[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000107786A - Control method for intermittent aeration activated sludge process - Google Patents

Control method for intermittent aeration activated sludge process

Info

Publication number
JP2000107786A
JP2000107786A JP10280851A JP28085198A JP2000107786A JP 2000107786 A JP2000107786 A JP 2000107786A JP 10280851 A JP10280851 A JP 10280851A JP 28085198 A JP28085198 A JP 28085198A JP 2000107786 A JP2000107786 A JP 2000107786A
Authority
JP
Japan
Prior art keywords
aeration
orp
sludge
phosphorus
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10280851A
Other languages
Japanese (ja)
Inventor
Yutaka Mori
豊 森
Yasunari Sasaki
康成 佐々木
Koji Yamamoto
康次 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10280851A priority Critical patent/JP2000107786A/en
Publication of JP2000107786A publication Critical patent/JP2000107786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for a sewage water treatment process capable of preventing removal ratio of phosphorus from being deteriorated by solving a problem wherein a large amount of nitrate nitrogen is contained in a returned sludge due to decrease of denitrification speed to lower the removal ratio of phosphorus due to hindrance to phosphorus emission in an operation under low water temperature conditions, in a biological dephosphorus process such as dual tank intermittent aeration process or the like. SOLUTION: From the time of detecting an inflection point A of ORP by a first ORP meter in an agitation step of a first aeration tank until a finish time of the agitation step, flow rate of a return sludge is made lower than a set value, and from the time of starting an aeration step in the first aeration tank to the time of detecting the inflection point of the ORP in the agitation step by the first ORP meter, the flow rate of the return sludge is raised so as to make the total amount of the return sludge in one cycle equal to the set value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水や生活排水を
生物学的に処理する方法で、特に排水中の窒素・リンを
除去するプロセスの制御方法に関する。
The present invention relates to a method for biologically treating sewage and domestic wastewater, and more particularly to a method for controlling a process for removing nitrogen and phosphorus in wastewater.

【0002】[0002]

【従来の技術】下水や生活排水の処理は有機物除去が主
体であり、活性汚泥法に代表される生物学的処理法が一
般に用いられてきた。しかし近年になって、湖沼等の閉
鎖性水域では、富栄養化が大きな問題となってきてお
り、この原因となる窒素、リンの除去が重要となってき
た。そのため、有機物に加えて窒素、リンを除去できる
処理法が活性汚泥法の改良法として開発されてきてお
り、代表的な方法としてA2O法(嫌気−無酸素−好気
法)、回分式活性汚泥法、間欠曝気式活性汚泥法(以
下、間欠曝気法と略称する)等があげられる。これらの
方法では、微生物が好気条件、嫌気条件に交互におかれ
有機物、窒素、リンの除去がなされている。
2. Description of the Related Art The treatment of sewage and domestic wastewater mainly involves the removal of organic substances, and biological treatment represented by the activated sludge method has been generally used. However, in recent years, eutrophication has become a major problem in closed water bodies such as lakes and marshes, and it has become important to remove nitrogen and phosphorus which cause this problem. Therefore, a treatment method capable of removing nitrogen and phosphorus in addition to organic substances has been developed as an improved method of the activated sludge method. Typical methods include the A 2 O method (anaerobic-anoxic-aerobic method) and the batch method. Activated sludge method, intermittent aeration type activated sludge method (hereinafter, abbreviated as intermittent aeration method) and the like can be given. In these methods, microorganisms are alternately subjected to aerobic conditions and anaerobic conditions to remove organic substances, nitrogen, and phosphorus.

【0003】ここで、窒素、リン除去を目的とした下水
処理について、その原理を簡単に述べる。下水中の有機
物は、活性汚泥を構成する微生物の食物となり、分解除
去される。窒素は、好気性の条件下で硝化菌の働きによ
り、NH4 −N(アンモニア性窒素)がNO3 −N(硝
酸性窒素)に酸化され、ついで嫌気性の条件下で脱窒菌
の働きによりNO3 −NがN2 (窒素ガス)に還元され
て除去される。硝化・脱窒の関係を整理すると次のよう
になる。 反応 窒素の形態変化 反応条件 微生物 硝化反応 アンモニア性窒素→硝酸性窒素 好気性(溶存酸素あり) 硝化菌 脱窒反応 硝酸性窒素 →窒素ガス 嫌気性(溶存酸素なし) 脱窒菌 リンは、曝気槽の運転条件を好気性、嫌気性に交互に変
えることにより、細胞内にリンを多量に蓄積する性質を
持つ活性汚泥をつくりだし、この活性汚泥を利用して除
去している。即ち、この活性汚泥は、嫌気性条件でリン
を放出し、好気性条件でリンを吸収する性質があるた
め、好気性条件でリンの吸収を行い、リンを多量に吸収
した活性汚泥を余剰汚泥として処理系から除くことによ
り脱リンを行う。この関係は下記のように整理できる。 反応 槽内のリン濃度 反応条件 リン除去 リン放出 増加 嫌気性(溶存酸素なし) − リン吸収 減少 好気性(溶存酸素あり) 活性汚泥抜き出し このように窒素・リン除去においては、好気性、嫌気性
の2条件が不可欠であるが、厳密には、脱窒のための嫌
気性条件と脱リンのための嫌気性条件とは異なってお
り、間欠曝気法では、脱窒が終了し槽内にNO3 −Nに
起因する酸素分子が無くなった後に、はじめて活性汚泥
からのリンの放出がおこり、これが次の曝気工程におけ
るリンの吸収につながっている。
Here, the principle of sewage treatment for removing nitrogen and phosphorus will be briefly described. Organic matter in the sewage becomes food for microorganisms constituting the activated sludge and is decomposed and removed. Nitrogen is oxidized from NH 4 -N (ammonia nitrogen) to NO 3 -N (nitrate nitrogen) by the action of nitrifying bacteria under aerobic conditions, and then by the action of denitrifying bacteria under anaerobic conditions. NO 3 -N are removed is reduced to N 2 (nitrogen gas). The relationship between nitrification and denitrification is summarized as follows. Reaction Nitrogen form change Reaction conditions Microorganism Nitrification reaction Ammonium nitrogen → Nitrate nitrogen Aerobic (with dissolved oxygen) Nitrifying bacteria Denitrification reaction Nitrate nitrogen → Nitrogen gas Anaerobic (without dissolved oxygen) Denitrification bacteria By alternately changing the operating conditions to aerobic and anaerobic, activated sludge having a property of accumulating a large amount of phosphorus in cells is produced, and the activated sludge is removed using the activated sludge. In other words, this activated sludge has the property of releasing phosphorus under anaerobic conditions and absorbing phosphorus under aerobic conditions. Therefore, it absorbs phosphorus under aerobic conditions and converts activated sludge that has absorbed a large amount of phosphorus into excess sludge. To remove phosphorus from the processing system. This relationship can be summarized as follows. Phosphorus concentration in the reaction tank Reaction conditions Phosphorus removal Phosphorus release increase Anaerobic (without dissolved oxygen)-Phosphorus absorption decrease Aerobic (with dissolved oxygen) Extraction of activated sludge Although two conditions are indispensable, strictly speaking, the anaerobic conditions for denitrification and the anaerobic conditions for dephosphorization are different. In the intermittent aeration method, denitrification is completed and NO 3 is contained in the tank. Only after the disappearance of oxygen molecules due to -N, phosphorus is released from the activated sludge, which leads to the absorption of phosphorus in the next aeration step.

【0004】間欠曝気法は、好気条件、嫌気条件の比率
を時間的に設定でき、しかも既存の施設にも比較的容易
に適用できることから注目されている方法であり、本発
明者らは従来の間欠曝気法を大幅に改善する方法とし
て、排水が流入する第1曝気槽と、この第1曝気槽に直
列に連結した第2曝気槽の2つの曝気槽を用い、その後
に最終沈澱池を設けた装置と、その制御方法(以下、2
槽式間欠曝気法とする)を特開平6−55190号公報
により開示している。
The intermittent aeration method has attracted attention because it can set the ratio of aerobic conditions and anaerobic conditions temporally, and can be applied to existing facilities relatively easily. As a method of greatly improving the intermittent aeration method, two aeration tanks, a first aeration tank into which wastewater flows, and a second aeration tank connected in series to the first aeration tank, are used. The device provided and its control method (hereinafter referred to as 2
A tank-type intermittent aeration method) is disclosed in JP-A-6-55190.

【0005】以下にその概要を図2と図3(a)、
(b)を参照して説明する。図2は、特開平6−551
90号公報に記載の間欠曝気法及び制御システムを説明
するための下水処理装置の要部構成を示す模式図であ
る。この図では、水および空気の経路を実線の矢印、制
御信号系統を点線の矢印で表してある。この装置は、主
として下水1が流入し活性汚泥によって有機物、窒素、
リンが除去される第1曝気槽2aと、第2曝気槽2b
と、重力沈降によって活性汚泥が分離され処理水3が得
られる最終沈澱池4と、沈降した活性汚泥を第1曝気槽
2aに返送する返送汚泥ポンプ5とから構成されてい
る。第1曝気槽2aと第2曝気槽2bの容積比はおよそ
1対1であり、処理水の滞留時間の合計は最終沈澱池4
も含めて16〜32時間である。制御系は、第1曝気槽
2a内の酸化還元電位を測定する第1のORP計(酸化
還元電位計)6aと、第2曝気槽2b内の酸化還元電位
を測定する第2のORP計6bと、それらの値に基づい
て第1曝気ブロワ7a、第2曝気ブロワ7b、第1攪拌
ポンプ8a、第2攪拌ポンプ8bへの制御信号を出力す
る制御装置9とからなっている。
[0005] The outline is shown below in FIGS.
This will be described with reference to FIG. FIG.
It is a schematic diagram which shows the principal part structure of the sewage treatment apparatus for demonstrating the intermittent aeration method and control system of the 90th publication. In this figure, the paths of water and air are represented by solid arrows, and the control signal system is represented by dotted arrows. This device mainly receives sewage 1 and organic matter, nitrogen,
A first aeration tank 2a from which phosphorus is removed, and a second aeration tank 2b
And a final sedimentation basin 4 from which activated sludge is separated by gravity sedimentation to obtain treated water 3, and a return sludge pump 5 for returning the settled activated sludge to the first aeration tank 2a. The volume ratio of the first aeration tank 2a and the second aeration tank 2b is approximately 1 to 1, and the total residence time of the treated water is equal to the final settling tank 4
16 to 32 hours, including The control system includes a first ORP meter (oxidation-reduction potential meter) 6a for measuring the oxidation-reduction potential in the first aeration tank 2a and a second ORP meter 6b for measuring the oxidation-reduction potential in the second aeration tank 2b. And a control device 9 for outputting control signals to the first aeration blower 7a, the second aeration blower 7b, the first stirring pump 8a, and the second stirring pump 8b based on those values.

【0006】このような装置系における運転制御の基本
的な考え方は、排水が流入する第1曝気槽と、この第1
曝気槽に直列に連結した第2曝気槽の二つの曝気槽とを
用いて、第1曝気槽2aでは硝化、脱窒を一定時間に制
御することにより、確実にリン放出時間を確保し、第2
曝気槽2bでは硝化、脱窒を行うとともに、リン放出を
防止しつつ制御の1周期を所定の時間に維持し、高い窒
素、リン除去率を得ることである。
[0006] The basic concept of operation control in such an apparatus system is as follows: a first aeration tank into which drainage flows, and a first aeration tank.
Using two aeration tanks of a second aeration tank connected in series to the aeration tank, the first aeration tank 2a controls nitrification and denitrification to a certain time, thereby ensuring the phosphorus release time. 2
In the aeration tank 2b, nitrification and denitrification are performed, and one cycle of control is maintained at a predetermined time while preventing the release of phosphorus, thereby obtaining a high nitrogen and phosphorus removal rate.

【0007】その具体的な方法を、制御に伴うORPの
変化と共に、図3(a)、(b)を併用参照して説明す
る。図3(a)、(b)は、制御を実施中に、任意のタ
イミングで曝気開始時間を零点として、各曝気槽のOR
Pの時間変化を示したものであり、図3(a)は第1曝
気槽のORP、図3(b)は第2曝気槽のORPのそれ
ぞれの時間経過に対する関係線図である。
The specific method will be described with reference to FIGS. 3 (a) and 3 (b) together with a change in ORP due to control. FIGS. 3A and 3B show that the aeration start time is set to zero at an arbitrary timing during the control, and the OR of each aeration tank is set.
FIG. 3A is a diagram showing the relationship between the time change of P and the ORP of the first aeration tank, and FIG. 3B is a relationship diagram of the ORP of the second aeration tank with respect to time.

【0008】始めに第1曝気槽2aの制御法を説明する
と、硝化とリン吸収を行う曝気時間をTe 、脱窒時間を
Tf とし、Te とTf の和である時間Tg があらかじめ
設定した時間Tgsと一致するように曝気時間Te を調節
する。ここで第1ORP計6aのORPの変化を見る
と、脱窒終了後に屈曲点Aが出現しており、この屈曲点
Aを検出することによって時間Tg を測定し、TgsとT
g の差に基づいて曝気時間Te を調節する。その結果、
後述のように1周期はほぼTds時間に維持されているた
め、リン放出時間がTds−Tgsとして確保されることに
なる。
First, the control method of the first aeration tank 2a will be described. The aeration time for nitrification and phosphorus absorption is Te, the denitrification time is Tf, and the time Tg, which is the sum of Te and Tf, is a predetermined time Tgs. The aeration time Te is adjusted to be equal to Looking at the change in the ORP of the first ORP meter 6a, the inflection point A appears after the end of the denitrification. By detecting the inflection point A, the time Tg is measured, and Tgs and Tgs are measured.
The aeration time Te is adjusted based on the difference in g. as a result,
As will be described later, one cycle is maintained substantially at the time Tds, so that the phosphorus release time is secured as Tds-Tgs.

【0009】第2曝気槽2bの制御方法を説明すると、
硝化とリン吸収のための曝気時間をTb 、脱窒が進行す
る攪拌時間をTc とし、Tb とTc の和である時間Td
があらかじめ設定した時間Tdsと一致するように曝気時
間Tb を調節し、併せて時間Td 後1周期が終了したと
して、第1曝気槽2a、第2曝気槽2b同時に曝気状態
に復帰させる。これは、第2のORP計6bのORPの
変化から屈曲点Bを検出して時間Td を測定し、Tdsと
Td の差に基づいて曝気時間Tb を調節することにより
行う。この結果、脱窒が終了すると直ちに曝気状態とな
るため、第2曝気槽2bにおいてリンが放出されず、高
い窒素、リン除去率が得られる。
A method of controlling the second aeration tank 2b will be described.
The aeration time for nitrification and phosphorus absorption is Tb, and the stirring time during which denitrification proceeds is Tc, and the time Td, which is the sum of Tb and Tc,
Is adjusted to match the preset time Tds, and the first aeration tank 2a and the second aeration tank 2b are simultaneously returned to the aeration state assuming that one cycle has ended after the time Td. This is performed by detecting the inflection point B from the change in the ORP of the second ORP meter 6b, measuring the time Td, and adjusting the aeration time Tb based on the difference between Tds and Td. As a result, the aeration state is established immediately after the denitrification is completed, so that phosphorus is not released in the second aeration tank 2b, and a high nitrogen and phosphorus removal rate can be obtained.

【0010】[0010]

【発明が解決しようとする課題】以上、本発明者らが特
開平6−55190号公報に記載の2槽式間欠曝気法に
ついて説明した。しかし本方式を含めて生物学的脱リン
法では解決しなければならない次のような問題がある。
即ち、返送される活性汚泥中に硝酸性窒素が多く含まれ
る場合、リン放出の阻害により、リンの除去率が低下す
ることである。本方式の場合には、冬期などで15℃以
下の低い水温条件で運転を行うと、脱窒速度が低下して
脱窒が不十分となり、硝酸性窒素が処理水へ多く残存す
る場合がある。このような低水温条件では、硝化、脱窒
工程に時間を長く取ればよいが、一定のリン放出時間を
確保するような運転を行っているので、硝化、脱窒時間
をある程度以上長くすることができずに、脱窒が不十分
となる。この場合、第2曝気槽では脱窒が完了しない状
態で強制的に次の運転周期に移行している。このように
硝酸性窒素の残存が大きくなる場合には、最終沈殿池か
ら第1曝気槽へ返送される汚泥中の硝酸性窒素濃度も高
くなる。通常運転している状態では、硝酸性窒素成分の
返送は濃度が低いレベルであるため、リン放出の阻害要
因とはならないが、上記のような低水温条件で汚泥返送
率を高く運転している場合は、リン除去が悪化すること
がある。
As described above, the present inventors have described the two-tank intermittent aeration method described in Japanese Patent Application Laid-Open No. 6-55190. However, biological dephosphorization including this method has the following problems that must be solved.
That is, when the returned activated sludge contains a large amount of nitrate nitrogen, the removal of phosphorus is reduced due to the inhibition of phosphorus release. In the case of this method, when the operation is performed under a low water temperature condition of 15 ° C. or less in winter or the like, the denitrification rate is reduced, the denitrification becomes insufficient, and a large amount of nitrate nitrogen may remain in the treated water. . Under such low water temperature conditions, it is sufficient to take a long time for the nitrification and denitrification steps.However, since the operation is performed so as to secure a constant phosphorus release time, the nitrification and denitrification times should be extended to some extent or more. And the denitrification becomes insufficient. In this case, the second operation tank is forcibly shifted to the next operation cycle in a state where the denitrification is not completed. When the amount of the remaining nitrate nitrogen increases, the concentration of the nitrate nitrogen in the sludge returned from the final sedimentation tank to the first aeration tank also increases. In the state of normal operation, the return of the nitrate nitrogen component is at a low concentration level, so it does not become a hindrance to phosphorus release, but the sludge return rate is operated at a high sludge return rate under the above low water temperature conditions. In such a case, phosphorus removal may be deteriorated.

【0011】本発明は上述の点に鑑みてなされたもので
あり、その目的はリンの除去率低下を防止することがで
きる2槽式間欠曝気法による下水処理プロセスの制御方
法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for controlling a sewage treatment process by a two-tank intermittent aeration method capable of preventing a decrease in a phosphorus removal rate. is there.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の2槽式間欠曝気法の運転は、第1、第2
と二つの曝気槽を用いる間欠曝気法において、第1のO
RP計を設置した第1曝気槽で、所定の時間曝気を行っ
た後に攪拌工程に移行し、この第1曝気槽の攪拌工程に
出現する第1のORP計のORP屈曲点を検出した後、
即ち、リン放出が進行する工程において、第1曝気槽に
返送される活性汚泥の量を減少させることとする。
In order to solve the above-mentioned problems, the operation of the two-tank intermittent aeration method of the present invention comprises first and second intermittent aeration methods.
And the intermittent aeration method using two aeration tanks, the first O
After performing aeration for a predetermined time in the first aeration tank in which the RP meter is installed, the process shifts to the stirring step, and after detecting the ORP bending point of the first ORP meter appearing in the stirring step of the first aeration tank,
That is, in the step in which phosphorus release proceeds, the amount of activated sludge returned to the first aeration tank is reduced.

【0013】第1曝気槽において所定の時間、例えば3
0分間曝気を行った後に攪拌工程に移行する。この攪拌
工程では初めに脱窒反応が起こり、第1曝気槽に設置し
た第1のORP計のORP屈曲点が出現した後にリンの
放出が起こる。例えばこのORP屈曲点の検出が60
分、曝気、攪拌の1周期が120分の場合には、1周期
の時間とORP屈曲点の時間の差である60分間はリン
放出が進行する。このリン放出工程の期間中だけは、最
終沈殿池からの返送汚泥の量を減少させ、この汚泥と共
に返送される硝酸性窒素を減少させるのである。
In the first aeration tank, a predetermined time, for example, 3
After performing aeration for 0 minutes, the process proceeds to the stirring step. In this stirring step, a denitrification reaction occurs first, and phosphorus is released after the ORP bending point of the first ORP meter installed in the first aeration tank appears. For example, if the detection of the ORP bending point is 60
When one cycle of minute, aeration, and stirring is 120 minutes, phosphorus release proceeds for 60 minutes, which is the difference between the time of one cycle and the time of the ORP inflection point. Only during this phosphorus release step will the amount of sludge returned from the final settling basin be reduced, reducing the nitrate nitrogen returned with this sludge.

【0014】ここで第1のORP計のORP屈曲点検出
後に返送汚泥流量を減少させる理由について次に説明す
る。前述のように、2槽式間欠曝気法の第1曝気槽では
好気工程にリン吸収が、嫌気工程に第1のORP屈曲点
が出現した後、リン放出が行われる。一般にリン放出を
阻害する成分として硝酸性窒素が知られており、リン放
出が阻害されリン放出量が小さくなると、リン吸収も弱
くなりリン除去率が低下する現象が発生する。そこで硝
酸性窒素の返送が大きくなる場合があると予想される低
水温条件で運転を行う時など、リン放出が進行するOR
P屈曲点の検出後において返送汚泥流量を減少させ、返
送される硝酸性窒素を少なくし、リン放出が阻害を受け
ない状態とするのである。
Now, the reason why the return sludge flow rate is reduced after the first ORP meter detects the ORP bending point will be described. As described above, in the first aeration tank of the two-tank intermittent aeration method, phosphorus is absorbed in the aerobic step, and phosphorus is released after the first ORP inflection point appears in the anaerobic step. In general, nitrate nitrogen is known as a component that inhibits phosphorus release. When phosphorus release is inhibited and the amount of released phosphorus is reduced, a phenomenon occurs in which phosphorus absorption is weakened and the phosphorus removal rate is reduced. Therefore, such as when operating under low water temperature conditions where it is expected that the return of nitrate nitrogen may be large, the phosphorus release progresses or
After detecting the P inflection point, the returned sludge flow rate is reduced, the returned nitrate nitrogen is reduced, and phosphorus release is not hindered.

【0015】通常の運転の場合には、返送される硝酸性
窒素はごく僅かであるためリン除去には大きく影響を与
えないが、15℃以下の低水温条件での運転など、返送
される硝酸性窒素の濃度が高くなる場合においても、本
運転方法の適用によって、リン除去の悪化を防止でき
る。なお、従来の技術において述べたように、本方式で
ある2槽式間欠曝気法は、ORPを用いて明確にリン放
出のタイミングを区別できるため、このような返送汚泥
量の制御が可能となる。
In the case of normal operation, the returned nitrate nitrogen is very small and does not greatly affect the removal of phosphorus. However, the returned nitrate nitrogen such as an operation under a low water temperature condition of 15 ° C. or less is used. Even when the concentration of nitrogen is high, the application of the present operation method can prevent deterioration of phosphorus removal. As described in the related art, in the two-tank intermittent aeration method, which is the present method, the timing of phosphorus release can be clearly distinguished using the ORP, and therefore, such control of the returned sludge amount becomes possible. .

【0016】以上の運転方法によれば、返送される硝酸
性窒素によるリン放出の阻害を軽減し、リン除去率の悪
化を防止する事ができ、安定したリン除去が可能とな
る。
According to the above operation method, the inhibition of phosphorus release by the returned nitrate nitrogen can be reduced, the deterioration of the phosphorus removal rate can be prevented, and stable phosphorus removal can be achieved.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例を図1と図
3とを用いて説明する。図1は本発明が適用される2槽
式間欠曝気法の装置及び制御システムを含む下水処理装
置の要部構成を示す模式図である。この図1と図2に示
した従来装置とで共通する部分には同一符号を用いてあ
り、矢印線の扱いも図1と図2とは同じである。図1の
本発明の装置は図2の従来の装置と基本的には同じであ
るが、異なる点は返送汚泥流量計10を備えていること
にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic diagram showing a main configuration of a sewage treatment apparatus including a two-tank intermittent aeration method apparatus and a control system to which the present invention is applied. 1 and 2 are denoted by the same reference numerals, and the handling of arrow lines is the same as in FIGS. 1 and 2. The apparatus of the present invention shown in FIG. 1 is basically the same as the conventional apparatus shown in FIG. 2, but is different from the conventional apparatus shown in FIG.

【0018】この装置を用いた本発明の制御方法は、次
のように行う。第1曝気槽2aの攪拌工程での脱窒の終
了時に出現する第1のORP計6aのORP屈曲点の検
出時間から次周期が開始されるまでの時間まで、つまり
リン放出工程が進行する期間では、予め設定された返送
御泥流量(Q)に対して一定の割合(r)返送汚泥流量
を減少させる。またこのリン放出工程で減少させた分に
ついては、曝気攪拌の1周期で設定された返送汚泥量
(TdsQ)を確保できるように、ORP屈曲点の検出
前、すなわち曝気及び脱窒工程の期間において、返送汚
泥流量を増加させる。具体的に第1のORP計6aのO
RP屈曲点検出前と検出後の返送汚泥流量の算出方法
は、下記(1)、(2)式による。
The control method of the present invention using this device is performed as follows. From the detection time of the ORP inflection point of the first ORP meter 6a appearing at the end of the denitrification in the stirring step of the first aeration tank 2a to the time until the next cycle starts, that is, the period during which the phosphorus release step proceeds Then, the return sludge flow rate is reduced at a constant rate (r) with respect to a preset return sludge flow rate (Q). The amount reduced in the phosphorus release step is set before the detection of the ORP inflection point, that is, in the period of the aeration and denitrification steps, so that the returned sludge amount (TdsQ) set in one cycle of aeration and stirring can be secured. , Increase return sludge flow. Specifically, O of the first ORP total 6a
The method of calculating the return sludge flow rate before and after the detection of the RP inflection point is based on the following equations (1) and (2).

【0019】[0019]

【数1】 (Equation 1)

【0020】[0020]

【数2】 ここで Qa :第1のORP屈曲点検出前の返送汚泥流
量 r :第1のORP屈曲点検出後の返送汚泥流量の減少
係数(0〜1) Tds:第2のORP計屈曲点検出時間の設定値(=曝気
攪拌の1周期) Tgs:第1のORP計屈曲点検出時間の設定値 Q :返送汚泥流量設定値 Qb :第1のORP屈曲点検出後の返送汚泥流量 であ
る。
(Equation 2) Qa: Return sludge flow rate before detection of the first ORP inflection point r: Decrease coefficient of return sludge flow rate after detection of the first ORP inflection point (0 to 1) Tds: Setting of second ORP meter inflection point detection time Value (= one cycle of aeration and stirring) Tgs: Set value of first ORP meter bending point detection time Q: Set value of returned sludge flow rate Qb: Returned sludge flow rate after detection of first ORP bending point

【0021】この結果、1 周期中に送られる返送汚泥量
の合計値Qt は下記(3)式となり、返送汚泥量の合計
値は返送汚泥流量の減少係数rに無関係な一定値のTds
Qとなる。
As a result, the total value Qt of the returned sludge sent in one cycle is given by the following equation (3), and the total value of the returned sludge is a constant value Tds irrespective of the reduction coefficient r of the returned sludge flow rate.
Q.

【0022】[0022]

【数3】 この演算は制御装置9で行われる。また、返送汚泥の調
節は、次の考え方で対応可能である。通常の温度条件な
ど硝酸性窒素の返送が少ない場合には、設定された返送
汚泥量Qで運転を行う。この際に、リン放出に阻害を与
える硝酸性窒素上限濃度Cを予め実験的に求めておき、
処理水質分析において硝酸性窒素がこの値C以上となっ
た場合には、上記の(1)、(2)式の計算に基づいた
返送汚泥流量制御を、返送汚泥ポンプと、返送汚泥流量
計10と、制御装置とにより行う。また、処理水質分析
において上限濃度Cを下回った場合には、通常の返送汚
泥流量Qの運転に復帰させる。
(Equation 3) This calculation is performed by the control device 9. The return sludge can be adjusted according to the following concept. When the return of nitrate nitrogen is small, such as under normal temperature conditions, the operation is performed with the set return sludge amount Q. At this time, a nitrate nitrogen upper limit concentration C that inhibits phosphorus release is previously experimentally obtained,
When the nitrate nitrogen becomes equal to or more than the value C in the treated water quality analysis, the return sludge flow control based on the calculations of the above equations (1) and (2) is performed by the return sludge pump and the return sludge flow meter 10. And the control device. When the treated water quality analysis falls below the upper limit concentration C, the operation is returned to the normal operation of the returned sludge flow rate Q.

【0023】なお、返送流量設定計算において、第1の
ORP計屈曲点検出時間の設定値Tgs、第2のORP計
屈曲点検出時間の設定値Tdsを用いているが、実際のO
RP屈曲点は流入負荷により若干ずれて検出されること
があるため、1 周期に返送される汚泥量が若干設定値と
ずれる場合があるが、2槽式間欠曝気法は、従来の技術
において述べたように、各ORP屈曲点の検出時間設定
値に近づくよう運転制御が行われるため、設定値とのず
れはごく僅かとなるので、ほぼ設定通りの返送汚泥量を
確保できる。
In the return flow rate setting calculation, the set value Tgs of the first ORP meter bending point detection time and the set value Tds of the second ORP meter bending point detection time are used.
Since the RP inflection point may be detected with a slight deviation due to the inflow load, the amount of sludge returned in one cycle may slightly deviate from the set value, but the two-tank intermittent aeration method is described in the prior art. As described above, since the operation control is performed so as to approach the detection time set value of each ORP inflection point, the deviation from the set value is very small, so that the returned sludge amount almost as set can be secured.

【0024】[0024]

【発明の効果】以上、本発明における2槽式間欠曝気法
の運転制御方法に関して説明した。従来、15℃以下の
低い水温条件で運転を行う時等、返送される活性汚泥中
に硝酸性窒素が多く含まれる場合、リン放出の阻害によ
り、リンの除去率が低下するという問題があった。本発
明の方法は、この問題に対処するためになされたもので
あり、以下の利点を有する。
The operation control method of the two-tank intermittent aeration method according to the present invention has been described above. Conventionally, when the returned activated sludge contains a large amount of nitrate nitrogen, such as when operating under a low water temperature condition of 15 ° C. or lower, there has been a problem that the removal of phosphorus is reduced due to inhibition of phosphorus release. . The method of the present invention has been made to address this problem and has the following advantages.

【0025】本発明の方法は、第1のORP計を設置し
た第1曝気槽で、所定の時間曝気を行った後に攪拌工程
に移行し、この第1曝気槽の攪拌工程に出現する第1の
ORP計のORP屈曲点を検出した後、即ちリン放出が
進行する工程において第1曝気槽に返送される活性汚泥
量を減少させる。この結果、返送される硝酸性窒素によ
るリン放出の阻害が軽減され、リン除去率の悪化を防止
する事ができ、安定した高いリン除去率を維持すること
ができる。
According to the method of the present invention, after performing aeration for a predetermined time in a first aeration tank in which a first ORP meter is installed, the process shifts to a stirring step, and the first first aeration tank appears in the first aeration tank. After the ORP inflection point of the ORP meter is detected, that is, the amount of activated sludge returned to the first aeration tank is reduced in a step in which phosphorus release proceeds. As a result, the inhibition of phosphorus release due to returned nitrate nitrogen is reduced, the deterioration of the phosphorus removal rate can be prevented, and a stable and high phosphorus removal rate can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御方法が適用される下水処理装置の
要部構成を示す模式図。
FIG. 1 is a schematic diagram illustrating a main configuration of a sewage treatment apparatus to which a control method according to the present invention is applied.

【図2】本発明者らが出願中の間欠曝気法の制御方法が
適用される下水処理装置の要部構成を示す模式図。
FIG. 2 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which a control method of an intermittent aeration method applied by the present inventors is applied.

【図3】本発明者らが出願中の間欠曝気法の制御方法に
おける第1曝気槽、第2曝気槽のORPの変化を示し、
(a)は第1曝気槽のORP、(b)は第2曝気槽のO
RPのそれぞれ時間経過に対する関係線図。
FIG. 3 shows changes in ORP of a first aeration tank and a second aeration tank in a control method of an intermittent aeration method which the present inventors filed,
(A) ORP of the first aeration tank, (b) O of the second aeration tank
FIG. 4 is a relationship diagram of the RP with respect to the passage of time.

【符号の説明】[Explanation of symbols]

1 : 下水 2a: 第1曝気槽 2b: 第2曝気槽 3 : 処理水 4 : 最終沈殿池 5 : 返送汚泥ポンプ 6a: 第1のORP計 6b: 第2のORP計 7a: 第1曝気ブロワ 7b: 第2曝気ブロワ 8a: 第1攪拌ポンプ 8b: 第2攪拌ポンプ 9 : 制御装置 10 : 返送汚泥流量計 1: sewage 2a: first aeration tank 2b: second aeration tank 3: treated water 4: final sedimentation basin 5: return sludge pump 6a: first ORP meter 6b: second ORP meter 7a: first aeration blower 7b : Second aeration blower 8a: First stirring pump 8b: Second stirring pump 9: Control device 10: Return sludge flow meter

フロントページの続き Fターム(参考) 4D028 AA08 BB07 BC18 BC26 BD08 BD10 CA11 CA12 CC11 CD00 CD01 CD02 4D040 BB07 BB22 BB33 BB63 BB66 BB73 BB91 BB92 Continued on front page F term (reference) 4D028 AA08 BB07 BC18 BC26 BD08 BD10 CA11 CA12 CC11 CD00 CD01 CD02 4D040 BB07 BB22 BB33 BB63 BB66 BB73 BB91 BB92

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1のORP計を設置した第1曝気槽と、
この下流に連結し第2のORP計を設置した第2曝気槽
と、この下流に連結した最終沈殿池と、制御装置と、返
送汚泥ポンプと、返送汚泥流量計と、曝気ブロワとを備
えた下水処理装置で、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行う好気状態と、曝気
を停止して攪拌を行う嫌気状態を交互に繰り返して処理
を行った後、この処理水を前記最終沈殿池から放流さ
せ、最終沈殿池に沈澱蓄積される活性汚泥は、第1曝気
槽へ返送するとともに余剰汚泥として抜き出し、排水中
の窒素、リンを除去する間欠曝気式活性汚泥法の制御方
法において、 最終沈殿池から第1曝気槽へ返送する活性汚泥の量を、
第1曝気槽での曝気工程の開始時間から攪拌工程で第1
のORP計のORP屈曲点の検出時間までと、攪拌工程
で第1のORP計のORP屈曲点の検出時間から攪拌工
程の終了時間までとで、温度などの条件に応じて調節す
ることを特徴とする間欠曝気式活性汚泥法の制御方法。
A first aeration tank provided with a first ORP meter;
A second aeration tank connected downstream of the second ORP meter and having a second ORP meter installed therein, a final sedimentation basin connected downstream of the second sedimentation tank, a control device, a return sludge pump, a return sludge flow meter, and an aeration blower were provided. In the sewage treatment device, the wastewater is allowed to flow into the first aeration tank,
In the two aeration tanks, an aerobic state in which aeration is performed, and an anaerobic state in which aeration is stopped and stirring is performed alternately and repeatedly, and then the treated water is discharged from the final sedimentation basin. The activated sludge settled and accumulated in the sludge is returned to the first aeration tank and extracted as surplus sludge, and the intermittent aeration-type activated sludge method for removing nitrogen and phosphorus in the wastewater is used. The amount of activated sludge returned to
From the start time of the aeration step in the first aeration tank to the first
The adjustment is made according to conditions such as temperature between the detection time of the ORP bending point of the ORP meter and the detection time of the ORP bending point of the first ORP meter in the stirring process to the end time of the stirring process. Control method of intermittent aeration activated sludge method.
【請求項2】請求項1に記載の、最終沈殿池から第1曝
気槽へ返送する活性汚泥の量を調節する方法は、 通常の温度条件では、予め設定された返送汚泥量で運転
を行い、低水温条件などリン放出に阻害を与える硝酸性
窒素の返送が大きくなる条件では、第1曝気槽の攪拌工
程で第1のORP計のORP屈曲点の検出時間から攪拌
工程の終了時間までは、予め設定された返送御泥流量に
対して一定の割合で返送汚泥流量を減少させ、また、第
1曝気槽での曝気工程の開始時間から攪拌工程で第1の
ORP計のORP屈曲点の検出時間までは、返送汚泥流
量を増加させて、全体として1周期の返送汚泥量は予め
設定された量と等しくすることを特徴とする間欠曝気式
活性汚泥法の制御方法。
2. The method for adjusting the amount of activated sludge returned from the final sedimentation tank to the first aeration tank according to claim 1, wherein the operation is performed at a preset amount of returned sludge under normal temperature conditions. On the other hand, under conditions such as low water temperature conditions in which the return of nitrate nitrogen that hinders phosphorus release becomes large, the time from the detection of the ORP inflection point of the first ORP meter to the end of the stirring in the stirring of the first aeration tank may be reduced. The return sludge flow rate is reduced at a fixed rate with respect to a preset return sludge flow rate, and the ORP inflection point of the first ORP meter in the stirring step from the start time of the aeration step in the first aeration tank. A method for controlling an intermittently aerated activated sludge method, wherein the return sludge flow rate is increased until the detection time so that the amount of returned sludge in one cycle is equal to a predetermined amount as a whole.
JP10280851A 1998-10-02 1998-10-02 Control method for intermittent aeration activated sludge process Pending JP2000107786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10280851A JP2000107786A (en) 1998-10-02 1998-10-02 Control method for intermittent aeration activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10280851A JP2000107786A (en) 1998-10-02 1998-10-02 Control method for intermittent aeration activated sludge process

Publications (1)

Publication Number Publication Date
JP2000107786A true JP2000107786A (en) 2000-04-18

Family

ID=17630873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10280851A Pending JP2000107786A (en) 1998-10-02 1998-10-02 Control method for intermittent aeration activated sludge process

Country Status (1)

Country Link
JP (1) JP2000107786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP2008194610A (en) * 2007-02-13 2008-08-28 Jfe Steel Kk Treatment method and system for wastewater containing sulfur-based cod component
CN103224284A (en) * 2013-03-17 2013-07-31 北京工业大学 Rapid starting method of membrane bioreactor completely-autotrophic nitrogen removal technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP4690265B2 (en) * 2006-08-04 2011-06-01 メタウォーター株式会社 Wastewater treatment method
JP2008194610A (en) * 2007-02-13 2008-08-28 Jfe Steel Kk Treatment method and system for wastewater containing sulfur-based cod component
JP4735561B2 (en) * 2007-02-13 2011-07-27 Jfeスチール株式会社 Method for treating wastewater containing sulfur-based COD components
CN103224284A (en) * 2013-03-17 2013-07-31 北京工业大学 Rapid starting method of membrane bioreactor completely-autotrophic nitrogen removal technology

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP2786770B2 (en) How to control the sewage treatment process
JP2000107786A (en) Control method for intermittent aeration activated sludge process
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JP3388963B2 (en) Control method of intermittent aeration type activated sludge method
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP3632265B2 (en) Control method for batch activated sludge treatment
JPS61249597A (en) Method for controlling methanol injection in biological denitrification process
JP3260554B2 (en) How to control the sewage treatment process
JP3651201B2 (en) Control method of intermittent aeration activated sludge process
JP3250934B2 (en) How to control the sewage treatment process
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JPH10128378A (en) Method for controlling intermittent aeration type activated sludge method
JP3260574B2 (en) Control method of intermittent aeration type activated sludge method
JP2960273B2 (en) Operation control method of intermittent aeration type activated sludge method
JP3644757B2 (en) Control method of intermittent aeration activated sludge process
JPH1015578A (en) Control of batchwise activated sludge method
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JPH05192687A (en) Batch type sewage treatment
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP3533547B2 (en) Control method of batch activated sludge method
JPH07136683A (en) Control method for batch type active sludge process
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JPH06312197A (en) Activated sludge treatment apparatus