形成させ
た。続いて、この試料をNH4F溶液に浸して約5分間
放置した。このエッチング処理により、まず酸化シリコ
ン層6が溶けて炭化ケイ素単結晶薄膜4およびシリコン
単結晶層5がシリコンウェハ3から分離し、次いでシリ
コン単結晶層5が溶けて炭化ケイ素単結晶薄膜4が残っ
た。この炭化ケイ素単結晶薄膜4をすくい取って高温炉
に入れ、実施例1と同様な条件で高温加熱処理を行って
カーボンナノチューブ膜2を得た。このようにして製造
した自立膜(カーボンナノチューブ膜2)を透過電子顕
微鏡で観察したところ、カーボンナノチューブの束が斜
め方向に配列した連続膜であることが確認できた。(Embodiment 2) FIG. 2 schematically shows the manufacturing method of Embodiment 2. In this embodiment, as a silicon single crystal substrate, an SOI substrate having a silicon oxide layer 6 with a thickness of 200 nm on one surface of a silicon wafer 3 and a silicon single crystal layer 5 with a thickness of 30 nm on the surface is used. Was. The orientation of this substrate used the (100) plane. The silicon carbide single crystal thin film was formed in the same manner as in Example 1 by epitaxially growing a silicon carbide crystal on the surface of the silicon single crystal layer 5 to form a (100) plane silicon carbide single crystal thin film. Subsequently, the sample was immersed in an NH 4 F solution and left for about 5 minutes. By this etching treatment, first, silicon oxide layer 6 is melted, and silicon carbide single crystal thin film 4 and silicon single crystal layer 5 are separated from silicon wafer 3, and then silicon single crystal layer 5 is melted and silicon carbide single crystal thin film 4 remains. Was. The silicon carbide single crystal thin film 4 was scooped and placed in a high-temperature furnace, and subjected to a high-temperature heat treatment under the same conditions as in Example 1 to obtain a carbon nanotube film 2. Observation of the self-standing film (carbon nanotube film 2) thus produced by a transmission electron microscope confirmed that the film was a continuous film in which bundles of carbon nanotubes were arranged in an oblique direction.
【0018】(実施例3)実施例3の製造方法の概略を
図3に示す。この実施例では、あらかじめ表面に凹凸加
工を施したシリコン単結晶基板を用いた。基板としてシ
リコンウェハ3の(100)面にレジスト7を塗布し、
光露光して1μm角のレジストが10μm問隔で縦横に
並んだパターンを形成し、次いでこれをKOH溶液に浸
した。その後レジストを除去すると、ピラミッド状の突
起が10μm間隔で配列する凹凸構造がシリコンウェハ
3の表面に形成された。上記構造を有するシリコンウェ
ハ3を用いて、実施例1と同様に炭化ケイ素結晶をエピ
タキシャル成長させたところ、表面にピラミッド状の突
起が配列した構造の炭化ケイ素単結晶薄膜4が形成され
たことが走査電子顕微鏡により確認できた。引き続く工
程は実施例1と同様に行った。このようにして製造した
自立膜(カーボンナノチューブ膜2)を走査電子顕微鏡
および透過電子顕微鏡で観察したところ、自立膜の表裏
ともにピラミッド状の突起が並んでおり、この突起を形
成する膜の各斜面に対して垂直な方向にカーボンナノチ
ューブの束が密集して配列した連続膜であることが確認
できた。(Embodiment 3) FIG. 3 shows an outline of the manufacturing method of Embodiment 3. In this example, a silicon single crystal substrate whose surface was previously subjected to unevenness processing was used. A resist 7 is applied to the (100) surface of the silicon wafer 3 as a substrate,
The resist was exposed to light to form a pattern in which 1 μm square resists were arranged in rows and columns at 10 μm intervals, and then immersed in a KOH solution. Thereafter, when the resist was removed, an uneven structure in which pyramid-shaped protrusions were arranged at intervals of 10 μm was formed on the surface of the silicon wafer 3. Using the silicon wafer 3 having the above structure, when silicon carbide crystal was epitaxially grown in the same manner as in Example 1, it was found that a silicon carbide single crystal thin film 4 having a structure in which pyramid-like protrusions were arranged on the surface was formed. It was confirmed by an electron microscope. Subsequent steps were performed in the same manner as in Example 1. Observation of the self-supported film (carbon nanotube film 2) thus produced with a scanning electron microscope and a transmission electron microscope revealed that pyramid-shaped protrusions were arranged on both sides of the self-supported film, and each slope of the film forming the protrusions was formed. It was confirmed that the film was a continuous film in which bundles of carbon nanotubes were densely arranged in a direction perpendicular to.
【0019】なお、上記実施例1〜3のいずれににおい
ても、TEMにより観察される限りにおいて、得られた
カーボンナノチューブ膜にはカーボンナノチューブ以外
の副生成物、即ちアモルファスカーボン、グラファイト
及びフラーレン等はみられなかった。また、上記実施例
では炭化ケイ素単結晶薄膜をVPE法で作製したが、本
発明においてはMBE法、CVD法など別の方法で炭化
ケイ素単結晶薄膜を作製してもよい。In any of the above Examples 1-3, by-products other than carbon nanotubes, that is, amorphous carbon, graphite, fullerene, etc., were not found in the obtained carbon nanotube film as long as observed by TEM. I didn't see it. In the above embodiment, the silicon carbide single crystal thin film is manufactured by the VPE method. However, in the present invention, the silicon carbide single crystal thin film may be manufactured by another method such as the MBE method and the CVD method.
【0020】[0020]
【発明の効果】上述した本発明の方法は、シリコンウェ
ハなどの上に炭化ケイ素単結晶薄膜を形成した後に該薄
膜を分離して熱処理することを特徴としており、従来法
での間題点をすべて解決することができる。従って本方
法では、従来法では不可能であった、高い電子放出能を
有する電子放出源の供給を可能とし、安価で高性能の平
面ディスプレイの実現に大きな貢献が期待される。ま
た、本方法では、緻密配列したナノチューブ自立膜が製
造できるので、高性能ガス分離膜の供給が可能となる。The method of the present invention described above is characterized in that a silicon carbide single crystal thin film is formed on a silicon wafer or the like, and then the thin film is separated and heat-treated. Everything can be solved. Therefore, the present method makes it possible to supply an electron emission source having a high electron emission ability, which is impossible with the conventional method, and is expected to make a great contribution to the realization of an inexpensive and high-performance flat display. In addition, in the present method, a densely arranged nanotube free-standing membrane can be manufactured, so that a high-performance gas separation membrane can be supplied.
【図1】実施例1のカーボンナノチューブ膜の製造方法
を示す模式的説明図である。FIG. 1 is a schematic explanatory view showing a method for manufacturing a carbon nanotube film of Example 1.
【図2】実施例2のカーボンナノチューブ膜の製造方法
を示す模式的説明図である。FIG. 2 is a schematic explanatory view showing a method for manufacturing a carbon nanotube film of Example 2.
【図3】実施例3のカーボンナノチューブ膜の製造方法
を示す模式的説明図である。FIG. 3 is a schematic explanatory view showing a method for manufacturing a carbon nanotube film of Example 3.
【図4】従来のカーボンナノチューブ膜の製造方法を示
す模式的説明図である。FIG. 4 is a schematic explanatory view showing a conventional method for producing a carbon nanotube film.
1 炭化ケイ素単結晶 2 カーボンナノチューブ膜 3 シリコンウェハ 4 炭化ケイ素単結晶薄膜 5 シリコン単結晶層 6 酸化シリコン層 7 レジスト Reference Signs List 1 silicon carbide single crystal 2 carbon nanotube film 3 silicon wafer 4 silicon carbide single crystal thin film 5 silicon single crystal layer 6 silicon oxide layer 7 resist
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C30B 33/02 C30B 33/02 (72)発明者 楠 美智子 愛知県名古屋市熱田区六野二丁目4番1号 財団法人ファインセラミックスセンター 内 Fターム(参考) 4D006 GA41 MA03 MA31 MA40 MC05X NA39 NA50 PC01 4G046 CA00 CB03 CC02 4G077 AA03 BA02 BA04 BE08 DA02 EE01 TK01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C30B 33/02 C30B 33/02 (72) Inventor Michiko Kusunoki 2-chome Rokuno 2-chome, Atsuta-ku, Nagoya-shi, Aichi No. 1 Fine Ceramics Center F term (Reference) 4D006 GA41 MA03 MA31 MA40 MC05X NA39 NA50 PC01 4G046 CA00 CB03 CC02 4G077 AA03 BA02 BA04 BE08 DA02 EE01 TK01
Claims (3)
晶をエピタキシャル成長させることにより炭化ケイ素単
結晶薄膜を形成させ、 次いで、上記炭化ケイ素単結晶薄膜が形成された上記シ
リコン単結晶基板を腐食液に浸すエッチング処理により
上記炭化ケイ素単結晶薄膜を上記シリコン単結晶基板か
ら分離し、 さらに、微量酸素を含む真空中あるいは酸素を含む不活
性ガス中において上記炭化ケイ素単結晶薄膜を高温に加
熱する高温加熱処理により、上記炭化ケイ素単結晶薄膜
からカーボンナノチューブ膜を形成させることを特徴と
するカーボンナノチューブ膜の製造方法。1. A silicon carbide single crystal thin film is formed by epitaxially growing a silicon carbide crystal on a silicon single crystal substrate. Then, the silicon single crystal substrate on which the silicon carbide single crystal thin film is formed is put into an etchant. The silicon carbide single crystal thin film is separated from the silicon single crystal substrate by an immersion etching process, and further, the silicon carbide single crystal thin film is heated to a high temperature in a vacuum containing a trace amount of oxygen or in an inert gas containing oxygen. A method for producing a carbon nanotube film, comprising forming a carbon nanotube film from the silicon carbide single crystal thin film by a treatment.
有することを特徴とする請求項1記載のカーボンナノチ
ューブ膜の製造方法。2. The method according to claim 1, wherein the silicon single crystal substrate has an SOI structure.
上記シリコン単結晶基板の表面には、あらかじめ微細な
凹凸形状が形成されていることを特徴とする請求項1ま
たは2記載のカーボンナノチューブ膜の製造方法。3. The carbon nanotube film according to claim 1, wherein fine irregularities are formed in advance on the surface of the silicon single crystal substrate on which the silicon carbide single crystal thin film is formed. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28221498A JP3889889B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing carbon nanotube film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28221498A JP3889889B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing carbon nanotube film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000109308A true JP2000109308A (en) | 2000-04-18 |
JP3889889B2 JP3889889B2 (en) | 2007-03-07 |
Family
ID=17649554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28221498A Expired - Fee Related JP3889889B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing carbon nanotube film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3889889B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293523A (en) * | 2001-03-30 | 2002-10-09 | Japan Fine Ceramics Center | Carbon nanotube film, carbon nanotube film-containing SiC substrate, carbon nanotube film, and methods for producing them |
JP2006206377A (en) * | 2005-01-28 | 2006-08-10 | Air Water Inc | Method for producing single crystal SiC substrate |
WO2007077987A1 (en) * | 2006-01-05 | 2007-07-12 | The University Of Tokyo | Carbon nanotube freestanding membrane, process for production of the same, composites having carbon nanotube membranes and process for production thereof |
JP2007242797A (en) * | 2006-03-07 | 2007-09-20 | Sumitomo Electric Ind Ltd | Semiconductor device and manufacturing method thereof |
US7396409B2 (en) | 2002-09-19 | 2008-07-08 | Covalent Materials Corporation | Acicular silicon crystal and process for producing the same |
US7531156B2 (en) | 2001-06-26 | 2009-05-12 | Japan Science And Technology Agency | Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid |
US7592050B2 (en) | 2004-12-22 | 2009-09-22 | Fuji Xerox Co., Ltd. | Method for forming carbon nanotube thin film |
JP2010516602A (en) * | 2007-01-17 | 2010-05-20 | コンシッリョ ナツィオナーレ デッレ リチェルケ | Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes |
CN102103953B (en) * | 2009-12-22 | 2012-09-05 | 中国科学院物理研究所 | Cold cathode field emission material epitaxially growing on silicon carbide substrate and method |
CN105148739A (en) * | 2015-10-29 | 2015-12-16 | 哈尔滨工业大学 | Method for modifying ultrafiltration membrane through multiwalled carbon nanotube |
CN106582332A (en) * | 2016-12-19 | 2017-04-26 | 河北工业大学 | Method for preparing superhydrophobic composite microporous membrane |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102504760B (en) * | 2011-11-05 | 2014-04-16 | 中国科学院山西煤炭化学研究所 | Preparation method of silicon carbide and carbon nano tube composite wave-absorbing material |
-
1998
- 1998-10-05 JP JP28221498A patent/JP3889889B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293523A (en) * | 2001-03-30 | 2002-10-09 | Japan Fine Ceramics Center | Carbon nanotube film, carbon nanotube film-containing SiC substrate, carbon nanotube film, and methods for producing them |
US8893645B2 (en) | 2001-06-26 | 2014-11-25 | Japan Science And Technology Agency | Method of and apparatus for synthesizing highly oriented, aligned carbon nanotubes from an organic liquid |
US7531156B2 (en) | 2001-06-26 | 2009-05-12 | Japan Science And Technology Agency | Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid |
US7396409B2 (en) | 2002-09-19 | 2008-07-08 | Covalent Materials Corporation | Acicular silicon crystal and process for producing the same |
US7592050B2 (en) | 2004-12-22 | 2009-09-22 | Fuji Xerox Co., Ltd. | Method for forming carbon nanotube thin film |
JP2006206377A (en) * | 2005-01-28 | 2006-08-10 | Air Water Inc | Method for producing single crystal SiC substrate |
JP4690734B2 (en) * | 2005-01-28 | 2011-06-01 | エア・ウォーター株式会社 | Method for producing single crystal SiC substrate |
WO2007077987A1 (en) * | 2006-01-05 | 2007-07-12 | The University Of Tokyo | Carbon nanotube freestanding membrane, process for production of the same, composites having carbon nanotube membranes and process for production thereof |
US10155663B2 (en) | 2006-01-05 | 2018-12-18 | The University Of Tokyo | Carbon nanotube freestanding membrane, process for production of the same, composites having carbon nanotube membranes and process for production thereof |
JP2007242797A (en) * | 2006-03-07 | 2007-09-20 | Sumitomo Electric Ind Ltd | Semiconductor device and manufacturing method thereof |
JP2010516602A (en) * | 2007-01-17 | 2010-05-20 | コンシッリョ ナツィオナーレ デッレ リチェルケ | Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes |
CN102103953B (en) * | 2009-12-22 | 2012-09-05 | 中国科学院物理研究所 | Cold cathode field emission material epitaxially growing on silicon carbide substrate and method |
CN105148739A (en) * | 2015-10-29 | 2015-12-16 | 哈尔滨工业大学 | Method for modifying ultrafiltration membrane through multiwalled carbon nanotube |
CN106582332A (en) * | 2016-12-19 | 2017-04-26 | 河北工业大学 | Method for preparing superhydrophobic composite microporous membrane |
Also Published As
Publication number | Publication date |
---|---|
JP3889889B2 (en) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6958254B2 (en) | Method to produce germanium layers | |
JP3183845B2 (en) | Method for producing carbon nanotube and carbon nanotube film | |
CN1174916C (en) | Forming method for carbon nano-tube | |
TW464953B (en) | Method of manufacturing III nitride base compound semiconductor substrate | |
Sharma et al. | Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition | |
JP3995698B2 (en) | Method for forming catalyst layer for synthesis of carbon nanotube and method for producing carbon nanotube using the same | |
JP3889889B2 (en) | Method for producing carbon nanotube film | |
CN112301423B (en) | Preparation method of one-dimensional diamond nanocone array material | |
US9953832B2 (en) | Epitaxial base | |
US9048347B2 (en) | Epitaxial structure including carbon nanotube layer in grooves | |
US9570293B2 (en) | Method for making epitaxial base | |
JP2001220674A (en) | Carbon nanotube, producing method therefor and electron emitting source | |
RU2400858C1 (en) | Method of producing graphene nano-ribon fet | |
US9761669B1 (en) | Seed-mediated growth of patterned graphene nanoribbon arrays | |
JP2005183997A (en) | Nitride semiconductor template for light emitting device and method for manufacturing the same | |
Chen et al. | Aligned conical carbon nanotubes | |
JPH09310170A (en) | Silicon carbide thin coating structural body and its production | |
CN114604865B (en) | Graphene nanoribbon composite structure and preparation method thereof | |
KR100335383B1 (en) | Method of fabricating carbon nanotube | |
US20090246460A1 (en) | Structure And Method For Forming Crystalline Material On An Amorphous Structure | |
JPH0624900A (en) | Preparation of single crystal silicon carbide layer | |
JP3743013B2 (en) | Epitaxial wafer manufacturing method | |
JP4907009B2 (en) | Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body | |
Nagano et al. | Preparation of silicon-on-insulator substrate on large free-standing carbon nanotube film formation by surface decomposition of SiC film | |
JP2003063813A (en) | Carbon nanotube film, carbon nanotube film body and substrate with carbon nanotube film, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |