[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000100850A - Formation of low-melting point metal bump - Google Patents

Formation of low-melting point metal bump

Info

Publication number
JP2000100850A
JP2000100850A JP10269686A JP26968698A JP2000100850A JP 2000100850 A JP2000100850 A JP 2000100850A JP 10269686 A JP10269686 A JP 10269686A JP 26968698 A JP26968698 A JP 26968698A JP 2000100850 A JP2000100850 A JP 2000100850A
Authority
JP
Japan
Prior art keywords
forming
electroplating
metal bump
rectangular
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10269686A
Other languages
Japanese (ja)
Inventor
Takemasa Ohira
武征 大平
Akiji Sekiguchi
旭司 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCU Corp
Original Assignee
Ebara Udylite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Udylite Co Ltd filed Critical Ebara Udylite Co Ltd
Priority to JP10269686A priority Critical patent/JP2000100850A/en
Publication of JP2000100850A publication Critical patent/JP2000100850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electroplating method for forming a practical bump, which can replace solder plating. SOLUTION: In this method for forming a low-temperature fusing metal bumps in a semiconductor chip or package through electroplating, silver-based alloy plating bath includes the following components of (a) 5-300 g/l of at least one kind of alkanesulfonic acid ions or alslkanole sulfonate ions, (b) 0.01-10 g/l of Ag ions, (c) 0.1-40 g/l of one kind of metallic ions selected from between Sn2+ and Bi3+, (d) 0.01-40 g/l of one kind of phosphor compound and 0.5-30 g/l of one kind of phosphor containing compound and (e) 0.5-30 g/l of non-ionic surface-active agent. The current is imparted by the repetition of rectangular pulse waves or the multistage rectangular waves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、半導体チップ、配
線用リードあるいはパッケージ等に低融点金属バンプを
電気めっきにより形成する方法に関し、更に詳細には、
鉛を含まない低融点金属バンプを電気めっきにより形成
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a low melting point metal bump on a semiconductor chip, a wiring lead or a package by electroplating.
The present invention relates to a method for forming a low-melting metal bump containing no lead by electroplating.

【0002】[0002]

【従来の技術】従来より、半導体チップ、配線用リード
あるいはパッケージ等には、接続電極としてバンプが形
成されている。 例えば半導体チップは、微細加工技術
によりシリコンウエハ上に形成されるが、その一つ一つ
にはボンデングパッドが設けられ、この上にバリアメタ
ルを介してバンプが形成される。 このようにして形成
されたバンプ付きチップはフリップチップ(FP)と呼
ばれている。
2. Description of the Related Art Conventionally, bumps are formed as connection electrodes on semiconductor chips, wiring leads or packages. For example, a semiconductor chip is formed on a silicon wafer by a fine processing technique, and each of them is provided with a bonding pad, on which a bump is formed via a barrier metal. The chip with bumps formed in this way is called a flip chip (FP).

【0003】現在、バンプ形成は、電気めっき法と無電
解めっきによる方法が知られているが、このうち電気め
っきによる方法は、アルミニウムのボンデングパット上
にスパッタリングなどの手法によりバリアメタルを形成
し、その上に電気めっきによりハンダ等の金属層を設け
るものである。
At present, there are known methods for forming bumps by an electroplating method and an electroless plating method. Among these methods, the electroplating method forms a barrier metal on a bonding pad of aluminum by a method such as sputtering. And a metal layer such as solder is provided thereon by electroplating.

【0004】電気めっきによりバンプを形成するに当た
っては、導電層を有する基材上に7μm程度の薄いフォ
トレジスト層を設け、レジストのない部分に半円形に盛
り上がる金属析出(マッシュルームバンプ)を形成させ
る場合と、同じ基材上に50μm程度の厚いレジスト層
を設け、レジストのない部分に円柱もしくは四角柱の金
属析出(ストレートウオールバンプ)を形成させる場合
がある。 いずれの場合であっても次の工程から見て、
バンプの外側(金属の析出方向)はなるべく平らで、異
常析出のないことが求められている。
In forming a bump by electroplating, a thin photoresist layer of about 7 μm is provided on a base material having a conductive layer, and a metal deposit (mushroom bump) which bulges in a semicircular shape on a portion where there is no resist is formed. In some cases, a thick resist layer of about 50 μm is provided on the same base material, and metal deposition (straight wall bumps) in the form of a column or a square column is formed in a portion where there is no resist. In any case, from the next step,
It is required that the outside of the bump (the direction of metal deposition) be as flat as possible and free from abnormal deposition.

【0005】ところで、現在電気めっきによるバンプの
形成は、融点の低さやコストの安さからハンダめっき浴
により行われているが、この方法には放射性同位体の存
在による問題や、環境面での問題があった。 すなわ
ち、ハンダを形成する鉛中には一定の割合で放射性同位
体が含まれており、これが放射線を放出すると電子機器
の誤作動の原因となることがあった。 また、鉛は毒性
を有するため、人体や環境への影響を考慮しなければな
らず、めっき後の廃水処理も慎重に行う必要があった。
このようなことから、電気めっきにより、ハンダに代
わる低融点金属をバンプとする技術の開発が望まれてい
た。
At present, bump formation by electroplating is performed by a solder plating bath because of its low melting point and low cost. However, this method has problems due to the presence of radioisotopes and environmental problems. was there. That is, the lead forming the solder contains a radioisotope at a certain ratio, and when this emits radiation, it may cause malfunction of the electronic device. In addition, since lead has toxicity, it is necessary to consider the effect on the human body and the environment, and it is necessary to carefully treat wastewater after plating.
For this reason, there has been a demand for the development of a technique of using a low-melting metal instead of solder as a bump by electroplating.

【0006】既に低融点金属を得るための多くの電気め
っき方法は知られているので、これらをバンプ形成のた
めに利用することは簡単に思いつくが、実用化すること
は極めて難しく、ハンダめっきに代わるバンプ形成のた
めの電気めっき方法は今に至るまでも知られていなかっ
た。 この理由は、他の電気めっき方法では、電子機器
の小型化・軽量化に伴って要求される、多ピン・小型化
パッケージ化、すなわち半導体の高集積化(ファインピ
ッチ)に対応できないためである。 すなわち、半導体
の高集積化に対応するためには、微視的なレベルでの均
一かつ平滑な電気めっき被膜が要求されるが、いずれの
めっき浴でも異常析出や粒状析出が発生してしまい、上
記要求に対応できなかったのである。
Since many electroplating methods for obtaining a low melting point metal are already known, it is easy to think of using them for forming bumps, but it is extremely difficult to put them to practical use, and it is very difficult to use solder plating. No alternative electroplating method for bump formation has been known to date. The reason for this is that other electroplating methods cannot cope with high-pin-count, miniaturized packaging, that is, high integration of semiconductors (fine pitch), which is required as electronic devices become smaller and lighter. . In other words, in order to cope with high integration of semiconductors, a uniform and smooth electroplating film at a microscopic level is required, but abnormal precipitation or granular precipitation occurs in any plating bath, The request could not be met.

【0007】[0007]

【発明が解決しようとする課題】従って本発明は、ハン
ダめっきに代わりうる、実用性のあるバンプ形成のため
の電気めっき方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a practical electroplating method for forming bumps which can be substituted for solder plating.

【0008】[0008]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究を行っていたところ、低温融解性金属
析出電気めっきとしてスルホン酸浴を用いる銀合金めっ
きを選択し、かつ、その析出電流波形を調整することに
より、異常析出や粒状析出が抑制され、微視的なレベル
での均一かつ平滑な電気めっき被膜が得られることを見
出し、本発明を完成した。
Means for Solving the Problems The inventor of the present invention has been diligently studying to solve the above-mentioned problems, and has selected silver alloy plating using a sulfonic acid bath as low-temperature melting metal deposition electroplating, and By adjusting the deposition current waveform, it has been found that abnormal deposition and granular deposition are suppressed, and a uniform and smooth electroplating film at a microscopic level can be obtained, and the present invention has been completed.

【0009】すなわち本発明は、電気めっきにより半導
体チップまたはパッケージに低温融解性金属バンプを形
成する方法において、電気めっき浴として次の成分、
(a)少なくとも一種のアルカンスルホン酸イオン又は
アルカノールスルホン酸イオンを5〜300g/l、
(b)Agイオンを0.01〜10g/l、(c)Sn
2+およびBi3+から選ばれた金属イオンの1種を
0.1〜40g/L、(d)含イオウ化合物の1種を0.
01〜40g/l、(e)非イオン界面活性剤を0.5
〜30g/lを含有する銀系合金めっき浴を用い、電流
を矩形パルス波または多段矩形波の繰り返しで与えるこ
とを特徴とする低融点金属バンプの形成方法である。
That is, the present invention provides a method for forming a low-melting metal bump on a semiconductor chip or package by electroplating, wherein the electroplating bath comprises the following components:
(A) 5 to 300 g / l of at least one alkanesulfonic acid ion or alkanolsulfonic acid ion,
(B) 0.01 to 10 g / l of Ag ion, (c) Sn
One of the metal ions selected from 2+ and Bi 3+ is 0.1 to 40 g / L, and one of the sulfur-containing compounds (d) is 0.1.
0.01 to 40 g / l, and (e) 0.5 g of the nonionic surfactant.
A method for forming a low melting point metal bump, characterized in that a current is applied by repetition of a rectangular pulse wave or a multistage rectangular wave using a silver-based alloy plating bath containing up to 30 g / l.

【0010】[0010]

【発明の実施の形態】本発明の低融点金属バンプの形成
方法(以下、「バンプ形成方法」という)において用い
られる銀系合金めっき浴は、先に本発明者らが開発した
ものであり、特開平9−143786号にその詳細が記
載されているものである。
BEST MODE FOR CARRYING OUT THE INVENTION The silver-based alloy plating bath used in the method for forming a low melting point metal bump of the present invention (hereinafter referred to as “bump forming method”) has been previously developed by the present inventors. The details are described in JP-A-9-143786.

【0011】このめっき浴自体は、硫酸や、アルカンス
ルホン酸、アルカノールスルホン酸等(成分(a))で
酸性とした水溶液中に以下の4成分、(b)Agイオ
ン、(c)Sn2+、Cu2+、In3+、Tl、Z
2+およびBi3+からなる群から選ばれた金属イオ
ンの1種またはそれ以上(d)含イオウ化合物の1種ま
たはそれ以上、(e)非イオン界面活性剤およびを添加
することにより調製されるもので、シアン系化合物を含
まないものである。
The plating bath itself is made up of the following four components, (b) Ag ion, (c) Sn 2+ , in an aqueous solution acidified with sulfuric acid, alkanesulfonic acid, alkanolsulfonic acid or the like (component (a)). Cu 2+ , In 3+ , Tl + , Z
It is prepared by adding one or more metal ions selected from the group consisting of n 2+ and Bi 3+, (d) one or more sulfur-containing compounds, (e) a nonionic surfactant and Which do not contain a cyanide compound.

【0012】しかし、本発明の目的のためには、酸性成
分として、アルカンスルホン酸またはアルカノールスル
ホン酸を、(c)成分として、Sn2+およびBi3+
を用いることが必要であり、また、各成分の配合量も、
アルカンスルホン酸イオン又はアルカノールスルホン酸
イオンを5〜300g/lの範囲、(b)成分は0.0
1〜10g/lの範囲、(c)成分は0.1〜40g/
lの範囲、(d)成分は0.01〜40g/lの範囲、
(e)は0.5〜30g/lの範囲とすることが好まし
い。
However, for the purposes of the present invention, alkanesulfonic acid or alkanolsulfonic acid is used as the acidic component, and Sn 2+ and Bi 3+ are used as the component (c).
It is necessary to use, and the compounding amount of each component,
Alkanesulfonic acid ion or alkanolsulfonic acid ion in the range of 5 to 300 g / l, component (b) is 0.0
The content of component (c) is 0.1 to 40 g / l.
l, the component (d) is in the range of 0.01 to 40 g / l,
(E) is preferably in the range of 0.5 to 30 g / l.

【0013】酸性成分であるアルカンスルホン酸または
アルカノールスルホン酸の好ましい例としては、メタン
スルホン酸、エタンスルホン酸等が挙げられる。 ま
た、成分(b)であるAg+イオンは、メタンスルホン酸
銀、エタンスルホン酸銀等のアルカンスルホン酸銀塩、
イソプロパノールスルホン酸銀等のアルカノールスルホ
ン酸銀塩、酸化銀、塩化銀、硝酸銀等の水溶性銀塩を水
に溶解することにより得られる。また、成分(c)のS
2+およびBi3+は、メタンスルホン酸錫、エタン
スルホン酸錫、イソプロパノールスルホン酸錫、塩化第
一錫、酸化第一錫、酸化第二錫、硫酸第一錫等やメタン
スルホン酸ビスマス、エタンスルホン酸ビスマス、イソ
プロパノールスルホン酸ビスマス、酸化ビスマス、硝酸
ビスマス等からそれぞれ得られる。
Preferred examples of the alkanesulfonic acid or alkanolsulfonic acid as the acidic component include methanesulfonic acid and ethanesulfonic acid. The Ag + ion as the component (b) is a silver alkanesulfonic acid salt such as silver methanesulfonate or silver ethanesulfonate;
It is obtained by dissolving a water-soluble silver salt such as silver alkanolsulfonate such as silver isopropanolsulfonate or the like, silver oxide, silver chloride or silver nitrate in water. In addition, S of component (c)
n 2+ and Bi 3+ are tin methanesulfonate, tin ethanesulfonate, tin isopropanolsulfonate, stannous chloride, stannous oxide, stannic oxide, stannous sulfate, bismuth methanesulfonate, ethanesulfone It can be obtained from bismuth acid, bismuth isopropanol sulfonate, bismuth oxide, bismuth nitrate and the like.

【0014】更に、本発明で用いられる銀系合金めっき
浴に配合される含イオウ化合物や非イオン界面活性剤
は、いずれも特開平9−143786号に開示されてい
るものを利用することができるが、これを例示すれば次
の通りである。
Further, as the sulfur-containing compound and the nonionic surfactant to be added to the silver-based alloy plating bath used in the present invention, those disclosed in JP-A-9-143786 can be used. However, an example of this is as follows.

【0015】すなわち(d)成分である含イオウ化合物
とは、分子中に硫黄原子を含む化合物であり、浴中でA
の置換防止剤として機能するものをいい、その例と
しては、チオ尿素、二酸化チオ尿素、1−アセチル−2
−チオ尿素、アリルチオ尿素、エチレンチオ尿素、sy
m.−ジ−o−トリルチオ尿素、sym.−ジ−p−トリ
ルチオ尿素、1,3−ビス(ヒドロキシメチル)チオ尿
素、1−フェニル−3−(2−チアゾリル)−2−チオ
尿素、塩酸ベンジルイソチオ尿素、2−マロニルチオ尿
素、S−メチルイソチオ尿素硫酸塩、N,N'−ジフェニ
ルチオ尿素、トリメチルチオ尿素、N,N'−ジエチルチ
オ尿素、1−ナフチルチオ尿素、1,3−ビス(ジメチ
ルアミノプロピル)−2−チオ尿素、トリブチルチオ尿
素等のチオ尿素系化合物;2−メルカプトベンゾチアゾ
ール、ジベンゾチアゾールジスルフィド、2−メルカプ
トベンゾチアゾールのシクロヘキシルアミン塩、2−
(N,N−ジエチルチオカルバモイルチオ)ベンゾチア
ゾール、2−(4'−モルホリノジチオ)ベンゾチアゾ
ール等のチアゾール系化合物;N−シクロヘキシル−2
−ベンゾチアゾリルスルフェンアミド、N−tert−
ブチル−2−ベンゾチアゾリルスルフェンアミド、N−
オキシジエチレン−2−ベンゾチアゾリルスルフェンア
ミド、N,N−ジシクロヘキシル−2−ベンゾチアゾリ
ルスルフェンアミド等のスルフェンアミド系化合物;テ
トラメチルチウラムジスルフィド、テトラエチルチウラ
ムジスルフィド、テトラブチルチウラムジスルフィド、
テトラキス(2−エチルヘキシル)チウラムジスルフィ
ド、テトラメチルチウラムモノスルフィド、ジペンタメ
チレンチウラムテトラスルフィド等のチウラム系化合
物;ペンタメチレンジチオカルバミン酸ピペリジン塩、
ピペコリルジチオカルバミン酸ピペコリン塩、ジエチル
ジチオカルバミン酸ナトリウム、ジブチルジチオカルバ
ミン酸ナトリウム等のジチオカルバミン酸塩系化合物;
4,4'−チオビス(3−メチル−6−tert−ブチル
フェノール)等のビスフェノール系化合物;2−メルカ
プトベンツイミダゾール、2−メルカプトメチルベンツ
イミダゾール等のベンツイミダゾール系化合物;チオジ
プロピオン酸ジラウリル等の有機チオ酸系化合物;N−
シクロヘキシルチオフタルイミド等のスコーチ防止剤;
4,4'−ジチオモルホリン等の加硫剤;o,o'−ジベン
ズアミドジフェニルジスルフィド等の素練促進剤;その
他、2−ベンゾキサゾールチオール、2,5−ジメルカ
プト−1,3,4−チアジアゾール、2,5−ジメルカプ
ト−1,3,4−チアジアゾール 二カリウム、ジエチル
ジチオカルバミン酸ジエチルアンモニウム、ジエチルジ
チオカルバミン酸ナトリウム三水和物、チオグリコー
ル、チオグリコール酸、チオジグリコール酸、β−チオ
ジグリコール等の含イオウ化合物を挙げることができ
る。
That is, the sulfur-containing compound as the component (d) is a compound containing a sulfur atom in the molecule.
g + refers to a compound that functions as a substitution inhibitor, and examples thereof include thiourea, thiourea dioxide, and 1-acetyl-2.
-Thiourea, allylthiourea, ethylenethiourea, sy
m-di-o-tolylthiourea, sym.-di-p-tolylthiourea, 1,3-bis (hydroxymethyl) thiourea, 1-phenyl-3- (2-thiazolyl) -2-thiourea, hydrochloric acid Benzylisothiourea, 2-malonylthiourea, S-methylisothiourea sulfate, N, N'-diphenylthiourea, trimethylthiourea, N, N'-diethylthiourea, 1-naphthylthiourea, 1,3-bis (dimethyl Thiourea compounds such as aminopropyl) -2-thiourea and tributylthiourea; 2-mercaptobenzothiazole, dibenzothiazole disulfide, and cyclohexylamine salt of 2-mercaptobenzothiazole;
Thiazole compounds such as (N, N-diethylthiocarbamoylthio) benzothiazole, 2- (4′-morpholinodithio) benzothiazole; N-cyclohexyl-2
-Benzothiazolylsulfenamide, N-tert-
Butyl-2-benzothiazolylsulfenamide, N-
Sulfenamide-based compounds such as oxydiethylene-2-benzothiazolylsulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide,
Thiuram compounds such as tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide, dipentamethylenethiuram tetrasulfide; pentamethylenedithiocarbamic acid piperidine salt;
Dithiocarbamate compounds such as pipecolyldithiocarbamic acid pipecoline salt, sodium diethyldithiocarbamate and sodium dibutyldithiocarbamate;
Bisphenol compounds such as 4,4'-thiobis (3-methyl-6-tert-butylphenol); Benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; Organic compounds such as dilauryl thiodipropionate Thioic acid compound; N-
Anti-scorch agents such as cyclohexylthiophthalimide;
Vulcanizing agents such as 4,4'-dithiomorpholine; smelting accelerators such as o, o'-dibenzamide diphenyl disulfide; other, 2-benzoxazolethiol, 2,5-dimercapto-1,3,4- Thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole dipotassium, diethylammonium diethyldithiocarbamate, sodium diethyldithiocarbamate trihydrate, thioglycol, thioglycolic acid, thiodiglycolic acid, β-thiodiglycol And other sulfur-containing compounds.

【0016】また(e)成分である非イオン界面活性剤
は、密着性よく緻密で平滑なめっき面を得るために使用
されるものであり、その好ましい具体例としては、下記
一般式(1)〜(4)の何れかで表される化合物を主成
分とするものが挙げられる。
The nonionic surfactant (e) is used to obtain a dense and smooth plated surface with good adhesion, and a preferred specific example is the following general formula (1): And compounds containing a compound represented by any one of (4) to (4) as a main component.

【0017】[0017]

【化1】 Embedded image

【0018】[式中、Rは、炭素数8〜22の脂肪族
アルコール、炭素数1〜25のアルキル基で置換された
フェノール、炭素数1〜25のアルキルで置換されたβ
−ナフトール、炭素数1〜25のアルコキシル化リン
酸、炭素数8〜22の脂肪酸でエステル化したソルビタ
ンもしくはスチレン化フェノール(そのフェノール核の
水素は炭素数1〜4のアルキル基またはフェニル基で置
換されてもよい)からそれらの水酸基の水素原子を除い
て得られる残基または水素原子を示し、Rは炭素数8
〜18のアルキル基を、RおよびRは水素原子また
は炭素数1〜5のアルキル基を示し、Aは−CHCH
O−を、Bは−CHCH(CH)O−を示し、m
およびnは0〜30の整数、m、n、mおよ
びnは0〜40の整数、mおよびnは0〜20の
整数をそれぞれ示す。 但し、mとn、m
、mとnおよびmとnがそれぞれ同時に0
となることはなく、m〜mおよびn〜nは、置
換基における総数を意味し、AとBの存在位置は限定さ
れないものとする]
Wherein R 1 is an aliphatic alcohol having 8 to 22 carbon atoms, a phenol substituted with an alkyl group having 1 to 25 carbon atoms, and a β substituted with an alkyl group having 1 to 25 carbon atoms.
-Naphthol, alkoxylated phosphoric acid having 1 to 25 carbon atoms, sorbitan or styrenated phenol esterified with a fatty acid having 8 to 22 carbon atoms (the hydrogen of the phenol nucleus is substituted by an alkyl group having 1 to 4 carbon atoms or a phenyl group) Or a hydrogen atom obtained by removing a hydrogen atom of those hydroxyl groups from R 2) , and R 2 has 8 carbon atoms.
And R 3 and R 4 each represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A represents —CH 2 CH
2 O—, B represents —CH 2 CH (CH 3 ) O—, m
1 and n 1 represent an integer of 0 to 30, m 2 , n 2 , m 3 and n 3 represent an integer of 0 to 40, and m 4 and n 4 represent an integer of 0 to 20, respectively. However, m 1 and n 1 , m 2 and n 2 , m 3 and n 3, and m 4 and n 4 are simultaneously 0.
And m 1 to m 4 and n 1 to n 4 mean the total number of the substituents, and the positions of A and B are not limited.]

【0019】これらの非イオン界面活性剤は、いずれも
対応する脂肪族アルコール、置換フェノール、アルキル
で置換β−ナフトール、アルコキシル化リン酸、エステ
ル化したソルビタン、スチレン化フェノール、エチレン
ジアミン、モノアルキルアミン、アルキル置換されてい
ても良いジフェノールにエチレンオキサイドおよび/ま
たはプロピレンオキサイドを所定のモル数付加させるこ
とによって調製できるものであるが、また、市販品とし
ても容易に入手できるものである。
All of these nonionic surfactants include the corresponding aliphatic alcohol, substituted phenol, alkyl-substituted β-naphthol, alkoxylated phosphoric acid, esterified sorbitan, styrenated phenol, ethylenediamine, monoalkylamine, It can be prepared by adding a predetermined number of moles of ethylene oxide and / or propylene oxide to a diphenol which may be alkyl-substituted, and is also easily available as a commercial product.

【0020】市販品の例としては、前記式(1)で表さ
れるものとして、プルラファックLF401(BASF
社製)等が、式(2)で表されるものとして、テトロニ
ックTR−702(旭電化工業社製)等がそれぞれ挙げ
られ、また、式(3)で表されるものはナイミーンL−
207(日本油脂社製)等、式(4)で表されるもの
は、リポノックスNC−100(ライオン社製)等がそ
れぞれ挙げられる。
As an example of a commercially available product, pullulafaf LF401 (BASF
And Tetronic TR-702 (manufactured by Asahi Denka Kogyo Co., Ltd.) and the like represented by Formula (2), respectively, and those represented by Formula (3) are represented by Nymein L-
Examples of those represented by the formula (4) such as 207 (manufactured by NOF Corporation) include Liponox NC-100 (manufactured by Lion Corporation).

【0021】本発明の低融点金属バンプの形成方法にお
いては、上記しためっき浴を用いることと同時に、電気
めっきのための電流波形の設定が重要である。すなわ
ち、本発明方法でバンプを形成するには、めっき電流波
形として、(1)繰返し多段矩形波または(2)繰返し
パルス矩形波を用いることが必要である。
In the method of forming a low melting point metal bump of the present invention, it is important to use the above-mentioned plating bath and to set a current waveform for electroplating. That is, in order to form a bump by the method of the present invention, it is necessary to use (1) a repetitive multistage rectangular wave or (2) a repetitive pulse rectangular wave as a plating current waveform.

【0022】このうち、(1)の繰返し多段矩形波は、
階段状に電流密度を変化させる多段階矩形波を繰り返し
行うことにより得られる波形であり、その例を図1に示
す。本発明のバンプ形成方法を実施するには、多段矩形
波の段数として4から100段程度とすれば良く、各段
の電流密度範囲は、0.1〜30A/dm程度とし、
各段の電流密度の差としては、0.1から5A/dm
程度、各電流密度でめっきを実施する時間としては、
0.001から10秒程度、好ましくは0.01から程度
とし、バンプが形成されるまでの適当な時間これを繰り
返せばよい。
Of these, the repetitive multistage rectangular wave of (1) is:
FIG. 1 shows a waveform obtained by repeatedly performing a multi-step rectangular wave in which the current density is changed in a stepwise manner. In order to carry out the bump forming method of the present invention, the number of steps of the multi-stage rectangular wave may be about 4 to 100 steps, and the current density range of each step is about 0.1 to 30 A / dm 2 ,
The difference between the current densities at each stage is from 0.1 to 5 A / dm 2
The plating time at each current density is as follows:
The time may be set to about 0.001 to 10 seconds, preferably about 0.01, and this may be repeated for an appropriate time until the bump is formed.

【0023】一方、(2)の繰返しパルス矩形波は、一
定の電流密度でオン・オフを繰り返す波形であり、その
例を図2に示す。 この波形を利用して本発明のバンプ
形成方法を実施するには、オン時の電流密度として、
0.1から30A/dm程度とし、オン時間を0.00
1から1秒程度、オフ時間を0.001から1秒程度と
し、バンプが形成されるまでの適当な時間これを繰り返
せばよい。
On the other hand, the repetitive pulse rectangular wave of (2) is a waveform that repeatedly turns on and off at a constant current density, and an example is shown in FIG. In order to carry out the bump forming method of the present invention using this waveform, the current density at the time of ON is determined as
0.1 to 30 A / dm 2 and the on-time is 0.00
The off time may be set to about 1 to 1 second and the off time may be set to about 0.001 to 1 second, and this may be repeated for an appropriate time until the bump is formed.

【0024】上記のような波形の電流は、電流波形のプ
ログラム機構を持った整流器を利用すれば良く、前記の
電気めっき浴と組み合わせることにより初めてハンダめ
っきによるバンプに代わり得る低融点金属バンプが得ら
れる。 なお、本発明方法においては、前記電気めっき
浴を用いても、上記電流波形に代えて繰り返しのない多
段矩形波(図3)や直流波形(図4)を用いた場合は、
粒状析出やコブ析出となってしまい、良好な形状のバン
プは得られない。
The current having the above-mentioned waveform can be obtained by using a rectifier having a current waveform programming mechanism. By combining with the above-mentioned electroplating bath, a low melting point metal bump which can be replaced by a solder plating bump is obtained. Can be In the method of the present invention, even when the electroplating bath is used, when a multi-stage rectangular wave (FIG. 3) or a DC waveform (FIG. 4) without repetition is used instead of the current waveform,
Granular precipitation or bump deposition results, and a bump having a good shape cannot be obtained.

【0025】[0025]

【実施例】次に、実施例および試験例を挙げ、更に詳し
く説明するが、本発明はこれら実施例等になんら制約さ
れるものではない。
Next, the present invention will be described in more detail with reference to examples and test examples, but the present invention is not limited to these examples.

【0026】実 施 例 1 錫−銀合金めっき浴の調製:下記の組成で2種の錫−銀
合金めっき浴を調製した。 〔 錫−銀合金めっき浴1 〕 ( 組 成 ) メタンスルホン酸錫 110g/l メタンスルホン酸銀 0.8g/l メタンスルホン酸(遊離酸) 160g/l チオ尿素 5g/l N,N−ジエチルチオ尿素 5g/l アルキルアミンのエチレン 8g/l オキサイド7モル付加物 アルキルフェノールのエチ 1g/l レンオキサイド10モル 付加物
Example 1 Preparation of tin-silver alloy plating bath: Two types of tin-silver alloy plating baths were prepared with the following compositions. [Tin-silver alloy plating bath 1] (Composition) Tin methanesulfonate 110 g / l Silver methanesulfonate 0.8 g / l Methanesulfonic acid (free acid) 160 g / l Thiourea 5 g / l N, N-diethylthiourea 5g / l Ethylene 8g / l Oxide 7mol adduct of alkylamine Ethyl Alkylphenol 1g / l Renoxide 10mol adduct

【0027】〔 錫−銀合金めっき浴2 〕 ( 組 成 ) メタンスルホン酸錫 110g/l メタンスルホン酸銀 0.2g/l メタンスルホン酸(遊離酸) 160g/l チオ尿素 5g/l N,N−ジエチルチオ尿素 5g/l アルキルアミンのエチレン 8g/l オキサイド7モル付加物 アルキルフェノールのエチ 1g/l レンオキサイド10モル 付加物[Tin-silver alloy plating bath 2] (Composition) Tin methanesulfonate 110 g / l Silver methanesulfonate 0.2 g / l Methanesulfonic acid (free acid) 160 g / l Thiourea 5 g / l N, N -Diethylthiourea 5 g / l Ethylene 8 g / l oxide 7 mol adduct of alkylamine Ethyl 1 g / l ethylene oxide 10 mol adduct of alkylphenol

【0028】実 施 例 2 繰返し多段矩形波による電気めっき: (a)めっき試料として、フォトリソグラフィの微細加
工技術で数百のパット(信号端子)を形成し、このパッ
ト上にフォトレジストで50〜80ミクロンの開口部を
設けた半導体チップを用いた。実施例1で調製した、錫
−銀合金めっき浴1を用い、図1に示す繰返し多段矩形
波により、この試料にめっきを行った。多段矩形波の各
電流密度は、それぞれ4、5、6、7および8A/dm
であり、各電流密度を1秒づつ取った。そして、この
多段矩形波を繰返し、合計60分に達するまでめっきを
行う。なお、電気めっきの他の条件は、液温40℃で、
液攪拌はスキジー(12m/min)で行い、陽極とし
ては、錫アノードを用いた。
EXAMPLE 2 Electroplating by repeated multi-stage rectangular waves: (a) As a plating sample, hundreds of pads (signal terminals) were formed by photolithography microfabrication technology, and 50 to 50 pads were formed on the pads with photoresist. A semiconductor chip provided with an opening of 80 microns was used. Using the tin-silver alloy plating bath 1 prepared in Example 1, the sample was plated by the repetitive multistage rectangular wave shown in FIG. The current densities of the multi-stage rectangular wave were 4, 5, 6, 7, and 8 A / dm, respectively.
2 , and each current density was taken for 1 second. Then, the multi-stage rectangular wave is repeated, and plating is performed until the total reaches 60 minutes. The other conditions of the electroplating were as follows:
The liquid was stirred with a squeegee (12 m / min), and a tin anode was used as the anode.

【0029】(b)繰り返し多段矩形波の各電流密度を
0.01秒づつ取る以外は、上記(a)と同じ条件で上
記の50〜80ミクロンの開口部を設けた半導体チップ
上にめっきを行った。
(B) Plating is performed on the semiconductor chip provided with the 50-80 micron opening under the same conditions as in (a) above, except that the current density of the repetitive multi-stage rectangular wave is taken every 0.01 second. went.

【0030】(c)実施例1で調製した錫−銀合金めっ
き浴2を用いる以外は、上記(a)と同じ条件で上記の
50〜80ミクロンの開口部を設けた半導体チップ上に
めっきを行った。
(C) Plating is performed on the semiconductor chip provided with the opening of 50 to 80 μm under the same conditions as in (a) except that the tin-silver alloy plating bath 2 prepared in Example 1 is used. went.

【0031】(d)実施例1で調製した錫−銀合金めっ
き浴2を用い、繰り返し多段矩形波の各電流密度を0.
01秒づつ取る以外は、上記(a)と同じ条件で上記の
50〜80ミクロンの開口部を設けた半導体チップ上に
めっきを行った。
(D) Using the tin-silver alloy plating bath 2 prepared in Example 1, each current density of the repetitive multi-step rectangular wave was set to 0.1.
Plating was performed on the semiconductor chip provided with the opening of 50 to 80 μm under the same conditions as in (a) except that it was taken every 01 second.

【0032】実 施 例 3 繰返し多段矩形波による電気めっき: (a)めっき試料として、フォトリソグラフィの微細加
工技術で数百のパット(信号端子)を形成し、このパッ
ト上にフォトレジストで50〜80ミクロンの開口部を
設けた半導体チップを用いた。実施例1で調製した、錫
−銀合金めっき浴1を用い、図1に示す繰返し多段矩形
波により、この試料にめっきを行った。多段矩形波の各
電流密度は、それぞれ1、2、3、4および5A/dm
であり、各電流密度を1秒づつ取る。そして、この多
段矩形波を繰返し、合計120分めっきを行う。なお、
電気めっきの他の条件は、液温40℃で、液攪拌はスキ
ジー(12m/min)で行い、陽極としては、錫アノ
ードを用いた。
EXAMPLE 3 Electroplating by repeated multi-stage rectangular waves: (a) As a plating sample, hundreds of pads (signal terminals) were formed by photolithography fine processing technology, and 50 to 50 pads were formed on the pads using a photoresist. A semiconductor chip provided with an opening of 80 microns was used. Using the tin-silver alloy plating bath 1 prepared in Example 1, the sample was plated by the repetitive multistage rectangular wave shown in FIG. The current densities of the multi-stage rectangular wave are 1, 2, 3, 4, and 5 A / dm, respectively.
2. Each current density is taken for 1 second. Then, this multi-stage rectangular wave is repeated, and plating is performed for a total of 120 minutes. In addition,
The other conditions of the electroplating were as follows: the liquid temperature was 40 ° C., the liquid was stirred by squeegee (12 m / min), and a tin anode was used as the anode.

【0033】(b)繰り返し多段矩形波の各電流密度を
0.01秒づつ取る以外は、上記(a)と同じ条件で上
記の50〜80ミクロンの開口部を設けた半導体チップ
上にめっきを行った。
(B) Plating is performed on the semiconductor chip provided with the opening of 50 to 80 μm under the same conditions as in (a) above, except that the current density of the repetitive multi-stage rectangular wave is taken every 0.01 second. went.

【0034】(c)実施例1で調製した錫−銀合金めっ
き浴2を用いる以外は、上記(a)と同じ条件で上記の
50〜80ミクロンの開口部を設けた半導体チップ上に
めっきを行った。
(C) Plating is performed on the semiconductor chip provided with the opening of 50 to 80 μm under the same conditions as in (a) except that the tin-silver alloy plating bath 2 prepared in Example 1 is used. went.

【0035】(d)実施例1で調製した錫−銀合金めっ
き浴2を用い、繰り返し多段矩形波の各電流密度を0.
01秒づつ取る以外は、上記(a)と同じ条件で上記の
50〜80ミクロンの開口部を設けた半導体チップ上に
めっきを行った。
(D) Using the tin-silver alloy plating bath 2 prepared in Example 1, each current density of the repetitive multi-step rectangular wave was set to 0.3.
Plating was performed on the semiconductor chip provided with the opening of 50 to 80 μm under the same conditions as in (a) except that it was taken every 01 second.

【0036】実 施 例 4 繰返しパルス矩形波による電気めっき: (a)実施例1で調製した、錫−銀合金めっき浴1を用
い、図2に示す繰返しパルス矩形波により、実施例2
(a)で用いたのと同じ50〜80ミクロンの開口部を
設けた半導体チップ上にめっきを行った。パルス矩形波
の電流密度は、12A/dmであり、オン時間および
オフ時間をそれぞれ0.005秒秒づつ取る。そして、
このパルス矩形波を繰返し、合計60分に達するまでめ
っきを行う。なお、電気めっきの他の条件は、液温40
℃で、液攪拌はスキジー(12m/min)で行い、陽
極としては、錫アノードを用いた。
Example 4 Electroplating by Repetitive Pulse Square Wave: (a) Using the tin-silver alloy plating bath 1 prepared in Example 1, the repetition pulse square wave shown in FIG.
Plating was performed on the semiconductor chip provided with the same 50-80 micron opening as used in (a). The current density of the pulse rectangular wave is 12 A / dm 2 , and the on-time and the off-time each take 0.005 seconds. And
This pulse rectangular wave is repeated, and plating is performed until a total of 60 minutes is reached. The other conditions of the electroplating are as follows:
The solution was stirred at ℃ with a squeegee (12 m / min), and a tin anode was used as the anode.

【0037】(b)パルス矩形波のオン時間およびオフ
時間をそれぞれ0.01秒づつ取る以外は、上記(a)
と同じ条件で前記の50〜80ミクロンの開口部を設け
た半導体チップ上にめっきを行った。
(B) The above (a) except that the on-time and off-time of the pulse rectangular wave are each 0.01 seconds.
Plating was performed on the semiconductor chip provided with the opening of 50 to 80 microns under the same conditions as described above.

【0038】(c)実施例1で調製した錫−銀合金めっ
き浴2を用いる以外は、上記(a)と同じ条件で前記の
50〜80ミクロンの開口部を設けた半導体チップ上に
めっきを行った。
(C) Plating is performed on the semiconductor chip having the opening of 50 to 80 μm under the same conditions as in (a) except that the tin-silver alloy plating bath 2 prepared in Example 1 is used. went.

【0039】(d)実施例1で調製した錫−銀合金めっ
き浴2を用い、パルス矩形波のオン時間およびオフ時間
をそれぞれ0.01秒づつ取る以外は、上記(a)と同
じ条件で前記の50〜80ミクロンの開口部を設けた半
導体チップ上にめっきを行った。
(D) Using the tin-silver alloy plating bath 2 prepared in Example 1, under the same conditions as in (a) above, except that the on-time and off-time of the pulsed square wave are each 0.01 seconds. Plating was performed on the semiconductor chip provided with the opening of 50 to 80 microns.

【0040】比 較 例 1 多段矩形波による電気めっき: (a)実施例1で調製した、錫−銀合金めっき浴1を用
い、図3に示す多段矩形波により、実施例2(a)で用
いたのと同じ50〜80ミクロンの開口部を設けた半導
体チップ上にめっきを行った。 多段矩形波の各電流密
度は、それぞれ4、5、6、7および8A/dm
し、各電流密度を12分ずつ取り、全部で60分めっき
を行った。めっきの他の条件は、実施例1(a)と同じ
である。
Comparative Example 1 Electroplating by Multi-Square Waves: (a) Using the tin-silver alloy plating bath 1 prepared in Example 1 and the multi-step rectangular waves shown in FIG. Plating was performed on a semiconductor chip provided with the same 50-80 micron opening as used. The current densities of the multi-stage rectangular wave were 4, 5, 6, 7, and 8 A / dm 2 respectively, and each current density was taken for 12 minutes, and plating was performed for a total of 60 minutes. Other conditions of the plating are the same as those in Example 1 (a).

【0041】(b)実施例1で調製した、錫−銀合金め
っき浴2を用いる以外は、上記(a)と同様にしてめっ
きをおこなった。
(B) Plating was carried out in the same manner as in (a) except that the tin-silver alloy plating bath 2 prepared in Example 1 was used.

【0042】比 較 例 2 整流波による電気めっき: (a)実施例1で調製した、錫−銀合金めっき浴1を用
い、電流密度4A/dmの直流により、実施例2
(a)で用いたのと同じ50〜80ミクロンの開口部を
設けた半導体チップ上にめっきを行った。 めっき時間
は、全部で90分とした。
Comparative Example 2 Electroplating by rectified wave: (a) Using the tin-silver alloy plating bath 1 prepared in Example 1 and applying a direct current having a current density of 4 A / dm 2 ,
Plating was performed on the semiconductor chip provided with the same 50-80 micron opening as used in (a). The plating time was 90 minutes in total.

【0043】(b)電流密度を8A/dmとし、めっ
き時間を全部で60分とする以外は、上記(a)と同様
にしてめっきを行った。
(B) Plating was carried out in the same manner as in (a) above, except that the current density was 8 A / dm 2 and the plating time was 60 minutes in total.

【0044】(c)実施例1で調製した、錫−銀合金め
っき浴2を用いる以外は、上記(a)と同様にしてめっ
きをおこなった。
(C) Plating was carried out in the same manner as in (a) above, except that the tin-silver alloy plating bath 2 prepared in Example 1 was used.

【0045】(d)実施例1で調製した錫−銀合金めっ
き浴2を用い、電流密度を8A/dmとし、めっき時
間を全部で60分とする以外は、上記(a)と同様にし
てめっきを行った。
(D) Using the tin-silver alloy plating bath 2 prepared in Example 1, the current density was 8 A / dm 2 , and the plating time was 60 minutes in total. Plating.

【0046】試 験 例 1 実施例2および3並びに比較例1および2のめっきによ
り形成されたマッシュルームバンプおよびストレートバ
ンプの形状を、走査型電子顕微鏡(SEM)を用いて観
察した。また、析出した各めっき被膜については、王水
で溶解し、その成分組成を発光光度分光計(ICP)で
分析した。この結果を表1に示す。
Test Example 1 The shapes of the mushroom bumps and the straight bumps formed by plating in Examples 2 and 3 and Comparative Examples 1 and 2 were observed using a scanning electron microscope (SEM). Each of the deposited plating films was dissolved in aqua regia, and the composition of the components was analyzed by an emission spectrophotometer (ICP). Table 1 shows the results.

【0047】[0047]

【表1】 [Table 1]

【0048】この結果から明らかなように、繰返し多段
矩形波を利用する実施例2および3や、繰返しパルス矩
形波を利用する実施例4では良好なマッシュルーム形状
やストレート形状を有するバンプが得られた。これに対
し、単なる多段矩形波を用いた比較例1や、直流を用い
た比較例2では、好ましい形状のバンプは得られなかっ
た。
As is apparent from the results, in Examples 2 and 3 using the repetitive multi-stage rectangular wave and Example 4 using the repetitive pulse rectangular wave, bumps having a good mushroom shape and straight shape were obtained. . On the other hand, in Comparative Example 1 using a simple multi-stage rectangular wave and Comparative Example 2 using a direct current, a bump having a preferable shape could not be obtained.

【0049】[0049]

【発明の効果】本発明の低融点金属バンプの形成方法に
よれば、鉛を使用することなしに、良好な形状のバンプ
を形成することが可能となる。そして、本発明方法によ
り得られるパンプは鉛を含まないためα線による半導体
メモリー素子を反転させるような誤操作を引き起こすこ
となく、また、環境汚染の面からも有利である。従っ
て、本発明方法は、半導体チップやパッケージのバンプ
形成を電気めっきで行う方法として極めて有利なもので
ある。
According to the method for forming a low melting point metal bump of the present invention, a bump having a good shape can be formed without using lead. Since the pump obtained by the method of the present invention does not contain lead, it does not cause an erroneous operation such as inverting a semiconductor memory element by α-rays, and is also advantageous from the viewpoint of environmental pollution. Therefore, the method of the present invention is extremely advantageous as a method for forming bumps on a semiconductor chip or a package by electroplating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 繰返し多段矩形波を示す図面FIG. 1 is a drawing showing a repetitive multi-stage rectangular wave

【図2】 繰返しパルス波を示す図面FIG. 2 is a drawing showing a repetitive pulse wave.

【図3】 多段矩形波を示す図面FIG. 3 is a drawing showing a multi-stage rectangular wave.

【図4】 直流波を示す図面 以 上FIG. 4 is a drawing showing a DC wave.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/288 H01L 21/288 M 21/92 603A Fターム(参考) 4K023 AB34 AB40 CB05 CB11 CB13 4K024 AA15 BB12 CA01 CA02 CA06 CA07 GA16 4M104 BB36 CC01 DD52 5F044 KK19 QQ03 QQ04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/288 H01L 21/288 M 21/92 603A F term (Reference) 4K023 AB34 AB40 CB05 CB11 CB13 4K024 AA15 BB12 CA01 CA02 CA06 CA07 GA16 4M104 BB36 CC01 DD52 5F044 KK19 QQ03 QQ04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気めっきにより半導体チップまたはパ
ッケージに低温融解性金属バンプを形成する方法におい
て、電気めっき浴として次の成分、 (a)少なくとも一種のアルカンスルホン酸イオン又は
アルカノールスルホン酸イオンを5〜300g/l、 (b)Agイオンを0.01〜10g/l、 (c)Sn2+およびBi3+から選ばれた金属イオン
の1種を0.1〜40g/L、 (d)含イオウ化合物の1種を0.01〜40g/l、 (e)非イオン界面活性剤を0.5〜30g/l を含有する銀系合金めっき浴を用い、電流を矩形パルス
波または多段矩形波の繰り返しで与えることを特徴とす
る低融点金属バンプの形成方法。
1. A method for forming a low-melting metal bump on a semiconductor chip or a package by electroplating, wherein the electroplating bath comprises the following components: (a) at least one alkanesulfonic acid ion or alkanolsulfonic acid ion of 5 to 5%; 300 g / l, (b) 0.01 to 10 g / l of Ag ion, (c) 0.1 to 40 g / L of one metal ion selected from Sn 2+ and Bi 3+ , (d) sulfur-containing compound (E) A silver-based alloy plating bath containing (e) a nonionic surfactant in a concentration of 0.5 to 30 g / l, and a current is repeated as a rectangular pulse wave or a multistage rectangular wave. Forming a low melting point metal bump.
【請求項2】 矩形パルス波または多段矩形波の繰り返
し周期が0.001〜10秒である請求項第1項記載の
低融点金属バンプの形成方法。
2. The method according to claim 1, wherein the repetition period of the rectangular pulse wave or the multistage rectangular wave is 0.001 to 10 seconds.
【請求項3】 多段矩形波が段階的に電流が増加する階
段状の矩形波である請求項第1項または第2項記載の低
融点金属バンプの形成方法。
3. The method for forming a low melting point metal bump according to claim 1, wherein the multi-stage rectangular wave is a step-like rectangular wave in which the current increases stepwise.
【請求項4】 多段矩形波の各段での電流密度が0.1
〜30A/dmの範囲であり、階段状の矩形波発生時
間が0.001〜10秒である請求項第1項ないし第3
項の何れかの項記載の低融点金属バンプの形成方法。
4. The current density at each stage of the multi-stage rectangular wave is 0.1.
4 to 30 A / dm 2 , and the stepwise rectangular wave generation time is 0.001 to 10 seconds.
The method for forming a low-melting metal bump according to any one of the above items.
【請求項5】 矩形パルス波のパルス時間と休止時間の
比率が、1:1〜10:1である請求項第1項または第
2項記載の低融点金属バンプの形成方法。
5. The method for forming a low melting point metal bump according to claim 1, wherein the ratio between the pulse time of the rectangular pulse wave and the pause time is 1: 1 to 10: 1.
【請求項6】 矩形パルス波のパルス時の電流密度が
0.1〜30A/dm2であり、矩形パルス波発生時間が
0.001〜10秒である請求項第1項、第2項または
第5項の何れかの項記載の低融点金属バンプの形成方
法。
6. The method according to claim 1, wherein the current density at the time of the pulse of the rectangular pulse wave is 0.1 to 30 A / dm 2 , and the rectangular pulse wave generation time is 0.001 to 10 seconds. 6. The method for forming a low-melting-point metal bump according to claim 5.
JP10269686A 1998-09-24 1998-09-24 Formation of low-melting point metal bump Pending JP2000100850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269686A JP2000100850A (en) 1998-09-24 1998-09-24 Formation of low-melting point metal bump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269686A JP2000100850A (en) 1998-09-24 1998-09-24 Formation of low-melting point metal bump

Publications (1)

Publication Number Publication Date
JP2000100850A true JP2000100850A (en) 2000-04-07

Family

ID=17475786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269686A Pending JP2000100850A (en) 1998-09-24 1998-09-24 Formation of low-melting point metal bump

Country Status (1)

Country Link
JP (1) JP2000100850A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308006A (en) * 2003-04-07 2004-11-04 Rohm & Haas Electronic Materials Llc Electroplating composition, and method
JP2008536011A (en) * 2005-04-12 2008-09-04 デーエル.−イーエヌゲー.マックス シュレッター ゲーエムベーハー ウント ツェーオー.カーゲー Electrolyte and method for tin-bismuth alloy layer deposition
JP2010189753A (en) * 2009-02-20 2010-09-02 Daiwa Fine Chemicals Co Ltd (Laboratory) Plating bath and plating method using the same
JP2011256415A (en) * 2010-06-07 2011-12-22 Shinko Leadmikk Kk Electronic part material
US9656230B2 (en) 2007-11-28 2017-05-23 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
JP2017218662A (en) * 2016-06-10 2017-12-14 三菱マテリアル株式会社 Plating liquid
CN112941578A (en) * 2019-12-10 2021-06-11 罗门哈斯电子材料有限责任公司 Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
WO2022113787A1 (en) 2020-11-25 2022-06-02 三菱マテリアル株式会社 Tin alloy plating solution
JP2023526376A (en) * 2020-06-05 2023-06-21 マクダーミッド エンソン インコーポレイテッド Silver/tin electroplating bath and method of use

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308006A (en) * 2003-04-07 2004-11-04 Rohm & Haas Electronic Materials Llc Electroplating composition, and method
JP2008536011A (en) * 2005-04-12 2008-09-04 デーエル.−イーエヌゲー.マックス シュレッター ゲーエムベーハー ウント ツェーオー.カーゲー Electrolyte and method for tin-bismuth alloy layer deposition
US9656230B2 (en) 2007-11-28 2017-05-23 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
JP2010189753A (en) * 2009-02-20 2010-09-02 Daiwa Fine Chemicals Co Ltd (Laboratory) Plating bath and plating method using the same
JP2011256415A (en) * 2010-06-07 2011-12-22 Shinko Leadmikk Kk Electronic part material
JP2017218662A (en) * 2016-06-10 2017-12-14 三菱マテリアル株式会社 Plating liquid
JP2021091959A (en) * 2019-12-10 2021-06-17 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Acidic aqueous two-component silver-bismuth alloy electroplating composition and method
EP3835459A1 (en) * 2019-12-10 2021-06-16 Rohm and Haas Electronic Materials LLC Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
CN112941578A (en) * 2019-12-10 2021-06-11 罗门哈斯电子材料有限责任公司 Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
US20220112619A1 (en) * 2019-12-10 2022-04-14 Rohm And Haas Electronic Materials Llc Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
JP7068424B2 (en) 2019-12-10 2022-05-16 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Acidic water-based two-component silver-bismuth alloy electroplating composition and method
JP2023526376A (en) * 2020-06-05 2023-06-21 マクダーミッド エンソン インコーポレイテッド Silver/tin electroplating bath and method of use
JP7462799B2 (en) 2020-06-05 2024-04-05 マクダーミッド エンソン インコーポレイテッド Silver/tin electroplating bath and method of use
WO2022113787A1 (en) 2020-11-25 2022-06-02 三菱マテリアル株式会社 Tin alloy plating solution
KR20230058528A (en) 2020-11-25 2023-05-03 미쓰비시 마테리알 가부시키가이샤 tin alloy plating solution
US11879182B2 (en) 2020-11-25 2024-01-23 Mitsubishi Materials Corporation Tin alloy plating solution

Similar Documents

Publication Publication Date Title
Green Gold electrodeposition for microelectronic, optoelectronic and microsystem applications
JP3012182B2 (en) Silver and silver alloy plating bath
EP1001054B1 (en) Tin-copper alloy electroplating bath and plating process therewith
JP4758614B2 (en) Electroplating composition and method
US9896765B2 (en) Pre-treatment process for electroless plating
Dimitrijević et al. Non-cyanide electrolytes for gold plating–a review
JP6133056B2 (en) Tin or tin alloy plating solution
JP2000100850A (en) Formation of low-melting point metal bump
CN102369309B (en) Electroless gold plating solution for forming fine gold structure, method of forming fine gold structure using same, and fine gold structure formed using same
US20110220513A1 (en) Plating bath and method
TW211044B (en)
JP2007284733A (en) Electrotinning bath, tinned film, electrotinning method and electronic apparatus parts
JP2003049293A (en) Tinning
JP2004124249A (en) Tin plating method
Green et al. Speciation analysis of Au (I) electroplating baths containing sulfite and thiosulfate
US11274375B2 (en) Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
JP2002080993A (en) Tin-copper alloy electroplating bath and plating method using the same
KR20060061395A (en) Improved copper bath for electroplating fine circuitry on semiconductor chips
TW200307768A (en) Via filling method, printed circuit board, and wafer
KR20140002708A (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
WO2007066751A1 (en) Method for producing metal thin body
JP2000328286A (en) Tin-silver-base alloy electroplating bath
KR20190127814A (en) Plating amount
JP4762423B2 (en) Void-free copper plating method
JP2005314750A (en) Method for plating tin or tin alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830