JP2000191706A - Production of flat fine particle - Google Patents
Production of flat fine particleInfo
- Publication number
- JP2000191706A JP2000191706A JP10370557A JP37055798A JP2000191706A JP 2000191706 A JP2000191706 A JP 2000191706A JP 10370557 A JP10370557 A JP 10370557A JP 37055798 A JP37055798 A JP 37055798A JP 2000191706 A JP2000191706 A JP 2000191706A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- weight
- polymer seed
- fine particles
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液晶表示素子用ス
ペーサやクロマトグラフィー用充填剤等に用いられる偏
平微粒子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing flat fine particles used for a spacer for a liquid crystal display device or a filler for chromatography.
【0002】[0002]
【従来の技術】ミクロンオーダーの均一径を有する微粒
子は、液晶表示素子用スペーサやクロマトグラフィー用
充填剤等の用途があり、高付加価値の微粒子である。従
来より、このような微粒子を得る方法としては、懸濁重
合で得られた微粒子を乾式及び湿式の分級装置によって
ふるい分ける方法が主流であった。2. Description of the Related Art Fine particles having a uniform diameter on the order of microns are used as spacers for liquid crystal display elements or fillers for chromatography, and are high value-added fine particles. Conventionally, as a method for obtaining such fine particles, a method in which fine particles obtained by suspension polymerization are sieved using a dry and wet classifier has been the mainstream.
【0003】また、特公昭57−24369号公報や特
公平5−64964号公報には、分級を必要としない単
分散微粒子の製造方法が開示されている。これらの方法
は、比較的小さな粒子に重合性単量体を吸収させ、ミク
ロンオーダーの大きさに膨らませた後に、重合を行うシ
ード重合に関するものであり、このような重合方法によ
り得られる微粒子は、水中に重合性単量体の油滴を存在
させて重合させるため、その表面張力により真球状にな
るのが普通であるFurther, Japanese Patent Publication No. 57-24369 and Japanese Patent Publication No. 5-64964 disclose a method for producing monodispersed fine particles which does not require classification. These methods are related to seed polymerization in which a relatively small particle is made to absorb a polymerizable monomer and swelled to a micron-order size, followed by polymerization, and the fine particles obtained by such a polymerization method are: In order to polymerize in the presence of oil droplets of polymerizable monomer in water, it is normal to make it spherical due to its surface tension
【0004】一方、サブミクロンオーダーの微粒子で
は、乳化重合での相分離による異形粒子が知られてお
り、だるま状、いいだこ状、金平糖状、中空状等の粒子
が大久保らのグループにより報告されている〔高分子
36巻 P651(1987)、第8回 高分子ミクロ
スフェア討論会 講演会要旨集 P95〕。On the other hand, in the case of fine particles on the order of submicrons, irregularly shaped particles due to phase separation in emulsion polymerization are known, and particles such as daruma, leek, confetti, and hollow have been reported by the group of Okubo et al. [Polymer
36, P651 (1987), 8th Polymer Microsphere Symposium Lecture Abstracts P95].
【0005】これらの粒子は、その形状から表面が平滑
な粒子に比べ、表面積が大きいこと、流動性が変わるこ
と、光の反射性が変わること等の特徴を有し、これらの
性質を利用した応用分野の展開が期待される。しかし、
これらの粒子は、乳化シード重合によるサブミクロンオ
ーダーの粒子であり、ミクロンオーダーの粒子が報告さ
れた例は少ない。[0005] These particles have characteristics such as a large surface area, a change in fluidity, a change in light reflectivity, and the like as compared with particles having a smooth surface due to their shapes. Application fields are expected to expand. But,
These particles are submicron-order particles obtained by emulsion seed polymerization, and few examples have reported micron-order particles.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記に鑑
み、容易な操作で、ミクロンオーダーの偏平微粒子の製
造を可能とする方法を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a method capable of producing flat micron-order fine particles by an easy operation.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記目的
を達成するために種々検討を行った結果、製造する重合
体シード粒子の重量平均分子量を制御し、かつ、吸収さ
せる架橋性単量体の組成を選択することにより、ミクロ
ンオーダーで偏平形状の微粒子を製造することができる
ことを見いだし本発明を完成させたものである。Means for Solving the Problems The present inventors have conducted various studies to achieve the above object, and as a result, have found that the weight average molecular weight of the polymer seed particles to be produced is controlled and the crosslinkable monomer capable of absorbing is obtained. It has been found that by selecting the composition of the monomer, fine particles having a flat shape on the order of microns can be produced, and the present invention has been completed.
【0008】すなわち本発明は、水中に分散した重量平
均分子量が30万以上の重合体シード粒子に、架橋性単
量体及び重合開始剤を吸収させた後、架橋性単量体を重
合させ、重合体シード粒子と異なる組成の重合体を形成
することを特徴とする偏平微粒子の製造方法である。以
下に本発明を詳述する。That is, according to the present invention, after a crosslinkable monomer and a polymerization initiator are absorbed in polymer seed particles having a weight average molecular weight of 300,000 or more dispersed in water, the crosslinkable monomer is polymerized, A method for producing flat fine particles, wherein a polymer having a composition different from that of the polymer seed particles is formed. Hereinafter, the present invention will be described in detail.
【0009】本発明では、重合体シード粒子として、重
量平均分子量が30万以上のものを用いる。上記重量平
均分子量が30万未満であると、後で添加する架橋成分
との相分離が起こらず、単なる均一な真球微粒子になっ
てしまったり、架橋成分との相分離が幾つかの部分で起
こり、更にその部分で重合収縮が起こることにより多孔
質微粒子になってしまうため、上記範囲に限定される。In the present invention, a polymer seed particle having a weight average molecular weight of 300,000 or more is used. When the weight average molecular weight is less than 300,000, phase separation with a crosslinking component to be added later does not occur, resulting in mere uniform spherical fine particles, or phase separation with the crosslinking component in some portions. Occurs, and furthermore, polymerization shrinkage occurs at that portion, resulting in porous fine particles.
【0010】上記重合体シード粒子の製造に用いられる
単量体としては特に限定されず、例えば、スチレン、α
−メチルスチレン、p−メチルスチレン、p−クロロス
チレン、クロロメチルスチレン等のスチレン誘導体;塩
化ビニル、酢酸ビニル、プロピオン酸ビニル等のビニル
エステル類;アクリロニトリル等の不飽和ニトリル類;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチ
ル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−
2−エチルヘキシル、(メタ)アクリル酸ステアリル、
エチレングリコール(メタ)アクリレート、トリフルオ
ロエチル(メタ)アクリレート、ペンタフルオロプロピ
ル(メタ)アクリレート、シクロヘキシル(メタ)アク
リレート等の(メタ)アクリル酸エステル誘導体等が挙
げられる。これらの単量体は、単独で用いてもよく、2
種以上を併用してもよい。The monomer used for the production of the polymer seed particles is not particularly restricted but includes, for example, styrene, α
Styrene derivatives such as -methylstyrene, p-methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl esters such as vinyl chloride, vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile;
Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid
2-ethylhexyl, stearyl (meth) acrylate,
(Meth) acrylic acid ester derivatives such as ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate are exemplified. These monomers may be used alone,
More than one species may be used in combination.
【0011】上記重合体シード粒子は、ソープフリー重
合、分散重合、乳化重合、懸濁重合等により製造するこ
とができるが、粒子径分布の小さいものを製造する場合
には、ソープフリー重合、分散重合により製造すること
が望ましい。これらの重合法では、粒子径分布のCV値
が、5%以下の重合体シード粒子を製造することが可能
である。従って、最終的に製造する偏平微粒子も単分散
性の高いものとすることができる。The above-mentioned polymer seed particles can be produced by soap-free polymerization, dispersion polymerization, emulsion polymerization, suspension polymerization, and the like. It is desirable to produce by polymerization. In these polymerization methods, it is possible to produce polymer seed particles having a CV value of a particle size distribution of 5% or less. Therefore, the flat fine particles finally produced can also be made to have high monodispersibility.
【0012】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。上記標準偏差及
び数平均粒子径は、微粒子300個を電子顕微鏡で観察
することにより得られる数値である。The CV value is defined by the following equation (1); CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are numerical values obtained by observing 300 fine particles with an electron microscope.
【0013】本発明では、水中に分散した上記重合体シ
ード粒子に、架橋性単量体及び重合開始剤を吸収させた
後、上記架橋性単量体を重合させる。重合体シード粒子
に吸収させる架橋性単量体としては特に限定されず、例
えば、ジビニルベンゼン、ジビニルビフェニル、ジビニ
ルナフタレン、ポリエチレングリコールジ(メタ)アク
リレート、1,6−ヘキサンジオールジ(メタ)アクリ
レート、ネオペンチルグリコールジ(メタ)アクリレー
ト、トリメチロールプロパントリ(メタ)アクリレー
ト、テトラメチロールメタントリ(メタ)アクリレー
ト、テトラメチロールプロパンテトラ(メタ)アクリレ
ート、ジアリルフタレート及びその異性体、トリアリル
イソシアヌレート及びその誘導体等の架橋性単量体が挙
げられる。上記架橋性単量体は、単独で用いてもよく、
2種以上を併用してもよい。In the present invention, the crosslinkable monomer and the polymerization initiator are absorbed in the polymer seed particles dispersed in water, and then the crosslinkable monomer is polymerized. The crosslinkable monomer to be absorbed by the polymer seed particles is not particularly limited. For example, divinylbenzene, divinylbiphenyl, divinylnaphthalene, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and its isomers, triallyl isocyanurate and its derivatives And the like. The crosslinkable monomer may be used alone,
Two or more kinds may be used in combination.
【0014】重合体シード粒子に吸収させる架橋性単量
体として、上記架橋性単量体のほかに、例えば、上記し
た重合体シード粒子の製造に用いられる単官能の単量体
等を用いてもよく、上記架橋性単量体と上記単官能の単
量体等とを併用してもよい。ただし、偏平微粒子の製造
においては、相分離と重合収縮が起きることが必要であ
るため、重合体シード粒子を構成する重合体とは異なっ
た組成の重合体を合成することが必要であり、上記架橋
性単量体を全単量体の50重量%以上配合することが好
ましい。As the crosslinkable monomer to be absorbed by the polymer seed particles, in addition to the above crosslinkable monomer, for example, a monofunctional monomer or the like used in the production of the above polymer seed particles may be used. The crosslinkable monomer and the monofunctional monomer may be used in combination. However, in the production of flat fine particles, since it is necessary that phase separation and polymerization shrinkage occur, it is necessary to synthesize a polymer having a different composition from the polymer constituting the polymer seed particles. It is preferable that the crosslinkable monomer is blended in an amount of 50% by weight or more based on all monomers.
【0015】上記重合開始剤としては特に限定されず、
例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソ
クロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾ
イル、3,5,5−トリメチルヘキサノイルパーオキサ
イド、t−ブチルパーオキシ−2−エチルヘキサノエー
ト、ジ−t−ブチルパーオキサイド等の有機過酸化物;
アゾビスイソブチロニトリル、アゾビスシクロヘキサカ
ルボニトリル、アゾビス(2,4−ジメチルバレロニト
リル)等のアゾ系化合物等が挙げられる。上記重合開始
剤の配合量は、架橋性単量体100重量部に対して、
0.1〜10重量部が好ましい。The above-mentioned polymerization initiator is not particularly limited.
For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t- Organic peroxides such as butyl peroxide;
Examples include azo compounds such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, and azobis (2,4-dimethylvaleronitrile). The amount of the polymerization initiator is based on 100 parts by weight of the crosslinkable monomer.
0.1 to 10 parts by weight is preferred.
【0016】水中に分散した上記重合体シード粒子に、
上記架橋性単量体及び重合開始剤を吸収させる際には、
上記架橋性単量体と上記重合開始剤とを、エマルジョン
として水中に添加し、重合体シード粒子に吸収させるこ
とが好ましい。上記エマルジョンを調製する際には、上
記架橋性単量体と重合開始剤とに、予め水と乳化剤とを
添加しておき、この混合物をホモジナイザーで処理する
か、超音波処理を行うか、又は、ナノマイザー等の微細
乳化機により乳化すればよい。The polymer seed particles dispersed in water are:
When absorbing the crosslinking monomer and the polymerization initiator,
It is preferable that the crosslinkable monomer and the polymerization initiator are added to water as an emulsion and absorbed by the polymer seed particles. When preparing the emulsion, to the crosslinking monomer and the polymerization initiator, water and an emulsifier are added in advance, and the mixture is treated with a homogenizer, or subjected to ultrasonic treatment, or What is necessary is just to emulsify with a fine emulsifier, such as a Nanomizer.
【0017】また、上記架橋性単量体と重合開始剤とを
重合体シード粒子に吸収させるには、上記エマルジョン
を重合体シード粒子の分散水溶液と混合し、1〜24時
間攪拌すればよい。吸収の終了は、光学顕微鏡で観察す
ることにより確認することができる。In order to absorb the crosslinkable monomer and the polymerization initiator into the polymer seed particles, the emulsion may be mixed with an aqueous dispersion of the polymer seed particles and stirred for 1 to 24 hours. The end of the absorption can be confirmed by observing with an optical microscope.
【0018】上記偏平微粒子の製造方法においては、必
要に応じて分散安定剤を用いてもよい。上記分散安定剤
としては、媒体に可溶なものを用いることができる。こ
れらの分散安定剤としては、例えば、ポリビニルアルコ
ール、ポリビニルピロリドン、メチルセルロース、エチ
ルセルロース、ポリアクリル酸、ポリアクリルアミド、
ポリエチレンオキシド等の媒体中に可溶の高分子、ノニ
オン性の界面活性剤、イオン性界面活性剤等が挙げられ
る。In the above method for producing flat fine particles, a dispersion stabilizer may be used if necessary. As the dispersion stabilizer, those that are soluble in a medium can be used. As these dispersion stabilizers, for example, polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, ethyl cellulose, polyacrylic acid, polyacrylamide,
Examples thereof include a polymer soluble in a medium such as polyethylene oxide, a nonionic surfactant, and an ionic surfactant.
【0019】上記シード重合を行う際の架橋性単量体の
添加量は、種粒子1重量部に対して、20〜100重量
部が好ましい。架橋性単量体の添加量が20重量部未満
では、製造される架橋微粒子の破壊強度が充分でなく、
100重量部を超えるとシード重合時に粒子の合一等に
より粒子径分布が広がるため好ましくない。The amount of the crosslinkable monomer to be added during the seed polymerization is preferably 20 to 100 parts by weight based on 1 part by weight of the seed particles. If the amount of the crosslinking monomer is less than 20 parts by weight, the breaking strength of the produced crosslinked fine particles is not sufficient,
If the amount exceeds 100 parts by weight, the particle size distribution is broadened due to coalescence of the particles during seed polymerization, which is not preferable.
【0020】上記した本発明の偏平微粒子の製造方法に
おける技術的なポイントは二つある。一つはシード重合
時に起きる相分離であり、他の一つは、架橋性単量体が
重合時に起こす重合収縮である。There are two technical points in the method for producing flat fine particles of the present invention described above. One is phase separation that occurs during seed polymerization, and the other is polymerization shrinkage that occurs when the crosslinkable monomer is polymerized.
【0021】重合体シード粒子と後から吸収させる架橋
性単量体の重合体の組成が異なる場合には、シード重合
の進行に伴い、相分離が発生する。この相分離の程度
は、二つの高分子の分子量に影響され、重合体シード粒
子の分子量が大きければ大きいほど、相分離が顕著に起
こることになる。When the composition of the polymer seed particles and the polymer of the crosslinkable monomer to be subsequently absorbed are different, phase separation occurs as the seed polymerization proceeds. The degree of the phase separation is affected by the molecular weights of the two polymers, and the larger the molecular weight of the polymer seed particles, the more significant the phase separation occurs.
【0022】重合体シード粒子の分子量が30万以上で
あれば、重合体シード粒子内での相分離が顕著となり、
相分離した高分子が1か所に集まり、重合収縮も1か所
に集中することになるので、粒子の一部がへこんだ偏平
微粒子となる。このような偏平微粒子は、粒子として転
がりにくいため付着性の向上が期待でき、更には、シー
トやフィルムに混合したり塗料に分散させた際に、光の
乱反射性を高くすることができる。When the molecular weight of the polymer seed particles is 300,000 or more, phase separation within the polymer seed particles becomes remarkable,
The phase-separated polymer gathers in one place, and the polymerization shrinkage also concentrates in one place, so that the particles become flat fine particles in which some of the particles are dented. Such flat fine particles are less likely to roll as particles, so that an improvement in adhesion can be expected, and further, when mixed into a sheet or film or dispersed in a paint, diffused light reflectance can be increased.
【0023】また、重合体シード粒子の分子量が1万〜
30万程度であれば、粒子の幾つかの部分で相分離が起
こるとともに、その部分で重合収縮が起こるため、あち
こちに孔の開いた多孔質微粒子となり、重合体シード粒
子の分子量が1万未満であれば、後で形成する重合体と
の間に相分離が起こらず、真球状の粒子となる。The molecular weight of the polymer seed particles is from 10,000 to
If it is about 300,000, phase separation occurs in some parts of the particles, and polymerization shrinkage occurs in those parts, resulting in porous fine particles having pores everywhere, and the molecular weight of the polymer seed particles is less than 10,000. In this case, phase separation does not occur between the polymer and a polymer to be formed later, resulting in true spherical particles.
【0024】[0024]
【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
【0025】実施例1重合体シード粒子Aの製造 イオン交換水90重量部とスチレン10重量部とNaC
l0.1重量部とをセパラブルフラスコに入れ、この容
器に冷却管、攪拌羽根及び窒素導入管を取り付け、1時
間窒素を流し入れて重合雰囲気の窒素置換を行った。次
に、攪拌羽根を回転させ、70℃まで昇温し、更に1時
間窒素置換を行った。続いて、少量の水に溶かした0.
1重量部の過硫酸カリウムを注射器を用いて系中に注ぎ
込んだ。Example 1 Preparation of polymer seed particles A 90 parts by weight of ion-exchanged water, 10 parts by weight of styrene, and NaC
0.1 part by weight was placed in a separable flask, and a cooling tube, a stirring blade and a nitrogen introducing tube were attached to the container, and nitrogen was supplied for 1 hour to replace the polymerization atmosphere with nitrogen. Next, the stirring blade was rotated, the temperature was raised to 70 ° C., and the atmosphere was replaced with nitrogen for 1 hour. Subsequently, it was dissolved in a small amount of water.
One part by weight of potassium persulfate was poured into the system using a syringe.
【0026】この後、70℃のまま24時間反応を続
け、その後温度を室温まで下げて反応を停止させた。反
応終了時の重合転化率は80%であった。生成した重合
液を遠心分離にかけ、重合媒体と重合体シード粒子Aと
に固液分離を行った。続いて、エタノール、エタノール
と水との混合媒体、水の順序で各2回ずつ重合体シード
粒子Aの洗浄と遠心分離を行い、余分な重合開始剤、単
量体、連鎖移動剤を取り除いた。Thereafter, the reaction was continued at 70 ° C. for 24 hours, and then the temperature was lowered to room temperature to stop the reaction. At the end of the reaction, the polymerization conversion was 80%. The resulting polymerization liquid was subjected to centrifugation to perform solid-liquid separation on the polymerization medium and the polymer seed particles A. Subsequently, the polymer seed particles A were washed and centrifuged twice each in the order of ethanol, a mixed medium of ethanol and water, and water to remove excess polymerization initiator, monomer, and chain transfer agent. .
【0027】粒子径の測定 洗浄した重合体シード粒子Aを適当な媒体に分散し、金
属メッシュに支持されたコロジオン膜に沈着固定した。
これを透過型電子顕微鏡を用いて観察し、重合体シード
粒子Aの写真を撮影した。撮影された写真中の任意粒子
200〜500個の粒子径を測り、平均粒子径及び粒子
径分布を求めた。その結果、平均粒子径Dn=0.97
μm、CV値=2.8%であった。また、ゲルパーミエ
イションクロマトグラフィー(GPC)を用いて、分子
量を測定したところ、重量平均分子量Mw=69500
0であった。 Measurement of Particle Diameter The washed polymer seed particles A were dispersed in a suitable medium and deposited and fixed on a collodion film supported by a metal mesh.
This was observed using a transmission electron microscope, and a photograph of the polymer seed particles A was taken. The particle diameter of 200 to 500 arbitrary particles in the photographed photograph was measured, and the average particle diameter and the particle diameter distribution were determined. As a result, the average particle diameter Dn = 0.97
μm, CV value = 2.8%. When the molecular weight was measured using gel permeation chromatography (GPC), the weight average molecular weight Mw was 69500.
It was 0.
【0028】架橋微粒子の製造 得られた重合体シード粒子A0.5重量部にイオン交換
水50重量部、ラウリル硫酸ナトリウム0.05重量部
を加え、均一に分散させたものを重合体シード粒子A分
散液とし、更にポリビニルアルコールの3重量%水溶液
を20重量部加えて、セパラブルフラスコに入れた。次
に、ジビニルベンゼン5重量部、過酸化べンゾイル(2
5重量%含水)0.25重量部、イオン交換水50重量
部、ラウリル硫酸ナトリウム0.1重量部を混合してホ
モジナイザーにより微分散乳化した。この乳化液を重合
体シード粒子A分散液に添加し、25℃、100rpm
で24時間攪拌して上記乳化液を重合体シード粒子Aに
吸収させた。ついで、窒素を系内に1時間流して、窒素
置換を行った後、200rpmで攪拌しつつ、70℃で
24時間重合を行い、架橋微粒子を得た。Preparation of Crosslinked Fine Particles 50 parts by weight of ion-exchanged water and 0.05 parts by weight of sodium lauryl sulfate were added to 0.5 parts by weight of the obtained polymer seed particles A, and the resulting mixture was uniformly dispersed. As a dispersion, 20 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol was added, and the dispersion was placed in a separable flask. Next, 5 parts by weight of divinylbenzene and benzoyl peroxide (2
0.25 parts by weight of water (containing 5% by weight), 50 parts by weight of ion-exchanged water, and 0.1 part by weight of sodium lauryl sulfate were mixed and finely dispersed and emulsified by a homogenizer. This emulsion was added to the dispersion liquid of the polymer seed particles A, and the mixture was added at 25 ° C and 100 rpm.
And the mixture was stirred for 24 hours to absorb the emulsion into the polymer seed particles A. Next, nitrogen was introduced into the system for 1 hour to perform nitrogen substitution, and then polymerization was performed at 70 ° C. for 24 hours while stirring at 200 rpm to obtain crosslinked fine particles.
【0029】重合終了後、重合液を遠心分離にかけ、重
合媒体と架橋微粒子とに固液分離を行った。続いて、エ
タノール、エタノールと水との混合媒体、水の順序で各
2回ずつ架橋微粒子の洗浄と遠心分離を行い、余分な重
合開始剤、単量体、界面活性剤を取り除いた。得られた
架橋微粒子について、重合体シード粒子Aと同様に透過
型電子顕微鏡を用いて観察し、その後、粒子径及び粒子
系分布を測定した。結果を表1に示した。なお、偏平粒
子の粒子径及び粒子系分布は、透過型電子顕微鏡を用い
て得られた観察写真から、画像解析して粒子の断面積を
求め、粒子が真球であると仮定した場合の平均粒子径及
び粒子径分布を求めた。また、得られた架橋微粒子の走
査型電子顕微鏡及び透過型電子顕微鏡による観察写真を
図1及び図2に示した。After the completion of the polymerization, the polymerization liquid was subjected to centrifugal separation to perform solid-liquid separation into a polymerization medium and crosslinked fine particles. Subsequently, the crosslinked fine particles were washed and centrifuged twice each in the order of ethanol, a mixed medium of ethanol and water, and water to remove excess polymerization initiator, monomer, and surfactant. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in the case of the polymer seed particles A, and then the particle diameter and the particle distribution were measured. The results are shown in Table 1. The particle size and particle distribution of the flat particles are calculated from the observation photograph obtained using a transmission electron microscope, image analysis is performed to determine the cross-sectional area of the particles, and the average value when the particles are assumed to be true spheres. The particle size and particle size distribution were determined. 1 and 2 show photographs of the obtained crosslinked fine particles observed by a scanning electron microscope and a transmission electron microscope.
【0030】実施例2重合体シード粒子Bの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とn−ドデシルメルカプタン0.5重量部とNa
Cl0.1重量部とした以外は実施例1と同様にして重
合体シード粒子Bを得た。得られた重合体シード粒子B
は、平均粒子径Dn=0.76μm、CV値=3.8
%、重量平均分子量Mw=354000であった。Example 2 The preparation composition of the polymer seed particles B was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Parts by weight, 0.5 parts by weight of n-dodecyl mercaptan and Na
Polymer seed particles B were obtained in the same manner as in Example 1 except that Cl was 0.1 part by weight. Obtained polymer seed particles B
Means average particle diameter Dn = 0.76 μm, CV value = 3.8
%, Weight average molecular weight Mw = 354000.
【0031】架橋微粒子の作製 重合体シード粒子Bを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles B were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.
【0032】実施例3重合体シード粒子Cの製造 ポリビニルピロリドン(重量平均分子量:30000)
4重量部、エアロゾルOT(和光純薬工業社製 アニオ
ン界面活性剤)0.6重量部、及び、2,2′−アゾビ
ス−2,4−ジメチルバレロニトリル(和光純薬工業社
製、V−65)0.05重量部をメタノール84重量部
の混合液に溶解させ、この液を攪拌しながら、窒素気流
下でスチレン14重量部を滴下した。その後、系を60
℃に昇温させ、24時間反応を行った。反応終了後、遠
心分離機にて重合体シード粒子Cを分離し、メタノール
にて数回洗浄を行った。得られた重合体シード粒子C
は、平均粒子径Dn=1.5μm、CV値=3.0%、
重量平均分子量Mw=322000であった。Example 3 Production of Polymer Seed Particle C Polyvinylpyrrolidone (weight average molecular weight: 30,000)
4 parts by weight, 0.6 parts by weight of aerosol OT (anionic surfactant manufactured by Wako Pure Chemical Industries, Ltd.), and 2,2′-azobis-2,4-dimethylvaleronitrile (V-Pure, manufactured by Wako Pure Chemical Industries, Ltd.) 65) 0.05 part by weight was dissolved in a mixture of 84 parts by weight of methanol, and 14 parts by weight of styrene was added dropwise while stirring the liquid under a nitrogen stream. After that, the system
C. and the reaction was carried out for 24 hours. After completion of the reaction, the polymer seed particles C were separated by a centrifugal separator, and washed several times with methanol. Obtained polymer seed particles C
Means average particle diameter Dn = 1.5 μm, CV value = 3.0%,
The weight average molecular weight Mw was 322,000.
【0033】架橋微粒子の作製 重合体シード粒子Cを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles C were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.
【0034】実施例4 重合体シード粒子として、実施例1で得られた重合体シ
ード粒子Aを用いた。そして、架橋性単量体として、ジ
ビニルベンゼン3重量部及びスチレン2重量部を用いた
以外は、実施例1と同様にして、架橋微粒子を製造し
た。得られた架橋微粒子について、実施例1と同様に透
過型電子顕微鏡を用いた観察を行い、粒子径及び粒子系
分布を測定した。結果を表1に示した。Example 4 The polymer seed particles A obtained in Example 1 were used as the polymer seed particles. Then, crosslinked fine particles were produced in the same manner as in Example 1 except that 3 parts by weight of divinylbenzene and 2 parts by weight of styrene were used as the crosslinkable monomer. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1, and the particle diameter and the particle distribution were measured. The results are shown in Table 1.
【0035】実施例5重合体シード粒子Dの製造 スチレン10重量部の代わりに、メチルメタクリレート
10重量部を用いた以外は、実施例1と同様にして重合
体シード粒子Dを得た。得られた重合体シード粒子D
は、平均粒子径Dn=0.82μm、CV値=4.8
%、重量平均分子量Mw=722000であった。Example 5 Preparation of polymer seed particles D Polymer seed particles D were obtained in the same manner as in Example 1 except that 10 parts by weight of methyl methacrylate was used instead of 10 parts by weight of styrene. Obtained polymer seed particles D
Means average particle diameter Dn = 0.82 μm, CV value = 4.8
%, Weight average molecular weight Mw = 722000.
【0036】架橋微粒子の作製 重合体シード粒子Dを用い、ジビニルベンゼン5重量部
に代えて、エチレングリコールメタクリレート(EDM
A)5重量部を用いた以外は実施例1と同様にして架橋
微粒子を得た。得られた架橋微粒子について、実施例1
と同様に透過型電子顕微鏡を用いた観察を行い、粒子径
及び粒子径分布を測定した。結果を表1に示した。Preparation of Crosslinked Fine Particles Using polymer seed particles D, ethylene glycol methacrylate (EDM) was used instead of 5 parts by weight of divinylbenzene.
A) Crosslinked fine particles were obtained in the same manner as in Example 1 except that 5 parts by weight was used. About the obtained crosslinked fine particles, Example 1
Observation was performed using a transmission electron microscope in the same manner as in Example 2 to measure the particle size and the particle size distribution. The results are shown in Table 1.
【0037】比較例1重合体シード粒子Eの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とNaCl0.1重量部とオクチルメルカプタン
0.3重量部とした以外は実施例1と同様にして重合体
シード粒子Fを得た。得られた重合体シード粒子Fは、
平均粒子径Dn=0.74μm、CV値=4.0%、重
量平均分子量Mw=55000であった。Comparative Example 1 The preparation composition of the polymer seed particles E was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Polymer seed particles F were obtained in the same manner as in Example 1 except that the parts by weight, 0.1 parts by weight of NaCl, and 0.3 parts by weight of octyl mercaptan were used. The obtained polymer seed particles F
The average particle diameter Dn was 0.74 μm, the CV value was 4.0%, and the weight average molecular weight Mw was 55,000.
【0038】架橋微粒子の作製 重合体シード粒子Eを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that the polymer seed particles E were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.
【0039】比較例2重合体シード粒子Fの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とNaCl0.1重量部とオクチルメルカプタン
3.0重量部とした以外は実施例1と同様にして重合体
シード粒子Fを得た。得られた重合体シード粒子Fは、
平均粒子径Dn=0.78μm、CV値=4.0%、重
量平均分子量Mw=3000であった。COMPARATIVE EXAMPLE 2 The composition prepared for preparing polymer seed particles F was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Polymer seed particles F were obtained in the same manner as in Example 1 except that the parts by weight, 0.1 parts by weight of NaCl, and 3.0 parts by weight of octyl mercaptan were used. The obtained polymer seed particles F
The average particle diameter Dn was 0.78 μm, the CV value was 4.0%, and the weight average molecular weight Mw was 3000.
【0040】架橋微粒子の作製 重合体シード粒子Fを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles F were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.
【0041】比較例3 重合体シード粒子として、実施例1で得られた重合体シ
ード粒子Aを用いた。そして、架橋性単量体として、ス
チレン5重量部を用いた以外は、実施例1と同様にし
て、架橋微粒子を製造した。得られた架橋微粒子につい
て、実施例1と同様に透過型電子顕微鏡を用いた観察を
行い、粒子径及び粒子系分布を測定した。結果を表1に
示した。Comparative Example 3 The polymer seed particles A obtained in Example 1 were used as the polymer seed particles. Then, crosslinked fine particles were produced in the same manner as in Example 1 except that 5 parts by weight of styrene was used as the crosslinkable monomer. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1, and the particle diameter and the particle distribution were measured. The results are shown in Table 1.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【発明の効果】本発明の偏平微粒子の製造方法は、上述
の構成からなるので、容易な操作で、ミクロンオーダー
の偏平微粒子を製造することができる。According to the method for producing flat fine particles of the present invention having the above-described structure, flat fine particles on the order of microns can be produced by an easy operation.
【図面の簡単な説明】[Brief description of the drawings]
【図1】実施例1で得られた架橋微粒子の走査型電子顕
微鏡写真である。FIG. 1 is a scanning electron micrograph of the crosslinked fine particles obtained in Example 1.
【図2】実施例1で得られた架橋微粒子の透過型電子顕
微鏡写真である。FIG. 2 is a transmission electron micrograph of the crosslinked fine particles obtained in Example 1.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H089 LA10 MA04X MA05X NA17 QA16 4J011 KA02 KA10 KA12 KA15 KA16 KB08 KB19 KB29 ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2H089 LA10 MA04X MA05X NA17 QA16 4J011 KA02 KA10 KA12 KA15 KA16 KB08 KB19 KB29
Claims (3)
以上の重合体シード粒子に、架橋性単量体及び重合開始
剤を吸収させた後、架橋性単量体を重合させ、重合体シ
ード粒子と異なる組成の重合体を形成することを特徴と
する偏平微粒子の製造方法。A polymer seed particle having a weight-average molecular weight of 300,000 or more dispersed in water absorbs a crosslinkable monomer and a polymerization initiator, and then polymerizes the crosslinkable monomer. A method for producing flat fine particles, comprising forming a polymer having a different composition from particles.
又は分散重合により製造されてなることを特徴とする請
求項1記載の偏平微粒子の製造方法。2. The method for producing flat fine particles according to claim 1, wherein the polymer seed particles are produced by soap-free polymerization or dispersion polymerization.
ョンとして水中に添加し、重合体シード粒子に吸収させ
ることを特徴とする請求項1又は2記載の偏平微粒子の
製造方法。3. The method for producing flat fine particles according to claim 1, wherein the crosslinkable monomer and the polymerization initiator are added to water as an emulsion and absorbed by the polymer seed particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10370557A JP2000191706A (en) | 1998-12-25 | 1998-12-25 | Production of flat fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10370557A JP2000191706A (en) | 1998-12-25 | 1998-12-25 | Production of flat fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000191706A true JP2000191706A (en) | 2000-07-11 |
Family
ID=18497216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10370557A Pending JP2000191706A (en) | 1998-12-25 | 1998-12-25 | Production of flat fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000191706A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008233170A (en) * | 2007-03-16 | 2008-10-02 | Konica Minolta Business Technologies Inc | Nonspherical resin particle connected body and manufacturing method thereof |
-
1998
- 1998-12-25 JP JP10370557A patent/JP2000191706A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008233170A (en) * | 2007-03-16 | 2008-10-02 | Konica Minolta Business Technologies Inc | Nonspherical resin particle connected body and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization | |
JP2000191818A (en) | Preparation of porous particulate | |
JP4190239B2 (en) | Colloidal crystal and method for producing the same | |
Wei et al. | Swelling-induced deformation of spherical latex particles | |
JPS604501A (en) | Preparation of polymer latex | |
JP5500981B2 (en) | Resin particles for light diffusion film, method for producing the same, and light diffusion film | |
JP3580320B2 (en) | Method for producing polymer particles | |
JP2002363205A (en) | Fine particle and electroconductive fine particle | |
JP2000191706A (en) | Production of flat fine particle | |
TWI751612B (en) | Method for producing porous microstructure | |
JP3487665B2 (en) | Method for producing polymer fine particles | |
JPH0564964B2 (en) | ||
JP4268639B2 (en) | Spherical resin fine particles, method for producing spherical resin fine particles, and spacer for liquid crystal display element | |
CN114634596A (en) | Preparation method of polyacrylate polymer microspheres | |
JP3298215B2 (en) | Method for producing polymer particles having refractive index distribution | |
JP4113290B2 (en) | Liquid crystal display element spacer and liquid crystal display element | |
JP2000109508A (en) | Production of crosslinked microparticle, spacer for liquid crystal display element and liquid crystal display element | |
JP3534862B2 (en) | Method for producing highly monodispersed fine particles | |
JPS61225254A (en) | Fine particle having uniform particle size and production thereof | |
Hosseinzadeh et al. | One-pot synthesis of cross-linked nonspherical polystyrene particles via dispersion polymerization: the effect of polymerization conditions on the morphology of the particles | |
JP2004143267A (en) | Method for producing resin particle | |
JP2018048298A (en) | Method for producing gel fine particle | |
JPH03701A (en) | Preparation of polymer gel, polymer gel and actuator | |
Li et al. | Synthesis of Raspberry-like PMMA Particles In a Ternary Solvent Mixture with Binary Initiators | |
JP5144982B2 (en) | Method for producing monodisperse particles |