JP2000178753A - Electroless plating method - Google Patents
Electroless plating methodInfo
- Publication number
- JP2000178753A JP2000178753A JP10357247A JP35724798A JP2000178753A JP 2000178753 A JP2000178753 A JP 2000178753A JP 10357247 A JP10357247 A JP 10357247A JP 35724798 A JP35724798 A JP 35724798A JP 2000178753 A JP2000178753 A JP 2000178753A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- contact angle
- treatment
- abnormal deposition
- abnormal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、無電解めっき後に
発生する異常析出により配線間ショート不良等を防止す
る無電解めっき方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless plating method for preventing a short circuit between wirings due to abnormal deposition occurring after electroless plating.
【0002】[0002]
【従来の技術】近年の高密度実装化が進むなかで、電解
めっき用の電源リード線に対する設計上の制約、および
電気的に孤立した微細パターンへのめっき方法に、無電
解めっき法が注目されつつある。被めっき金属が銅また
はニッケルの場合の一般的な無電解金めっき工程を、そ
れぞれ図1及び図2に示す。置換金めっきでは、めっき
液中の金イオンが被めっき金属と導体上で置換する。従
って被めっき金属全面に金が析出すると反応が停止する
ので、厚付け金膜は得られない。一方、無電解金めっき
では、還元剤による金イオンの還元反応により、被めっ
き導体上に金が析出するため、厚付け金膜形成が可能で
ある。但し厚付け金膜が必要な場合、被めっき下地金属
との密着性がより良好な置換金めっき液と併用して用い
られる。2. Description of the Related Art As high-density mounting has progressed in recent years, electroless plating has attracted attention as a design constraint on a power supply lead wire for electrolytic plating and a method of plating an electrically isolated fine pattern. It is getting. A general electroless gold plating process when the metal to be plated is copper or nickel is shown in FIGS. 1 and 2, respectively. In displacement gold plating, gold ions in a plating solution displace the metal to be plated on the conductor. Therefore, when gold is deposited on the entire surface of the metal to be plated, the reaction stops, and a thick gold film cannot be obtained. On the other hand, in electroless gold plating, gold is deposited on a conductor to be plated by a reduction reaction of gold ions by a reducing agent, so that a thick gold film can be formed. However, when a thick gold film is required, it is used in combination with a replacement gold plating solution having better adhesion to the base metal to be plated.
【0003】[0003]
【発明が解決しようとする課題】無電解めっきを行なっ
た際、絶縁部分にもめっきが析出する現象すなわち異常
析出(パターン外析出、めっきひろがり、はみ出し析出
ともいう)が発生するといった問題がある。When electroless plating is performed, there is a problem that plating is deposited on an insulating portion, that is, abnormal deposition (also referred to as out-of-pattern deposition, plating spread, or extruded deposition) occurs.
【0004】異常析出の原因としては、被めっき金属が
銅の場合、めっき前処理工程のひとつであるPd活性化
処理工程において、PdコロイドあるいはPd粒子が絶
縁体表面へ付着し、その後のニッケルめっき液中で異常
析出の核になることが考えられる。また被めっき金属が
ニッケルの場合はPd処理を行わないが、金めっき後に
異常析出が発生することがある。これは置換金めっき液
あるいは無電解金めっき液中に発生した金コロイドある
いは金微粒子が、絶縁体表面へ付着し異常析出の核にな
ったと考えられる。これら異常析出の核は、めっき反応
の進行とともに成長し、微細配線パターン間の絶縁体表
面を覆うとショート不良等の原因になるといった問題が
あった。As a cause of abnormal deposition, when the metal to be plated is copper, Pd colloids or Pd particles adhere to the surface of the insulator in the Pd activation treatment step, which is one of the plating pretreatment steps, and then nickel plating is performed. It is thought that it becomes the core of abnormal precipitation in the liquid. When the metal to be plated is nickel, the Pd treatment is not performed, but abnormal deposition may occur after gold plating. This is presumably because gold colloid or gold fine particles generated in the displacement gold plating solution or the electroless gold plating solution adhered to the insulator surface and became the core of abnormal deposition. The nuclei of these abnormal depositions grow with the progress of the plating reaction, and there is a problem that covering the insulator surface between the fine wiring patterns causes a short circuit failure or the like.
【0005】そこで異常析出を防止する目的で、めっき
前処理のPd活性液あるいは無電解めっき液に、あらか
じめ異常析出を抑制する成分を添加する方法が一般的に
用いられている。例えば特開平5−156457号公報
には、ニッケルめっき前処理液であるPd活性化液にニ
ッケルめっき液のpHとほぼ同じ3.0〜4.5に保つ
pH緩衝剤を添加し、ニッケルめっき液への前処理液の
持ち込みによる急激なpH変動を抑えることで、異常析
出の核発生を抑制する方法が開示されている。Therefore, in order to prevent abnormal deposition, a method of adding a component for suppressing abnormal deposition in advance to a Pd active solution or an electroless plating solution for plating pretreatment is generally used. For example, Japanese Patent Application Laid-Open No. 5-156457 discloses a nickel plating solution in which a Pd activating solution, which is a pretreatment solution for nickel plating, is added with a pH buffer agent that maintains the pH of the nickel plating solution at about 3.0 to 4.5. A method for suppressing nucleation of abnormal precipitation by suppressing a sudden pH change caused by bringing in a pretreatment liquid into the pit is disclosed.
【0006】また非イオン性界面活性剤及び/又は非イ
オン性ポリマーをめっき液に添加して、被めっき絶縁体
表面に吸着させることで、異常析出の核吸着を防止する
方法が、特開平6−280039号公報に開示されてい
る。[0006] A method of adding a nonionic surfactant and / or a nonionic polymer to a plating solution and adsorbing it on the surface of an insulator to be plated to prevent nucleus adsorption of abnormal precipitation is disclosed in Japanese Patent Application Laid-Open No. H06-26,004. -280039.
【0007】[0007]
【課題を解決するための手段】めっき前工程の薬液が、
無電解めっき液に持ち込まれるとpHの急激な変動等
で、めっき液中の金属錯体が分解しやすい。その結果、
金属微粒子が発生し異常析出の核となることが十分に考
えられるので、このような原因に対する対策としては、
特開平5−156457号公報の発明は効果的である。
しかしpHの変動に関わらず起こる不均化反応、例えば
無電解金めっき中の不均化反応(式(1))により発生
する金微粒子の付着が異常析出の原因になる場合には効
果はない。 3Au+ → 2Au + Au3+ …… 式(1) 一方、特開平6−280039号公報に開示されている
界面活性剤及び/又はポリマーを添加した場合、異常析
出の核自体に吸着し核成長を阻止するので、異常析出抑
制には効果的である。しかしながら界面活性剤及び/又
はポリマーは導体表面にも吸着しやすく、めっき反応自
体を阻害しめっき速度の低下を招いたり、未析出の原因
になるといった問題があった。従ってこれらの添加剤を
極力低濃度で使用しなければならず、その低濃度さ故に
めっき液中へ一度添加してしまうと分析検出限界以下と
なり、添加剤の濃度管理が困難であった。またこれら添
加剤はめっき連続使用時の持ち出し或いは消耗により濃
度低下するので、異常析出抑制効果が消失し突然異常析
出が発生するといった問題があった。[Means for Solving the Problems] The chemical solution in the pre-plating process is
When brought into the electroless plating solution, the metal complex in the plating solution is easily decomposed due to a sudden change in pH or the like. as a result,
Since it is fully conceivable that metal fine particles are generated and serve as nuclei for abnormal deposition, measures against such causes include:
The invention of JP-A-5-156457 is effective.
However, there is no effect when the disproportionation reaction that occurs irrespective of the pH fluctuation, for example, adhesion of gold fine particles generated by the disproportionation reaction during electroless gold plating (formula (1)) causes abnormal deposition. . 3Au + → 2Au + Au 3+ ...... formula (1) On the other hand, if the addition of surfactants and / or polymers are disclosed in JP-A-6-280039, adsorbed nuclei grow nucleus itself abnormal deposition Therefore, it is effective for suppressing abnormal precipitation. However, the surfactant and / or the polymer is easily adsorbed on the conductor surface, and there is a problem that the plating reaction itself is inhibited to cause a reduction in plating rate or cause non-precipitation. Therefore, these additives must be used at the lowest possible concentration, and because of their low concentrations, once added to the plating solution, they fall below the analytical detection limit, making it difficult to control the concentration of the additives. In addition, since the concentration of these additives decreases due to carry-out or consumption during continuous use of plating, there is a problem that the effect of suppressing abnormal precipitation is lost and abnormal precipitation occurs suddenly.
【0008】そこで本発明者らは、被めっき物表面に着
眼し、Cu配線基板あるいはCu/Ni−W配線基板を
用いて、無電解めっき工程直前に様々な方法で被めっき
物表面改質処理を施した後に、無電解めっき工程に通し
異常析出発生の有無を評価した。その結果、基板表面改
質により絶縁体表面の接触角を低下させれば、めっき異
常析出が発生しないことを突き止めた。本発明の基板表
面改質処理を含んだ一連のめっき工程を図3および図4
に示した。Therefore, the present inventors focused on the surface of the object to be plated and, using a Cu wiring substrate or a Cu / Ni-W wiring substrate, performed surface modification treatment of the object to be plated immediately before the electroless plating step by various methods. , And then passed through an electroless plating process to evaluate the occurrence of abnormal precipitation. As a result, they found that abnormal plating deposition did not occur if the contact angle of the insulator surface was reduced by modifying the substrate surface. FIGS. 3 and 4 show a series of plating steps including the substrate surface modification treatment of the present invention.
It was shown to.
【0009】Cu配線基板あるいはCu/Ni−W配線
基板の絶縁体がポリマーの場合接触角は、基板表面改質
処理無しでは約65°〜67°であった。この表面状態
のまま、図1または図2に記しためっき工程に投入した
ところ、めっき後に異常析出が認められた。一方めっき
工程直前に、基板を表面改質処理として酸素アッシング
処理すると接触角は7°〜11°に低下し親水性を示し
た。この基板を図1または図2に記しためっき工程に投
入すると、めっき後異常析出は認められなかった。すな
わち、親水化処理した絶縁体表面には異常析出の核が吸
着しにくいことを示唆するものである。UV照射処理や
エチレンジアミン/ヒドラジン混合溶液等の各種ポリマ
ーエッチング処理でも、酸素アッシング処理と同様絶縁
体ポリマーの接触角が9°〜20°にまで低下すること
がわかった。これらの表面改質処理をめっき工程直前
に、単独あるいは自由に組み合わせて用いても異常析出
抑制効果が認められた。When the insulator of the Cu wiring substrate or the Cu / Ni-W wiring substrate is a polymer, the contact angle is about 65 ° to 67 ° without the substrate surface modification treatment. When this surface condition was applied to the plating step shown in FIG. 1 or FIG. 2, abnormal deposition was observed after plating. On the other hand, immediately before the plating step, when the substrate was subjected to oxygen ashing as a surface modification treatment, the contact angle was reduced to 7 ° to 11 °, indicating hydrophilicity. When this substrate was put into the plating step shown in FIG. 1 or FIG. 2, no abnormal precipitation was observed after plating. In other words, this suggests that nuclei of abnormal precipitation are unlikely to be adsorbed on the surface of the insulator subjected to the hydrophilic treatment. It was found that the contact angle of the insulator polymer was reduced to 9 ° to 20 ° in the UV irradiation treatment and various polymer etching treatments such as a mixed solution of ethylenediamine / hydrazine, similarly to the oxygen ashing treatment. Even when these surface modification treatments were used alone or in combination freely just before the plating step, an effect of suppressing abnormal precipitation was observed.
【0010】一方、表面改質処理でも還元アニール処理
後では絶縁体表面の接触角が65°〜69°と処理前と
変化しない表面状態でめっき工程に投入すると、めっき
後異常析出が認められた。すなわち表面改質処理におい
ては、絶縁体表面の接触角を著しく低下させる場合に限
り、異常析出抑制効果が得られる。異常析出抑制効果が
現れる絶縁体表面改質処理としては、処理後の接触角が
20°以下になるのであれば、先に示した絶縁体表面改
質処理法に限定されるものではない。On the other hand, even when the surface modification treatment was carried out in the plating step with the contact angle of the insulator surface being 65 ° to 69 ° after the reduction annealing treatment, which was unchanged from that before the treatment, abnormal deposition was observed after plating. . That is, in the surface modification treatment, the effect of suppressing abnormal precipitation can be obtained only when the contact angle of the insulator surface is significantly reduced. The insulator surface modification treatment that exhibits the effect of suppressing abnormal precipitation is not limited to the insulator surface modification treatment method described above as long as the contact angle after treatment is 20 ° or less.
【0011】なお接触角を低下させる絶縁体表面改質処
理工程は、必ずめっき工程直前に施さなければ効果は期
待できない。例えば還元アニール処理後の基板に酸素ア
ッシング処理を施し、めっき工程に投入すると異常析出
は認められなかったが、酸素アッシング処理した後に、
還元アニール処理した基板をめっき工程に投入した場
合、異常析出が認められた。[0011] The effect of the insulator surface modification treatment step for reducing the contact angle cannot be expected unless it is always performed immediately before the plating step. For example, the substrate after the reduction annealing treatment was subjected to oxygen ashing, and when put into the plating process, abnormal precipitation was not recognized, but after the oxygen ashing treatment,
When the substrate subjected to the reduction annealing treatment was put into the plating step, abnormal deposition was observed.
【0012】絶縁体表面の接触角低下に伴う異常析出抑
制メカニズムは不明であるが、酸素アッシング処理した
絶縁体ポリマーの表面をESCA分析すると、カルボキ
シル基が検出された。すなわち、親水基の生成が接触角
低下の原因であると考えられる。本来親水基を持たない
ポリマー表面は、水あるいはめっき液に対する濡れ性が
悪いので、ポリマー表面に吸着した異常析出の核は、水
洗工程あるいはめっき液自体が持つ自浄効果では脱離し
ないで、めっき中に成長し異常析出として発現すると思
われる。従って親水化したポリマー表面では異常析出の
核吸着が抑制されるものと推定できる。Although the mechanism of suppressing abnormal precipitation due to a decrease in the contact angle of the insulator surface is unknown, carboxyl groups were detected by ESCA analysis of the surface of the insulator polymer subjected to oxygen ashing. That is, it is considered that the formation of the hydrophilic group is the cause of the decrease in the contact angle. Since the polymer surface which originally has no hydrophilic group has poor wettability to water or plating solution, the nuclei of abnormal deposition adsorbed on the polymer surface will not be detached by the washing process or the self-cleaning effect of the plating solution itself. It seems to grow to abnormal precipitation. Therefore, it can be presumed that the nucleus adsorption of abnormal precipitation is suppressed on the hydrophilic polymer surface.
【0013】以上のように本発明は、従来のように異常
析出抑制成分を無電解めっき液に添加することなく、被
めっき絶縁体表面を改質することで、異常析出を効果的
に抑制する無電解めっきプロセスを提供するものであ
る。As described above, the present invention effectively suppresses abnormal deposition by modifying the surface of the insulator to be plated without adding an abnormal deposition suppressing component to the electroless plating solution as in the prior art. An electroless plating process is provided.
【0014】[0014]
【発明の実施の形態】(実施例1)スパッタCu(膜厚
2.0ミクロン)/スパッタNi−W(膜厚2.0ミク
ロン)配線基板の絶縁体ポリマー表面接触角を測定した
(接触角計:CA−A型:協和界面科学(株)製)後、
この基板を図3に示すプロセスに従いまず表面改質処理
をおこなった。再び絶縁体表面接触角を測定した後、脱
脂処理として酸性脱脂液に1分浸積した。次に酸処理と
して10%塩酸に1分浸積した。さらに置換金めっき液
に投入し約0.05ミクロンの金皮膜を形成した。最後
に無電解金めっき液にて約0.2ミクロン厚までめっき
し、流水洗1次洗1分、2次洗1分後乾燥させ、金属顕
微鏡により異常析出の有無を確認した。その結果を表1
(No.1〜16)に示す。なお各工程間では流水洗浄
(1次洗1分、2次洗1〜3分)を必ずおこなった。(Embodiment 1) The contact angle of the insulator polymer surface of a sputtered Cu (2.0 μm thick) / sputtered Ni-W (2.0 μm thick) wiring board was measured (contact angle). Total: CA-A type: manufactured by Kyowa Interface Science Co., Ltd.)
This substrate was first subjected to a surface modification treatment according to the process shown in FIG. After measuring the insulator surface contact angle again, it was immersed in an acidic degreasing solution for 1 minute as a degreasing treatment. Next, it was immersed in 10% hydrochloric acid for one minute as an acid treatment. Further, it was poured into a displacement gold plating solution to form a gold film of about 0.05 μm. Finally, plating was carried out to a thickness of about 0.2 micron with an electroless gold plating solution, washed with running water for 1 minute, washed for 1 minute, dried for 1 minute, and checked for abnormal precipitation with a metallographic microscope. Table 1 shows the results.
(Nos. 1 to 16). In addition, between each process, washing with running water (1 minute for primary washing, 1 to 3 minutes for secondary washing) was always performed.
【0015】[0015]
【表1】 [Table 1]
【0016】(実施例2)スパッタCu(膜厚2.0ミ
クロン)配線基板の絶縁体ポリマー表面接触角を測定し
た(接触角計:CA−A型:協和界面科学(株)製)
後、この基板を図4に示すプロセスに従いまず表面改質
処理をおこなった。再び絶縁体表面接触角を測定した
後、脱脂処理として酸性脱脂液に1分浸積した。次にC
uライトエッチング処理として、過硫酸ナトリウム水溶
液に30秒浸積した。次に酸処理として10%硫酸水溶
液に1分浸積した。次にPd活性化処理液に1分浸積し
た後に、無電解ニッケルめっきをおこなった。約2ミク
ロン厚のニッケル膜形成後、置換金めっき液に投入し約
0.05ミクロンの金皮膜を形成した。そして最後に無
電解金めっき液にて約0.2ミクロン厚までめっきし、
流水洗浄後に乾燥させ金属顕微鏡により異常析出の有無
を確認した。その結果を表2(No.17〜32)に示
す。なお各工程間では流水洗浄(1次洗1分、2次洗1
〜3分)を必ずおこなった。Example 2 The contact angle of the insulator polymer surface of a sputtered Cu (film thickness: 2.0 μm) wiring board was measured (contact angle meter: CA-A type: manufactured by Kyowa Interface Science Co., Ltd.).
Thereafter, the substrate was first subjected to a surface modification treatment according to the process shown in FIG. After measuring the insulator surface contact angle again, it was immersed in an acidic degreasing solution for 1 minute as a degreasing treatment. Then C
As a u-light etching treatment, the substrate was immersed in an aqueous solution of sodium persulfate for 30 seconds. Next, it was immersed in a 10% aqueous sulfuric acid solution for one minute as an acid treatment. Next, after being immersed in a Pd activation treatment solution for one minute, electroless nickel plating was performed. After a nickel film having a thickness of about 2 μm was formed, the resultant was poured into a displacement gold plating solution to form a gold film having a thickness of about 0.05 μm. And finally plating with electroless gold plating solution to about 0.2 micron thickness,
After washing with running water, drying was performed, and the presence or absence of abnormal precipitation was confirmed by a metallographic microscope. The results are shown in Table 2 (Nos. 17 to 32). In addition, between each process, running water washing (primary washing 1 minute, secondary washing 1 minute)
33 minutes).
【0017】[0017]
【表2】 [Table 2]
【0018】(比較例1)スパッタCu(膜厚2.0ミ
クロン)/スパッタNi−W(膜厚2.0ミクロン)配
線基板の絶縁体ポリマー表面接触角を測定した(接触角
計:CA−A型:協和界面科学(株)製)後、この基板
を図1に示すプロセスに従いまず脱脂処理として酸性脱
脂液に1分浸積した。次に酸処理として10%塩酸に1
分浸積した後、置換金めっき液に投入し約0.05ミク
ロンの金皮膜を形成した。最後に無電解金めっき液にて
約0.2ミクロン厚までめっきし、流水洗浄後乾燥させ
金属顕微鏡により異常析出の有無を確認した。その結果
を表3(No.1〜3)に示す。なお各工程間では流水
洗浄(1次洗1分、2次洗1〜3分)を必ずおこなっ
た。Comparative Example 1 The contact angle of the insulator polymer surface of a sputtered Cu (2.0 μm thick) / sputtered Ni—W (2.0 μm thick) wiring board was measured (contact angle meter: CA−). After type A: manufactured by Kyowa Interface Science Co., Ltd.), the substrate was first immersed in an acidic degreasing solution for 1 minute as a degreasing treatment according to the process shown in FIG. Next, as an acid treatment, add 1%
After immersion, it was poured into a displacement gold plating solution to form a gold film of about 0.05 μm. Finally, it was plated to a thickness of about 0.2 micron with an electroless gold plating solution, washed with running water, dried, and checked for abnormal deposition with a metallographic microscope. The results are shown in Table 3 (Nos. 1 to 3). In addition, between each process, washing with running water (1 minute for primary washing, 1 to 3 minutes for secondary washing) was always performed.
【0019】[0019]
【表3】 [Table 3]
【0020】(比較例2)スパッタCu(膜厚2.0ミ
クロン)配線基板の絶縁体ポリマー表面接触角を測定し
た(接触角計:CA−A型:協和界面科学(株)製)
後、この基板を図2に示すプロセスに従い、まず脱脂処
理として酸性脱脂液に1分浸積した。次にCuライトエ
ッチング処理として、過硫酸ナトリウム水溶液に30秒
浸積した。次に酸処理として10%硫酸水溶液に1分浸
積した。次にPd活性化処理液に1分浸積した後に、無
電解ニッケルめっきをおこなった。約2ミクロン厚のニ
ッケル膜形成後、置換金めっき液に投入し約0.05ミ
クロンの金皮膜を形成した。そして最後に無電解金めっ
き液にて約0.2ミクロン厚までめっきし、流水洗浄後
に乾燥させ金属顕微鏡により異常析出の有無を確認し
た。その結果を表4(No.3〜6)に示す。なお各工
程間では流水洗浄(1次洗1分、2次洗1〜3分)を必
ずおこなった。(Comparative Example 2) The contact angle of the insulator polymer surface of a sputtered Cu (film thickness: 2.0 μm) wiring substrate was measured (contact angle meter: CA-A type: manufactured by Kyowa Interface Science Co., Ltd.).
Thereafter, the substrate was immersed in an acidic degreasing solution for one minute as a degreasing treatment in accordance with the process shown in FIG. Next, as a Cu light etching treatment, the substrate was immersed in an aqueous solution of sodium persulfate for 30 seconds. Next, it was immersed in a 10% aqueous sulfuric acid solution for one minute as an acid treatment. Next, after being immersed in a Pd activation treatment solution for 1 minute, electroless nickel plating was performed. After forming a nickel film having a thickness of about 2 μm, the nickel film was introduced into a displacement gold plating solution to form a gold film having a thickness of about 0.05 μm. And finally, it was plated with an electroless gold plating solution to a thickness of about 0.2 μm, washed with running water and dried, and the presence or absence of abnormal deposition was confirmed by a metallographic microscope. The results are shown in Table 4 (Nos. 3 to 6). In addition, between each process, washing with running water (1 minute for primary washing, 1 to 3 minutes for secondary washing) was always performed.
【0021】[0021]
【表4】 [Table 4]
【0022】[0022]
【発明の効果】以上詳しく説明したように、本発明によ
れば、異常析出が抑制できるので、異常析出起因の配線
間ショート不良の心配はない。従って高密度微細配線パ
ターンへの無電解めっきが可能である。また無電解めっ
き液に異常析出抑制成分を添加する必要がないので、微
量抑制成分の濃度管理は必要なくめっき作業性が向上す
るとともに量産にも十分適用が可能である。As described above in detail, according to the present invention, since abnormal deposition can be suppressed, there is no fear of short-circuit failure between wirings caused by abnormal deposition. Therefore, electroless plating on a high-density fine wiring pattern is possible. Further, since it is not necessary to add an abnormal precipitation suppressing component to the electroless plating solution, it is not necessary to control the concentration of the trace suppressing component, so that the plating workability is improved and the method can be sufficiently applied to mass production.
【図面の簡単な説明】[Brief description of the drawings]
【図1】従来の無電解Auめっきプロセスを示すフロー
図である。FIG. 1 is a flowchart showing a conventional electroless Au plating process.
【図2】従来の無電解Ni/Auめっきプロセスを示す
フロー図である。FIG. 2 is a flowchart showing a conventional electroless Ni / Au plating process.
【図3】本発明の一実施例である無電解Auめっきプロ
セスを示すフロー図である。FIG. 3 is a flowchart showing an electroless Au plating process according to one embodiment of the present invention.
【図4】本発明の他の実施例である無電解Ni/Auめ
っきプロセスを示すフロー図である。FIG. 4 is a flowchart showing an electroless Ni / Au plating process according to another embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹原 裕子 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 井上 隆史 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 太田 敏彦 神奈川県秦野市堀山下1番地株式会社日立 製作所汎用コンピュータ事業部内 Fターム(参考) 4K022 AA13 AA42 BA03 BA08 CA03 CA05 CA06 CA07 CA12 CA21 CA22 CA28 CA29 DA01 DA03 5E343 AA12 BB23 BB24 BB55 CC46 DD25 DD33 EE32 EE36 EE37 GG08 GG20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuko Takehara 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside of Hitachi, Ltd. (72) Inventor Toshihiko Ota 1 Horiyamashita, Hadano-shi, Kanagawa F-term (reference) 4G022 AA13 AA42 BA03 BA08 CA03 CA05 CA06 CA07 CA12 CA21 CA22 CA28 CA29 DA01 DA03 5E343 AA12 BB23 BB24 BB55 CC46 DD25 DD33 EE32 EE36 EE37 GG08 GG20
Claims (4)
の接触角を低下させる表面改質処理を施すことを特徴と
する無電解めっき方法。1. An electroless plating method, comprising: performing a surface modification treatment to reduce a contact angle of an insulator surface of an object to be plated before a plating step.
あることを特徴とする請求項1記載の無電解めっき方
法。2. The electroless plating method according to claim 1, wherein said surface modification treatment is an insulator surface modification step.
グ工程、UV照射工程或いはウエットエッチング工程の
少なくともいずれかの工程からなることを特徴とする請
求項2記載の無電解めっき方法。3. The electroless plating method according to claim 2, wherein said insulator surface modifying step comprises at least one of an oxygen ashing step, a UV irradiation step and a wet etching step.
とする請求項2記載の無電解めっき方法。4. The electroless plating method according to claim 2, wherein said insulator is made of a polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10357247A JP2000178753A (en) | 1998-12-16 | 1998-12-16 | Electroless plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10357247A JP2000178753A (en) | 1998-12-16 | 1998-12-16 | Electroless plating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000178753A true JP2000178753A (en) | 2000-06-27 |
Family
ID=18453146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10357247A Pending JP2000178753A (en) | 1998-12-16 | 1998-12-16 | Electroless plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000178753A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141936A (en) * | 2005-11-15 | 2007-06-07 | Ebara Udylite Kk | Method for manufacturing printed wiring board having high-density copper pattern |
WO2008001697A1 (en) * | 2006-06-26 | 2008-01-03 | Tokyo Electron Limited | Substrate processing method and substrate processing apparatus |
JP2010080527A (en) * | 2008-09-24 | 2010-04-08 | Fujitsu Ltd | Wiring-substrate manufacturing method |
CN108034933A (en) * | 2017-12-11 | 2018-05-15 | 苏州协同创新智能制造装备有限公司 | Fiber grating surface metalation processing method |
-
1998
- 1998-12-16 JP JP10357247A patent/JP2000178753A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141936A (en) * | 2005-11-15 | 2007-06-07 | Ebara Udylite Kk | Method for manufacturing printed wiring board having high-density copper pattern |
WO2008001697A1 (en) * | 2006-06-26 | 2008-01-03 | Tokyo Electron Limited | Substrate processing method and substrate processing apparatus |
JPWO2008001697A1 (en) * | 2006-06-26 | 2009-11-26 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
JP4740329B2 (en) * | 2006-06-26 | 2011-08-03 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
US8062955B2 (en) | 2006-06-26 | 2011-11-22 | Tokyo Electron Limited | Substrate processing method and substrate processing apparatus |
JP2010080527A (en) * | 2008-09-24 | 2010-04-08 | Fujitsu Ltd | Wiring-substrate manufacturing method |
CN108034933A (en) * | 2017-12-11 | 2018-05-15 | 苏州协同创新智能制造装备有限公司 | Fiber grating surface metalation processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100188481B1 (en) | Direct electroplating of dielectric substrate and plating substrate | |
JP2016160504A (en) | Method for forming electroless Ni / Au plating film and electroless Ni / Au plating film obtained by the method | |
EP3060696B1 (en) | Method of selectively treating copper in the presence of further metal | |
EP3489385B1 (en) | Electroless palladium/gold plating process | |
JP3728572B2 (en) | Wiring board manufacturing method | |
TWI687545B (en) | Electroless nickel strike plating solution and method for forming nickel plating film | |
CN102482780B (en) | Method for depositing a palladium layer suitable for wire bonding on conductors of a printed circuit board and palladium bath for use in said method | |
JP2000178753A (en) | Electroless plating method | |
JPH03170680A (en) | Direct metal covering of nonconductive supporting body | |
JP6521553B1 (en) | Substitution gold plating solution and substitution gold plating method | |
JP3143707B2 (en) | Mild basic accelerator for direct electroplating | |
CN109082651B (en) | Pretreatment composition for chemical plating | |
JP4357901B2 (en) | Palladium catalyst solution for electroless plating and catalytic treatment method | |
TWI424099B (en) | A direct plating method and a palladium conductor layer to form a solution | |
JPH11124680A (en) | Catalytic solution for electroless plating | |
JPH06145994A (en) | Catalyst solution for selective electroless nickel plating and electroless nickel plating method using this solution | |
JP2001152353A (en) | Electroplating method for nonconductive plastic | |
JP4059133B2 (en) | Electroless nickel-gold plating method | |
JP2004332036A (en) | Electroless plating method | |
JPH03267393A (en) | Method for directly electroplating surface of electrical nonconductor | |
JP4842620B2 (en) | Method for manufacturing printed wiring board having high-density copper pattern | |
JP3325236B2 (en) | Electroless copper plating method | |
JP2004107737A (en) | Circuit board and wiring formation method therefor | |
JPH04365876A (en) | Catalyst liquid for copper base selecting electroless plating | |
KR20240097762A (en) | Catalyst application bath for electroless plating, method of producing catalytic nucleus-containing material to be electroless plated, method of producing material with electroless plating deposit, and material with electroless plating deposit |