JP2000188099A - Manufacture of thin film type battery - Google Patents
Manufacture of thin film type batteryInfo
- Publication number
- JP2000188099A JP2000188099A JP10364511A JP36451198A JP2000188099A JP 2000188099 A JP2000188099 A JP 2000188099A JP 10364511 A JP10364511 A JP 10364511A JP 36451198 A JP36451198 A JP 36451198A JP 2000188099 A JP2000188099 A JP 2000188099A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- positive electrode
- negative electrode
- active material
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は薄膜型電池の製造方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film battery.
【0002】[0002]
【従来の技術】薄膜型リチウム二次電池等の、正極、負
極及びポリマー中に電解液が保持された電解質層がそれ
ぞれ薄膜状に形成された薄膜型電池は、通常負極活物質
を電極基材上に形成してなる負極と正極活物質を別の電
極基材上に形成してなる正極とを電解質層を介在させる
とともにそれぞれの活物質層を相互に対向させて積層し
作成される。一般的に、正極と負極との短絡を防止する
目的で正極と負極との間にセパレータを介在させ、特
に、積層体のエッジ部分における短絡を防止するために
セパレーターの面積を正極や負極よりも大きくする構成
としている。このような、サイズの異なる電池を得るた
めには、その製造工程に大きな制約がある。即ち、従来
においては、あらかじめ異なったサイズの正極と負極及
びセパレーターを作成し、その後これらを積層してい
る。2. Description of the Related Art Thin-film batteries, such as thin-film lithium secondary batteries, in which a positive electrode, a negative electrode, and an electrolyte layer in which an electrolyte is held in a polymer are each formed in a thin film form, usually use a negative electrode active material as an electrode substrate. The anode is formed by laminating a negative electrode formed thereon and a positive electrode formed on a separate electrode substrate with a positive electrode active material, with an electrolyte layer interposed and the respective active material layers facing each other. Generally, a separator is interposed between the positive electrode and the negative electrode for the purpose of preventing a short circuit between the positive electrode and the negative electrode, and in particular, the area of the separator is set smaller than that of the positive electrode or the negative electrode in order to prevent a short circuit at an edge portion of the laminate. It is configured to be large. In order to obtain such batteries of different sizes, there are great restrictions on the manufacturing process. That is, conventionally, a positive electrode, a negative electrode, and a separator having different sizes are prepared in advance, and then these are laminated.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術の製造方法においては、正極及び負極とセパレー
タのサイズが異なるため、正極と負極とセパレータとを
それぞれ個別に作成した後、これらを積層する必要があ
る。即ち、電極を枚葉で取り扱う必要があるばかりでは
なく、正確な位置合わせも必要であるので、生産性が悪
く不良率が高いという問題点があった。一方、正極と負
極とセパレータとを長尺状の原反同士の状態で積層した
後に切断すれば、上記の問題点そのものは解決できる
が、この場合は、正極と負極とセパレータとが同じサイ
ズとなってしまうので、前述の短絡の発生の問題が発生
しやすくなる。However, in the above-described conventional manufacturing method, since the sizes of the positive electrode, the negative electrode, and the separator are different, it is necessary to separately form the positive electrode, the negative electrode, and the separator and then stack them. There is. That is, not only is it necessary to handle the electrodes in a single sheet, but also it is necessary to perform accurate positioning, and thus there is a problem that productivity is poor and a defective rate is high. On the other hand, if the positive electrode, the negative electrode, and the separator are laminated in a state of a long raw material and then cut, the above problem itself can be solved, but in this case, the positive electrode, the negative electrode, and the separator have the same size. Therefore, the above-described problem of the occurrence of the short circuit is likely to occur.
【0004】[0004]
【課題を解決するための手段】本発明者らは上記の問題
点を解決する為に鋭意検討した結果、原反同士を積層後
切断を行う方法において、切断の方法特に切断方向に問
題があることを見出した。即ち、通常使用されるパンチ
ングダイのような、積層体に対して上下方向から切断を
行う場合、電極の端面がつぶれやすく、その結果が短絡
が生じやすいのである。従って、切断刃を原反の側面方
向から進行させて、切断が側面方向から進むように行わ
れるならば、たとえセパレータのサイズが同じであって
も、有効に短絡が防止された薄膜型電池を生産性高く製
造できることを見出し、本発明を完成した。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, there is a problem in the cutting method, particularly in the cutting direction, in the method of cutting the raw materials after lamination. I found that. That is, when a laminate is cut from the top and bottom, such as a commonly used punching die, the end faces of the electrodes are easily crushed, resulting in a short circuit. Therefore, if the cutting blade is advanced from the side of the raw material and the cutting is performed from the side, even if the size of the separator is the same, a thin-film battery in which short circuit is effectively prevented is provided. They have found that they can be manufactured with high productivity, and have completed the present invention.
【0005】即ち、本発明の要旨は、(1)相異なる長
尺状の導電性支持体上に正極活物質材料及び負極活物質
層をそれぞれ形成させて正極原反及び負極原反を得る正
極形成工程、及び負極形成工程と、(2)前記正極原反
及び前記負極原反を、活物質層を対向させた向きで、長
尺状のセパレータ原反を介在させて積層して電池積層体
原反を得る積層工程と、(3)前記電池積層体原反を、
切断刃を有する切断装置を用いて、長尺方向に略垂直な
方向に切断して電池積層体を得る切断工程と、を包含す
るゲル状又は固体状電解質を有する薄膜型電池の製造方
法であって、前記切断工程において、前記切断刃を、電
池積層体原反の側面方向から進行させて切断を行うこと
を特徴とする薄膜型電池の製造方法、に存する。That is, the gist of the present invention is to (1) form a positive electrode raw material and a negative electrode raw material by forming a positive electrode active material and a negative electrode active material layer on different long conductive supports, respectively; Forming a negative electrode and forming a negative electrode; and (2) laminating the positive electrode raw material and the negative electrode raw material with a long separator raw material interposed therebetween in a direction in which an active material layer is opposed. A laminating step of obtaining a raw sheet, and (3) the step of:
A step of cutting in a direction substantially perpendicular to the longitudinal direction using a cutting device having a cutting blade to obtain a battery laminate, and a method of manufacturing a thin film battery having a gel or solid electrolyte. In the cutting step, the cutting blade is advanced from a side surface direction of the original battery stack to perform cutting.
【0006】本発明の好ましい態様においては、積層工
程の前に、正極原反及び負極原反のそれぞれに電解質成
分を保持させる電解質成分保持工程を有する。この際、
好ましくは、さらにセパレータ原反に対しても電解質成
分を保持させる。また、さらに好ましい態様において
は、上記電解質成分が、非水系溶媒、電解質塩及びモノ
マーを含有し、塗布後にモノマーを重合してポリマーと
し、該ポリマー中に非水系溶媒及び電解質塩が保持され
るようにする。その結果、電解質成分保持工程において
電解質成分の粘度を低くできるので、取り扱いが容易に
なる。そして、この場合、積層工程の後且つ切断工程の
前に、上記モノマーを重合するための重合工程を有する
のが、積層体中の電解質を一体的に形成できる点で好ま
しい。In a preferred embodiment of the present invention, before the laminating step, there is provided an electrolyte component holding step of holding an electrolyte component in each of the positive electrode raw material and the negative electrode raw material. On this occasion,
Preferably, the electrolyte component is retained on the raw material of the separator. In a further preferred embodiment, the electrolyte component contains a non-aqueous solvent, an electrolyte salt and a monomer, and after application, the monomer is polymerized into a polymer, and the non-aqueous solvent and the electrolyte salt are retained in the polymer. To As a result, the viscosity of the electrolyte component can be reduced in the electrolyte component holding step, so that the handling becomes easy. In this case, it is preferable to have a polymerization step for polymerizing the monomer after the lamination step and before the cutting step, since the electrolyte in the laminate can be integrally formed.
【0007】[0007]
【発明の実施の態様】(1)正極形成工程及び負極形成
工程 本発明においては、まず別々の長尺状の導電性支持体上
に、正極活物質層と負極活物質層とをそれぞれ形成させ
る。正・負極の活物質層の形成方法はどのようなもので
あってもかまわないが、形成された活物質層は後に電解
液成分を含浸させうる空隙を有するのが好ましく、その
結果活物質層間に形成される電解質層と同じ電解質を空
隙中に形成させ、しかもこれを電解質層と一体成形でき
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Step of Forming Positive Electrode and Step of Forming Negative Electrode In the present invention, first, a positive electrode active material layer and a negative electrode active material layer are formed on separate elongated conductive supports, respectively. . The active material layer for the positive and negative electrodes may be formed by any method, but it is preferable that the formed active material layer has a void that can be impregnated with an electrolyte component later. The same electrolyte as the electrolyte layer to be formed is formed in the gap, and this can be integrally formed with the electrolyte layer.
【0008】好ましい方法として、活物質を構成する成
分を適当な溶媒とともに分散塗料化し、これを長尺状の
導電性支持体上に塗布後乾燥する方法が挙げられる。ま
た、活物質層成分を支持体上に圧着あるいは吹き付ける
方法でもよい。形成された塗膜にカレンダー工程を加え
ることによって塗膜を圧密し活物質の充填量を高めるこ
とも可能である。圧密の度合いは活物質の充填量と、空
隙を埋める電解質部分のイオン伝導度のバランスで決定
される。As a preferred method, there is a method in which the components constituting the active material are dispersed and coated with an appropriate solvent, the resultant is coated on a long conductive support, and then dried. Alternatively, a method of pressing or spraying the active material layer component on a support may be used. By adding a calendering step to the formed coating film, it is possible to consolidate the coating film and increase the filling amount of the active material. The degree of consolidation is determined by the balance between the amount of the active material filled and the ionic conductivity of the electrolyte portion filling the void.
【0009】なお、支持体と活物質層との接着性向上の
ためそれらの間に中間層が設けられていてもよい。ま
た、同様の理由で、支持体の表面に粗面化処理が施され
ていてもよい。塗布の方法としては、スライドコーティ
ング、エクストル−ジョンダイコーティング、リバース
ロール、グラビア、ナイフコーター、キスコーター、マ
イクログラビア、ナイフコーター、ロッドコーター、ブ
レードコーター等各種の塗布方式が可能である。無論、
これらの塗布方法を組み合わせることも可能である。[0009] An intermediate layer may be provided between the support and the active material layer in order to improve the adhesion between the support and the active material layer. For the same reason, the surface of the support may be subjected to a roughening treatment. Various coating methods such as slide coating, extrusion die coating, reverse roll, gravure, knife coater, kiss coater, microgravure, knife coater, rod coater, and blade coater can be applied. Of course,
It is also possible to combine these coating methods.
【0010】また、塗料の湿潤状態や粘度によっては、
別の支持体に塗布済みの湿潤状態の塗料を転写ラミネー
ト塗布することも可能である。形成された活物質層の厚
みは通常1μm以上、好ましくは5μm以上、また通常
500μm以下、好ましくは300μm以下である。厚
すぎるとレート特性が低下し、薄すぎると容量が小さく
なる傾向にある。Also, depending on the wet state and viscosity of the paint,
It is also possible to transfer and apply the wet paint that has been applied to another support. The thickness of the formed active material layer is usually 1 μm or more, preferably 5 μm or more, and usually 500 μm or less, preferably 300 μm or less. If the thickness is too large, the rate characteristics tend to decrease, and if it is too thin, the capacity tends to decrease.
【0011】長尺状の導電性支持体は、最終的には電池
の電極基材となるものである。従って通常はアルミニウ
ムや銅などの金属や合金が使用される。得られた正極及
び負極の原反は、製造の容易さから、それらを積層する
前に、それぞれ電解質成分を塗布等の手段により保持さ
せておくことが好ましい。電解質成分としては、電解質
層と同じ組成のものであってもよく、所定の処理によっ
て電解質層と同じ組成になるものでもよい。例えば、好
ましい態様として、電解質成分として、支持電解質と非
水系溶媒とモノマーとからなる液を塗布等の手段によっ
て保持させ、後にこれに紫外線照射や加熱等の重合処理
を加えることによって前記モノマーを重合し、形成した
ポリマー中に電解質塩と非水系溶媒からなる電解液を保
持したゲル状のポリマー電解質とすることができる。上
記の電解質成分保持工程において、活物質層が空隙を有
する場合、上記電解液塗布工程において塗布される電解
質成分の少なくとも一部は、空隙内に充填される電解質
の原料となる。The long conductive support finally becomes the electrode base material of the battery. Therefore, usually metals or alloys such as aluminum and copper are used. It is preferable that the obtained raw materials of the positive electrode and the negative electrode are each held with an electrolyte component by means of coating or the like before laminating them, for ease of production. The electrolyte component may have the same composition as the electrolyte layer, or may have the same composition as the electrolyte layer by a predetermined treatment. For example, as a preferred embodiment, a liquid composed of a supporting electrolyte, a non-aqueous solvent, and a monomer is held as a component of the electrolyte by means such as coating, and then the monomer is polymerized by adding a polymerization treatment such as ultraviolet irradiation or heating. Then, a gel polymer electrolyte in which the formed polymer holds an electrolyte solution comprising an electrolyte salt and a non-aqueous solvent can be obtained. In the above-mentioned electrolyte component holding step, when the active material layer has a gap, at least a part of the electrolyte component applied in the above-mentioned electrolyte solution applying step becomes a raw material of the electrolyte filled in the gap.
【0012】(2)積層工程 正極及び負極の原反は、次いで長手方向に揃えられた状
態で相互の活物質層を対向させた向きで積層され、電池
積層体原反を得る。この際、正極原反と負極原反との間
に、長尺状のセパレータ原反を介在させた状態で積層す
る。その結果、容易に短絡を防止できる電池となる。こ
の際、セパレータ原反には、電解質成分を含浸させてお
くのが、電解質層を形成させやすく好ましい。セパレー
タに含浸させる電解質成分としては、前記電解質成分保
持工程において使用するものと同様のものが使用でき
る。(2) Laminating Step The raw materials of the positive electrode and the negative electrode are then laminated in a state where the active material layers are opposed to each other while being aligned in the longitudinal direction, to obtain a raw battery laminate. In this case, lamination is performed in a state where a long separator raw material is interposed between the positive electrode raw material and the negative electrode raw material. As a result, the battery can easily prevent a short circuit. At this time, it is preferable to impregnate the raw material of the separator with an electrolyte component since the electrolyte layer can be formed. As the electrolyte component to be impregnated in the separator, the same one as used in the electrolyte component holding step can be used.
【0013】積層後に電解質成分を正極原反と負極原反
との間に存在せしめることも可能であるが、前述のよう
に、好ましくは、積層前に電解質成分をそれぞれの原反
に保持させておき、さらに好ましくはセパレータ原反に
もに電解質成分を保持させておく。いずれの場合におい
ても、前記のような電解質成分が非水系溶媒、電解質塩
及びモノマーを含有する際、積層後で且つ積層体原反を
切断する前に、モノマーを重合する重合工程を加えるの
が好ましい。その結果、ポリマー中に非水系溶媒及び電
解質塩からなる電解液を保持したゲル状のポリマー電解
質を、一度に容易に形成させることができる。また、こ
の場合、電解質成分の粘度は相対的に低いので、塗布或
いは含浸させるのが容易である。重合の方法としては、
紫外線を照射する方法や熱を加える方法等があるが、重
合反応が均一に進行することから熱を加えることによっ
て熱重合させる方法が好ましい。Although it is possible to cause an electrolyte component to be present between the positive electrode raw material and the negative electrode raw material after lamination, as described above, it is preferable that the electrolyte component be retained on each raw material before lamination. More preferably, the electrolyte component is held in the raw separator. In any case, when the above-mentioned electrolyte component contains a non-aqueous solvent, an electrolyte salt and a monomer, it is preferable to add a polymerization step of polymerizing the monomer after lamination and before cutting the laminate raw material. preferable. As a result, it is possible to easily form a gel-like polymer electrolyte in which an electrolyte containing a non-aqueous solvent and an electrolyte salt is held in a polymer at a time. In this case, since the viscosity of the electrolyte component is relatively low, it is easy to apply or impregnate the electrolyte component. As a method of polymerization,
There are a method of irradiating ultraviolet rays, a method of applying heat, and the like, and a method of thermally polymerizing by applying heat is preferable because the polymerization reaction proceeds uniformly.
【0014】なお、上記重合工程は、必要なら後述の切
断工程の後に設けることも可能である。熱重合させる際
の重合条件は、電解質層を形成する各材料の熱安定性等
を考慮する必要があるが、通常60〜100℃、好まし
くは70〜90℃とする。また重合時間も短い方が生産
性、材料の分解等から好ましく通常5分以下、好ましく
は3分以下とする。The above polymerization step can be provided after the cutting step described later, if necessary. The polymerization conditions at the time of the thermal polymerization need to consider the thermal stability and the like of each material forming the electrolyte layer, but are usually 60 to 100 ° C, preferably 70 to 90 ° C. The shorter the polymerization time is, the lower the polymerization time is, usually, 5 minutes or less, preferably 3 minutes or less, from the viewpoint of productivity, decomposition of materials, and the like.
【0015】また正極層、電解質層、負極層を一体成形
後ゲル化することによって、正・負極層と電解質層間の
ゲル状電解質に界面が存在せず電池特性を高めることが
できる。上記のようにして作成された正極/電解質層/
負極の積層された積層体原反を所望のサイズに切断し、
必要で有ればこれをさらに積層する事により薄膜型電池
を作成する。Further, by forming the positive electrode layer, the electrolyte layer, and the negative electrode layer and then gelling the same, the gel electrolyte between the positive / negative electrode layer and the electrolyte layer has no interface, thereby improving the battery characteristics. Positive electrode / electrolyte layer /
Cut the laminate of the negative electrode into a desired size,
If necessary, this is further laminated to produce a thin-film battery.
【0016】(3)切断工程 正極原反及び負極原反とを積層して得られた電池積層体
原反は、その後、長尺方向に略垂直な方向に完全に切断
され、電池積層体とされる。即ち、切断工程によって、
正極原反、負極原反及びセパレータ原反が同時に切断さ
れて、通常矩形状の電池積層体となる。切断する際、正
極層のエッジと負極層のエッジが短絡することを防止す
る為に、図1及び2に示すように、積層面に対し垂直方
向、積層体に対して側面から切断刃を進行させて切断を
行う。図1は円盤状回転刃を用いて切断する例、図2は
剃刀を用いて切断する例を示す模式的斜視図である。い
ずれの場合も、積層体原反21の側面から切断刃(回転
刃22又は剃刀23)が進行して切断が行われる。従来
通常使用されるパンチングダイのような、積層体に対し
て上下方向から切断を行う場合は、短絡が生じやすい。(3) Cutting Step The battery laminate raw material obtained by stacking the positive electrode raw material and the negative electrode raw material is then completely cut in a direction substantially perpendicular to the longitudinal direction, and Is done. That is, by the cutting process,
The positive electrode raw material, the negative electrode raw material, and the separator raw material are cut at the same time to form a generally rectangular battery laminate. In order to prevent a short circuit between the edge of the positive electrode layer and the edge of the negative electrode layer during cutting, as shown in FIGS. 1 and 2, advance the cutting blade in the direction perpendicular to the lamination surface and from the side surface relative to the lamination. And cut it. FIG. 1 is a schematic perspective view showing an example of cutting using a disk-shaped rotary blade, and FIG. 2 is an example of cutting using a razor. In any case, the cutting blade (the rotary blade 22 or the razor 23) advances from the side surface of the laminate 21 to perform cutting. When a laminate is cut from the top and bottom, such as a punching die conventionally used, a short circuit is likely to occur.
【0017】用いられる切断刃としては、超硬やダイヤ
チップを用いたメタルソーやダイヤモンド等の高硬度微
粒子を樹脂等で成形して作成した円盤状の回転刃や、カ
ッターナイフや剃刀様の刃や丸刃の1枚刃およびこれら
の材質を超硬にしたものなどを用いることができる。裁
断速度は10mm/min〜100m/minさらに好
ましくは50mm/min〜100m/minが良い。
あまり遅いと生産性が極端に悪く、速すぎるとエッジ精
度が悪く短絡が起きやすくなる傾向にある。メタルソー
等の回転刃を用いた場合の回転刃の回転数は100rp
m〜10000rpmさらに好ましくは300rpm〜
5000rpmである。あまりに回転数が遅くても速く
ても裁断時のエッジ精度が悪く短絡が起きやすい傾向に
ある。As the cutting blade to be used, a disk-shaped rotary blade formed by molding a high-hardness fine particle such as a metal saw or diamond using a carbide or diamond tip with a resin or the like, a cutter knife or a razor-like blade, or the like can be used. It is possible to use a single round blade or a material obtained by making these materials ultra-hard. The cutting speed is preferably from 10 mm / min to 100 m / min, more preferably from 50 mm / min to 100 m / min.
If the speed is too slow, the productivity is extremely poor. If the speed is too fast, the edge accuracy tends to be poor and a short circuit tends to occur. The rotation speed of the rotary blade when using a rotary blade such as a metal saw is 100 rpm
m to 10,000 rpm, more preferably 300 rpm to
5000 rpm. Even if the rotation speed is too low or too high, the edge accuracy at the time of cutting is poor and short-circuiting tends to occur.
【0018】(4)その他 切断工程を経て得られた単位セルは、最終的には、電極
基材に電気的に接続した端子を外部に露出する形で、容
器に収納される。この際、容器中には、複数の単位セル
が収納されていても良い。通常単位セルはシート状のま
ま容器に収納される。以下、本発明の好ましい態様を、
図3を用いて説明する。(4) Others The unit cell obtained through the cutting step is finally housed in a container such that the terminals electrically connected to the electrode substrate are exposed to the outside. At this time, a plurality of unit cells may be stored in the container. Usually, unit cells are stored in a container in a sheet form. Hereinafter, preferred embodiments of the present invention,
This will be described with reference to FIG.
【0019】図3は、本発明の製造方法を説明するため
の模式図である。正極活物質層塗料を長尺の金属箔に塗
布した後乾燥することによって得られた正極原反1は、
ロール2から巻き出され、次いでコータ3によって、電
解質塩、非水系溶媒及びモノマーを含有する電解質成分
が塗布される。同様にして、負極活物質層塗料を長尺状
の金属箔に塗布した後乾燥することによって得られた負
極原反4は、ロール5から巻き出されて、次いでコータ
6によって、同じ電解質成分が塗布される。長尺状のセ
パレータ原反7も、ロール8から巻き出され、同様の電
解質成分がコータ9によって塗布される。FIG. 3 is a schematic diagram for explaining the manufacturing method of the present invention. The positive electrode raw material 1 obtained by applying the positive electrode active material layer coating material to a long metal foil and then drying it is as follows:
After being unwound from the roll 2, the coater 3 applies an electrolyte component containing an electrolyte salt, a non-aqueous solvent and a monomer. Similarly, the negative electrode raw material 4 obtained by applying the negative electrode active material layer coating material to a long metal foil and then drying is unwound from a roll 5, and then the same electrolyte component is applied by a coater 6. Applied. The long separator web 7 is also unwound from the roll 8 and the same electrolyte component is applied by the coater 9.
【0020】それぞれの原反は、わずかに間隔を有する
一対のローラ10によって押圧され積層される。積層
後、加熱器11によって積層体は加熱され、電解質成分
中のモノマーが重合し、電解質はゲル状のポリマー電解
質となる。次いで、積層体は、カッター12によって、
長尺方向と略垂直な方向に切断され、矩形状のシート1
3が得られる。この際、切断の方式としては、図1又は
2に記載されてような、積層体に対して側面から切断刃
を進行させる方式を用いる。Each of the webs is pressed and stacked by a pair of rollers 10 having a slight interval. After the lamination, the laminated body is heated by the heater 11, the monomers in the electrolyte component are polymerized, and the electrolyte becomes a gel-like polymer electrolyte. Next, the laminate is
A rectangular sheet 1 cut in a direction substantially perpendicular to the long direction
3 is obtained. At this time, as a cutting method, a method in which a cutting blade is advanced from a side surface with respect to the laminate as shown in FIG. 1 or 2 is used.
【0021】正極や負極、電解質層に用いることができ
る材料については、特に制限はないが、以下、好ましく
用いられるポリマー電解質を用いたリチウム二次電池の
場合について説明する。正極活物質層は、通常リチウム
イオンを吸蔵放出可能な正極活物質とバインダーとを含
む。活物質100重量部に対するバインダーの場合は好
ましくは0.1〜30重量部、さらに好ましくは1〜1
5重量部である。バインダーの量が少なすぎると強固な
活物質層が形成せれず、活物質層が活物質を保持すると
いう本発明の目的が達成されない。バインダーの量が多
すぎると、エネルギー密度やサイクル特性に悪影響があ
るばかりでなく、活物質層に電解質成分を含有させる場
合、活物質層中の空隙量が低下するため電解質成分を含
浸させにくくなる。The materials that can be used for the positive electrode, the negative electrode, and the electrolyte layer are not particularly limited, but a case of a lithium secondary battery using a preferably used polymer electrolyte will be described below. The positive electrode active material layer usually contains a positive electrode active material capable of inserting and extracting lithium ions and a binder. In the case of a binder with respect to 100 parts by weight of the active material, preferably 0.1 to 30 parts by weight, more preferably 1 to 1 part by weight.
5 parts by weight. If the amount of the binder is too small, a strong active material layer cannot be formed, and the object of the present invention in which the active material layer holds the active material cannot be achieved. If the amount of the binder is too large, not only has an adverse effect on the energy density and cycle characteristics, but also when the active material layer contains an electrolyte component, it is difficult to impregnate the electrolyte component because the amount of voids in the active material layer is reduced. .
【0022】正極活物質としては、遷移金属酸化物、リ
チウムと遷移金属との複合酸化物、遷移金属硫化物等各
種の無機化合物が挙げられる。ここで遷移金属としては
Fe、Co、Ni、Mn等が用いられる。具体的には、
MnO、V2O5 、V6O13、TiO2等の遷移金属酸化
物粉末、ニッケル酸リチウム、コバルト酸リチウム、マ
ンガン酸リチウムなどのリチウムと遷移金属との複合酸
化物粉末、TiS2、FeS、MoS2などの遷移金属硫
化物粉末等が挙げられる。これらの化合物はその特性を
向上させるために部分的に元素置換したものであっても
良い。また、ポリアニリン、ポリピロール、ポリアセ
ン、ジスルフィド系化合物、ポリスルフィド系化合物、
N−フルオロピリジニウム塩等の有機化合物を用いるこ
ともできる。これらの無機化合物、有機化合物を混合し
て用いても良い。Examples of the positive electrode active material include various inorganic compounds such as transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides. Here, Fe, Co, Ni, Mn, or the like is used as the transition metal. In particular,
Transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 and TiO 2 ; composite oxide powders of lithium and transition metals such as lithium nickelate, lithium cobaltate and lithium manganate; TiS 2 , FeS And transition metal sulfide powders such as MoS 2 . These compounds may be partially substituted with elements in order to improve their properties. In addition, polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds,
Organic compounds such as N-fluoropyridinium salts can also be used. These inorganic compounds and organic compounds may be used as a mixture.
【0023】これら正極の活物質の粒径は、通常1〜3
0μm、特に1〜10μmとすることで、レート特性、
サイクル特性等の電池特性がさらに向上する。正極活物
質層に用いられるバインダーとしては、ポリエチレン、
ポリプロピレン、ポリ−1,1−ジメチルエチレンなど
のアルカン系ポリマー、ポリブタジエン、ポリイソプレ
ンなどの不飽和系ポリマー、ポリスチレン、ポリメチル
スチレン、ポリビニルピリジン、ポリ−N−ビニルピロ
リドンなどの環を有するポリマー、ポリメタクリル酸メ
チル、ポリメタクリル酸エチル、ポリメタクリル酸ブチ
ル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポ
リアクリル酸、ポリメタクリル酸、ポリアクリルアミド
などのアクリル誘導体系ポリマー、ポリフッ化ビニル、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
のフッ素系樹脂、ポリアクリロニトリル、ポリビニリデ
ンシアニドなどのCN基含有ポリマー、ポリ酢酸ビニ
ル、ポリビニルアルコールなどのポリビニルアルコール
系ポリマー、ポリ塩化ビニル、ポリ塩化ビニリデンなど
のハロゲン含有ポリマー、ポリアニリンなどの導電性ポ
リマーなど各種の樹脂が使用できる。また上記のポリマ
ーなどの混合物、変成体、誘導体、ランダム共重合体、
交互共重合体、グラフト共重合体、ブロック共重合体な
どであっても使用できる。また、シリケートやガラスの
ような無機化合物を使用することもできる。ただし、本
発明の目的を達成するためには、電解液に容易に溶解す
るような樹脂の使用はあまり好ましくない。樹脂の重量
平均分子量は、好ましくは10000〜100000
0、さらに好ましくは20000〜300000であ
る。低すぎると塗膜の強度が低下し好ましくない。高す
ぎると粘度が高くなり活物質層の形成が困難になる。The active material of the positive electrode generally has a particle size of 1 to 3.
0 μm, especially 1 to 10 μm, rate characteristics,
Battery characteristics such as cycle characteristics are further improved. As the binder used for the positive electrode active material layer, polyethylene,
Alkane-based polymers such as polypropylene and poly-1,1-dimethylethylene; unsaturated polymers such as polybutadiene and polyisoprene; polymers having a ring such as polystyrene, polymethylstyrene, polyvinylpyridine and poly-N-vinylpyrrolidone; Acrylic derivative polymers such as methyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyvinyl fluoride,
Fluorinated resins such as polyvinylidene fluoride and polytetrafluoroethylene; CN group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide; polyvinyl alcohol polymers such as polyvinyl acetate and polyvinyl alcohol; polyvinyl chloride and polyvinylidene chloride Various resins such as a halogen-containing polymer and a conductive polymer such as polyaniline can be used. In addition, a mixture of the above-described polymers, a modified substance, a derivative, a random copolymer,
Even an alternating copolymer, a graft copolymer, a block copolymer, or the like can be used. Also, inorganic compounds such as silicate and glass can be used. However, in order to achieve the object of the present invention, it is not preferable to use a resin that can be easily dissolved in an electrolytic solution. The weight average molecular weight of the resin is preferably 10,000 to 100,000.
0, more preferably 20,000 to 300,000. If it is too low, the strength of the coating film decreases, which is not preferable. If it is too high, the viscosity becomes high and it becomes difficult to form an active material layer.
【0024】正極活物質層は必要に応じて導電材料、補
強材など各種の機能を発現する添加剤、粉体、充填材な
どを含有していても良い。導電材料としては、上記活物
質に適量混合して導電性を付与できるものであれば特に
制限は無いが、通常、アセチレンブラック、カーボンブ
ラック、黒鉛などの炭素粉末や、各種の金属ファイバ
ー、箔などが挙げられる。補強材としては各種の無機、
有機の球状、繊維状フィラーなどが使用できる。The positive electrode active material layer may contain additives, such as a conductive material and a reinforcing material, exhibiting various functions such as a reinforcing material, a powder, and a filler, if necessary. The conductive material is not particularly limited as long as it can impart conductivity by being mixed in an appropriate amount with the above active material, but is usually carbon powder such as acetylene black, carbon black, graphite, and various metal fibers and foils. Is mentioned. Various inorganic materials as reinforcement,
Organic spherical or fibrous fillers can be used.
【0025】正極活物質層の厚さは通常1μm以上、好
ましくは10μm以上であり、通常は500μm以下、
好ましくは200μm以下である。正極の電極基材とし
ては、一般的にアルミ箔や銅箔などの金属、合金等の箔
を用いる。厚みは通常1〜50μm、好ましくは1〜3
0μmである。薄すぎると機械的強度が弱くなり、生産
上問題になる。厚すぎると電池全体としての容量が低下
する傾向にある。The thickness of the positive electrode active material layer is usually at least 1 μm, preferably at least 10 μm, usually at most 500 μm.
Preferably it is 200 μm or less. As the electrode base material of the positive electrode, generally, a foil such as a metal such as an aluminum foil or a copper foil, or an alloy is used. The thickness is usually 1 to 50 µm, preferably 1 to 3
0 μm. If the thickness is too small, the mechanical strength becomes weak, which causes a problem in production. If the thickness is too large, the capacity of the battery as a whole tends to decrease.
【0026】負極活物質層は、活物質が負極用の活物質
である以外は基本的に正極活物質層の構成に準ずる。負
極に用いられる負極活物質としてはグラファイトやコー
クス等の炭素系活物質が挙げられる。これらの炭素系活
物質は金属やその塩、酸化物との混合体、被覆体の形で
あっても利用できる。またけい素、錫、亜鉛、マンガ
ン、鉄、ニッケルなどの酸化物、あるいは硫酸塩さらに
は金属リチウムやLi−Al、Li−Bi−Cd、Li
−Sn−Cdなどのリチウム合金、リチウム遷移金属窒
化物、シリコンなども使用できる。これら負極の活物質
の粒径は、通常1〜50μm、特に15〜30μmとす
るのが、初期効率、レート特性、サイクル特性等の電池
特性が向上するので好ましい。The negative electrode active material layer basically conforms to the structure of the positive electrode active material layer except that the active material is an active material for a negative electrode. Examples of the negative electrode active material used for the negative electrode include carbon-based active materials such as graphite and coke. These carbon-based active materials can be used in the form of a mixture with a metal, a salt thereof, or an oxide, or a coating. In addition, oxides such as silicon, tin, zinc, manganese, iron, and nickel, or sulfates, and lithium metal, Li-Al, Li-Bi-Cd, and Li
A lithium alloy such as -Sn-Cd, a lithium transition metal nitride, silicon, or the like can also be used. The particle size of the active material of these negative electrodes is usually preferably 1 to 50 μm, particularly preferably 15 to 30 μm, because battery characteristics such as initial efficiency, rate characteristics, and cycle characteristics are improved.
【0027】次にポリマー電解質について説明する。本
発明においては、好ましくは正極及び/又は負極の活物
質層内の空隙がゲル状のポリマー電解質で満たされ、リ
チウムイオンのイオン伝導はこのゲル状の電解質を通し
てゲル状電解質層へ移動する。これにより正極、負極お
よび電解質層すべての非水電解液がゲル状となり液漏れ
のない安全なリチウム二次電池が得られる。Next, the polymer electrolyte will be described. In the present invention, preferably, voids in the active material layers of the positive electrode and / or the negative electrode are filled with a gel-like polymer electrolyte, and ion conduction of lithium ions moves to the gel-like electrolyte layer through the gel-like electrolyte. As a result, the nonaqueous electrolytic solution of all of the positive electrode, the negative electrode and the electrolyte layer becomes gel-like, and a safe lithium secondary battery without liquid leakage can be obtained.
【0028】本発明においては、好ましくは、電解質成
分としてゲル状のポリマー電解質となりうる流動性のあ
るものを塗布し、塗布後に所定の処理によってポリマー
電解質とする。このような電解質成分としては、リチウ
ム塩等の電解質塩と溶媒とからなる電解液とモノマーを
含有するものが好ましい、この場合、後にモノマーを重
合させることによってポリマー中に電解液を保持させ
る。このようなポリマーとしては、ポリエステル、ポリ
アミド、ポリカーボネート、ポリイミドなどの重縮合に
よって生成させるもの、ポリウレタン、ポリウレアなど
のように重付加によって生成されるもの、ポリメタクリ
ル酸メチルなどのアクリル誘導体系ポリマーやポリ酢酸
ビニル、ポリ塩化ビニルなどのポリビニル系などの付加
重合で生成されるものなどがあるが、本発明において
は、活物質層内に含浸させて重合させるのが好ましいこ
とから、重合の制御が容易で重合時に副生成物が発生し
ない付加重合により生成される高分子を使用することが
望ましい。In the present invention, preferably, a fluid electrolyte which can be a gel polymer electrolyte is applied as an electrolyte component, and after the application, the polymer electrolyte is formed by a predetermined treatment. As such an electrolyte component, those containing an electrolytic solution composed of an electrolytic salt such as a lithium salt and a solvent and a monomer are preferable. In this case, the electrolytic solution is retained in the polymer by polymerizing the monomer later. Examples of such a polymer include those formed by polycondensation of polyester, polyamide, polycarbonate, and polyimide; those formed by polyaddition such as polyurethane and polyurea; acrylic derivative-based polymers such as polymethyl methacrylate; Although there are those produced by addition polymerization of polyvinyl acetate and the like such as polyvinyl acetate and polyvinyl chloride, etc., in the present invention, it is preferable that the active material layer is impregnated and polymerized. It is desirable to use a polymer produced by addition polymerization in which no by-product is generated during the polymerization.
【0029】電解液に含まれる電解質塩としては、電解
質として正極活物質及び負極活物質に対して安定であ
り、かつリチウムイオンが正極活物質あるいは負極活物
質と電気化学反応をするための移動を行い得る非水物質
であればいずれのものでも使用することができる。具体
的にはLiPF6、LiAsF6、LiSbF6、LiB
F4、LiClO4、LiI、LiBr、LiCl、Li
AlCl、LiHF2、LiSCN、LiSO3CF2等
が挙げられる。これらのうちでは特にLiPF6、Li
ClO4が好適である。これら電解質塩の電解液におけ
る含有量は、一般的に0.5〜2.5mol/lであ
る。The electrolyte salt contained in the electrolytic solution is stable as an electrolyte with respect to the positive electrode active material and the negative electrode active material, and transfers lithium ions to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material. Any non-aqueous substance that can be used can be used. LiPF 6 in particular, LiAsF 6, LiSbF 6, LiB
F 4 , LiClO 4 , LiI, LiBr, LiCl, Li
Examples include AlCl, LiHF 2 , LiSCN, and LiSO 3 CF 2 . Of these, LiPF 6 , Li
ClO 4 is preferred. The content of these electrolyte salts in the electrolyte is generally 0.5 to 2.5 mol / l.
【0030】これら電解質を溶解する電解液は特に限定
されないが、比較的高誘電率の非水系溶媒が好適に用い
られる。具体的にはエチレンカーボネート、プロピレン
カーボネート等の環状カーボネート類、ジメチルカーボ
ネート、ジエチルカーボネート、エチルメチルカーボネ
ートなどの非環状カーボネート類、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、ジメトキシエタン
等のグライム類、γ−ブチルラクトン等のラクトン類、
スルフォラン等の硫黄化合物、アセトニトリル等のニト
リル類等の1種又は2種以上の混合物を挙げることがで
きる。これらのうちでは、特にエチレンカーボネート、
プロピレンカーボネート等の環状カーボネート類、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネートなどの非環状カーボネート類から選ばれ
た1種又は2種以上の混合溶液が好適である。また、こ
れらの分子の水素原子の一部をハロゲンなどに置換した
ものも使用できる。The electrolytic solution in which these electrolytes are dissolved is not particularly limited, but a nonaqueous solvent having a relatively high dielectric constant is preferably used. Specifically, cyclic carbonates such as ethylene carbonate and propylene carbonate, acyclic carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, glymes such as tetrahydrofuran, 2-methyltetrahydrofuran and dimethoxyethane, γ-butyl lactone and the like Lactones,
One or a mixture of two or more of sulfur compounds such as sulfolane and nitriles such as acetonitrile can be mentioned. Of these, especially ethylene carbonate,
One or more mixed solutions selected from cyclic carbonates such as propylene carbonate, and non-cyclic carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred. Further, those obtained by substituting a part of hydrogen atoms of these molecules with halogen or the like can also be used.
【0031】ゲル状電解質を構成するポリマーとして
は、電解液を適度に保持してゲル化できるものを用い
る。通常上記の電解液が極性を有するので、ポリマーも
或る程度の極性を有する方が好ましい。前述のように、
高分子を付加重合によって形成する場合は分子内に1個
以上の反応性不飽和基を有するモノマーを電解質に通常
1〜20重量%程度混合して含浸液を作成する。この際
モノマーが分子内にエチレンオキサイド、プロピレンオ
キサイド、フェニレンオキシド、フェニレンスルフィ
ド、シアノ、カーボネートなど極性の高い基を有してい
れば、生成した高分子に適度な極性を付与することがで
き、良好なゲルを形成することができる。ゲルは直鎖高
分子のみで形成されるものであってもかまわないが、分
岐構造を持つようにモノマー中の反応基の数を制御し、
分岐構造を形成すると機械特性などが向上するので好ま
しい。As the polymer constituting the gel electrolyte, a polymer capable of holding an appropriate amount of an electrolytic solution to form a gel is used. Usually, since the above-mentioned electrolytic solution has polarity, it is preferable that the polymer also has a certain degree of polarity. As aforementioned,
When a polymer is formed by addition polymerization, an impregnating liquid is prepared by mixing a monomer having at least one reactive unsaturated group in the molecule with the electrolyte usually in an amount of about 1 to 20% by weight. At this time, if the monomer has a highly polar group such as ethylene oxide, propylene oxide, phenylene oxide, phenylene sulfide, cyano, and carbonate in the molecule, it is possible to impart an appropriate polarity to the produced polymer, which is favorable. A good gel can be formed. The gel may be formed of only a linear polymer, but the number of reactive groups in the monomer is controlled to have a branched structure,
Forming a branched structure is preferable because mechanical properties and the like are improved.
【0032】反応性不飽和基を有するモノマーの例とし
てはアクリル酸、アクリル酸メチル、アクリル酸エチ
ル、エトキシエチルアクリレート、メトキシエチルアク
リレート、エトキシエトキシエチルアクリレート、ポリ
エチレングリコールモノアクリレート、エトキシエチル
メタクリレート、メトキシエチルメタクリレート、エト
キシエトキシエチルメタクリレート、ポリエチレングリ
コールモノメタクリレート、N,N−ジエチルアミノエ
チルアクリレート、N,N−ジメチルアミノエチルアク
リレート、グリシジルアクリレート、アリルアクリレー
ト、2−メトキシエトキシエチルアクリレート、2−エ
トキシエトキシエチルアクリレート、アクリロニトリ
ル、N−ビニルピロリドン、ジエチレングリコールジア
クリレート、トリエチレングリコールジアクリレート、
テトラエチレングリコールジアクリレート、ポリエチレ
ングリコールジアクリレート、ジエチレングリコールジ
メタクリレート、トリエチレングリコールジメタクリレ
ート、テトラエチレングリコールジメタクリレート、ポ
リエチレングリコールジメタクリレートなどが使用で
き、反応性、極性、安全性などから好ましいものを単
独、または組み合わせて用いれば良い。Examples of the monomer having a reactive unsaturated group include acrylic acid, methyl acrylate, ethyl acrylate, ethoxyethyl acrylate, methoxyethyl acrylate, ethoxyethoxyethyl acrylate, polyethylene glycol monoacrylate, ethoxyethyl methacrylate, and methoxyethyl. Methacrylate, ethoxyethoxyethyl methacrylate, polyethylene glycol monomethacrylate, N, N-diethylaminoethyl acrylate, N, N-dimethylaminoethyl acrylate, glycidyl acrylate, allyl acrylate, 2-methoxyethoxyethyl acrylate, 2-ethoxyethoxyethyl acrylate, acrylonitrile , N-vinylpyrrolidone, diethylene glycol diacrylate, triethyl Glycol diacrylate,
Tetraethylene glycol diacrylate, polyethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, and the like can be used. Alternatively, they may be used in combination.
【0033】これらのモノマーを重合する方法として
は、熱、紫外線、電子線などによる手法があるが、正極
層/電解質層/負極層を一体成形することが容易な熱に
よる手法が有効である。この場合反応が効果的に進行さ
せるため、含浸させる電解液に熱に反応する重合開始剤
をいれておくこともできる。利用できる熱重合開始剤と
しては、アゾビスイソブチロニトリル、2,2′−アゾ
ビスイン酪酸ジメチル等のアゾ系化合物、過酸化ベンゾ
イル、クメンハイドロパーオキサイド、t−ブチルパー
オキシ−2−エチルヘキサノエート等の過酸化物などが
使用でき、反応性、極性、安全性などから好ましいもの
を単独、または組み合わせて用いれば良い。As a method for polymerizing these monomers, there are methods using heat, ultraviolet rays, electron beams, etc., and a method using heat which is easy to integrally form the positive electrode layer / electrolyte layer / negative electrode layer is effective. In this case, in order for the reaction to proceed effectively, a polymerization initiator that reacts with heat may be added to the electrolyte to be impregnated. Usable thermal polymerization initiators include azo compounds such as azobisisobutyronitrile, dimethyl 2,2'-azobisinbutyrate, benzoyl peroxide, cumene hydroperoxide, t-butylperoxy-2-ethylhexano. Peroxides such as ate can be used, and those which are preferable in terms of reactivity, polarity, safety, etc. may be used alone or in combination.
【0034】本発明においては、電解質として固体状の
ものを使用することができる。この場合の電解質として
は、従来公知の様々なものを使用することができる。電
解質層の電解質は、多孔性の膜や不織布からなるセパレ
ータに含浸されてなる。電解質層の厚さは、通常1μm
以上、好ましくは5μm以上、また通常500μm以
下、好ましくは200μm以下である。厚すぎると容量
が低下する傾向にあり、薄すぎると絶縁性が低下する傾
向にある。In the present invention, a solid electrolyte can be used as the electrolyte. In this case, various conventionally known electrolytes can be used. The electrolyte of the electrolyte layer is impregnated in a separator made of a porous film or a nonwoven fabric. The thickness of the electrolyte layer is usually 1 μm
Above, preferably 5 μm or more, and usually 500 μm or less, preferably 200 μm or less. If it is too thick, the capacity tends to decrease, and if it is too thin, the insulation tends to decrease.
【0035】[0035]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り以下に示す実施例に限定されるものではない。なお、
以下において、「部」とあるのは特にことわりのない限
り「重量部」を表す。実施例及び比較例とも使用される
原料は、使用前にそれぞれ下記の処理をした。即ち、粉
体は240℃で24時間真空乾燥し、樹脂や電解質は1
10℃で4時間乾燥し、モノマーはモレキュラーシーブ
にて脱水処理した。EXAMPLES The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist. In addition,
In the following, “parts” means “parts by weight” unless otherwise specified. The raw materials used in the examples and comparative examples were each processed as follows before use. That is, the powder is vacuum-dried at 240 ° C. for 24 hours, and
After drying at 10 ° C. for 4 hours, the monomer was dehydrated with a molecular sieve.
【0036】(実施例1)まず以下に示す組成に従い正
極活物質層用塗料、負極活物質層用塗料を調整した。こ
の際、正極塗料・負極塗料の原料としては以下のものを
使用した。Example 1 First, a paint for a positive electrode active material layer and a paint for a negative electrode active material layer were prepared according to the following compositions. At this time, the following were used as raw materials for the positive electrode paint and the negative electrode paint.
【0037】[0037]
【表1】 正極活物質 LiCoO2粉 (日本化学社製) 導電材 アセチレンブラック (電気化学工業製) 負極活物質 SFG15:グラファイト (TIMCAL社製) バインダー ポリフッ化ビニリデン (呉羽化学製) 溶剤 N−メチルピロリドン (三菱化学製)Table 1 Positive electrode active material LiCoO 2 powder (manufactured by Nippon Chemical Co., Ltd.) Conductive material Acetylene black (manufactured by Denki Kagaku Kogyo) Negative electrode active material SFG15: graphite (manufactured by TIMCAL) binder Polyvinylidene fluoride (manufactured by Kureha Chemical) Solvent N-methyl Pyrrolidone (Mitsubishi Chemical)
【0038】[0038]
【表2】正極活物質層塗料組成 LiCoO2 90.0部 アセチレンブラック 5.0部 ポリフッ化ビニリデン 5.0部 N−メチルピロリドン 100.0部 負極活物質層塗料組成 SFG15 90.0部 ポリフッ化ビニリデン 10.0部 N−メチルピロリドン 100.0部[Table 2] Coating composition of positive electrode active material layer LiCoO 2 90.0 parts Acetylene black 5.0 parts Polyvinylidene fluoride 5.0 parts N-methylpyrrolidone 100.0 parts Negative electrode active material layer coating composition SFG15 90.0 parts Polyfluorinated Vinylidene 10.0 parts N-methylpyrrolidone 100.0 parts
【0039】上記材料をそれぞれボールミルで8時間混
練・分散処理を行い塗料化した。次に、正極活物質層用
塗料を厚さ20μmの長尺状のアルミ箔上にエクストル
−ジョンデイコーティング方式により膜厚が100μm
になるよう塗布、乾燥し正極原反を得た。また、負極活
物質層用塗料を厚さ20μmの長尺状の銅箔上にドクタ
ーブレードを用い膜厚が150μmになるよう塗布、乾
燥して負極原反を得た。その後、それぞれの活物質層を
240℃で乾燥した。Each of the above materials was kneaded and dispersed in a ball mill for 8 hours to form a coating. Next, the coating for the positive electrode active material layer was coated on a long aluminum foil having a thickness of 20 μm to a thickness of 100 μm by an extrusion day coating method.
And dried to obtain a positive electrode raw material. Further, the negative electrode active material layer coating material was applied on a long copper foil having a thickness of 20 μm using a doctor blade so that the film thickness became 150 μm, and dried to obtain a negative electrode raw material. Thereafter, each active material layer was dried at 240 ° C.
【0040】上記の正極・負極活物質層を集電体上に設
けたシートにカレンダー(加圧)処理を施し最終的な膜
厚を正極は75μm、負極は60μmとした。得られた
正・負極原反それぞれに下記の電解質成分を含浸させる
とともに、同様の電解質成分を含浸させた厚み20μm
の多孔性のポリエチレン製のセパレーターを準備した。
正極原反と負極原反とを、活物質層を対向させた状態で
且つ、上記セパレータを介して2本のロール間に送り出
して積層し、電池積層体原反を得た。得られた積層体原
反を90℃で3分加熱してモノマーを重合させ、活物質
層および電解質層内の電解質成分をゲル化しポリマー電
解質を有するシートを得た。The sheet provided with the above-mentioned positive electrode / negative electrode active material layer on the current collector was subjected to a calendering (pressure) treatment so that the final film thickness was 75 μm for the positive electrode and 60 μm for the negative electrode. Each of the obtained positive and negative electrode raw materials was impregnated with the following electrolyte components, and was impregnated with the same electrolyte components in a thickness of 20 μm.
Was prepared.
The positive electrode raw material and the negative electrode raw material were fed out between two rolls with the active material layers facing each other and with the above-mentioned separator interposed therebetween, and laminated to obtain a battery laminate raw material. The obtained laminate raw material was heated at 90 ° C. for 3 minutes to polymerize the monomer, and the electrolyte components in the active material layer and the electrolyte layer were gelled to obtain a sheet having a polymer electrolyte.
【0041】[0041]
【表3】 電解質成分 電解液 PC:プロピレンカーボネート(三菱化学社製) 支持電解質 LiClO4 (和光純薬製) 添加剤 1,6-Dioxaspiro[4,4 ]nonane-2,7-dione(以下「spiro 」) (Aldrich社製) モノマー Photomer4050 Photomer4158 (いずれも末端にアクリル基を有するポリエチレンオキシド樹脂 (Henkel社製)) 架橋開始剤 Trignox21 (化薬アグゾ社製)[Table 3] Electrolyte component Electrolyte PC: Propylene carbonate (manufactured by Mitsubishi Chemical Corporation) Supporting electrolyte LiClO4 (manufactured by Wako Pure Chemical Industries) Additive 1,6-Dioxaspiro [4,4] nonane-2,7-dione (hereinafter referred to as “spiro”) )) (Manufactured by Aldrich) Monomer Photomer 4050 Photomer 4158 (polyethylene oxide resin having an acrylic terminal at each end (manufactured by Henkel)) Crosslinking initiator Trignox21 (manufactured by Kayaku Aguzo)
【0042】[0042]
【表4】電解質成分組成 PC 78部 LiClO4 7部 spiro 5部 Photomer4050 6.7部 Photomer4158 3.3部 Trignox21 1.0部Table 4 Composition of electrolyte components 78 parts of PC 7 parts of LiClO 4 5 parts of Spiro 6.7 parts of Photomer 4050 3.3 parts of Photomer 4158 3.3 parts of Trignox 21 1.0 part
【0043】上記の積層体原反を回転刃を用いて、積層
体原反の側面方向から刃を進行させて切断した。回転刃
は超硬のメタルソーを用い、裁断スピ−ドは200mm
/min、回転数は1000rpmであった。できた積
層体のサイズは40mm×50mmであった。その後、
正極及び負極に端子をつけ、可撓性を持つ真空パックに
封入して薄層型リチウム二次電池を20個作成し評価を
行った。評価は、充放電後に短絡の生じた電池の個数で
行った。さらに、これらの電池のパックから出しエッジ
部の顕微鏡観察を行った。結果を表−1に示す。Using a rotary blade, the above-mentioned laminate was cut by moving the blade from the side of the laminate. The rotary blade uses a super hard metal saw and the cutting speed is 200mm
/ Min, and the number of revolutions was 1000 rpm. The size of the resulting laminate was 40 mm × 50 mm. afterwards,
Terminals were attached to the positive electrode and the negative electrode, and sealed in a flexible vacuum pack to produce 20 thin-layer lithium secondary batteries, which were evaluated. The evaluation was performed on the number of batteries in which a short circuit occurred after charging and discharging. Further, the battery was taken out from the battery pack, and the edge portion was observed under a microscope. The results are shown in Table 1.
【0044】(比較例1)切断を、金型を用いたプレス
裁断によって行った以外は実施例と同様にして20個の
薄層型電池を作成・評価した。結果を表−1に示す。(Comparative Example 1) Twenty thin-layer batteries were prepared and evaluated in the same manner as in Example except that cutting was performed by press cutting using a mold. The results are shown in Table 1.
【0045】[0045]
【表5】 [Table 5]
【0046】[0046]
【発明の効果】本発明のリチウム二次電池は、高エネル
ギー密度でサイクル特性に優れ、かつ液漏れ等の問題を
抑制したゲル電解質を用いたリチウム二次電池の製造方
法であって、生産性を飛躍的に向上させるとともに、短
絡を有効に抑制することができる。Industrial Applicability The lithium secondary battery of the present invention is a method for producing a lithium secondary battery using a gel electrolyte having a high energy density, excellent cycle characteristics, and suppressing problems such as liquid leakage. And the short circuit can be effectively suppressed.
【図1】本発明における切断の例を示す模式的斜視図FIG. 1 is a schematic perspective view showing an example of cutting in the present invention.
【図2】本発明における切断の他の例を示す模式的斜視
図FIG. 2 is a schematic perspective view showing another example of cutting in the present invention.
【図3】本発明の製造方法の概略を示す模式図FIG. 3 is a schematic view showing an outline of the production method of the present invention.
1 正極原反 2,5,8 ロール 3,6,9 コータ 4 負極原反 5 セパレータ原反 12 カッター 21 積層体原反 22 回転刃 23 剃刀 DESCRIPTION OF SYMBOLS 1 Positive raw material 2,5,8 Roll 3,6,9 Coater 4 Negative raw material 5 Separator raw material 12 Cutter 21 Laminated material raw material 22 Rotating blade 23 Razor
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H014 AA04 AA06 BB04 BB08 BB11 BB17 CC01 EE02 5H029 AJ14 AK02 AK03 AK05 AK16 AL01 AL02 AL07 AL08 AL12 AM03 AM04 AM05 AM07 AM16 BJ04 CJ04 CJ11 CJ13 CJ22 CJ30 DJ04 DJ09 EJ12 ──────────────────────────────────────────────────続 き Continued from the front page F term (reference) 5H014 AA04 AA06 BB04 BB08 BB11 BB17 CC01 EE02 5H029 AJ14 AK02 AK03 AK05 AK16 AL01 AL02 AL07 AL08 AL12 AM03 AM04 AM05 AM07 AM16 BJ04 CJ04 CJ11 CJ13 CJ09 CJ12 DJ
Claims (5)
に正極活物質材料及び負極活物質層をそれぞれ形成させ
て正極原反及び負極原反を得る正極形成工程、及び負極
形成工程と、(2)前記正極原反及び前記負極原反を、
活物質層を対向させた向きで、長尺状のセパレータ原反
を介在させて積層して電池積層体原反を得る積層工程
と、(3)前記電池積層体原反を、切断刃を有する切断
装置を用いて、長尺方向に略垂直な方向に切断して電池
積層体を得る切断工程と、を包含するゲル状又は固体状
電解質を有する薄膜型電池の製造方法であって、 前記切断工程において、前記切断刃を、電池積層体原反
の側面方向から進行させて切断を行うことを特徴とする
薄膜型電池の製造方法。1. A positive electrode forming step in which a positive electrode active material material and a negative electrode active material layer are respectively formed on different elongated conductive supports to obtain a positive electrode raw material and a negative electrode raw material, and a negative electrode formation. And (2) converting the positive electrode raw material and the negative electrode raw material into
A laminating step of laminating the raw material laminate by interposing the elongated raw material in a direction in which the active material layers face each other, and (3) having a cutting blade for the raw battery laminate. Using a cutting device, a cutting step of obtaining a battery laminate by cutting in a direction substantially perpendicular to the long direction, a method for producing a thin film battery having a gel or solid electrolyte, In the process, the cutting blade is advanced by moving the cutting blade from a side surface direction of the original battery stack to perform cutting.
のそれぞれに電解質成分を保持させる電解質成分保持工
程を有する請求項1に記載の薄膜型電池の製造方法。2. The method for producing a thin film battery according to claim 1, further comprising an electrolyte component holding step of holding an electrolyte component in each of the positive electrode raw material and the negative electrode raw material before the laminating step.
パレータ原反に対しても電解質成分を保持させる請求項
2に記載の薄膜型電池の製造方法。3. The method for producing a thin-film battery according to claim 2, wherein in the electrolyte component holding step, the electrolyte component is further held on the raw separator.
びモノマーを含有し、塗布後にモノマーを重合してポリ
マーとし、該ポリマー中に非水系溶媒及び電解質塩が保
持される請求項2又は3に記載の薄膜型電池の製造方
法。4. An electrolyte component containing a non-aqueous solvent, an electrolyte salt and a monomer, and polymerizing the monomer to form a polymer after coating, wherein the non-aqueous solvent and the electrolyte salt are retained in the polymer. 3. The method for producing a thin-film battery according to item 1.
マーを重合するための重合工程を有する請求項4に記載
の薄膜型電池の製造方法。5. The method according to claim 4, further comprising a polymerization step for polymerizing the monomer after the laminating step and before the cutting step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10364511A JP2000188099A (en) | 1998-12-22 | 1998-12-22 | Manufacture of thin film type battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10364511A JP2000188099A (en) | 1998-12-22 | 1998-12-22 | Manufacture of thin film type battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000188099A true JP2000188099A (en) | 2000-07-04 |
Family
ID=18482000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10364511A Pending JP2000188099A (en) | 1998-12-22 | 1998-12-22 | Manufacture of thin film type battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000188099A (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100670528B1 (en) | 2004-10-26 | 2007-01-16 | 삼성에스디아이 주식회사 | Method of fabricating electrode plate of secondary battery and electrode plate of secondary battery by using the same |
WO2010149850A1 (en) * | 2009-06-26 | 2010-12-29 | Enfucell Ltd | A method of producing thin batteries |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
US7993773B2 (en) | 2002-08-09 | 2011-08-09 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8062708B2 (en) | 2006-09-29 | 2011-11-22 | Infinite Power Solutions, Inc. | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8260203B2 (en) | 2008-09-12 | 2012-09-04 | Infinite Power Solutions, Inc. | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
US8350519B2 (en) | 2008-04-02 | 2013-01-08 | Infinite Power Solutions, Inc | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
WO2013035387A1 (en) * | 2011-09-09 | 2013-03-14 | ファイラックインターナショナル株式会社 | Solid state secondary battery manufacturing method and solid state secondary battery based on the manufacturing method |
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8508193B2 (en) | 2008-10-08 | 2013-08-13 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
US8518581B2 (en) | 2008-01-11 | 2013-08-27 | Inifinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
US8599572B2 (en) | 2009-09-01 | 2013-12-03 | Infinite Power Solutions, Inc. | Printed circuit board with integrated thin film battery |
JP2013544427A (en) * | 2010-12-02 | 2013-12-12 | エルジー・ケム・リミテッド | Novel device for cutting electrode sheet and secondary battery manufactured using the same |
US8636876B2 (en) | 2004-12-08 | 2014-01-28 | R. Ernest Demaray | Deposition of LiCoO2 |
US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
US8906523B2 (en) | 2008-08-11 | 2014-12-09 | Infinite Power Solutions, Inc. | Energy device with integral collector surface for electromagnetic energy harvesting and method thereof |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
KR20170034770A (en) | 2015-09-21 | 2017-03-29 | 도요타지도샤가부시키가이샤 | Manufacturing method and manufacturing apparatus of electrode body |
US9634296B2 (en) | 2002-08-09 | 2017-04-25 | Sapurast Research Llc | Thin film battery on an integrated circuit or circuit board and method thereof |
KR101951783B1 (en) * | 2018-06-21 | 2019-02-25 | 김태완 | Cell Assymbly for Pouch Type Secondary Battery Having Divided Separator and Its Manufacturing Method |
CN109792071A (en) * | 2016-09-27 | 2019-05-21 | 罗伯特·博世有限公司 | For manufacturing the method and battery cell of the electrode stack of battery cell |
JP2020072019A (en) * | 2018-10-31 | 2020-05-07 | トヨタ自動車株式会社 | Manufacturing method of stacked cell |
US10680277B2 (en) | 2010-06-07 | 2020-06-09 | Sapurast Research Llc | Rechargeable, high-density electrochemical device |
WO2022239486A1 (en) * | 2021-05-13 | 2022-11-17 | パナソニックIpマネジメント株式会社 | Battery and method for producing battery |
WO2022270072A1 (en) * | 2021-06-21 | 2022-12-29 | パナソニックIpマネジメント株式会社 | Battery manufacturing method and battery |
WO2024142819A1 (en) * | 2022-12-28 | 2024-07-04 | 株式会社豊田自動織機 | Method for manufacturing energy storage module |
-
1998
- 1998-12-22 JP JP10364511A patent/JP2000188099A/en active Pending
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8535396B2 (en) | 2002-08-09 | 2013-09-17 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US7993773B2 (en) | 2002-08-09 | 2011-08-09 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
US9793523B2 (en) | 2002-08-09 | 2017-10-17 | Sapurast Research Llc | Electrochemical apparatus with barrier layer protected substrate |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US9634296B2 (en) | 2002-08-09 | 2017-04-25 | Sapurast Research Llc | Thin film battery on an integrated circuit or circuit board and method thereof |
US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
KR100670528B1 (en) | 2004-10-26 | 2007-01-16 | 삼성에스디아이 주식회사 | Method of fabricating electrode plate of secondary battery and electrode plate of secondary battery by using the same |
US8636876B2 (en) | 2004-12-08 | 2014-01-28 | R. Ernest Demaray | Deposition of LiCoO2 |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
US8062708B2 (en) | 2006-09-29 | 2011-11-22 | Infinite Power Solutions, Inc. | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
US8518581B2 (en) | 2008-01-11 | 2013-08-27 | Inifinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
US9786873B2 (en) | 2008-01-11 | 2017-10-10 | Sapurast Research Llc | Thin film encapsulation for thin film batteries and other devices |
US8350519B2 (en) | 2008-04-02 | 2013-01-08 | Infinite Power Solutions, Inc | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
US8906523B2 (en) | 2008-08-11 | 2014-12-09 | Infinite Power Solutions, Inc. | Energy device with integral collector surface for electromagnetic energy harvesting and method thereof |
US8260203B2 (en) | 2008-09-12 | 2012-09-04 | Infinite Power Solutions, Inc. | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
US8508193B2 (en) | 2008-10-08 | 2013-08-13 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
EP2446496A1 (en) * | 2009-06-26 | 2012-05-02 | Enfucell Ltd | A method of producing thin batteries |
EP2446496A4 (en) * | 2009-06-26 | 2014-05-21 | Enfucell Ltd | A method of producing thin batteries |
WO2010149850A1 (en) * | 2009-06-26 | 2010-12-29 | Enfucell Ltd | A method of producing thin batteries |
US8599572B2 (en) | 2009-09-01 | 2013-12-03 | Infinite Power Solutions, Inc. | Printed circuit board with integrated thin film battery |
US9532453B2 (en) | 2009-09-01 | 2016-12-27 | Sapurast Research Llc | Printed circuit board with integrated thin film battery |
US10680277B2 (en) | 2010-06-07 | 2020-06-09 | Sapurast Research Llc | Rechargeable, high-density electrochemical device |
JP2013544427A (en) * | 2010-12-02 | 2013-12-12 | エルジー・ケム・リミテッド | Novel device for cutting electrode sheet and secondary battery manufactured using the same |
WO2013035387A1 (en) * | 2011-09-09 | 2013-03-14 | ファイラックインターナショナル株式会社 | Solid state secondary battery manufacturing method and solid state secondary battery based on the manufacturing method |
JP2017062871A (en) * | 2015-09-21 | 2017-03-30 | トヨタ自動車株式会社 | Method and device for manufacturing electrode body |
US10164232B2 (en) | 2015-09-21 | 2018-12-25 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method and manufacturing apparatus of electrode body |
KR20170034770A (en) | 2015-09-21 | 2017-03-29 | 도요타지도샤가부시키가이샤 | Manufacturing method and manufacturing apparatus of electrode body |
CN109792071A (en) * | 2016-09-27 | 2019-05-21 | 罗伯特·博世有限公司 | For manufacturing the method and battery cell of the electrode stack of battery cell |
CN109792071B (en) * | 2016-09-27 | 2022-04-05 | 罗伯特·博世有限公司 | Method for producing an electrode stack for a battery cell and battery cell |
KR101951783B1 (en) * | 2018-06-21 | 2019-02-25 | 김태완 | Cell Assymbly for Pouch Type Secondary Battery Having Divided Separator and Its Manufacturing Method |
JP2020072019A (en) * | 2018-10-31 | 2020-05-07 | トヨタ自動車株式会社 | Manufacturing method of stacked cell |
JP7087920B2 (en) | 2018-10-31 | 2022-06-21 | トヨタ自動車株式会社 | Manufacturing method of laminated battery |
WO2022239486A1 (en) * | 2021-05-13 | 2022-11-17 | パナソニックIpマネジメント株式会社 | Battery and method for producing battery |
WO2022270072A1 (en) * | 2021-06-21 | 2022-12-29 | パナソニックIpマネジメント株式会社 | Battery manufacturing method and battery |
EP4362141A4 (en) * | 2021-06-21 | 2024-10-09 | Panasonic Ip Man Co Ltd | Battery manufacturing method and battery |
WO2024142819A1 (en) * | 2022-12-28 | 2024-07-04 | 株式会社豊田自動織機 | Method for manufacturing energy storage module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000188099A (en) | Manufacture of thin film type battery | |
US7651820B2 (en) | Gel electrolyte and gel electrolyte battery | |
US4935317A (en) | Method for producing solid state electrochemical laminar cell utilizing cathode rolling step | |
JP5174376B2 (en) | Non-aqueous lithium ion secondary battery | |
JP2002008723A (en) | Gel-like electrolyte and nonaqueous electrolyte battery | |
JP2000340265A (en) | Planar and laminated secondary battery | |
JP2000149906A (en) | Lithium secondary battery | |
KR100558843B1 (en) | Lithium battery and process for preparing the same | |
JP2001210377A (en) | Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it | |
JP2002359006A (en) | Secondary battery | |
KR20170050278A (en) | Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same | |
JP4053657B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JP2000133248A (en) | Manufacture of thin film type battery | |
JP4019518B2 (en) | Lithium secondary battery | |
JP3674324B2 (en) | Method for manufacturing lithium secondary battery | |
JP2000048860A (en) | Lithium secondary battery | |
JP4419981B2 (en) | Method for manufacturing lithium secondary battery | |
JP2000311715A (en) | Lithium secondary battery | |
JP2000173665A (en) | Lithium secondary battery | |
JPH11219726A (en) | Lithium secondary battery | |
JP3990063B2 (en) | Manufacturing method of secondary battery | |
JPH11219725A (en) | Lithium secondary battery | |
JP2000268869A (en) | Secondary battery and its manufacture | |
JP4183337B2 (en) | Manufacturing method of secondary battery | |
JP2000268876A (en) | Manufacture for secondary battery |