JP2000195513A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JP2000195513A JP2000195513A JP10367373A JP36737398A JP2000195513A JP 2000195513 A JP2000195513 A JP 2000195513A JP 10367373 A JP10367373 A JP 10367373A JP 36737398 A JP36737398 A JP 36737398A JP 2000195513 A JP2000195513 A JP 2000195513A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- composite oxide
- positive electrode
- active material
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池の保存特性およびサイクル特性を含めた実用性能を改
善するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to improve the practical performance of a non-aqueous electrolyte secondary battery, including its storage characteristics and cycle characteristics.
【0002】[0002]
【従来の技術】近年の電子技術の発展により、驚くべき
速度で機器の小型、軽量化が進められている。このた
め、移動体通信機器やポータブルコンピュータなどのモ
バイル機器が広く普及し始めていて、これらモバイル機
器の電源として高エネルギー密度の二次電池が要望され
ている。中でも、非水電解質二次電池は従来のニカド電
池やニッケル水素電池以上の高電圧が期待できることか
ら、機器の更なる小型化、軽量化が期待できる電源であ
るとして渇望されている。しかしながら、リチウム金属
およびリチウム合金を負極材料として用いた非水電解質
二次電池では、充放電を繰り返した時に負極上にリチウ
ムの樹枝状突起が形成されサイクル性能が低下したり、
高温下での信頼性に問題があるなどの理由によりなかな
か実用化されなかった。2. Description of the Related Art With the recent development of electronic technology, devices have been reduced in size and weight at a surprising speed. For this reason, mobile devices such as mobile communication devices and portable computers have begun to spread widely, and secondary batteries having a high energy density have been demanded as power sources for these mobile devices. Above all, non-aqueous electrolyte secondary batteries can be expected to have a higher voltage than conventional nickel-cadmium batteries or nickel-metal hydride batteries, and are therefore in great demand as power sources that can be expected to further reduce the size and weight of equipment. However, in a nonaqueous electrolyte secondary battery using lithium metal and lithium alloy as a negative electrode material, when charge and discharge are repeated, dendritic projections of lithium are formed on the negative electrode, and cycle performance is reduced,
It has not been put to practical use because of problems such as reliability at high temperatures.
【0003】これらの問題点を解決する手段として、負
極活物質としてリチウムを吸蔵放出可能な炭素材料、正
極活物質として層状構造を有するリチウムと遷移金属と
の複合酸化物を用いた非水電解液二次電池(特許第19
89293号)が発明され、充電状態で4V以上の電圧
を有することから、モバイル機器の電源として広く普及
するようになってきている。しかし、現在の非水電解液
二次電池はその正極材としてコバルトを大量に含有して
いるLiCoO2を用いていることから高価であり、電源とし
ての低価格化に限界があった。このためコバルト酸化物
をニッケル酸化物やマンガン酸化物で置き換える試みが
活発である。LiNiO2はLiCoO2と比較して値段が安く、電
池のエネルギー密度を向上させることが出来るが、電池
としたときの安全性、特に150℃程度の異常高温時の
安全性確保が問題となっている。一方、LiMn2O4はLiNiO
2と比較してもさらに価格が安く、過充電時や異常高温
時の安全性に優れる電池を構成できるために、LiCoO2を
置き換えられるものとして最も期待されている。As means for solving these problems, a non-aqueous electrolyte using a carbon material capable of inserting and extracting lithium as a negative electrode active material and a composite oxide of lithium and a transition metal having a layered structure as a positive electrode active material. Secondary battery (patent 19
No. 89293), which has a voltage of 4 V or more in a charged state, and is widely used as a power source for mobile devices. However, current non-aqueous electrolyte secondary batteries are expensive because they use LiCoO2 containing a large amount of cobalt as a positive electrode material, and there is a limit in reducing the price as a power source. For this reason, attempts to replace cobalt oxide with nickel oxide or manganese oxide are active. LiNiO2 is inexpensive compared to LiCoO2 and can improve the energy density of the battery, but it has a problem in ensuring the safety of the battery, especially at an abnormally high temperature of about 150 ° C. On the other hand, LiMn2O4 is LiNiO
Compared to 2, the price is lower, and it is possible to construct a battery with excellent safety at the time of overcharge or abnormally high temperature. Therefore, it is most expected that LiCoO2 can be replaced.
【0004】[0004]
【発明が解決しようとする課題】しかし、化学量論組成
のリチウムマンガン酸化物はサイクル性能が悪く、これ
を改善するために、マンガンをコバルト等の他の遷移金
属で置換したり(例えば特許第2058834号)、特
開平5−205744号公報に示されるようにマンガン
の一部をリチウムで置換すること、また、特開平7−2
54403号公報に示されるように酸素の一部をFで置
換することが提案されている。しかし、高温下での充放
電を繰り返すと、マンガンの溶出が起こり、満足できる
サイクル性が得られないという問題点がある。However, lithium manganese oxide having a stoichiometric composition has poor cycle performance, and in order to improve this, manganese is replaced with another transition metal such as cobalt (for example, see Patent No. 2,058,834), as described in JP-A-5-205744, substituting a part of manganese with lithium.
As disclosed in Japanese Patent No. 54403, it has been proposed to partially replace oxygen with F. However, when charge and discharge are repeated at high temperatures, manganese is eluted, and there is a problem that satisfactory cycleability cannot be obtained.
【0005】また、活物質へのイオン伝導性の付与を目
的としてLiCoO2やLiNiO2をLiMn2O4に混合し、負極活物
質であるカーボンとの組み合わせ量を規定することによ
り、40℃でのサイクル特性と過充電時の安全性を達成
しようとする発明が特開平7−235291号公報に開
示されているが、85℃程度の高温保存特性、さらには
過放電後の安全信頼性に問題があった。[0005] In addition, LiCoO2 or LiNiO2 is mixed with LiMn2O4 for the purpose of imparting ionic conductivity to the active material, and the amount of combination with carbon as the negative electrode active material is specified to thereby improve the cycle characteristics at 40 ° C. An invention that attempts to achieve safety during charging is disclosed in Japanese Patent Application Laid-Open No. Hei 7-235291, but has problems in high-temperature storage characteristics of about 85 ° C. and safety reliability after overdischarge.
【0006】また、LiMn2O4はLiイオンが抜ける時に体
積収縮を起こすが、Li(NixCo1-x)O2はLiイオンが抜ける
ときに体積膨張を起こすことに着目し、両者を混合する
ことで正極としての体積変化を抑えることで、サイクル
特性の向上、およびLiMn2O4の低容量を補うことで電池
の高容量化を達成する発明が特開平8−45498号公
報に開示されているが、やはり、高温下でのサイクル特
性、高温下での保存特性、さらには安全信頼性に問題が
あることが分かった。Also, LiMn2O4 causes volume contraction when Li ions escape, while Li (NixCo1-x) O2 causes volume expansion when Li ions escape. Japanese Patent Application Laid-Open No. 8-45498 discloses an invention that achieves a high battery capacity by suppressing the volume change, improving the cycle characteristics, and compensating for the low capacity of LiMn2O4. It was found that there were problems with the cycle characteristics, storage characteristics under high temperature, and safety reliability.
【0007】従って、リチウムマンガン複合酸化物を正
極の主活物質とした非水電解質二次電池に於いては、室
温から60℃程度までの広い範囲でのサイクル特性、6
0〜85℃程度での充電状態及び放電状態での保存安定
性、さらには過充電時の安全信頼性及び過放電後の安全
信頼性など、非水電解質二次電池としての実用性能を満
足する技術は未だ確立されていない。また、近年のコン
ピュータはそのCPUのクロック周波数の増加により、
本体内部での発熱が大きく、通常の使用時でさえ内部は
40℃以上の高温になり、その電源として用いられる電
池には、高温下でのサイクル特性、安定な保存特性、過
充電時、過放電後の安全性がこれまで以上に求められて
おり、課題の解決が急務である。Therefore, in a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide as a main active material of a positive electrode, cycle characteristics in a wide range from room temperature to about 60 ° C.
Satisfies practical performance as a non-aqueous electrolyte secondary battery, such as storage stability in a charged state and a discharged state at about 0 to 85 ° C., and safety reliability during overcharge and safety reliability after overdischarge. The technology has not been established yet. In recent years, the increase in the clock frequency of the CPU in recent computers has caused
The heat generated inside the main unit is large, and the temperature inside the main unit rises to 40 ° C or more even during normal use. The battery used as a power source has cycle characteristics at high temperatures, stable storage characteristics, Safety after discharge is required more than ever, and it is urgent to solve the problem.
【0008】本発明は、広い温度範囲での実用性能を満
足する、リチウムマンガン複合酸化物を正極の主活物質
とした非水電解質二次電池を提供するものである。The present invention provides a non-aqueous electrolyte secondary battery that uses lithium manganese composite oxide as a main active material of a positive electrode and satisfies practical performance in a wide temperature range.
【0009】[0009]
【課題を解決するための手段】このような状況を鑑み
て、リチウムマンガン複合酸化物を主活物質とした非水
電解質二次電池の保存特性、サイクル特性を含めた実用
性能の向上を鋭意検討した結果、本発明に至った。すな
わち、本発明はリチウムを吸蔵放出することが可能な負
極活物質と、リチウムイオン伝導性の非水電解液、及び
リチウムを吸蔵放出することが可能なリチウム含有金属
複合酸化物からなる混合正極活物質を備えた非水電解液
二次電池において、前記混合正極活物質が一般式Li
[LiαMβMn2-α-β]O4-γAγ(ただし、0≦
α≦0.12、0<β≦0.20、0≦γ≦0.05で
あり、MはAl、Cr、Niから選ばれた少なくとも一
つであり、AはF、Clから選ばれた少なくとも一つで
ある)で示されるスピネル構造を有するリチウムマンガ
ン系複合酸化物と、一般式Li[LixNi1-x-y-zCo
yTz]O2(ただし、0≦x≦0.03、0≦y≦0.
3、0≦z≦0.05であり、TはAl、Mg、B、S
rから選ばれた少なくとも一つである)で示される層状
構造を有するリチウムニッケル系複合酸化物の混合物で
ある非水電解質二次電池であり、負極の初回リチウム放
出可能容量(P)と前記混合正極活物質を用いた正極の
初回リチウム吸蔵容量(Q)の比P/Qが1.0以上
1.25以下であり、かつ前記正極の初回電流効率が負
極の初回電流効率よりも小さい非水電解質二次電池であ
る。In view of such circumstances, the present inventors have made intensive studies on the improvement of practical performance including storage characteristics and cycle characteristics of a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a main active material. As a result, the present invention has been achieved. That is, the present invention provides a mixed positive electrode active material comprising a negative electrode active material capable of inserting and extracting lithium, a lithium ion conductive nonaqueous electrolyte, and a lithium-containing metal composite oxide capable of inserting and extracting lithium. In the non-aqueous electrolyte secondary battery provided with the substance, the mixed positive electrode active material has a general formula Li
[LiαMβMn2-α-β] O4-γAγ (where 0 ≦
α ≦ 0.12, 0 <β ≦ 0.20, 0 ≦ γ ≦ 0.05, M is at least one selected from Al, Cr, Ni, and A is selected from F, Cl A lithium manganese-based composite oxide having a spinel structure represented by at least one of the following general formulas: Li [LixNi1-xy-zCo
yTz] O2 (where 0 ≦ x ≦ 0.03, 0 ≦ y ≦ 0.
3, 0 ≦ z ≦ 0.05, and T is Al, Mg, B, S
a non-aqueous electrolyte secondary battery which is a mixture of a lithium-nickel-based composite oxide having a layered structure represented by the following formula: The ratio of the initial lithium storage capacity (Q) P / Q of the positive electrode using the positive electrode active material is 1.0 or more and 1.25 or less, and the initial current efficiency of the positive electrode is smaller than the initial current efficiency of the negative electrode. It is an electrolyte secondary battery.
【0010】以下、本発明についてリチウムマンガン複
合酸化物、リチウムニッケル複合酸化物、負極活物質、
これらの組み合わせの順番で具体的に説明する。本発明
に用いられるリチウムマンガン複合酸化物のマンガン原
料は、特に限定される物ではないが、例としてEMD(E
lectrolytic Mangane Dioxide)、CMD(Chemical Man
gane Dioxide)、γ−MnOOH、MnCO3を挙げることができ
るが、得られるリチウムマンガン酸化物の比表面積を小
さくできることからEMDが好適に用いられる。また、
リチウム原料も、例としてLi2CO3、LiOH、 LiNO3、Li2S
O4、CH3COOLiを挙げることができ、Li2CO3やLiOHが好適
である。これらマンガン原料とリチウム原料と共に置換
金属材料として、Cr2O3、NiOなどの酸化物、Al(OH)3な
どの水酸化物、Al2(SO4)3、Cr(NO3)3、Cr2(SO4)3、NiSO
4、Ni(NO3)2などの塩化物を添加することが可能である
が、NOxやSOxの生成を伴わない酸化物または水酸化物が
好ましい。さらに、スピネル中の酸素占有サイトである
32eサイトにハロゲンを導入する目的でLiCl、LiF、
などを原料に混合することが可能である。Hereinafter, the present invention relates to a lithium manganese composite oxide, a lithium nickel composite oxide, a negative electrode active material,
Specific description will be made in the order of these combinations. The manganese raw material of the lithium manganese composite oxide used in the present invention is not particularly limited.
electrical Mangane Dioxide), CMD (Chemical Man
gane Dioxide), γ-MnOOH, and MnCO3, but EMD is preferably used because the specific surface area of the obtained lithium manganese oxide can be reduced. Also,
Lithium raw materials include Li2CO3, LiOH, LiNO3, Li2S
O4 and CH3COOLi can be mentioned, and Li2CO3 and LiOH are preferable. Along with these manganese raw materials and lithium raw materials, as replacement metal materials, oxides such as Cr2O3, NiO, hydroxides such as Al (OH) 3, Al2 (SO4) 3, Cr (NO3) 3, Cr2 (SO4) 3, NiSO
4. It is possible to add a chloride such as Ni (NO3) 2, but an oxide or hydroxide that does not involve generation of NOx or SOx is preferable. In addition, LiCl, LiF,
Can be mixed with the raw material.
【0011】リチウムマンガン複合酸化物の作成方法と
しては限定されないが、Mがアルミニウムで、Aがフッ
素の場合を例示すると、次のようにして作成することが
可能である。平均粒径が5〜25μmになるように粉砕
したEMDとLi2CO3とAl(OH)3、LiFの混合物をLi/(Mn+A
l)=0.50、F量が所望量になるように混合した後、大気
中750〜950℃で熱処理を行う。ここでマンガンサ
イトのAlによる置換量は0.2以下が好ましい。0.
2を超えると、容量が小さくなり実用的ではない。ま
た、熱処理温度はできるだけ高いほうが比表面積を低減
できるために好ましいが、950℃以上では次の第2の
熱処理でも消失しないスピネル以外の相が生成する。こ
れら混合物を熱処理後、室温付近まで冷却して、Li2CO3
を所望のLi/(Mn+Al)比になるように添加、混合して40
0〜700℃、更に好ましくは500〜650℃で熱処
理することで、所望の組成のリチウムマンガン複合酸化
物を得ることができる。また、最終的なマンガンサイト
である16dサイトにおけるLi/(Mn+Al)の原子比、すな
わちリチウムによる置換量は0.064以下である。
0.064を超えると容量の低下が著しく、また、単一
のスピネル層が得られにくくなる。The method for producing the lithium manganese composite oxide is not limited. For example, when M is aluminum and A is fluorine, it can be produced as follows. A mixture of EMD, Li2CO3, Al (OH) 3, and LiF pulverized so that the average particle size becomes 5 to 25 μm is Li / (Mn + A
l) = 0.50, and after mixing so that the F amount becomes a desired amount, heat treatment is performed at 750 to 950 ° C. in the atmosphere. Here, the replacement amount of manganese sites by Al is preferably 0.2 or less. 0.
If it exceeds 2, the capacity becomes small and is not practical. The heat treatment temperature is preferably as high as possible because the specific surface area can be reduced. However, at 950 ° C. or higher, a phase other than spinel which is not lost even in the next second heat treatment is generated. After heat-treating these mixtures, they are cooled to around room temperature and Li2CO3
Was added to a desired Li / (Mn + Al) ratio, and mixed.
By performing heat treatment at 0 to 700 ° C, more preferably 500 to 650 ° C, a lithium manganese composite oxide having a desired composition can be obtained. Further, the atomic ratio of Li / (Mn + Al) at the 16d site, which is the final manganese site, that is, the amount of replacement with lithium is 0.064 or less.
If it exceeds 0.064, the capacity is significantly reduced, and it is difficult to obtain a single spinel layer.
【0012】他の例を挙げれば、粉砕したEMDとLi2C
O3とAl(OH)3、LiFの混合物をあらかじめ所望のLi/
(Mn+Al)比、Al/Mn比、F量になるように混
合して熱処理をすることも可能である。熱処理は、60
0〜850℃、更に好ましくは650〜800℃で行な
う。600℃よりも低い温度による熱処理では比表面積
が大きくなり、電解液との接触面積が増加するためにM
nの溶出が多くなりサイクル特性、保存特性が劣化す
る。また、850℃よりも高い熱処理では、スピネル以
外の相が生成するため、容量の低下、サイクル特性の劣
化が見られる。In another example, pulverized EMD and Li2C
The mixture of O3, Al (OH) 3 and LiF
It is also possible to carry out heat treatment by mixing so as to obtain the (Mn + Al) ratio, the Al / Mn ratio, and the F amount. Heat treatment is 60
The reaction is carried out at 0 to 850 ° C, more preferably at 650 to 800 ° C. Heat treatment at a temperature lower than 600 ° C. increases the specific surface area and the contact area with the electrolytic solution.
The elution of n increases and the cycle characteristics and storage characteristics deteriorate. Further, in a heat treatment higher than 850 ° C., a phase other than spinel is generated, so that the capacity is reduced and the cycle characteristics are deteriorated.
【0013】得られたリチウムマンガン複合酸化物の比
表面積は1.5m2/g以下、好ましくは1m2/g以下、さら
に好ましくは0.5m2/g以下である。1.5m2/gよりも
大きいと高温下でのサイクル特性,高温保存特性が低下
する。また、原料に由来するLi2SO4を除去する目的で、
得られた熱処理物を洗浄することも可能である。洗浄に
より比表面積が増大することもあるが、洗浄後の比表面
積が上記範囲であればよい。The specific surface area of the obtained lithium manganese composite oxide is 1.5 m2 / g or less, preferably 1 m2 / g or less, more preferably 0.5 m2 / g or less. If it is larger than 1.5 m2 / g, the cycle characteristics at high temperatures and the high-temperature storage characteristics will deteriorate. Also, for the purpose of removing Li2SO4 derived from raw materials,
It is also possible to wash the obtained heat-treated product. Although the specific surface area may be increased by washing, the specific surface area after washing may be within the above range.
【0014】マンガンサイトを置換する元素及びその量
は、最終的な電池の性能を左右するため、目的に応じて
一定の範囲内で適宜選択することが可能である。本発明
者らの検討によれば、リチウム単独で置換した場合に
は、置換量に応じて容量は低下するものの、高温でのサ
イクル特性が飛躍的に改善される。一方、AlやCr、
Niで置換した場合には、高温保存特性が飛躍的に改善
される。従って、電池のエネルギー密度、高温サイクル
特性、高温保存特性をバランスよく改善することも可能
であるし、高温サイクル特性を飛躍的に改善したり、ま
たは高温保存特性を飛躍的に改善することも可能であ
り、電池を使用する機器側の要請にあわせて適宜選択す
れば良い。またこれらの中で好適なのは、リチウムニッ
ケル複合酸化物と、Al、Cr、Niで置換したリチウ
ムマンガン複合酸化物を混合して用いた場合であり、エ
ネルギー密度、高温サイクル特性、高温保存特性をバラ
ンスよく改善することが可能である。これはリチウムニ
ッケル複合酸化物の添加することで負極に通常時の放電
では使用しないリチウムイオンを吸蔵させ、負極でのリ
チウムイオンの失活を補充することを可能にすることで
高温サイクル特性が良好になり、高温保存特性は、上記
の通常時には使用しないリチウムイオンの働きに加え、
リチウムマンガン複合酸化物自身が飛躍的に改善されて
いるためにさらに良好になる。The element that replaces the manganese site and the amount thereof can be appropriately selected within a certain range according to the purpose in order to affect the final performance of the battery. According to the study of the present inventors, when lithium is replaced by lithium alone, although the capacity decreases in accordance with the replacement amount, the cycle characteristics at high temperatures are dramatically improved. On the other hand, Al and Cr,
When substituted with Ni, the high-temperature storage characteristics are dramatically improved. Therefore, it is possible to improve the energy density, high-temperature cycle characteristics, and high-temperature storage characteristics of the battery in a well-balanced manner, and to dramatically improve the high-temperature cycle characteristics or the high-temperature storage characteristics. That is, it may be appropriately selected according to the request of the device using the battery. Among these, a case where a mixture of a lithium nickel composite oxide and a lithium manganese composite oxide substituted with Al, Cr, and Ni is used is preferable, and the energy density, high temperature cycle characteristics, and high temperature storage characteristics are balanced. It is possible to improve well. This is because the addition of lithium-nickel composite oxide allows the negative electrode to absorb lithium ions that are not used in normal discharge, and makes it possible to supplement the deactivation of lithium ions at the negative electrode, resulting in good high-temperature cycle characteristics. In addition to the high-temperature storage characteristics,
The lithium manganese composite oxide itself is further improved because it is dramatically improved.
【0015】次に、本発明に用いられるリチウムニッケ
ル複合酸化物について説明する。ニッケル原料は特に限
定される物ではないが、例としてNiO、Ni(OH)2、Ni(NO
3)2、NiCO3が挙げられる。リチウム原料も、例としてLi
2CO3、LiOH、 LiNO3、Li2SO4、CH3COOLiを挙げることが
できる。中でも、Ni(NO3)2を用いた場合や、Ni(OH)2とL
iOHの組み合わせ、またはNiCO3とLiNO3の組み合わせ
が、単一の層状化合物が得られやすいために好ましい。
さらに、NOxやSOxの発生を伴わない、Ni(OH)2とLiOHの
組み合わせが好ましい。ただし、CoとNiを均一に混合す
ることを目的として、いわゆる共沈法を用いる場合に
は、硫酸塩や硝酸塩を用いることが好ましい。これらニ
ッケル原料とリチウム原料と共にニッケルの置換金属材
料として、コバルト原料(Co3O4、CoO、Co(OH)2、CoSO
4、Co(NO3)2)に加えて、B2O3、Mg(OH)2、Sr(OH)2、Mg
(NO3)2、Sr(NO3)2などを適宜添加することが可能であ
る。Next, the lithium nickel composite oxide used in the present invention will be described. Although the nickel raw material is not particularly limited, for example, NiO, Ni (OH) 2, Ni (NO
3) 2, NiCO3. Lithium raw materials, for example, Li
2CO3, LiOH, LiNO3, Li2SO4, CH3COOLi can be mentioned. Above all, when Ni (NO3) 2 is used, Ni (OH) 2 and L
A combination of iOH or a combination of NiCO3 and LiNO3 is preferable because a single layered compound is easily obtained.
Further, a combination of Ni (OH) 2 and LiOH that does not generate NOx or SOx is preferable. However, when a so-called coprecipitation method is used for the purpose of uniformly mixing Co and Ni, it is preferable to use a sulfate or a nitrate. Along with these nickel raw materials and lithium raw materials, cobalt raw materials (Co3O4, CoO, Co (OH) 2, CoSO
4, Co (NO3) 2) plus B2O3, Mg (OH) 2, Sr (OH) 2, Mg
(NO3) 2, Sr (NO3) 2, and the like can be appropriately added.
【0016】リチウムニッケル複合酸化物の作成方法と
しては限定されないが、ニッケルの一部をコバルトで置
換し、Tがマグネシウムの場合を例示すると、次のよう
にして作成することが可能である。Ni(OH)2とLiOHとCo
(OH)2、Mg(OH)2をLi/(Ni+Co+Mg)=1.02となるようにボ
ールミル等の混合機で均一に混合してから大気中または
酸素と大気の混合雰囲気中600〜750℃で熱処理を
行う。ここでコバルトのニッケルに対する原子比は0.
484以下が好ましい。0.484を超えると、容量が
低下し、また混合正極の初充電効率が高くなりすぎる。
また、熱処理温度はこの範囲以外では容量が低下する。The method for producing the lithium-nickel composite oxide is not limited. For example, when a part of nickel is replaced with cobalt and T is magnesium, it can be produced as follows. Ni (OH) 2, LiOH and Co
(OH) 2, Mg (OH) 2 is uniformly mixed with a mixer such as a ball mill so that Li / (Ni + Co + Mg) = 1.02, and then mixed in air or in a mixed atmosphere of oxygen and air at 600 to Heat treatment is performed at 750 ° C. Here, the atomic ratio of cobalt to nickel is 0.1.
484 or less is preferable. If it exceeds 0.484, the capacity is reduced, and the initial charging efficiency of the mixed positive electrode is too high.
When the heat treatment temperature is outside this range, the capacity decreases.
【0017】また、別の作成方法として共沈法を挙げる
ことができる。Ni(NO3)2とCo2(NO3)2、Mg(NO3)2を所望
の比率で精製水に溶解混合して、NaOH水溶液をゆっくり
滴下することで沈殿物を得る。これを水洗して原料とし
てLi2CO3を、Li/(Ni+Co+Mg)=1.02となるように混合し
熱処理する。熱処理条件は上記と同様である。なお、い
ずれの熱処理物も、反応に寄与しなかった水酸化物を除
去する目的で、熱処理後に精製水で洗浄することが好ま
しい。[0017] As another production method, a coprecipitation method can be mentioned. Ni (NO3) 2, Co2 (NO3) 2, and Mg (NO3) 2 are dissolved and mixed in purified water at a desired ratio, and a NaOH aqueous solution is slowly added dropwise to obtain a precipitate. This is washed with water, mixed with Li2CO3 as a raw material so that Li / (Ni + Co + Mg) = 1.02, and heat-treated. The heat treatment conditions are the same as above. In addition, it is preferable that each heat-treated product is washed with purified water after the heat treatment in order to remove a hydroxide that did not contribute to the reaction.
【0018】合成されたリチウムマンガン複合酸化物と
リチウムニッケル複合酸化物を、50:50から90:
10の重量割合で混合し、正極活物質とする。混合範囲
は、それぞれの活物質の容量および負極活物質との組み
合わせ量によって適宜選択される。しかし、リチウムマ
ンガン複合酸化物の含有量が50重量%以下になると、
過充電時の異常発熱を抑制することが難しくなる。ま
た、リチウムニッケル複合酸化物の含有量が10重量%
以下では、過放電後にも電池性能を維持することが難し
く、高温サイクル特性も低下しやすくなる。The synthesized lithium manganese composite oxide and lithium nickel composite oxide are mixed with 50:50 to 90:
The mixture was mixed at a weight ratio of 10 to obtain a positive electrode active material. The mixing range is appropriately selected depending on the capacity of each active material and the combination amount with the negative electrode active material. However, when the content of the lithium manganese composite oxide becomes 50% by weight or less,
It becomes difficult to suppress abnormal heat generation during overcharge. Further, the content of the lithium nickel composite oxide is 10% by weight.
In the following, it is difficult to maintain the battery performance even after overdischarge, and the high-temperature cycle characteristics are liable to deteriorate.
【0019】本発明に用いられる負極材料としては、リ
チウムをイオン状態で吸蔵放出できれば特に限定されな
いが、例としてコークス、天然黒鉛、人造黒鉛、難黒鉛
化炭素などのカーボン、SiSnO等の金属酸化物、B
CN、SiC等のカーボン複合材料を挙げることができ
るが、初回電流効率が高いカーボンを用いることは、電
池のエネルギー密度を高めることができるため好まし
い。The negative electrode material used in the present invention is not particularly limited as long as it can occlude and release lithium in an ion state. Examples thereof include carbon such as coke, natural graphite, artificial graphite and non-graphitizable carbon, and metal oxides such as SiSnO. , B
Although a carbon composite material such as CN and SiC can be used, it is preferable to use carbon having high initial current efficiency because the energy density of the battery can be increased.
【0020】本発明において、活物質を電極化する時に
は、必要に応じて導電剤を添加し、結着剤で集電材に固
定することができる。導電剤の例として、天然黒鉛、人
造黒鉛、カーボンブラック、ケッチェンブラック、アセ
チレンブラックを挙げることができるが、黒鉛もしくは
黒鉛とアセチレンブラックの併用が好ましい。その添加
量としては特に限定されないが、1〜20重量%が好ま
しく、更に好ましくは3〜10重量%である。1重量%
以下であると導電性が均一にならず、20重量%以上に
なると単位体積あたりの容量が低下する。また、結着剤
には、通常、ポリ4フッ化エチレン、ポリフッ化ビニリ
デン、エチレン−プロピレン−ジエンターポリマー、カ
ルボキシメチルセルロース、スチレンブタジエンゴム、
フッ素ゴム等が単独もしくは混合されて用いられるが、
特に限定されない。これらの添加量としては1〜20重
量%が好ましく、更に好ましくは1〜10重量%であ
る。1重量%以下では結着力が弱く、20重量%以上で
はLiイオンの移動を阻害し、電池としての性能が低下
する。In the present invention, when the active material is formed into an electrode, a conductive agent can be added as required, and the active material can be fixed to the current collector with a binder. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, Ketjen black, and acetylene black, and graphite or a combination of graphite and acetylene black is preferred. Although the addition amount is not particularly limited, it is preferably 1 to 20% by weight, more preferably 3 to 10% by weight. 1% by weight
If it is less than the above, the conductivity will not be uniform, and if it exceeds 20% by weight, the capacity per unit volume will decrease. Further, the binder is usually polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, carboxymethylcellulose, styrene butadiene rubber,
Fluororubber or the like is used alone or as a mixture,
There is no particular limitation. The amount of these additives is preferably 1 to 20% by weight, more preferably 1 to 10% by weight. If it is 1% by weight or less, the binding force is weak, and if it is 20% by weight or more, the movement of Li ions is inhibited, and the performance as a battery is reduced.
【0021】電解液としては、リチウム塩を電解質とし
て、これを種々の有機溶媒に溶解させた混合物が用いら
れる。電解質としては、特に限定されないが、LiCl
O4、LiBF4、LiPF6、LiAsF6、LiC
F3SO3などの単独もしくは混合物を使用することが
できる。また有機溶媒として特に限定されないが、例示
すれば、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、ジメチルカーボネート、ジエ
チルカーボネート、メチルエチルカーボネート、1,2
−ジメトキシエタン、テトラヒドロフラン等の単独もし
くは2種類以上の混合溶媒を使用することができる。As the electrolytic solution, a mixture in which a lithium salt is used as an electrolyte and dissolved in various organic solvents is used. The electrolyte is not particularly limited.
O4, LiBF4, LiPF6, LiAsF6, LiC
A single or a mixture such as F3SO3 can be used. The organic solvent is not particularly limited. Examples thereof include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate,
-A single solvent such as dimethoxyethane and tetrahydrofuran or a mixture of two or more solvents can be used.
【0022】本発明で言うところの、正極および負極に
おける初回リチウム放出、吸蔵可能容量と、両極での初
回電流効率の測定方法について説明する。得られた正ま
たは負電極を作用極、金属リチウムを対極および作用極
とした3極式のセルを作成する。この時、電解液の液抵
抗の影響を除くために可能な限り作用極と対極の距離を
近くすることが必要であり、両極間にセパレータや0.
5mm程度の厚みのガラスフィルターを挟み、両極を外
側から押さえることが好ましい。また参照極も作用極の
近くに置く必要がある。得られたセルに電解液を注入
し、一晩放置した後で次の条件で充放電をおこなう。電
解液は、得られた正極と負極を実際に組み合わせて使う
ときと同じ電解液を使用することが好ましい。また、電
極へ電解液が浸透するのを待つために、一晩程度放置す
ることが望ましい。The method of measuring the initial lithium release and occluding capacity of the positive electrode and the negative electrode and the initial current efficiency of both electrodes in the present invention will be described. A three-electrode cell is prepared using the obtained positive or negative electrode as a working electrode and metallic lithium as a counter electrode and a working electrode. At this time, it is necessary to minimize the distance between the working electrode and the counter electrode as much as possible in order to eliminate the influence of the liquid resistance of the electrolytic solution.
It is preferable to sandwich a glass filter having a thickness of about 5 mm and press both poles from outside. The reference electrode also needs to be placed near the working electrode. An electrolytic solution is injected into the obtained cell, and after allowing it to stand overnight, charging and discharging are performed under the following conditions. As the electrolytic solution, it is preferable to use the same electrolytic solution as when the obtained positive electrode and negative electrode are actually used in combination. In addition, it is desirable to leave the apparatus overnight to wait for the electrolyte to permeate the electrode.
【0023】充放電条件は、以下で行う。正極の場合
は、最大電流値を3mA/cm2に設定し、作用極の電位が4.
25Vになるように定電流定電圧充電を5時間行い、次い
で充電後30分の休止時間を置き、引き続いて放電を行
う。放電は電流値を3mA/cm2に設定し、作用極の電位が
3.5Vに達するまで行う。充電時に流れた積算電流量を作
用極の面積で割ることで正極の初回リチウム放出可能容
量を求めることができる。また、放電時に流れた積算電
流量を作用極の面積で割ることで、正極の初回リチウム
吸蔵可能容量(Q)を計算する。従ってQの単位は通常
mAh/cm2である。放電時に流れた積算電流量を充電時に
流れた積算電流量で割った商を初回電流効率とし、通常
%で表示する。The charging and discharging conditions are as follows. In the case of the positive electrode, the maximum current value is set to 3 mA / cm2, and the potential of the working electrode is 4.
The battery is charged at a constant current and a constant voltage for 5 hours so that the voltage becomes 25 V, and then a 30-minute rest period is provided after the charging, followed by discharging. For discharging, set the current value to 3 mA / cm2, and the potential of the working electrode
Perform until 3.5V is reached. The initial lithium dischargeable capacity of the positive electrode can be obtained by dividing the integrated current amount flowing during charging by the area of the working electrode. Further, the initial lithium storage capacity (Q) of the positive electrode is calculated by dividing the integrated current amount flowing during discharge by the area of the working electrode. Therefore, the unit of Q is usually
mAh / cm2. The quotient obtained by dividing the integrated current amount flowing during discharging by the integrated current amount flowing during charging is defined as the initial current efficiency, and is usually expressed in%.
【0024】一方負極の場合は、最大電流値を3mA/cm2
に設定し、作用極の電位が0.01Vになるように定電流定
電圧放電(リチウムの挿入)を5時間行う。次いで30
分の休止時間を置き、引き続いて充電を行う。充電(リ
チウムの放出)は電流値を3mA/cm2に設定し、作用極の
電位が1.0Vに達するまで行う。放電時に流れた積算電流
量を作用極の面積で割ることで負極の初回リチウム吸蔵
可能容量を求めることができる。また、充電時に流れた
積算電流量を作用極の面積で割ることで、負極の初回リ
チウム放出可能容量(P)を計算する。従ってPの単位
は通常mAh/cm2である。放電時に流れた積算電流量を積
算充電時に流れた電流量で割った商を初回電流効率と
し、通常%で表示する。On the other hand, in the case of the negative electrode, the maximum current value is 3 mA / cm 2
, And constant-current constant-voltage discharge (lithium insertion) is performed for 5 hours so that the potential of the working electrode becomes 0.01 V. Then 30
After a pause of 1 minute, the battery is charged. Charging (release of lithium) is performed until the electric potential of the working electrode reaches 1.0 V with the current value set to 3 mA / cm2. The initial lithium storage capacity of the negative electrode can be obtained by dividing the integrated current flowing during discharge by the area of the working electrode. In addition, the initial lithium releaseable capacity (P) of the negative electrode is calculated by dividing the integrated current flowing during charging by the area of the working electrode. Therefore, the unit of P is usually mAh / cm2. The quotient obtained by dividing the integrated current flowing during discharging by the current flowing during integrated charging is defined as the initial current efficiency, and is usually expressed in%.
【0025】本発明においては、正極と負極の組み合わ
せ量が重要である。この組み合わせ量は上記PとQから
規定されるものである。すなわち、P/Qが1.0以上
1.25以下であることが重要である。1.0未満の場
合、すなわち負極のリチウム放出可能容量が正極のリチ
ウム吸蔵可能容量よりも小さい時には、放電終了時に負
極の電位が上昇して電池電圧の低下が起こる。また1.
25以上では、通常の電池電圧(例えば3.0V)では放出
できない負極に吸蔵されたリチウムイオンが増加するた
めに、電池のエネルギー密度が低下する。In the present invention, the combination amount of the positive electrode and the negative electrode is important. This combination amount is defined by the above P and Q. That is, it is important that P / Q is 1.0 or more and 1.25 or less. When the value is less than 1.0, that is, when the lithium releaseable capacity of the negative electrode is smaller than the lithium storage capacity of the positive electrode, the potential of the negative electrode increases at the end of discharge, and the battery voltage decreases. Also 1.
Above 25, the energy density of the battery decreases because the amount of lithium ions stored in the negative electrode that cannot be released at a normal battery voltage (for example, 3.0 V) increases.
【0026】この組み合わせの最適値は、正極に用いら
れる活物質中の、リチウムマンガン複合酸化物とリチウ
ムニッケル複合酸化物の混合比と、混合活物質の初回電
流効率および負極の初回電流効率によって決定すること
が可能である。通常、非水電解質二次電池は上記P/Q
が0.8程度から1.0未満である。これは、LiCoO2を
用いた正電極の初回電流効率は通常97%程度であるのに
対し、カーボンを用いた負電極の初充電効率は、高いと
いわれている黒鉛を用いた場合にも90%程度であり、電
池の放電時には負極からのリチウムイオンの放出ができ
なくなり、負極の電位が高くなり電池の放電終了電圧に
なるからである。ところで、LiMn2O4を用いた正電極の
初回電流効率はマンガンサイトを置換しても95%以上で
あるが、本発明のリチウムマンガン複合酸化物とリチウ
ムニッケル複合酸化物の混合物を活物質とした場合、リ
チウムニッケル複合酸化物の混合量およびニッケルサイ
トの置換元素とその量に応じて、初回電流効率を変える
ことが可能である。混合正極の初回電流効率は、負極の
初回電流効率未満から80%以上が好ましい。80%未
満では、電池としてのエネルギー密度が低下する。ま
た、負極の初回電流効率以上であると、過放電後の安全
性が低下するだけでなく、高温サイクル特性が低下す
る。このことは次のように理解される。The optimum value of this combination is determined by the mixing ratio of the lithium manganese composite oxide and the lithium nickel composite oxide in the active material used for the positive electrode, the initial current efficiency of the mixed active material, and the initial current efficiency of the negative electrode. It is possible to Normally, the non-aqueous electrolyte secondary battery uses the above P / Q
Is about 0.8 to less than 1.0. This is because the initial current efficiency of the positive electrode using LiCoO2 is usually about 97%, while the initial charging efficiency of the negative electrode using carbon is 90% even when graphite, which is said to be high, is used. This is because when discharging the battery, lithium ions cannot be released from the negative electrode, and the potential of the negative electrode increases to reach the discharge end voltage of the battery. By the way, although the initial current efficiency of the positive electrode using LiMn2O4 is 95% or more even when the manganese site is replaced, when a mixture of the lithium manganese composite oxide and the lithium nickel composite oxide of the present invention is used as an active material, The initial current efficiency can be changed depending on the amount of the lithium-nickel composite oxide and the substitution element and the amount of the nickel site. The initial current efficiency of the mixed positive electrode is preferably less than the initial current efficiency of the negative electrode to 80% or more. If it is less than 80%, the energy density of the battery decreases. Further, when the current efficiency is equal to or higher than the initial current efficiency of the negative electrode, not only safety after overdischarge is reduced, but also high-temperature cycle characteristics are reduced. This is understood as follows.
【0027】過放電時には上記のように、負極には放出
できるリチウムイオンが存在しないために、正極の電位
まで負極の電位が上昇し続ける。その結果負極集電体に
用いている銅の酸化還元電位以上になり銅イオンとして
電解液中に溶出する。過放電後の充電時にはこの銅イオ
ンが負極状に析出するために、内部短絡の原因となって
異常発熱が起きる。一方、本発明のような組み合わせを
用いれば、過放電時には正極の電位が低下することにな
り、再充電時にも異常発熱しない。さらに、LiMn2O4を
用いた電池では高温サイクル時には正極からマンガンが
溶出して負極上に析出し、リチウムイオンと電荷交換す
ることで電池の容量が低下していくが、本発明の組み合
わせでは負極に余剰のリチウムイオンが存在しているた
めに、高温サイクル時の容量低下を防止することができ
る。At the time of overdischarge, as described above, since there is no releasable lithium ion in the negative electrode, the potential of the negative electrode continues to rise to the potential of the positive electrode. As a result, the potential becomes higher than the oxidation-reduction potential of copper used for the negative electrode current collector, and elutes as copper ions into the electrolytic solution. At the time of charging after the overdischarge, the copper ions precipitate in the form of a negative electrode, which causes an internal short circuit and abnormal heat generation. On the other hand, when the combination as in the present invention is used, the potential of the positive electrode decreases during overdischarge, and abnormal heat generation does not occur during recharge. Furthermore, in a battery using LiMn2O4, manganese elutes from the positive electrode during high-temperature cycling and precipitates on the negative electrode, and the capacity of the battery decreases due to charge exchange with lithium ions. Because of the presence of lithium ions, it is possible to prevent a decrease in capacity during a high-temperature cycle.
【0028】[0028]
【発明の実施の形態】以下、本発明を具体的実施例を用
いて詳細に説明するが、本発明はこれら実施例に限定さ
れるものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these examples.
【0029】[0029]
【実施例1】出発原料として平均粒径を20μmに粉砕
したEMDを用いた。これとLi2SO4、Al(OH)3、LiFをLi
/(Mn+Al)/F=1/(1.9+0.1)/0.01(原子比)の組成比でボ
ールミルで3時間混合し、空気中850℃で20時間熱
処理したのちに10時間かけて室温付近まで冷却した。
次いで上記リチウムマンガン複合酸化物とLi2CO3を、Li
/(Mn+Al)=0.53(原子比)の組成比になるように混合
し、再度、空気中650℃で20時間熱処理することに
よってリチウムマンガン複合酸化物を得た。原子吸光と
逆滴定による分析の結果、α=0.04、β=0.1、γ=0.0
1であった。Example 1 EMD pulverized to an average particle size of 20 μm was used as a starting material. This and Li2SO4, Al (OH) 3, LiF
/ (Mn + Al) / F = 1 / (1.9 + 0.1) /0.01 (atomic ratio), mixed in a ball mill for 3 hours, heat-treated in air at 850 ° C for 20 hours, and then around 10 hours near room temperature Cooled down.
Next, the lithium manganese composite oxide and Li2CO3 were
/(Mn+Al)=0.53 (atomic ratio), and the mixture was again heat-treated in air at 650 ° C. for 20 hours to obtain a lithium-manganese composite oxide. As a result of analysis by atomic absorption and back titration, α = 0.04, β = 0.1, γ = 0.0
Was one.
【0030】リチウムニッケル複合酸化物は供沈法によ
り合成した。Ni(NO3)2およびCo(NO3)2、Mg(NO3)2を7.9
7:2:0.03で混合して精製水に溶解し、NaOH水溶液を攪拌
しながら滴下した。沈殿物をろ過、洗浄してニッケルコ
バルトマグネシウム複合水酸化物を得た。次いでLiOHと
複合水酸化物をLi/(Ni+Co+Mg)=1.02になるように混合
して、550℃で20時間、次いで700℃で3時間熱
処理を行い、冷却後水洗することでリチウムニッケル複
合酸化物を得た。原子吸光と逆滴定による分析の結果、
x=0.01、y=0.2、z=0.03であった。The lithium nickel composite oxide was synthesized by a precipitation method. Ni (NO3) 2 and Co (NO3) 2, Mg (NO3) 2 7.9
The mixture was mixed at 7: 2: 0.03, dissolved in purified water, and an aqueous NaOH solution was added dropwise with stirring. The precipitate was filtered and washed to obtain a nickel cobalt magnesium composite hydroxide. Next, LiOH and the composite hydroxide are mixed so that Li / (Ni + Co + Mg) = 1.02, and heat-treated at 550 ° C. for 20 hours and then at 700 ° C. for 3 hours. A nickel composite oxide was obtained. As a result of analysis by atomic absorption and back titration,
x = 0.01, y = 0.2, z = 0.03.
【0031】次に具体的な電池作成について説明する。
上記リチウムマンガン複合酸化物とリチウムニッケル複
合酸化物を8:2の割合で混合し、この混合物100に
対して導電剤としてアセチレンブラック3重量部と鱗状
天然黒鉛3重量部を混合した後に、総重量に対して3重
量部の割合でPVdFを混合し、PVdFの溶剤であるNMPを添
加して湿式混合を行ないペーストとした。次いでこのペ
ーストを正極集電体となる厚さ20μmのアルミニウム
箔の両面に均一に塗布し、乾燥させた後にローラープレ
ス機によって加圧成形することで帯状の正極を作成し
た。次に3000℃で黒鉛化したメソカーボンファイバ
ー95と鱗状天然黒鉛5の混合物に対して、カルボキシ
メチルセルロース1重量部とスチレンブタジエンゴム2
重量部、溶剤として精製水を添加して湿式混合を行ない
ペーストとした。次いでこのペーストを負極集電体とな
る厚さ12μmの銅箔の両面に均一に塗布し、乾燥させ
た後にローラープレス機によって加圧成形することで帯
状の負極を作成した。さらに、上記正極と上記負極の間
にセパレーターとして25μm厚みのポリエチレン微多
孔膜を挟んで楕円状の巻芯にロール状に巻きとり、巻芯
を抜いた後でプレスを行い、楕円型捲廻体とした。Next, a specific example of battery production will be described.
The lithium manganese composite oxide and the lithium nickel composite oxide were mixed at a ratio of 8: 2, and 3 parts by weight of acetylene black and 3 parts by weight of scale-like natural graphite were mixed as a conductive agent with this mixture 100, and then the total weight was mixed. Was mixed with PVdF at a ratio of 3 parts by weight, and NMP which was a solvent for PVdF was added to perform wet mixing to obtain a paste. Next, this paste was uniformly applied to both sides of a 20-μm-thick aluminum foil serving as a positive electrode current collector, dried, and then pressure-formed by a roller press to form a belt-shaped positive electrode. Next, 1 part by weight of carboxymethyl cellulose and styrene-butadiene rubber 2 were added to a mixture of mesocarbon fiber 95 graphitized at 3000 ° C. and scale-like natural graphite 5.
By weight, purified water was added as a solvent and wet-mixed to obtain a paste. Next, this paste was uniformly applied to both sides of a copper foil having a thickness of 12 μm as a negative electrode current collector, dried, and then pressed and formed by a roller press to form a strip-shaped negative electrode. Furthermore, a 25 μm-thick polyethylene microporous membrane was interposed between the positive electrode and the negative electrode as a separator, wound up in a roll around an elliptical core, and after the core was removed, pressing was performed to obtain an elliptical wound body. And
【0032】ついでアルミニウム製の角型外装缶に前記
捲廻体を挿入した。捲廻体より取り出した負極タブを電
極押え板が付いた閉塞蓋体の中央に設けられた負極ピン
に溶接し、正極タブを閉塞蓋体に溶接した。閉塞蓋体を
外装缶に載せて、缶と閉塞蓋体のつなぎ目をレーザーで
溶接した。さらに、閉塞蓋体に設けられた直径0.5m
mの穴からエチレンカーボネートとジエチルカーボネー
トの混合溶媒に1モル/リットルの濃度でLiPF6を
溶解した電解液を注液して、穴の上にアルミ製の薄板を
置き、薄板の周囲をレーザー溶接することで厚み6mm
幅30mm長さ48mmの角型非水電解質二次電池を作
成した。Next, the wound body was inserted into a rectangular outer can made of aluminum. The negative electrode tab taken out from the wound body was welded to a negative electrode pin provided at the center of the closing lid provided with the electrode pressing plate, and the positive electrode tab was welded to the closing lid. The closure lid was placed on an outer can, and the joint between the can and the closure lid was welded by laser. Furthermore, a diameter of 0.5 m provided on the closing lid body
An electrolyte obtained by dissolving LiPF6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / liter is injected from a hole of m into an aluminum thin plate, and a thin aluminum plate is placed on the hole, and the periphery of the thin plate is laser-welded. 6mm thick
A square nonaqueous electrolyte secondary battery having a width of 30 mm and a length of 48 mm was prepared.
【0033】以降、正極と負極の塗布量は正極の初回リ
チウム放出可能容量と負極の初回リチウム吸蔵容量が同
等になるように調整したものを用いた。この結果、この
電池に使用した負極の初回リチウム放出容量(P)と正
極の初回リチウム吸蔵容量(Q)の比はP/Q=1.0
6であった。また、正極の初回電流効率は85%であ
り、負極の初回電流効率は90%であった。Thereafter, the coating amounts of the positive electrode and the negative electrode were adjusted so that the initial lithium release capacity of the positive electrode and the initial lithium storage capacity of the negative electrode became equal. As a result, the ratio of the initial lithium release capacity (P) of the negative electrode and the initial lithium storage capacity (Q) of the positive electrode used in this battery was P / Q = 1.0.
It was 6. The initial current efficiency of the positive electrode was 85%, and the initial current efficiency of the negative electrode was 90%.
【0034】次に、試験方法に付いて説明をする。 (高温保存試験)電池は内部の安定化を目的に24時間
のエージング期間を経過した後に、充電電圧を4.2V
に設定して5時間で充電を行なった。ついで550mA
の一定電流で3.0Vまで放電を行ない、それぞれの電
池の容量を測定した。次いで、充電電圧を4.2Vに設
定して3時間で充電した後で85℃に調整された恒温槽
にいれて120時間後に取り出した。取り出した電池を
室温付近まで自然冷却した後に、550mAの一定電流
で3.0Vまで放電し、充電電圧を4.2Vに設定して
3時間で充電し、550mAの一定電流で放電した。保
存後の放電容量と保存前の放電容量から維持率を算出
し、保存後に再充電したときの放電容量と保存前の放電
容量から回復率を算出した。 (高温サイクル試験)電池の初充電は充電電圧を4.2
Vに設定して5時間で行なった。ついで550mAの一
定電流で3.0Vまで放電を行ない、それぞれの電池の
容量を測定した。Next, the test method will be described. (High temperature storage test) After a 24-hour aging period has elapsed for the purpose of stabilizing the inside of the battery, the charging voltage is set to 4.2 V.
And charging was performed in 5 hours. Then 550mA
The battery was discharged at a constant current of 3.0 V to 3.0 V, and the capacity of each battery was measured. Next, the battery was charged in 3 hours with the charging voltage set to 4.2 V, then placed in a thermostat adjusted to 85 ° C., and taken out after 120 hours. After the battery was naturally cooled to around room temperature, the battery was discharged to 3.0 V at a constant current of 550 mA, charged at a charging voltage of 4.2 V for 3 hours, and discharged at a constant current of 550 mA. The retention rate was calculated from the discharge capacity after storage and the discharge capacity before storage, and the recovery rate was calculated from the discharge capacity when recharged after storage and the discharge capacity before storage. (High-temperature cycle test) The initial charge of the battery requires a charge voltage of 4.2.
V was set at 5 hours. Then, the battery was discharged at a constant current of 550 mA to 3.0 V, and the capacity of each battery was measured.
【0035】次いで、電池を60℃の恒温槽内に入れ、
充電電圧4.2Vで3時間充電、550mAの一定電流
で3.0Vまで放電する充放電サイクル試験を実施し
て、100サイクル目の1サイクル目に対する放電量の
維持率をサイクル維持率とした。 (過充電試験)初充電後に放電、充電を約10サイクル
繰り返した後で、放電状態の電池に10V1.5Aの直
流電源をつないだ。この時の電池の漏液、ガスの噴出、
発火の有無を観察した。 (過放電試験)初充電後に放電、充電を約10サイクル
繰り返した後で、満充電状態から放電電圧を0Vに設定
して48時間強制放電させた。この時の最大電流値は5
50mAであった。強制放電後に、充電電圧を4.2V
に設定して3時間で満充電になるように充電を行った。
その時の電池の漏液、ガスの噴出、発火の有無を観察し
た。Next, the battery is placed in a thermostat at 60 ° C.
A charge / discharge cycle test was performed in which the battery was charged at a charging voltage of 4.2 V for 3 hours and discharged at a constant current of 550 mA to 3.0 V, and the maintenance rate of the discharge amount with respect to the first cycle of the 100th cycle was defined as the cycle maintenance rate. (Overcharge test) After about 10 cycles of discharging and charging after initial charging, a 10 V 1.5 A DC power supply was connected to the discharged battery. At this time, battery leakage, gas ejection,
The presence or absence of ignition was observed. (Overdischarge test) After about 10 cycles of discharging and charging after the initial charge, the discharge voltage was set to 0 V from the fully charged state, and the battery was forcibly discharged for 48 hours. The maximum current value at this time is 5
It was 50 mA. After forced discharge, the charging voltage is 4.2V
, And charged so that the battery was fully charged in 3 hours.
At that time, the presence or absence of battery leakage, gas ejection, and ignition was observed.
【0036】これらの評価結果を表1に示した。The results of these evaluations are shown in Table 1.
【0037】[0037]
【実施例2〜4】リチウムマンガン複合酸化物とリチウ
ムニッケル複合酸化物の混合重量割合を、おのおの90
/10、60/40、50/50とした以外は実施例1
と同様に角型非水電解質二次電池を作成した。この時の
電池の初期の放電容量、P/Q及び各種試験結果を表1
に示した。Examples 2 to 4 The mixing weight ratio of the lithium manganese composite oxide and the lithium nickel composite oxide was 90% each.
Example 1 except that / 10, 60/40 and 50/50 were used.
In the same manner as in the above, a square nonaqueous electrolyte secondary battery was prepared. Table 1 shows the initial discharge capacity, P / Q, and various test results of the battery at this time.
It was shown to.
【0038】[0038]
【比較例1、2】リチウムマンガン複合酸化物とリチウ
ムニッケル複合酸化物の混合重量割合を、おのおの10
0/0、40/60とした以外は実施例1と同様に角型
非水電解質二次電池を作成した。得られた電池の初期の
放電容量、P/Q及び各種試験結果を表1に示した。Comparative Examples 1 and 2 The mixing weight ratio of the lithium manganese composite oxide and the lithium nickel composite oxide was 10% each.
A rectangular nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that 0/0 and 40/60 were set. Table 1 shows the initial discharge capacity, P / Q, and various test results of the obtained battery.
【0039】[0039]
【実施例5〜7】出発原料として平均粒径を15μmに
粉砕したEMDとLi2SO4、Cr2O3、LiClをLi/(Mn+Cr)/Cl
=1/(1.85+0.15)/0.005(原子比)の組成比とした以外
は実施例1と同様に混合、熱処理することでα=0.04、
β=0.15、γ=0.005のリチウムマンガン複合酸化物を
得た。Examples 5 to 7 EMD pulverized to an average particle size of 15 μm as a starting material and Li2SO4, Cr2O3 and LiCl were converted to Li / (Mn + Cr) / Cl
= 1 / (1.85 + 0.15) /0.005 (atomic ratio), except that the mixture and heat treatment were performed in the same manner as in Example 1 except that α = 0.04,
A lithium manganese composite oxide having β = 0.15 and γ = 0.005 was obtained.
【0040】リチウムニッケル複合酸化物の出発原料組
成としてNi(NO3)2およびCo(NO3)2、Sr(NO3)2を6.98:3:
0.02とした以外は、実施例1と同様の手法でx=0.01、
y=0.3、z=0.02のリチウムニッケル複合酸化物を得
た。これらを各々90/10、80/20、50/50
の重量比で混合することで混合正極活物質を得た以外
は、実施例1と同様にして角型非水電解質二次電池を作
成した。これらの電池の初期の放電容量、P/Q及び各
種評価結果を表2に示す。Ni (NO 3) 2, Co (NO 3) 2 and Sr (NO 3) 2 as starting material compositions of the lithium nickel composite oxide were 6.98: 3:
X = 0.01 in the same manner as in Example 1 except that it was set to 0.02,
A lithium nickel composite oxide having y = 0.3 and z = 0.02 was obtained. These are respectively 90/10, 80/20, 50/50
A rectangular non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that a mixed positive electrode active material was obtained by mixing at a weight ratio of Table 2 shows the initial discharge capacity, P / Q, and various evaluation results of these batteries.
【0041】[0041]
【比較例3,4】混合正極の混合比率を100/0及び
40/60とした以外は、実施例5と同様にして角型非
水電解質二次電池を作成した。これらの電池の初期の放
電容量、P/Q及び各種評価結果を表2に示す。Comparative Examples 3 and 4 A prismatic nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 5, except that the mixing ratios of the mixed positive electrodes were 100/0 and 40/60. Table 2 shows the initial discharge capacity, P / Q, and various evaluation results of these batteries.
【0042】[0042]
【実施例8〜11】リチウムマンガン複合酸化物の出発
原料として、平均粒径を15μmに粉砕したEMDとLi
2SO4、Al(OH)3の混合量をAlの含有量を表3に示すよう
な組成比になるようにした以外は実施例1と同様に混
合、熱処理することでMn:Al比の異なるリチウムマ
ンガン複合酸化物を得た。Examples 8 to 11 As starting materials for a lithium manganese composite oxide, EMD and Li ground to an average particle size of 15 μm were used.
Lithium having a different Mn: Al ratio was obtained by mixing and heat treating in the same manner as in Example 1 except that the mixing amount of 2SO4 and Al (OH) 3 was adjusted so that the Al content had a composition ratio as shown in Table 3. A manganese composite oxide was obtained.
【0043】リチウムニッケル複合酸化物の出発原料組
成としてNi(NO3)2およびCo(NO3)2、Mg(NO3)2の混合量
を、Mgの量を0.03で一定とし、Coの含有量が表3に示す
ような値になるように混合し、実施例1と同様の手法で
リチウムニッケル複合酸化物を得た。得られた正極活物
質を、各々70/30の重量比で混合することで混合正
極活物質を得た。引き続き、実施例1と同様の手順で角
型非水電解質二次電池を作成した。得られた電池の初期
の放電容量、P/Qおよび各種評価結果を表3に示し
た。As the starting material composition of the lithium-nickel composite oxide, the mixing amount of Ni (NO3) 2, Co (NO3) 2, and Mg (NO3) 2 is fixed at an amount of Mg of 0.03. The mixture was mixed so as to have a value as shown in FIG. 3, and a lithium nickel composite oxide was obtained in the same manner as in Example 1. The obtained positive electrode active materials were mixed at a weight ratio of 70/30 to obtain a mixed positive electrode active material. Subsequently, a prismatic nonaqueous electrolyte secondary battery was prepared in the same procedure as in Example 1. Table 3 shows the initial discharge capacity, P / Q, and various evaluation results of the obtained batteries.
【0044】[0044]
【比較例5,6】実施例8〜9と同様にして、表3に示
したAl含有量のリチウムマンガン複合酸化物と、同じよ
うに表3に示したCo含有量のリチウムニッケル複合酸化
物を表3に示した混合比で混合して混合正極活物質を得
て、実施例1と同様の手順で角型非水電解質二次電池を
作成した。得られた電池の初期の放電容量、P/Qおよ
び各種評価結果を表3に示した。Comparative Examples 5 and 6 In the same manner as in Examples 8 and 9, a lithium-manganese composite oxide having an Al content shown in Table 3 and a lithium-nickel composite oxide having a Co content shown in Table 3 in the same manner Were mixed at the mixing ratios shown in Table 3 to obtain a mixed positive electrode active material, and a rectangular nonaqueous electrolyte secondary battery was prepared in the same procedure as in Example 1. Table 3 shows the initial discharge capacity, P / Q, and various evaluation results of the obtained batteries.
【0045】[0045]
【実施例12〜14】出発原料として平均粒径を10μ
mに粉砕したEMDを用いた。これとLi2SO4をLi/Mn=1
/2(原子比)の組成比でボールミルで3時間混合し、空
気中900℃で10時間熱処理したのちに10時間かけ
て室温付近まで冷却した。次いで上記リチウムマンガン
酸化物とLi2CO3を、Li/Mn=1.1/1.9(原子比)になるよ
うに混合し、再度、空気中650℃で20時間熱処理す
ることによって、α=0.1、β=0、γ=0のリチウムマ
ンガン複合酸化物を得た。Examples 12 to 14 The starting material had an average particle size of 10 μm.
m was used. This and Li2SO4 are Li / Mn = 1
The mixture was mixed in a ball mill at a composition ratio of 1/2 (atomic ratio) for 3 hours, heat-treated in air at 900 ° C. for 10 hours, and then cooled to around room temperature over 10 hours. Then, the lithium manganese oxide and Li2CO3 are mixed so that Li / Mn = 1.1 / 1.9 (atomic ratio), and heat-treated again at 650 ° C. for 20 hours in air to obtain α = 0.1, β = 0, A lithium manganese composite oxide with γ = 0 was obtained.
【0046】リチウムニッケル複合酸化物は、出発原料
としてNi(NO3)2およびCo(NO3)2、を8:2で混合して精製
水に溶解し、NaOH水溶液を攪拌しながら滴下した。沈殿
物をろ過、洗浄してニッケルコバルト複合水酸化物を得
た。次いでLiOHと複合水酸化物と、B/(Co+Ni)=0.01/0.9
9となるような量のB2O3とをLi/(Ni+Co+B)=1.03になる
ように混合して、550℃で20時間、次いで700℃
で3時間熱処理を行い、冷却後水洗することでx=0.0
2、y=0.2、z=0.01のリチウムニッケル複合酸化物を
得た。The lithium nickel composite oxide was prepared by mixing Ni (NO 3) 2 and Co (NO 3) 2 as starting materials in a ratio of 8: 2, dissolving in purified water, and dropping an aqueous NaOH solution with stirring. The precipitate was filtered and washed to obtain a nickel-cobalt composite hydroxide. Next, LiOH and a composite hydroxide, B / (Co + Ni) = 0.01 / 0.9
B2O3 in an amount of 9 was mixed with Li / (Ni + Co + B) = 1.03, and the mixture was heated at 550 ° C. for 20 hours and then at 700 ° C.
Heat treatment for 3 hours, cooling and washing with water, x = 0.0
2. A lithium nickel composite oxide having y = 0.2 and z = 0.01 was obtained.
【0047】両者を90/10,80/20,60/4
0の重量比で混合すること以外は実施例1と同様にして
角型非水電解質二次電池を作成した。得られた電池の初
期の放電容量、P/Qと各種評価結果を表4に示す。Both are 90/10, 80/20, 60/4
A prismatic nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the components were mixed at a weight ratio of 0. Table 4 shows the initial discharge capacity, P / Q, and various evaluation results of the obtained batteries.
【0048】[0048]
【表1】 [Table 1]
【0049】[0049]
【表2】 [Table 2]
【0050】[0050]
【表3】 [Table 3]
【0051】[0051]
【表4】 [Table 4]
【0052】[0052]
【発明の効果】以上説明してきたように、本発明はリチ
ウムマンガン複合酸化物とリチウムニッケル複合酸化物
の混合正極と負極との特定量比の組み合わせによって、
広い温度範囲でのサイクル特性が良好であり、高温下で
の保存特性が良好であり、また、過充電時の異常発熱お
よび過放電後の異常発熱が防止されたエネルギー密度の
高い、すなわち実用性能を満足した非水電解質二次電池
を得ることができる。さらに、高価なコバルトを使用し
ないので安価である。その結果、安価な材料のリチウム
マンガン複合酸化物を主活物質として使用して、高価な
リチウムコバルト酸化物を使用した場合と遜色のない非
水電解液二次電池を提供できる。高性能な非水電解液二
次電池が安価で供給できるようになりその工業的価値は
大きい。As described above, the present invention is based on the combination of a specific ratio of the mixed positive electrode and the negative electrode of the lithium manganese composite oxide and the lithium nickel composite oxide.
Good cycle characteristics over a wide temperature range, good storage characteristics at high temperatures, and high energy density that prevents abnormal heat generation during overcharge and abnormal heat after overdischarge, that is, practical performance Can be obtained. Furthermore, it is inexpensive because expensive cobalt is not used. As a result, it is possible to provide a non-aqueous electrolyte secondary battery that is comparable to a case where expensive lithium cobalt oxide is used, using a low-cost material lithium manganese composite oxide as a main active material. A high-performance non-aqueous electrolyte secondary battery can be supplied at low cost, and its industrial value is great.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 BB05 BC01 BC05 BC06 BD00 BD03 5H014 AA01 CC01 EE10 HH01 HH04 5H029 AJ02 AK03 AL01 AL02 AL06 AL07 AL08 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ16 HJ19 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA01 BB05 BC01 BC05 BC06 BD00 BD03 5H014 AA01 CC01 EE10 HH01 HH04 5H029 AJ02 AK03 AL01 AL02 AL06 AL07 AL08 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ16 HJ19
Claims (3)
極活物質と、リチウムイオン伝導性の非水電解液、及び
リチウムを吸蔵放出することが可能なリチウム含有金属
複合酸化物からなる混合正極活物質を備えた非水電解液
二次電池において、前記混合正極活物質が一般式 Li[LiαMβMn2-α-β]O4-γAγ (ただし、0≦α≦0.12、0<β≦0.20、0≦
γ≦0.05であり、MはAl、Cr、Niから選ばれ
た少なくとも一つであり、AはF、Clから選ばれた少
なくとも一つである)で示されるスピネル構造を有する
リチウムマンガン系複合酸化物と、一般式 Li[LixNi1-x-y-zCoyTz]O2 (ただし、0≦x≦0.03、0≦y≦0.3、0≦z≦
0.05であり、TはAl、Mg、B、Srから選ばれ
た少なくとも一つである)で示される層状構造を有する
リチウムニッケル系複合酸化物の混合物である非水電解
質二次電池。1. A mixed positive electrode active material comprising a negative electrode active material capable of inserting and extracting lithium, a lithium ion conductive non-aqueous electrolyte, and a lithium-containing metal composite oxide capable of inserting and extracting lithium. In a non-aqueous electrolyte secondary battery provided with a substance, the mixed positive electrode active material is represented by the general formula Li [LiαMβMn2-α-β] O4-γAγ (where 0 ≦ α ≦ 0.12, 0 <β ≦ 0.20 , 0 ≦
γ ≦ 0.05, M is at least one selected from Al, Cr, and Ni, and A is at least one selected from F and Cl.) A composite oxide and a general formula Li [LixNi1-xy-zCoyTz] O2 (where 0 ≦ x ≦ 0.03, 0 ≦ y ≦ 0.3, 0 ≦ z ≦
0.05, and T is at least one selected from the group consisting of Al, Mg, B, and Sr.) A non-aqueous electrolyte secondary battery that is a mixture of lithium nickel-based composite oxides having a layered structure represented by the following formula:
状構造を有するリチウムニッケル系複合酸化物が50重
量%以上10重量%以下である、請求項1記載の非水電
解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium nickel-based composite oxide having the layered structure contained in the mixed positive electrode active material is 50% by weight or more and 10% by weight or less.
と前記混合正極活物質を用いた正極の初回リチウム吸蔵
可能容量(Q)の比P/Qが1.0以上1.25以下で
あり、かつ前記正極の初回電流効率が負極の初回電流効
率よりも小さい、請求項1または2記載の非水電解質二
次電池。3. The capacity of the negative electrode to release lithium for the first time (P)
And the ratio P / Q of the initial lithium storage capacity (Q) of the positive electrode using the mixed positive electrode active material is 1.0 or more and 1.25 or less, and the initial current efficiency of the positive electrode is greater than the initial current efficiency of the negative electrode. The non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary battery is also small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10367373A JP2000195513A (en) | 1998-12-24 | 1998-12-24 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10367373A JP2000195513A (en) | 1998-12-24 | 1998-12-24 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000195513A true JP2000195513A (en) | 2000-07-14 |
Family
ID=18489153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10367373A Withdrawn JP2000195513A (en) | 1998-12-24 | 1998-12-24 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000195513A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
JP2002003220A (en) * | 2000-06-16 | 2002-01-09 | Mitsubishi Chemicals Corp | Anode material for lithium ion secondary battery, anode and battery using it |
JP2002075361A (en) * | 2000-08-30 | 2002-03-15 | Denso Corp | Lithium ion secondary battery |
JP2002128526A (en) * | 2000-10-24 | 2002-05-09 | Toyota Central Res & Dev Lab Inc | Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same |
JP2002203554A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2002203555A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2002298927A (en) * | 2001-03-30 | 2002-10-11 | Sony Corp | Nonaqueous electrolyte battery and its manufacturing method |
WO2002082574A1 (en) * | 2001-03-30 | 2002-10-17 | Sony Corporation | Nonaqueous electrolytic cell and its manufacturing method, and positive electrode active material and its manufacturing method |
KR20030083476A (en) * | 2002-04-23 | 2003-10-30 | 주식회사 엘지화학 | Lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof |
KR100404891B1 (en) * | 2001-03-13 | 2003-11-10 | 주식회사 엘지화학 | Positive active material for lithium secondary battery and method for preparing the same |
EP1317008A3 (en) * | 2001-11-30 | 2004-02-04 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary cell and method of manufacturing the same |
KR100441524B1 (en) * | 2002-01-24 | 2004-07-23 | 삼성에스디아이 주식회사 | Positive active material slurry composition for rechargeable lithium battery |
KR100598491B1 (en) | 2004-10-21 | 2006-07-10 | 한양대학교 산학협력단 | Double-layer cathode active materials and their preparing method for lithium secondary batteries |
WO2006091019A1 (en) * | 2005-02-23 | 2006-08-31 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
WO2007011169A1 (en) * | 2005-07-22 | 2007-01-25 | Lg Chem, Ltd. | Pre-treatment method of electrode active material |
WO2007021148A1 (en) * | 2005-08-19 | 2007-02-22 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
EP1875537A2 (en) * | 2005-04-01 | 2008-01-09 | SK Energy Co., Ltd. | Layered core-shell cathode active materials for lithium secondary batteries, method for preparing thereof and lithium secondary batteries using the same |
WO2008069351A1 (en) * | 2006-12-05 | 2008-06-12 | Sk Energy Co., Ltd. | Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof |
US8703339B2 (en) | 2009-06-05 | 2014-04-22 | Samsung Sdi Co., Ltd. | Positive active material and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode |
US10454106B2 (en) | 2004-12-31 | 2019-10-22 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials |
-
1998
- 1998-12-24 JP JP10367373A patent/JP2000195513A/en not_active Withdrawn
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
JP2002003220A (en) * | 2000-06-16 | 2002-01-09 | Mitsubishi Chemicals Corp | Anode material for lithium ion secondary battery, anode and battery using it |
JP4654488B2 (en) * | 2000-06-16 | 2011-03-23 | 三菱化学株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same |
JP2002075361A (en) * | 2000-08-30 | 2002-03-15 | Denso Corp | Lithium ion secondary battery |
JP2002128526A (en) * | 2000-10-24 | 2002-05-09 | Toyota Central Res & Dev Lab Inc | Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same |
JP2002203554A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2002203555A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolyte secondary battery |
KR100404891B1 (en) * | 2001-03-13 | 2003-11-10 | 주식회사 엘지화학 | Positive active material for lithium secondary battery and method for preparing the same |
JP2002298927A (en) * | 2001-03-30 | 2002-10-11 | Sony Corp | Nonaqueous electrolyte battery and its manufacturing method |
WO2002082574A1 (en) * | 2001-03-30 | 2002-10-17 | Sony Corporation | Nonaqueous electrolytic cell and its manufacturing method, and positive electrode active material and its manufacturing method |
CN100454652C (en) * | 2001-11-30 | 2009-01-21 | 三洋电机株式会社 | Nonaqueous electrolyte secondary battery and producing method thereof |
EP1317008A3 (en) * | 2001-11-30 | 2004-02-04 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary cell and method of manufacturing the same |
US6919144B2 (en) | 2001-11-30 | 2005-07-19 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary cell and method of manufacturing the same |
CN100426570C (en) * | 2002-01-24 | 2008-10-15 | 三星Sdi株式会社 | Positive pole active substance for rechargeable lithium cell |
KR100441524B1 (en) * | 2002-01-24 | 2004-07-23 | 삼성에스디아이 주식회사 | Positive active material slurry composition for rechargeable lithium battery |
US7309546B2 (en) | 2002-01-24 | 2007-12-18 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery |
KR20030083476A (en) * | 2002-04-23 | 2003-10-30 | 주식회사 엘지화학 | Lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof |
KR100598491B1 (en) | 2004-10-21 | 2006-07-10 | 한양대학교 산학협력단 | Double-layer cathode active materials and their preparing method for lithium secondary batteries |
US10454106B2 (en) | 2004-12-31 | 2019-10-22 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials |
WO2006091019A1 (en) * | 2005-02-23 | 2006-08-31 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
US9666862B2 (en) | 2005-02-23 | 2017-05-30 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
US9276259B2 (en) | 2005-02-23 | 2016-03-01 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
EP1875537A2 (en) * | 2005-04-01 | 2008-01-09 | SK Energy Co., Ltd. | Layered core-shell cathode active materials for lithium secondary batteries, method for preparing thereof and lithium secondary batteries using the same |
EP1875537A4 (en) * | 2005-04-01 | 2011-06-01 | Sk Energy Co Ltd | Layered core-shell cathode active materials for lithium secondary batteries, method for preparing thereof and lithium secondary batteries using the same |
WO2007011169A1 (en) * | 2005-07-22 | 2007-01-25 | Lg Chem, Ltd. | Pre-treatment method of electrode active material |
US9017841B2 (en) | 2005-08-19 | 2015-04-28 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
US8241773B2 (en) | 2005-08-19 | 2012-08-14 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
WO2007021148A1 (en) * | 2005-08-19 | 2007-02-22 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
WO2008069351A1 (en) * | 2006-12-05 | 2008-06-12 | Sk Energy Co., Ltd. | Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof |
US8703339B2 (en) | 2009-06-05 | 2014-04-22 | Samsung Sdi Co., Ltd. | Positive active material and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3813001B2 (en) | Non-aqueous secondary battery | |
JP5078334B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3045998B2 (en) | Interlayer compound and method for producing the same | |
US7655358B2 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
WO2022198654A1 (en) | Positive electrode lithium supplementing material, positive electrode pate comprising same, and electrochemical apparatus | |
JP2000195513A (en) | Nonaqueous electrolyte secondary battery | |
JP2001143705A (en) | Non-aqueous electrolyte secondary battery | |
CA2522107A1 (en) | Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same | |
WO2010135960A1 (en) | Titanium system composite and the preparing method of the same | |
JP2002289261A (en) | Non-aqueous electrolyte secondary battery | |
JP2004047180A (en) | Nonaqueous electrolytic solution battery | |
JP3436600B2 (en) | Rechargeable battery | |
CN111771301B (en) | Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same | |
JP4177574B2 (en) | Lithium secondary battery | |
WO2022198660A1 (en) | Positive electrode lithium supplementing material, and positive electrode plate and electrochemical device including same | |
KR20100106242A (en) | Nonaqueous secondary battery | |
JP2002298846A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP2008091041A (en) | Nonaqueous secondary battery | |
CN114144919A (en) | Positive pole piece, electrochemical device comprising positive pole piece and electronic device | |
JP2002358961A (en) | Non-aqueous electrolyte secondary battery | |
JP2003157844A (en) | Positive electrode active material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery | |
JP6233828B2 (en) | Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode | |
JP2001160395A (en) | Material for positive electrode of lithium secondary battery | |
JPH11111291A (en) | Positive electrode material for nonaqueous secondary battery and battery using this | |
JP2001243954A (en) | Positive electrode material for lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060307 |