[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000106167A - Battery - Google Patents

Battery

Info

Publication number
JP2000106167A
JP2000106167A JP10276998A JP27699898A JP2000106167A JP 2000106167 A JP2000106167 A JP 2000106167A JP 10276998 A JP10276998 A JP 10276998A JP 27699898 A JP27699898 A JP 27699898A JP 2000106167 A JP2000106167 A JP 2000106167A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
current collecting
positive electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276998A
Other languages
Japanese (ja)
Inventor
Seiji Yoshioka
省二 吉岡
Hiroaki Urushibata
広明 漆畑
Hisashi Shioda
久 塩田
Atsushi Arakane
淳 荒金
Makiko Kichise
万希子 吉瀬
Shigeru Aihara
茂 相原
Daigo Takemura
大吾 竹村
Takashi Nishimura
隆 西村
Hirochika Ozaki
博規 尾崎
Hideo Ichimura
英男 市村
Kenji Kawaguchi
憲治 川口
Masaharu Moriyasu
雅治 森安
Shinji Nakadeguchi
真治 中出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10276998A priority Critical patent/JP2000106167A/en
Publication of JP2000106167A publication Critical patent/JP2000106167A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve discharge voltage, prolong discharge time, uniformize distribution of reaction current density, and improve the battery discharge characteristic, by providing plural positive and negative electrode collector terminals on the electrodes, in the longitudinal direction of the electrode without overlapping the location of the positive and negative electrode collector terminals each other. SOLUTION: Positive electrode collector terminals 3 are mounted by ultrasonic welding at two longitudinally trisected positions of a positive electrode, composed of a positive electrode collector 2 and positive electrode active material layers 1 of portions which is not applied with positive electrode active material layers 1 on the positive electrode collector 2. Negative electrode collector terminals 7 are mounted by the ultrasonic welding, through separators 4 at three positions of both ends and the center of a negative electrode composed of a negative electrode collector 6 and a negative electrode active material layer 5 of a portion which is not applied with a negative electrode active material layer 5 of the negative electrode collector 6. After the positive electrode, negative electrode and the separators 4 are overlapped and wound, and the tips of the two positive electrode collector terminals 3 are welded into a single terminal. The tips of the three negative electrode collector terminals 7 are put together into one, and contained within a battery container as a battery body. Then, an electrolyte is injected, and sealed, to form a battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の集電構造に
関するもので、内部抵抗によるエネルギー損失を最小限
に抑え、電極に充填された電極活物質を有効に利用し、
電池のエネルギー密度を向上させるとともに、電極反応
を均一化させることで過充電や過放電を抑制させるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collecting structure for a battery, which minimizes energy loss due to internal resistance and effectively utilizes an electrode active material filled in an electrode.
In addition to improving the energy density of the battery and making the electrode reaction uniform, overcharging and overdischarging are suppressed.

【0002】[0002]

【従来の技術】近年における携帯用電子機器の小型、薄
型化にともない、機器の電源として用いられる電池、特
に繰り返し充放電可能な二次電池に対して、小型、薄型
化および性能向上が求められてきている。なかでも、電
子機器をより長時間駆動することができ、軽量で持ち運
びが容易でかつ高容量な電池としてリチウムイオン二次
電池が注目されている。そこで、本発明ではリチウムイ
オン電池を例として説明する。
2. Description of the Related Art As portable electronic devices become smaller and thinner in recent years, batteries used as power sources for devices, especially secondary batteries which can be repeatedly charged and discharged, are required to be smaller, thinner and have improved performance. Is coming. Above all, lithium ion secondary batteries have attracted attention as batteries that can drive electronic devices for a longer time, are lightweight, easy to carry, and have high capacities. Therefore, in the present invention, a lithium ion battery will be described as an example.

【0003】負極、セパレータ、正極からなる電極体の
構造は、ボビン型、積層型、渦巻き型が知られている
が、パソコンや携帯電話等の一般の携帯機器には高パル
ス放電が必要であり、一般に渦巻き型の電極体構造が用
いられる。
The structure of an electrode body composed of a negative electrode, a separator, and a positive electrode is known to be a bobbin type, a laminated type, or a spiral type. However, general portable devices such as personal computers and mobile phones require high pulse discharge. Generally, a spiral electrode structure is used.

【0004】特に、巻き型の電極体構造の場合、集電端
子構造は、正極及び負極の各電極端部から電流を取り出
す構造になっている。負極集電端子は、銅またはニッケ
ル等の細長く、箔状の金属を電極箔に溶接または圧着さ
れており、一方、正極集電端子は主にアルミニウムでで
きているのが一般的である。
In particular, in the case of a wound electrode body structure, the current collecting terminal structure has a structure in which a current is taken out from each of the positive and negative electrode ends. The negative electrode current collector terminal is generally formed by welding or crimping an elongated, foil-like metal such as copper or nickel to the electrode foil, while the positive electrode current collector terminal is generally made mainly of aluminum.

【0005】[0005]

【発明が解決しようとする課題】リチウムイオン二次電
池は現在小型携帯機器の電源として使用されることが多
いが、今後電力消費量の大きい電子機器電源への対応、
さらには大容量が要求される電気自動車用電源としても
期待されており、高出力、高容量の電池開発が進むもの
と考えられる。
[0005] Lithium ion secondary batteries are often used as power sources for small portable devices at present.
Further, it is also expected to be used as a power source for electric vehicles that require a large capacity, and it is considered that development of a high-output, high-capacity battery will proceed.

【0006】こういった用途においては、単電池(負
極、セパレータ、正極からなる最小単位の電池体を単電
池という)を複数、直列または並列に組み合わせて使用
されることが一般的であるが、最小単位の電池体の出力
や容量も従来の電池と比較して大きくすることが必要と
なるため、長尺の電極(負極及び正極)を用いることに
なり、従って電流値も相対的に大きくなる。
In such applications, it is common to use a plurality of cells (the minimum unit battery body composed of a negative electrode, a separator, and a positive electrode is referred to as a cell) in series or in parallel. Since it is necessary to increase the output and capacity of the battery unit in the minimum unit as compared with the conventional battery, long electrodes (negative electrode and positive electrode) are used, and accordingly, the current value is relatively large. .

【0007】このとき、集電端子を電極端部の一カ所に
取り付ける従来の構造では、エネルギー密度が大きく、
出力密度の大きい電池を充電させたり放電させるとき
に、集電端子の抵抗と集電端子と電極との接触抵抗など
が無視できなくなり、充放電効率の低下、放電電圧の低
下等の原因になる。また、電極が長いため、電極の集電
端子に近い部分は働きやすく、一方、電極の集電端子か
ら遠い部分は働きにくい状態になり、電極の長さ方向に
電流分布が発生するので電極面内で部分的に過充電、過
放電になり、これら電流の集中が原因で局所的に温度が
上昇してしまうという問題があった。
At this time, in the conventional structure in which the current collecting terminal is attached to one position of the electrode end, the energy density is large,
When charging or discharging a battery having a large output density, the resistance of the current collecting terminal and the contact resistance between the current collecting terminal and the electrode cannot be ignored, which causes a reduction in charge / discharge efficiency, a decrease in discharge voltage, and the like. . Also, since the electrode is long, the portion of the electrode close to the current collecting terminal is easy to work, while the portion far from the current collecting terminal of the electrode is difficult to work, and current distribution occurs in the length direction of the electrode, so that the electrode surface In this case, there is a problem that overcharging and overdischarging are partially caused in the inside, and the temperature is locally increased due to the concentration of these currents.

【0008】本発明は、上記のような問題を解決するも
ので、電極反応によって生じる電流を分散して集電し、
また、電極反応分布の均一化を図ることによってエネル
ギーロスの低減と過充電および過放電を抑制することを
目的とする。
[0008] The present invention solves the above-mentioned problems, and collects current by dispersing a current generated by an electrode reaction.
Another object is to reduce energy loss and suppress overcharge and overdischarge by making the electrode reaction distribution uniform.

【0009】[0009]

【課題を解決するための手段】本発明に係る第1の電池
は、正極集電体と正極活物質層からなる正極及び負極集
電体と負極活物質層からなる負極の各電極間にセパレー
タを有する電池体と、この電池体を密閉し、収納するシ
ール部を有する電池容器とを備えた電池であって、上記
各電極に複数の正極集電端子と負極集電端子が各電極の
長さ方向に対して複数設置され、かつ、上記正極集電端
子と負極集電端子の位置が重ならずに配置されているも
のである。
A first battery according to the present invention comprises a separator between each of a positive electrode comprising a positive electrode current collector and a positive electrode active material layer and a negative electrode comprising a negative electrode current collector and a negative electrode active material layer. And a battery container having a seal portion for hermetically sealing and housing the battery body, wherein each of the electrodes has a plurality of positive current collecting terminals and a negative current collecting terminal, each of which has a length equal to the length of each electrode. The positive electrode current collecting terminal and the negative electrode current collecting terminal are arranged so as not to overlap with each other.

【0010】本発明に係る第2の電池は、上記第1の電
池において、複数の正極集電端子及び負極集電端子それ
ぞれが、電池容器のシール部から電池容器外に出ている
ものである。
A second battery according to the present invention is a battery according to the first battery, wherein a plurality of positive current collecting terminals and a plurality of negative current collecting terminals respectively extend out of the battery container from a sealing portion of the battery container. .

【0011】本発明に係る第3の電池は、上記第2の電
池において、正極集電端子と負極集電端子とが、電池容
器の反対側から電池容器外に出ているものである。
According to a third battery of the present invention, in the second battery, the positive current collecting terminal and the negative current collecting terminal extend out of the battery container from the opposite side of the battery container.

【0012】本発明に係る第4の電池は、上記第2の電
池において、正極集電端子と負極集電端子それぞれが、
電池容器の反対側から電池容器外に出ているものであ
る。
A fourth battery according to the present invention is the above-mentioned second battery, wherein each of the positive electrode current collecting terminal and the negative electrode current collecting terminal is
It is one that has come out of the battery container from the opposite side of the battery container.

【0013】本発明に係る第5の電池は、上記第1ない
し4のいずれかに記載の電池において、セパレータと正
極またはセパレータと負極の少なくとも一カ所をイオン
導電性接着層で接着したものである。
A fifth battery according to the present invention is the battery according to any one of the first to fourth aspects, wherein at least one of the separator and the positive electrode or the separator and the negative electrode is bonded with an ionic conductive adhesive layer. .

【0014】[0014]

【発明の実施の形態】以下に、図1〜図7に従ってこの
発明の実施の形態を、リチウムイオン二次電池を例とし
て、詳細に説明する。 実施の形態1. (正極の作製)LiCoO2からなる正極活物質91重
量部と、導電材としての人造黒鉛6重量部と、結着材と
してのポリフッ化ビニリデン(以下、PVDFと略す)
3重量部をN−メチルピロリドン(以下、NMPと略
す)に分散することにより調整した正極活物質ペースト
を、厚み20μmのアルミ箔からなる正極集電体上にド
クターブレード法により塗布・乾燥(以下、塗工とい
う)して正極活物質膜を形成した。更に、正極集電体の
裏面にもドクターブレード法により正極活物質ペースト
を塗工して、正極集電体の両面に正極活物質膜を形成し
た後、プレスして厚さ200μmの正極(電極)を作製
した。アルミ箔各面の正極活物質膜厚さは90μmとし
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to FIGS. 1 to 7 by taking a lithium ion secondary battery as an example. Embodiment 1 FIG. (Production of Positive Electrode) 91 parts by weight of a positive electrode active material made of LiCoO 2, 6 parts by weight of artificial graphite as a conductive material, and polyvinylidene fluoride as a binder (hereinafter abbreviated as PVDF)
A cathode active material paste prepared by dispersing 3 parts by weight of N-methylpyrrolidone (hereinafter abbreviated as NMP) is coated and dried by a doctor blade method on a cathode current collector made of an aluminum foil having a thickness of 20 μm. , Coating) to form a positive electrode active material film. Further, a positive electrode active material paste is applied to the back surface of the positive electrode current collector by a doctor blade method, and a positive electrode active material film is formed on both surfaces of the positive electrode current collector. ) Was prepared. The thickness of the positive electrode active material on each side of the aluminum foil was 90 μm.

【0015】上記作製した正極を129mm×300m
mの寸法に切断し、集電端子を溶接するための未塗工部
を電極の長手方向の端部から100mmの位置に2カ所
設けた。この未塗工部の長さは129mm、幅は5mm
とした。未塗工部のアルミ箔には、リードとして機能す
る、厚み0.1mm、幅3mmのアルミ箔からなる集電
端子を超音波溶接により取り付けた。なお、集電端子の
設置位置を活物質未塗工部にせず、直接取り付けてもよ
い。また正極集電体は箔に限らずメッシュでもかまわな
い。
The above prepared positive electrode is 129 mm × 300 m
The electrode was cut to a size of m, and two uncoated portions for welding the current collecting terminals were provided at two positions 100 mm from the longitudinal end of the electrode. The length of this uncoated part is 129 mm and the width is 5 mm
And A current collecting terminal made of an aluminum foil having a thickness of 0.1 mm and a width of 3 mm serving as a lead was attached to the uncoated aluminum foil by ultrasonic welding. Note that the current collecting terminal may be directly attached without setting the active material uncoated portion. Further, the positive electrode current collector is not limited to a foil, and may be a mesh.

【0016】(負極の作成)メソフェーズカーボンマイ
クロビーズからなる負極活物質90重量部と、PVDF
10重量部とをNMPに分散することにより調整した負
極活物質ペーストを、厚み12μmの銅箔からなる負極
集電体上にドクターブレード法によりパターン塗工して
負極活物質塗工部と未塗工部を持つ負極活物質膜を形成
した。更に、負極集電体の裏面にも負極活物質ペースト
をパターン塗工して負極活物質塗工部と未塗工部を持つ
負極活物質膜を形成した後、プレスして負極を作製し
た。負極集電体各面の負極活物質膜厚は90μmとし
た。
(Preparation of Negative Electrode) 90 parts by weight of a negative electrode active material comprising mesophase carbon microbeads, and PVDF
The negative electrode active material paste prepared by dispersing 10 parts by weight in NMP was coated on a negative electrode current collector made of copper foil having a thickness of 12 μm by a doctor blade method, and the negative electrode active material coated portion was uncoated. A negative electrode active material film having a processed portion was formed. Further, a negative electrode active material paste was pattern-coated on the back surface of the negative electrode current collector to form a negative electrode active material film having a negative electrode active material coated portion and an uncoated portion, and then pressed to form a negative electrode. The thickness of the negative electrode active material on each surface of the negative electrode current collector was 90 μm.

【0017】上記作製した負極(電極)を130mm×
380mmの寸法に切断した。銅箔の未塗工部分は長手
方向の端部に設け、長さ130mm、幅5mmとし、さ
らに端部から100mmの位置と200mmの位置にも
設け、長さ130mm、幅5mmとしてある。未塗工部
分に、厚み0.1mm、幅3mmの銅からなる集電端子
を超音波溶接により取り付けた。取り付け方法は集電箔
と集電端子をかしめてもよく、集電端子は銅に限らずニ
ッケル等の導電性金属でもよい。また、負極集電端子の
設置位置は活物質未塗工部分でなくてもよい。
The prepared negative electrode (electrode) was 130 mm ×
It was cut to a size of 380 mm. The uncoated portion of the copper foil is provided at the end in the longitudinal direction and has a length of 130 mm and a width of 5 mm, and is further provided at positions 100 mm and 200 mm from the end to have a length of 130 mm and a width of 5 mm. A current collecting terminal made of copper having a thickness of 0.1 mm and a width of 3 mm was attached to the uncoated portion by ultrasonic welding. The mounting method may include caulking the current collector foil and the current collector terminal, and the current collector terminal is not limited to copper but may be a conductive metal such as nickel. Further, the installation position of the negative electrode current collecting terminal may not be the active material uncoated portion.

【0018】図1は、この実施の形態における集電端子
の配置を示す図であり、上記電極とセパレータを用いて
作製した電池体の展開図として示している。セパレータ
4として、25μmの多孔性ポリプロピレンシート(ヘ
キスト社製、商品名セルガード)を使用した。正極集電
端子3を正極集電体2上の正極活物質層1が塗工されて
いない部分に超音波溶接にて取り付けてある。取り付け
位置は2ヶ所で、正極(正極活物質層1と正極集電箔
2)長手方向の3等分の位置である。セパレータ4を介
して、負極側は負極集電端子7を負極集電体6の負極活
物質層5が塗工されていない部分に超音波溶接にて取り
付けてある。取り付け位置は3ヶ所で、負極(負極活物
質層5と正極集電箔6)の両端と負極中央である。正
極、負極及びセパレータ4を重ねあわせて巻いた後、2
本の正極集電端子3を先端で溶接して一本にまとめ、同
様に3本の負極集電端子7を先端で溶接して一本にまと
めて電池体を形成し、この電池体を電池容器に収納し、
電解液を注入した後、電池容器をシールし、密閉する。
なお、集電端子は上記本数に限らず、正極端子と負極端
子を互い違いに配置することが本発明の特徴である。
FIG. 1 is a view showing the arrangement of current collecting terminals in this embodiment, and is shown as a developed view of a battery body manufactured using the above-mentioned electrodes and separator. As the separator 4, a 25 μm porous polypropylene sheet (Celgard, manufactured by Hoechst) was used. The positive electrode current collector terminal 3 is attached to a portion of the positive electrode current collector 2 where the positive electrode active material layer 1 is not applied by ultrasonic welding. Attachment positions are two places, and are equal positions in the longitudinal direction of the positive electrode (the positive electrode active material layer 1 and the positive electrode current collector foil 2). On the negative electrode side, a negative electrode current collecting terminal 7 is attached to a portion of the negative electrode current collector 6 on which the negative electrode active material layer 5 is not applied, by ultrasonic welding, with the separator 4 interposed therebetween. There are three mounting positions, both ends of the negative electrode (negative electrode active material layer 5 and positive electrode current collector foil 6) and the center of the negative electrode. After winding the positive electrode, the negative electrode and the separator 4 one on top of the other,
The three positive electrode current collecting terminals 3 are welded at the tip to combine them into one, and similarly, the three negative electrode current collecting terminals 7 are welded together at the tip to form a single battery body. Stored in a container,
After injecting the electrolyte, the battery container is sealed and hermetically sealed.
The number of the current collecting terminals is not limited to the above-mentioned number, and the present invention is characterized in that the positive terminal and the negative terminal are alternately arranged.

【0019】図2は、正極集電端子、負極集電端子を各
1本ずつ電極に取り付けた場合の例で、比較例として示
すものである。この比較例の場合、電極反応により生じ
た電流は集電体を流れて一本の集電端子に集中する。集
電端子から最も遠い電極部分で生じた電流は、集電体の
長さ方向(図2では横方向)の端から端まで流れる必要
がある。電極の長さに較べて全体の電流値が大きい場合
には、集電体の抵抗による電圧ドロップが無視できなく
なり、電極中の電流分布が生じ、集電端子近くにある電
極での電極反応が相対的に大きくなる。
FIG. 2 shows a comparative example in which one positive electrode current collecting terminal and one negative electrode current collecting terminal are attached to each electrode. In the case of this comparative example, the current generated by the electrode reaction flows through the current collector and concentrates on one current collecting terminal. The current generated at the electrode portion farthest from the current collecting terminal needs to flow from one end to the other in the length direction (lateral direction in FIG. 2) of the current collector. If the total current value is larger than the length of the electrode, the voltage drop due to the resistance of the current collector cannot be ignored, current distribution in the electrode occurs, and the electrode reaction at the electrode near the current collection terminal occurs. Relatively large.

【0020】図3は、実施の形態1における電極反応分
布の計算結果を示す図であり、集電端子を正極、負極ぞ
れぞれに複数配置した電池において、放電を開始してか
ら10分後における電極反応分布を示すものである。以
下に計算条件を記述する。正極電極サイズは縦130m
m、横300mmとし、電極箔の両面に塗工してあると
して電極幾何面積を780cm2とした。なお、負極は
計算の都合上同一面積とした。電流は2000mA通電
を想定し、3本の負極集電端子の先端と2本の正極集電
端子の先端をそれぞれ通電する起点として正極集電端子
の先端から負極集電端子の先端へ電流が流れるとして、
電極反応抵抗と溶液抵抗は電極面内一定条件として計算
を行った。以上の条件によって計算した結果を図3に示
す。図3のAは反応電流密度が最も低い部分であり、
2.48mA/cm2の領域である。またBは反応電流密
度が最も高い部分であり、2.64mA/cm2の領域で
あり、最大と最小は平均の反応電流密度2.56mA/
cm2に対して±3%の反応電流密度分布しかつかない
ことがわかる。
FIG. 3 is a diagram showing the calculation results of the electrode reaction distribution in the first embodiment. In a battery in which a plurality of current collecting terminals are arranged on each of the positive electrode and the negative electrode, 10 minutes have elapsed since the start of discharging. It shows an electrode reaction distribution at a later time. The calculation conditions are described below. Positive electrode size is 130m long
m, 300 mm in width, and the electrode geometrical area was 780 cm 2 assuming that the coating was applied to both sides of the electrode foil. The negative electrode had the same area for the sake of calculation. Assuming that the current is 2000 mA, a current flows from the tip of the positive current collecting terminal to the tip of the negative current collecting terminal as a starting point for supplying current to the tip of the three negative current collecting terminals and the tip of the two positive current collecting terminals. As
Electrode reaction resistance and solution resistance were calculated as constant conditions in the electrode plane. FIG. 3 shows the results calculated under the above conditions. A in FIG. 3 is a portion where the reaction current density is the lowest,
This is an area of 2.48 mA / cm 2 . B is a portion where the reaction current density is the highest and is a region of 2.64 mA / cm 2 , and the maximum and the minimum are the average reaction current density of 2.56 mA / cm 2.
It can be seen that the reaction current density distribution is only ± 3% with respect to cm 2 .

【0021】一方、図4は、図2に示した比較例におけ
る電極反応分布の計算結果を示す図である。図中Aは反
応電流密度が最も低い2.18mA/cm2の領域であ
り、Bは反応電流密度が最も高い2.94mA/cm2
領域である。この図から、最大と最小は平均の反応電流
密度に対して±15%の反応電流密度分布が生じ、特に
集電端子近傍に電極反応が集中することがわかる。
FIG. 4 is a diagram showing the calculation results of the electrode reaction distribution in the comparative example shown in FIG. In the figure, A is a region of 2.18 mA / cm 2 where the reaction current density is the lowest, and B is a region of 2.94 mA / cm 2 where the reaction current density is the highest. From this figure, it can be seen that the reaction current density distribution of ± 15% of the maximum and minimum with respect to the average reaction current density occurs, and the electrode reactions are particularly concentrated near the current collecting terminals.

【0022】このように、電極反応が集電端子近傍の電
極に集中すると、電極反応に伴う発熱により局所的に温
度が上昇し、電池の熱暴走が起こる危険が高まる。熱暴
走は通常の充放電では起こらないが、不用意に端子を短
絡させたり、規格以上の大電流を電池に加えると起こる
可能性が高くなる。
As described above, when the electrode reaction concentrates on the electrode in the vicinity of the current collecting terminal, the temperature locally rises due to the heat generated by the electrode reaction, and the risk of thermal runaway of the battery increases. Although thermal runaway does not occur during normal charge / discharge, it is more likely to occur if terminals are shorted carelessly or a large current exceeding the standard is applied to the battery.

【0023】図5は、この実施の形態1と比較例の放電
曲線を示す図である。試験条件は以下の通りである。試
験温度は摂氏25度で、1Cレート(1時間で放電が完
了する電流値)で3時間、上限電圧4.1Vの定電流/
定電圧で10分間充電し、休止した後、1Cレートで電
池電圧3Vまで放電させた。複数の集電端子を各電極に
設置したこの実施の形態は、比較例に較べて放電電圧は
高く、放電時間も長くなり、反応電流密度分布の均一化
が電池放電特性を向上させることがわかる。
FIG. 5 is a diagram showing discharge curves of the first embodiment and a comparative example. The test conditions are as follows. The test temperature is 25 degrees Celsius, 3 hours at a 1C rate (current value at which discharge is completed in 1 hour), and a constant current of an upper limit voltage of 4.1 V /
After charging at a constant voltage for 10 minutes and resting, the battery was discharged to a battery voltage of 3 V at a rate of 1 C. In this embodiment in which a plurality of current collecting terminals are provided for each electrode, the discharge voltage is higher and the discharge time is longer than in the comparative example, and it can be seen that uniformity of the reaction current density distribution improves the battery discharge characteristics. .

【0024】実施の形態2.図6は、実施の形態2に係
わる電池の平面図で、正極集電端子及び負極集電端子の
それぞれを、シール部9を介して2カ所ずつから電池容
器外へ出した構造になっている。このような集電端子の
構造にすることによって、複数の集電端子を電池容器外
部で溶接することができるので、電池容器内部で複数の
集電端子を溶接したときの溶接部が占めていた空間を有
効に利用し、電池容器の間際まで有効な電極で満たすこ
とができ、体積エネルギー密度が向上すると同時に電極
を巻き型に成型する段階で溶接工程が無くなるという利
点がある。また、図7の平面図に示すように、正極集電
端子及び負極集電端子のそれぞれを、シール部9を介し
て2カ所ずつから電池容器外へ出した構造とすることに
よって、正極集電端子同士及び負極集電端子同士の溶接
が不要となる。
Embodiment 2 FIG. FIG. 6 is a plan view of the battery according to the second embodiment, and has a structure in which each of the positive electrode current collecting terminal and the negative electrode current collecting terminal is taken out of the battery container from two places via the seal portion 9. . By adopting such a structure of the current collecting terminal, a plurality of current collecting terminals can be welded outside the battery container, so that a welded portion when the plurality of current collecting terminals are welded inside the battery container occupies. There is an advantage that the space can be effectively utilized, the effective electrode can be filled up to just before the battery container, and the volume energy density is improved, and at the same time, the welding step is eliminated in the step of forming the electrode into a winding form. In addition, as shown in the plan view of FIG. 7, each of the positive electrode current collecting terminal and the negative electrode current collecting terminal has a structure in which each of the positive electrode current collecting terminal and the negative electrode current It becomes unnecessary to weld the terminals and the negative current collecting terminals.

【0025】実施の形態3.図8は、実施の形態3に係
わる電池の平面図で、正極集電端子と負極集電端子とを
シール部9を介して電池容器の反対方向から外へ出した
構造になっている。このような集電端子の構造にするこ
とによって、電極反応分布はさらに平坦化し、局所的な
反応電流密度の集中を低減することができる。また、各
集電端子間が比較的離れているため不用意な取り扱いに
よる短絡を起こしにくくでき、電池製造時や出荷前の初
期特性評価時におけるハンドリングを容易にすることが
できる。
Embodiment 3 FIG. 8 is a plan view of the battery according to the third embodiment, and has a structure in which a positive electrode current collecting terminal and a negative electrode current collecting terminal are drawn out from the opposite direction of the battery container via a seal portion 9. With such a structure of the current collecting terminal, the electrode reaction distribution can be further flattened, and the local concentration of the reaction current density can be reduced. In addition, since the current collecting terminals are relatively far from each other, a short circuit due to careless handling can be suppressed, and handling during battery manufacturing or initial characteristic evaluation before shipping can be facilitated.

【0026】実施の形態4.この実施の形態4は、接着
型電池に関するものである。上記実施の形態1で作製し
た負極を2枚のセパレータの片面ずつに接着剤を塗布す
る。その後、接着剤が乾燥する前に負極の両面に密着さ
せ、貼り合わせた後、乾燥することでセパレータ付き負
極を形成する。接着剤としては、PVDFを7重量部溶
解させ、酸化アルミニウム粉末9重量部を分散させたN
MP溶液を用いる。この接着剤で接着した場合には、電
解液を注液した時に電解液を保持したイオン伝導性を有
する接着層を形成する。セパレータとして25μmの多
孔性ポリプロピレンシートを使用する。接着剤は、PV
DFの他に、例えばポリビニルアルコールや、ポリビニ
ルブチラート、ポリメタクリル酸メチル等の高分子でも
よい。また、酸化アルミニウム粉末は接着層が多孔体に
なり易いように添加しており、黒鉛やシリカゲル等の微
粉体であればよいし、添加しなくてもよい。溶剤もNM
Pに限らない。また濃度も5重量部に限らない。
Embodiment 4 Embodiment 4 relates to an adhesive type battery. An adhesive is applied to each of the two separators on one side of the negative electrode manufactured in the first embodiment. Thereafter, before the adhesive is dried, it is brought into close contact with both sides of the negative electrode, bonded and then dried to form a negative electrode with a separator. As an adhesive, 7 parts by weight of PVDF was dissolved and 9 parts by weight of aluminum oxide powder were dispersed in N
Use MP solution. In the case of bonding with this adhesive, when the electrolytic solution is injected, an adhesive layer having ion conductivity holding the electrolytic solution is formed. A 25 μm porous polypropylene sheet is used as a separator. The adhesive is PV
In addition to DF, a polymer such as polyvinyl alcohol, polyvinyl butyrate, and polymethyl methacrylate may be used. The aluminum oxide powder is added so that the adhesive layer easily becomes a porous body, and may be a fine powder such as graphite or silica gel, or may not be added. Solvent is also NM
Not limited to P. The concentration is not limited to 5 parts by weight.

【0027】上記2枚のセパレータ付き負極のセパレー
タ面間に、上記実施の形態1で作製した正極を挟み、巻
き上げ電池体を形成し、この電池体を電池容器に収納
し、電解液を注入した後、電池容器をシールし、密閉す
る。
The positive electrode prepared in the first embodiment was sandwiched between the separator surfaces of the two negative electrodes with a separator to form a rolled-up battery body. The battery body was housed in a battery container, and an electrolyte was injected. Thereafter, the battery container is sealed and hermetically sealed.

【0028】表1は上記実施の形態4および比較例に示
した電池を環境温度摂氏53度で4.15V、4.25
V、4.35Vまで充電した後、電池の中心部分に直径
2.5mmの鉄釘を刺した結果である。実施の形態4で
はいずれの条件でも異常はなく、集電端子構造と電極と
セパレータを接着することによって過放電による発熱、
発火等を抑制できることがわかる。
Table 1 shows that the batteries shown in Embodiment 4 and Comparative Example were 4.15 V and 4.25 at an ambient temperature of 53 degrees Celsius.
V and 4.35 V, and the result is that a 2.5 mm diameter iron nail was inserted into the center of the battery. In the fourth embodiment, there is no abnormality under any conditions, and heat is generated by overdischarge by bonding the current collecting terminal structure, the electrode, and the separator.
It can be seen that ignition and the like can be suppressed.

【0029】[0029]

【表1】 [Table 1]

【0030】なお、この実施の形態4では負極とセパレ
ータとを接着する構造を示したが、正極とセパレータと
を接着してもよく、また正極及び負極両方を接着しても
同様の効果が得られる。さらに、セパレータと電極の全
面を接着する必要はなく、少なくとも1ヶ所接着されて
いればよい。
Although the structure in which the negative electrode and the separator are bonded is shown in the fourth embodiment, the same effect can be obtained by bonding the positive electrode and the separator, or by bonding both the positive electrode and the negative electrode. Can be Furthermore, it is not necessary to bond the entire surface of the separator and the electrode, and it is sufficient that at least one portion is bonded.

【0031】[0031]

【発明の効果】以上のように、本発明に係る第1の電池
によれば、正極集電体と正極活物質層からなる正極及び
負極集電体と負極活物質層からなる負極の各電極間にセ
パレータを有する電池体と、この電池体を密閉し、収納
するシール部を有する電池容器とを備えた電池であっ
て、上記各電極に複数の正極集電端子と負極集電端子が
各電極の長さ方向に対して複数設置され、かつ、上記正
極集電端子と負極集電端子の位置が重ならずに配置され
ているので、放電電圧を高くし、放電時間も長くなり、
反応電流密度分布が均一化され電池放電特性を向上させ
る効果がある。
As described above, according to the first battery of the present invention, each electrode of the positive electrode comprising the positive electrode current collector and the positive electrode active material layer and the negative electrode comprising the negative electrode current collector and the negative electrode active material layer A battery including a battery body having a separator between the batteries, and a battery container having a seal portion for sealing and housing the battery body, wherein each of the electrodes has a plurality of positive current collecting terminals and a plurality of negative current collecting terminals. A plurality of electrodes are provided in the length direction of the electrode, and the positions of the positive electrode current collecting terminal and the negative electrode current collecting terminal are arranged so as not to overlap with each other.
This has the effect of making the distribution of the reaction current density uniform and improving the battery discharge characteristics.

【0032】本発明に係る第2の電池によれば、複数の
正極集電端子及び負極集電端子それぞれが、電池容器の
シール部から電池容器外に出ているので、複数の集電端
子を電池容器外部で溶接することができるので、電池容
器内部で複数の集電端子を溶接したときの溶接部が占め
ていた空間を有効に利用し、電池容器の間際まで有効な
電極で満たすことができ、体積エネルギー密度が向上す
ると同時に電極を巻き型に成型する段階で溶接工程が無
くなるという効果がある。
According to the second battery of the present invention, since each of the plurality of positive current collecting terminals and the plurality of negative current collecting terminals extends out of the battery container from the sealing portion of the battery container, the plurality of current collecting terminals can be connected. Since welding can be performed outside the battery container, the space occupied by the welded portion when multiple current collecting terminals are welded inside the battery container can be effectively used, and the effective electrode can be filled just before the battery container. This has the effect of improving the volume energy density and eliminating the need for a welding step at the time of forming the electrode into a winding form.

【0033】本発明に係る第3の電池によれば、正極集
電端子と負極集電端子とが、電池容器の反対側から電池
容器外に出ているので、正極集電端子同士及び負極集電
端子同士の溶接が不要となる。
According to the third battery of the present invention, since the positive electrode current collecting terminal and the negative electrode current collecting terminal extend outside the battery container from the opposite side of the battery container, the positive electrode current collecting terminals and the negative electrode current collecting terminal are separated from each other. There is no need to weld the electrical terminals.

【0034】本発明に係る第4の電池によれば、正極集
電端子と負極集電端子それぞれが、電池容器の反対側か
ら電池容器外に出ているので、電極反応分布はさらに平
坦化し、局所的な反応電流密度の集中を低減することが
できる。また、各集電端子間が比較的離れているため不
用意な取り扱いによる短絡を起こしにくくでき、電池製
造時や出荷前の初期特性評価時におけるハンドリングを
容易にすることができる効果がある。
According to the fourth battery of the present invention, since each of the positive electrode current collecting terminal and the negative electrode current collecting terminal comes out of the battery container from the opposite side of the battery container, the electrode reaction distribution is further flattened. Local concentration of the reaction current density can be reduced. In addition, since the current collecting terminals are relatively far from each other, short-circuiting due to careless handling can be suppressed, and there is an effect that handling at the time of battery manufacture or at the time of initial characteristic evaluation before shipping can be facilitated.

【0035】本発明に係る第5の電池によれば、セパレ
ータと正極またはセパレータと負極の少なくとも一カ所
をイオン導電性接着層で接着した過放電による発熱、発
火等を抑制できる効果がある。
According to the fifth battery of the present invention, there is an effect that heat generation, ignition, and the like due to overdischarge in which at least one of the separator and the positive electrode or the separator and the negative electrode is bonded by the ionic conductive adhesive layer can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1における集電端子の配置図であ
る。
FIG. 1 is a layout diagram of a current collecting terminal according to the first embodiment.

【図2】 比較例の集電端子の配置図である。FIG. 2 is a layout view of a current collecting terminal of a comparative example.

【図3】 実施の形態1における電極反応分布の計算結
果を示す図である。
FIG. 3 is a diagram showing calculation results of an electrode reaction distribution according to the first embodiment.

【図4】 比較例における電極反応分布の計算結果を示
す図である。
FIG. 4 is a diagram showing a calculation result of an electrode reaction distribution in a comparative example.

【図5】 実施の形態1と比較例の電池における放電曲
線を示す図である。
FIG. 5 is a diagram showing discharge curves of the batteries of Embodiment 1 and Comparative Example.

【図6】 実施の形態2に係わる第1の電池の平面図で
ある。
FIG. 6 is a plan view of a first battery according to a second embodiment.

【図7】 実施の形態2に係わる第2の電池の平面図で
ある。
FIG. 7 is a plan view of a second battery according to a second embodiment.

【図8】 実施の形態3に係わる電池の平面図である。FIG. 8 is a plan view of a battery according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 正極活物質層、2 正極集電体、3 正極集電端
子、4 セパレーター、5 負極活物質層、6 負極集
電体、7 負極集電端子、8 電池容器、9 シール
部、A、A' 低反応電流密度領域、B、B' 高反応電
流密度領域、
REFERENCE SIGNS LIST 1 positive electrode active material layer, 2 positive electrode current collector, 3 positive electrode current collector terminal, 4 separator, 5 negative electrode active material layer, 6 negative electrode current collector, 7 negative electrode current collector terminal, 8 battery container, 9 seal portion, A, A 'Low reaction current density region, B, B' High reaction current density region,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩田 久 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 荒金 淳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 吉瀬 万希子 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 相原 茂 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 竹村 大吾 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 西村 隆 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 尾崎 博規 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 市村 英男 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 川口 憲治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 森安 雅治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中出口 真治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H022 AA09 BB12 CC08 CC12 CC20 CC22 5H029 AJ02 AJ03 AK03 AL08 CJ05 DJ05 EJ01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisashi Shioda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Jun Arakane 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Rishi Electric Co., Ltd. (72) Inventor Makiko Yoshise 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. Inside (72) Inventor Daigo Takemura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Takashi Nishimura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Hiroki Ozaki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Hideo Ichimura Maru, Chiyoda-ku, Tokyo 2-3-2 Uchi, Mitsubishi Electric Co., Ltd. (72) Inventor Kenji Kawaguchi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Tokyo (72) Masaharu Moriyasu, Inventor Marunouchi 2, Chiyoda-ku, Tokyo 2-3-2, Mitsui Electric Co., Ltd. (72) Inventor Shinji Nakaguchi 2-3-2, Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5H022 AA09 BB12 CC08 CC12 CC20 CC22 5H029 AJ02 AJ03 AK03 AL08 CJ05 DJ05 EJ01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体と正極活物質層からなる正極
及び負極集電体と負極活物質層からなる負極の各電極間
にセパレータを有する電池体と、この電池体を密閉し、
収納するシール部を有する電池容器とを備えた電池であ
って、上記各電極に複数の正極集電端子と負極集電端子
が各電極の長さ方向に対して複数設置され、かつ、上記
正極集電端子と負極集電端子の位置が重ならずに配置さ
れていることを特徴とする電池。
1. A battery body having a separator between each of a positive electrode comprising a positive electrode current collector and a positive electrode active material layer and a separator comprising a negative electrode comprising a negative electrode current collector and a negative electrode active material layer;
A battery comprising a battery container having a sealing portion for housing, wherein a plurality of positive current collecting terminals and a plurality of negative current collecting terminals are provided on each of the electrodes in the length direction of each electrode, and A battery characterized in that the current collecting terminal and the negative electrode current collecting terminal are arranged without overlapping.
【請求項2】 複数の正極集電端子及び負極集電端子そ
れぞれが、電池容器のシール部から電池容器外に出てい
ることを特徴とする請求項1記載の電池。
2. The battery according to claim 1, wherein each of the plurality of positive electrode current collecting terminals and the plurality of negative electrode current collecting terminals protrudes out of the battery container from a sealing portion of the battery container.
【請求項3】 正極集電端子と負極集電端子とが、電池
容器の反対側から電池容器外に出ていることを特徴とす
る請求項2記載の電池。
3. The battery according to claim 2, wherein the positive current collecting terminal and the negative current collecting terminal extend out of the battery container from the opposite side of the battery container.
【請求項4】 正極集電端子と負極集電端子それぞれ
が、電池容器の反対側から電池容器外に出ていることを
特徴とする請求項2記載の電池。
4. The battery according to claim 2, wherein each of the positive electrode current collecting terminal and the negative electrode current collecting terminal extends out of the battery container from the opposite side of the battery container.
【請求項5】 セパレータと正極またはセパレータと負
極の少なくとも一カ所をイオン導電性接着層で接着した
ことを特徴とする請求項1ないし4のいずれかに記載の
電池。
5. The battery according to claim 1, wherein at least one of the separator and the positive electrode or the separator and the negative electrode is bonded with an ion-conductive adhesive layer.
JP10276998A 1998-09-30 1998-09-30 Battery Pending JP2000106167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276998A JP2000106167A (en) 1998-09-30 1998-09-30 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276998A JP2000106167A (en) 1998-09-30 1998-09-30 Battery

Publications (1)

Publication Number Publication Date
JP2000106167A true JP2000106167A (en) 2000-04-11

Family

ID=17577347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276998A Pending JP2000106167A (en) 1998-09-30 1998-09-30 Battery

Country Status (1)

Country Link
JP (1) JP2000106167A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095421A1 (en) * 2000-06-07 2001-12-13 Gs-Melcotec Co., Ltd. Battery
JP2002050407A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP2007200691A (en) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2009507339A (en) * 2005-09-02 2009-02-19 エルジー・ケム・リミテッド Batteries suitable for manufacturing battery modules
EP2075862A1 (en) 2007-12-28 2009-07-01 TDK Corporation Electrode for electrochemical device and electrochemical device
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery
US20100081042A1 (en) * 2008-09-30 2010-04-01 Hideaki Morishima Secondary battery
JP2011151024A (en) * 2010-01-21 2011-08-04 Tai-Her Yang Electrode plate
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
JP2012195132A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Secondary battery
US8372313B2 (en) 2007-11-19 2013-02-12 Mitsubishi Electric Corporation Electrical-discharge surface-treatment electrode and metal coating film formed using the same
KR101254691B1 (en) 2010-08-17 2013-04-15 주식회사 엘지화학 Secondary electric cell with enhanced lead structure
WO2014014118A1 (en) * 2012-07-18 2014-01-23 住友化学株式会社 Adhesive layer, layer and composition
CN105977546A (en) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 Battery core
JP2017143030A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Layered battery
JP2020509534A (en) * 2017-04-14 2020-03-26 エルジー・ケム・リミテッド Electrode assembly
JP2020071943A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 All-solid battery
WO2021129273A1 (en) * 2019-12-25 2021-07-01 华为技术有限公司 Battery and terminal device
JP2023511295A (en) * 2020-04-28 2023-03-17 寧徳新能源科技有限公司 Electrochemical device and electronic device provided with the electrochemical device
JP2023541746A (en) * 2021-08-19 2023-10-04 寧徳新能源科技有限公司 Electrode assemblies, batteries, and electrical equipment
JP7581356B2 (en) 2020-04-28 2024-11-12 寧徳新能源科技有限公司 Electrochemical device and electronic device including said electrochemical device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214273A (en) * 1982-06-04 1983-12-13 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JPS63148534A (en) * 1986-12-10 1988-06-21 Matsushita Electric Ind Co Ltd Separator for battery
JPH10189054A (en) * 1996-12-26 1998-07-21 Mitsubishi Electric Corp Manufacture of lithium ion secondary battery
JPH10208778A (en) * 1997-01-22 1998-08-07 Sumitomo Electric Ind Ltd Non-aqueous electrolyte battery
JPH10214606A (en) * 1996-11-28 1998-08-11 Sanyo Electric Co Ltd Thin type battery of laminated armor body
JPH10241744A (en) * 1997-02-25 1998-09-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH10261428A (en) * 1997-03-18 1998-09-29 Japan Storage Battery Co Ltd Battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214273A (en) * 1982-06-04 1983-12-13 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JPS63148534A (en) * 1986-12-10 1988-06-21 Matsushita Electric Ind Co Ltd Separator for battery
JPH10214606A (en) * 1996-11-28 1998-08-11 Sanyo Electric Co Ltd Thin type battery of laminated armor body
JPH10189054A (en) * 1996-12-26 1998-07-21 Mitsubishi Electric Corp Manufacture of lithium ion secondary battery
JPH10208778A (en) * 1997-01-22 1998-08-07 Sumitomo Electric Ind Ltd Non-aqueous electrolyte battery
JPH10241744A (en) * 1997-02-25 1998-09-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH10261428A (en) * 1997-03-18 1998-09-29 Japan Storage Battery Co Ltd Battery
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073144B2 (en) * 2000-06-07 2012-11-14 三洋電機株式会社 Lithium ion secondary battery
US6773847B2 (en) 2000-06-07 2004-08-10 Gs-Melcotec Co., Ltd. Battery
KR100789558B1 (en) * 2000-06-07 2007-12-28 상요 지에스 소프트 에너지 가부시끼가이샤 Battery
WO2001095421A1 (en) * 2000-06-07 2001-12-13 Gs-Melcotec Co., Ltd. Battery
JP2002050407A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP2009507339A (en) * 2005-09-02 2009-02-19 エルジー・ケム・リミテッド Batteries suitable for manufacturing battery modules
JP2007200691A (en) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd Lithium secondary battery
US8372313B2 (en) 2007-11-19 2013-02-12 Mitsubishi Electric Corporation Electrical-discharge surface-treatment electrode and metal coating film formed using the same
US8329328B2 (en) 2007-11-19 2012-12-11 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
EP2075862A1 (en) 2007-12-28 2009-07-01 TDK Corporation Electrode for electrochemical device and electrochemical device
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery
US8232008B2 (en) * 2008-09-30 2012-07-31 Kabushiki Kaisha Toshiba Secondary battery
US20100081042A1 (en) * 2008-09-30 2010-04-01 Hideaki Morishima Secondary battery
JP2011151024A (en) * 2010-01-21 2011-08-04 Tai-Her Yang Electrode plate
KR101254691B1 (en) 2010-08-17 2013-04-15 주식회사 엘지화학 Secondary electric cell with enhanced lead structure
JP2012195132A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Secondary battery
US10522809B2 (en) 2012-07-18 2019-12-31 Sumitomo Chemical Company, Limited Adhesive layer, layer, and composition
WO2014014118A1 (en) * 2012-07-18 2014-01-23 住友化学株式会社 Adhesive layer, layer and composition
CN105977546A (en) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 Battery core
JP2017143030A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Layered battery
JP7005642B2 (en) 2017-04-14 2022-01-21 エルジー・ケム・リミテッド Electrode assembly
JP2020509534A (en) * 2017-04-14 2020-03-26 エルジー・ケム・リミテッド Electrode assembly
US11349182B2 (en) 2017-04-14 2022-05-31 Lg Energy Solution, Ltd. Electrode assembly
JP2020071943A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 All-solid battery
JP7174325B2 (en) 2018-10-30 2022-11-17 トヨタ自動車株式会社 All-solid battery
WO2021129273A1 (en) * 2019-12-25 2021-07-01 华为技术有限公司 Battery and terminal device
JP2023511295A (en) * 2020-04-28 2023-03-17 寧徳新能源科技有限公司 Electrochemical device and electronic device provided with the electrochemical device
JP7581356B2 (en) 2020-04-28 2024-11-12 寧徳新能源科技有限公司 Electrochemical device and electronic device including said electrochemical device
JP2023541746A (en) * 2021-08-19 2023-10-04 寧徳新能源科技有限公司 Electrode assemblies, batteries, and electrical equipment
JP7509919B2 (en) 2021-08-19 2024-07-02 寧徳新能源科技有限公司 Electrode assembly, battery, and electrical device

Similar Documents

Publication Publication Date Title
JP4630855B2 (en) Battery pack and manufacturing method thereof
JP2000106167A (en) Battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP4532448B2 (en) Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit
JP3822445B2 (en) Electrochemical devices
JPH10270048A (en) Nonaqueous electrolyte secondary battery
JPH11238528A (en) Lithium secondary battery
EP2302717A1 (en) Electrode assembly for a rechargeable battery
JP2019530176A (en) Method for manufacturing electrode unit for battery cell and electrode unit
CN210805919U (en) Secondary battery, electrode member for secondary battery, battery module, and device using secondary battery
JP2000188115A (en) Thin type battery
JPH07249405A (en) Battery
JP4538694B2 (en) Electrode wound type battery
KR102141240B1 (en) Electrode assembly and secondary battery comprising the same
JP4518850B2 (en) Secondary battery electrode plate, method for producing the same, and secondary battery using the electrode plate
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JPH11111259A (en) Winding type battery
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
JP2011222128A (en) Secondary battery
KR20140022531A (en) Electrode assembly and fabricating method of electrochemical cell containing the electrode assembly, electrochemical cell
US20100143774A1 (en) Rechargeable battery and electrode assembly
JP2005317468A (en) Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon
JP3511476B2 (en) Lithium secondary battery
JP2020177751A (en) Secondary cell
CN115347193A (en) Secondary battery current collector, method for producing same, and secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106