[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000164588A - Substrate-heating method and device - Google Patents

Substrate-heating method and device

Info

Publication number
JP2000164588A
JP2000164588A JP10340405A JP34040598A JP2000164588A JP 2000164588 A JP2000164588 A JP 2000164588A JP 10340405 A JP10340405 A JP 10340405A JP 34040598 A JP34040598 A JP 34040598A JP 2000164588 A JP2000164588 A JP 2000164588A
Authority
JP
Japan
Prior art keywords
substrate
gap
heating
temperature
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10340405A
Other languages
Japanese (ja)
Inventor
Takeshi Murakami
武司 村上
Yukio Fukunaga
由紀夫 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10340405A priority Critical patent/JP2000164588A/en
Publication of JP2000164588A publication Critical patent/JP2000164588A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a substrate-heating method and device for beating a substrate so that a temperature distribution within the surface of the substrate becomes uniform, even if there is a temperature distribution within the surface in a substrate-support member for placing and supporting the substrate. SOLUTION: In a method for supporting a substrate and directly or indirectly heating it by a heating means, clearances 15a, 15b, 15c, 15d, and 15e are provided between a substrate-supporting member 12 for supporting a substrate W and the substrate W, the clearances 15a, 15b, 15c, 15d, and 15e are made larger at a region, where the surface temperature of the support member 12 is high and are made smaller at a region where the surface temperature of the support member 12 is low, for heating the substrate W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体ウ
エハ等の基板に化学気相成長(CVD)等の各種の処理
を行なう装置に使用して好適な基板加熱装置に関する。
The present invention relates to a substrate heating apparatus suitable for use in an apparatus for performing various processes such as chemical vapor deposition (CVD) on a substrate such as a semiconductor wafer.

【0002】[0002]

【従来の技術】近年、半導体メモリやデバイスの製造工
程で、半導体基板上に薄膜を形成する手段の一つとして
CVD(化学気相堆積)法が広く用いられている。図9
は、従来の一般的なCVD装置の構成を示すもので、こ
れは、密閉可能な成膜室1が備えられ、この成膜室1の
内部に基板加熱装置2が配置されている。成膜室1の上
部には、この内部に反応ガスを供給する反応ガス供給管
3が、側部には、反応後のガスを排気する排気管4がそ
れぞれ接続され、この排気管4に、成膜室1内の圧力を
調節する圧力調節手段としての流量調節弁5が介装され
ている。前記基板加熱装置2は、この例では、基板ヒー
タ6と該基板ヒータ6の上面に設置されたサセプタ(基
板支持部材)7とから構成されている。
2. Description of the Related Art In recent years, a CVD (chemical vapor deposition) method has been widely used as one of means for forming a thin film on a semiconductor substrate in a process of manufacturing a semiconductor memory or a device. FIG.
1 shows a configuration of a conventional general CVD apparatus, which is provided with a sealable film forming chamber 1, and a substrate heating device 2 is disposed inside the film forming chamber 1. A reaction gas supply pipe 3 for supplying a reaction gas to the inside of the film formation chamber 1 is connected to an upper portion thereof, and an exhaust pipe 4 for exhausting a gas after the reaction is connected to a side portion thereof. A flow control valve 5 as pressure control means for controlling the pressure in the film forming chamber 1 is provided. In this example, the substrate heating device 2 includes a substrate heater 6 and a susceptor (substrate support member) 7 installed on the upper surface of the substrate heater 6.

【0003】これにより、基板加熱装置2のサセプタ7
上に基板Wを載置支持し、基板Wの温度を一定の値に制
御しながら、成膜室1内の圧力を一定に保持しつつ所定
のガスを一定流量で成膜室1内に一定時間供給して、化
学気相成長により所定の膜厚と膜質を持った薄膜を基板
Wの表面に形成するようにしている。
Accordingly, the susceptor 7 of the substrate heating device 2
The substrate W is placed and supported thereon, and while controlling the temperature of the substrate W to a constant value, while maintaining the pressure in the film formation chamber 1 constant, a predetermined gas is fixed in the film formation chamber 1 at a constant flow rate. By supplying for a time, a thin film having a predetermined thickness and quality is formed on the surface of the substrate W by chemical vapor deposition.

【0004】なお、基板ヒータのみで基板加熱装置を構
成し、基板ヒータ表面の加熱板を基板支持部材として、
この加熱板の表面に基板Wを載置支持することも広く行
われている。
[0004] A substrate heating device is constituted only by a substrate heater, and a heating plate on the surface of the substrate heater is used as a substrate support member.
Mounting and supporting the substrate W on the surface of the heating plate is also widely performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな基板加熱装置では、基板ヒータ内に埋設した電熱線
の巻き方や熱の逃げの不均一さのため、例えば基板を7
00℃程度まで加熱した場合に、基板ヒータの表面、ひ
いては基板支持部材としてのサセプタの表面に10〜2
0℃程度の面内温度分布が生じることがある。そのた
め、基板もこれに対応した温度分布を持ってしまい、結
果として膜厚や膜質のばらつきが現われる。膜厚や膜質
のばらつきは、製造対象の半導体デバイスの品質低下や
歩留り低下をもたらす。
However, in such a substrate heating apparatus, since the heating wire embedded in the substrate heater and the unevenness of the heat release are not uniform, for example, the substrate heating device is not suitable for the heating.
When heated to about 00 ° C., the surface of the substrate heater, and thus the surface of the
An in-plane temperature distribution of about 0 ° C. may occur. Therefore, the substrate also has a temperature distribution corresponding to this, and as a result, variations in film thickness and film quality appear. Variations in film thickness and film quality result in lower quality and lower yield of the semiconductor device to be manufactured.

【0006】なお、基板ヒータと基板との間にサセプタ
が入ることにより、基板ヒータ表面の温度分布をサセプ
タで緩和させる効果が期待できるが、面内方向に十分に
均一な伝熱を行うためには厚さが不足しており、結果と
して、サセプタの基板載置面内にも基板ヒータ表面の温
度分布に対応した分布が生じる。
Although the susceptor can be expected to reduce the temperature distribution on the surface of the substrate heater by inserting the susceptor between the substrate heater and the substrate, the susceptor is required to perform sufficiently uniform heat transfer in the in-plane direction. Is insufficient in thickness, and as a result, a distribution corresponding to the temperature distribution on the surface of the substrate heater occurs in the substrate mounting surface of the susceptor.

【0007】本発明は上記事情に鑑みて為されたもの
で、基板を載置支持する基板支持部材に面内温度分布が
あっても、基板の面内温度分布がより均一となるように
加熱できる基板加熱方法及び装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and even if a substrate supporting member for mounting and supporting a substrate has an in-plane temperature distribution, the substrate is heated so that the in-plane temperature distribution of the substrate becomes more uniform. It is an object of the present invention to provide a method and apparatus for heating a substrate.

【0008】[0008]

【課題を解決するための手段】本発明の基板加熱方法
は、基板を支持し、かつ加熱手段により直接的または間
接的に基板を加熱する基板の加熱方法において、基板を
支持する基板支持部材と、前記基板との間に隙間を設
け、該支持部材の表面温度が高い領域は前記隙間を大き
くし、該支持部材の表面温度が低い領域は前記隙間を小
さくして、前記基板を加熱することを特徴とする。
A substrate heating method according to the present invention is a substrate heating method for supporting a substrate and heating the substrate directly or indirectly by a heating means. Providing a gap between the substrate and the substrate, heating the substrate by increasing the gap in a region where the surface temperature of the support member is high, and decreasing the gap in a region where the surface temperature of the support member is low. It is characterized by.

【0009】本発明の基板加熱装置は、基板を支持し、
かつ加熱手段により直接的または間接的に基板を加熱す
る基板加熱装置において、前記基板を支持する基板支持
部材の表面に該支持部材で支持した基板との間に隙間が
できるように凹陥部を形成し、この隙間の大きさは前記
基板支持部材の表面温度が高い領域では大きく、低い領
域では小さく設定されていることを特徴とする。
A substrate heating apparatus according to the present invention supports a substrate,
And a substrate heating device for directly or indirectly heating the substrate by a heating means, wherein a concave portion is formed on a surface of the substrate supporting member supporting the substrate so as to form a gap between the substrate and the substrate supported by the supporting member. The size of the gap is set to be large in a region where the surface temperature of the substrate support member is high and small in a region where the surface temperature is low.

【0010】ある隙間を隔てて向かい合う2つの平行面
間の伝熱には、大きく分けて輻射と伝導の2種類があ
る。輻射は、平板の寸法に対して隙間が十分小さい場合
には、隙間の寸法に独立で、平板の放射率と温度に依存
する。伝導は、圧力が小さく気体の平均自由行程が隙間
より大きい場合(自由分子熱伝導)には隙間依存性はな
いが、そうでない場合には伝熱量は隙間の大きさに反比
例する。即ち、1Torrでは隙間が3mmより小さく
なると伝導による伝熱の影響が大きくなり伝熱量は隙間
の大きさに反比例するが、0.5mm以下では自由分子
熱伝導の状態となり、隙間依存性がなくなる。また、1
0Torrでは自由分子熱伝導に移行する隙間は、0.
05mm程度である。例えば、1〜10Torr程度の
圧力範囲では、2つの平行面間の隙間を0.05または
0.5〜3mmの範囲で変化させることで、前記隙間の
量により伝熱量を変化させることができる。そこで、基
板を支持する基板支持部材と基板との隙間の大きさを基
板支持部材の表面温度が高い領域では大きく、低い領域
では小さく設定することで、基板への伝熱量を補正する
ことが可能になり、基板の面内温度分布がより均一にな
る。
The heat transfer between two parallel surfaces facing each other with a certain gap therebetween can be roughly classified into two types, radiation and conduction. Radiation depends on the emissivity and temperature of the plate, independent of the size of the gap, if the gap is sufficiently small relative to the dimensions of the plate. Conduction has no gap dependence when the pressure is small and the mean free path of the gas is larger than the gap (free molecular heat conduction), but otherwise the amount of heat transfer is inversely proportional to the size of the gap. In other words, at 1 Torr, if the gap is smaller than 3 mm, the influence of heat transfer due to conduction increases, and the amount of heat transfer is inversely proportional to the size of the gap. Also, 1
At 0 Torr, the gap that shifts to free molecular heat conduction is 0.
It is about 05 mm. For example, in a pressure range of about 1 to 10 Torr, by changing the gap between the two parallel surfaces in a range of 0.05 or 0.5 to 3 mm, the amount of heat transfer can be changed by the amount of the gap. Therefore, the amount of heat transfer to the substrate can be corrected by setting the size of the gap between the substrate supporting member and the substrate that supports the substrate to be large in a region where the surface temperature of the substrate supporting member is high and small in a region where the surface temperature of the substrate supporting member is low. And the in-plane temperature distribution of the substrate becomes more uniform.

【0011】更に、前記隙間の大きさは、0.2〜2m
mの範囲に設定されていることが好ましい。これによ
り、伝熱量が小さくなって熱効率が大幅に低下してしま
うことを防止し、しかも、基板諸元の誤差の影響を受け
ないようにすることができる。
Further, the size of the gap is 0.2 to 2 m.
m is preferably set in the range of m. As a result, it is possible to prevent the heat transfer amount from being reduced and the thermal efficiency from being greatly reduced, and to prevent the influence of the error of the substrate specifications.

【0012】本発明の成膜装置は、原料ガスを生成する
気化器と、前記原料ガスを内部に導入して基板に成膜を
行う成膜室と、前記成膜室内に配置された請求項2に記
載の基板加熱装置とを有することを特徴とする。
A film forming apparatus according to the present invention is arranged in a vaporizer for generating a raw material gas, a film forming chamber for introducing the raw material gas into the inside to form a film on a substrate, and disposed in the film forming chamber. And a substrate heating device according to item 2.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1及び図2は、本発明の第1の
実施の形態の基板加熱装置を示すもので、この基板加熱
装置10は、基板ヒータ11と、例えばSiC製のサセ
プタ(基板支持部材)12とから構成され、基板ヒータ
11の上にサセプタ12を載置し、この上に基板Wを載
置して、該基板Wを加熱するようになっている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a substrate heating apparatus according to a first embodiment of the present invention. This substrate heating apparatus 10 includes a substrate heater 11 and a susceptor (substrate support member) 12 made of, for example, SiC. The susceptor 12 is placed on the substrate heater 11, and the substrate W is placed on the susceptor 12, and the substrate W is heated.

【0014】前記サセプタ12の表面には、基板Wの形
状に沿った円形の一段下がった基板載置面Pを形成する
支持凸部13が円周方向に沿った3箇所に設けられてい
る。更に、この中心部の直径Dの領域には、第1の
凹陥部14aが形成され、この凹陥部14aと前記基板
載置面Pとの間に、大きさ(深さ)tが、例えば1m
mに設定された第1の隙間15aが生じ、この第1の凹
陥部14aの周囲の基板Wの直径と同じ直径Dまで延
びる領域には、第2の凹陥部14bが形成され、この凹
陥部14bと前記基板載置面Pとの間に、大きさ(深
さ)tが、例えば0.7mmに設定された第2の隙間
15bが生じるようになっている。
On the surface of the susceptor 12, support projections 13 are formed at three locations along the circumferential direction, forming a substrate mounting surface P having a circular shape and one step lower than the shape of the substrate W. Furthermore, in the region of the diameter D 1 of the the central portion, the first recess 14a is formed, between the recess 14a and the substrate mounting surface P, the size (depth) t 1 is, For example, 1m
the first gap 15a which is set to m occurs, this in a region extending to the same diameter D 2 and the diameter of the substrate W around the first recess 14a, second recess 14b is formed, the recess between the parts 14b and the substrate mounting surface P, the size (depth) t 2 is the second gap 15b is made to occur, which is set to, for example, 0.7 mm.

【0015】この例は、基板ヒータ11の表面温度、ひ
いてはサセプタ12の表面温度が、中心部で高く、周縁
部で低いものに使用して最適なもので、このように、サ
セプタ12の表面温度が高い領域(中心部)では、該サ
セプタ12と基板Wとの間に大きな隙間15aを生じさ
せ、サセプタ12の表面温度が低い領域(周縁部)で
は、該サセプタ12と基板Wとの間に小さな隙間15b
を生じさせることで、基板Wへの伝熱量を補正して、基
板全面にわたって伝熱量が均一になり、基板Wの面内温
度分布がより均一になる。
In this example, the surface temperature of the substrate heater 11 and, consequently, the surface temperature of the susceptor 12 are high when the surface temperature is high at the center and low at the peripheral portion. In the region (center portion) where the susceptor 12 is high, a large gap 15a is generated between the susceptor 12 and the substrate W. In the region where the surface temperature of the susceptor 12 is low (the peripheral portion), the space between the susceptor 12 and the substrate W is formed. Small gap 15b
Is generated, the amount of heat transfer to the substrate W is corrected, the amount of heat transfer becomes uniform over the entire surface of the substrate W, and the in-plane temperature distribution of the substrate W becomes more uniform.

【0016】前記隙間15a,15bの大きさは、例え
ば以下のようにして決定される。すなわち、図3は、熱
板と基板の隙間および圧力を変化させた時の熱板と基板
間の伝熱量の計算例を表わす。0.1Torrの圧力下
では、熱板と基板間の伝熱は輻射が主となり、隙間の変
化によって伝熱量は変化しない。1Torrの圧力下に
なると、隙間が3mm(図中A)より小さくなると、伝
導による伝熱の影響が大きくなり、隙間が小さくなる程
伝熱量が大きくなるが、0.5mm(図中B)より小さ
くなると伝導の機構が自由分子熱伝導に変化し、隙間に
よらず一定の値となる。10Torrの圧力下では、隙
間の小さな領域で伝熱量が顕著に変化し、自由分子熱伝
導に移行する隙間は、0.05mm(図中C)程度にな
る。
The size of the gaps 15a and 15b is determined, for example, as follows. That is, FIG. 3 shows a calculation example of the heat transfer amount between the hot plate and the substrate when the gap between the hot plate and the substrate and the pressure are changed. At a pressure of 0.1 Torr, heat transfer between the hot plate and the substrate is mainly radiation, and the amount of heat transfer does not change due to a change in the gap. At a pressure of 1 Torr, when the gap becomes smaller than 3 mm (A in the figure), the influence of heat transfer by conduction increases. As the gap becomes smaller, the amount of heat transfer increases, but from 0.5 mm (B in the figure). When it becomes smaller, the conduction mechanism changes to free molecular heat conduction, and the value becomes constant regardless of the gap. Under a pressure of 10 Torr, the amount of heat transfer changes remarkably in a small gap area, and the gap that shifts to free molecular heat conduction is about 0.05 mm (C in the figure).

【0017】例えば、高誘電体や強誘電体を成膜するC
VDで用いる圧力範囲は、1〜10Torrが一般的で
ある。したがって、支持部材である熱板と基板間の隙間
を0.05または0.5〜3mmの範囲で変化させるこ
とにより、熱板と基板間の伝熱量を変化させることがで
きる。
For example, C for forming a high dielectric or ferroelectric
The pressure range used for VD is generally 1 to 10 Torr. Therefore, the amount of heat transfer between the hot plate and the substrate can be changed by changing the gap between the hot plate as the support member and the substrate in the range of 0.05 or 0.5 to 3 mm.

【0018】実際は、雰囲気ガスの種類、熱板や基板の
放射率によって有効な隙間の変化範囲が変わる。また、
装置の熱効率を高めるには、熱板と基板間の隙間を小さ
めにして、伝熱量をなるべく大きくした方が有利であ
る。そのため熱板と基板間の隙間の変化範囲の上限は2
mm程度が実用的である。
In practice, the effective change range of the gap varies depending on the type of the atmospheric gas and the emissivity of the hot plate or the substrate. Also,
To increase the thermal efficiency of the apparatus, it is advantageous to reduce the gap between the hot plate and the substrate and increase the amount of heat transfer as much as possible. Therefore, the upper limit of the change range of the gap between the hot plate and the substrate is 2
mm is practical.

【0019】一方、変化範囲の下限は、基板(ウエハ)
諸元の誤差の影響を受けない最小値を選択することが望
ましい。例えば、SEMI M1.9−91に於て20
0mmウエハは湾曲65μm(最大)、反り75μm
(最大)と規定されている。さらに、本処理の前の様々
なウエハ処理による残留応力によって、元のウエハ以上
に反っている可能性がある。ウエハだけで0.1mm程
度の面内隙間分布を持つ可能性があるので、サセプタの
基板載置面では、その影響を受けない程度の隙間を調整
して形成することが好ましい。そこで、変化範囲の下限
は、0.2mm程度が適当である。
On the other hand, the lower limit of the change range is the substrate (wafer)
It is desirable to select the minimum value that is not affected by the error of the specifications. For example, in SEMI M1.9-91, 20
0 mm wafer has a curvature of 65 μm (maximum) and a warp of 75 μm
(Maximum). Furthermore, the wafer may be warped more than the original wafer due to residual stress due to various wafer processes before the present process. Since there is a possibility that the wafer alone has an in-plane gap distribution of about 0.1 mm, it is preferable to form a gap on the substrate mounting surface of the susceptor such that the gap is not affected by the influence. Therefore, the lower limit of the change range is appropriately about 0.2 mm.

【0020】これにより、サセプタ12と基板Wとの隙
間15a,15bを0.2mm〜2mmの範囲で、かつ
その隙間15a,15bをサセプタ12の表面温度の高
い領域は大きく、温度の低い領域は小さくすることによ
り、サセプタ12から上への伝熱量を均一とすることが
でき、基板W面内の温度分布を均一とすることができ
る。そのため、膜厚や膜質の面内均一性が向上する。
Accordingly, the gaps 15a and 15b between the susceptor 12 and the substrate W are in the range of 0.2 mm to 2 mm, and the gaps 15a and 15b are large in a region where the surface temperature of the susceptor 12 is high and large in a region where the temperature is low. By reducing the size, the amount of heat transferred from the susceptor 12 to the upper side can be made uniform, and the temperature distribution in the plane of the substrate W can be made uniform. Therefore, the in-plane uniformity of the film thickness and film quality is improved.

【0021】図4及び図5は、本発明の第2の実施の形
態の基板加熱装置を示すもので、この例は、サセプタ1
2の表面の中心部の直径Dの領域に第1の凹陥部14
cを形成して、この凹陥部14cと支持凸部13で規定
された基板載置面Pとの間に、例えば大きさ(深さ)t
が0.5mmに設定された第1の隙間15cを生じさ
せ、この第1の凹陥部14cの周囲の基板Wの直径と同
じ直径Dまで延びる領域に第2の凹陥部14dを形成
して、この凹陥部14dと前記基板載置面Pとの間に、
例えば大きさ(深さ)tが1mmに設定された第2の
隙間15dを生じさせ、更にこの一方に偏心した領域に
第3の凹陥部14eを形成して、この凹陥部14eと前
記基板載置面Pとの間に、例えば大きさ(深さ)t
0.7mmに設定された第3の隙間15eを生じさせる
ようにしたものである。
FIGS. 4 and 5 show a substrate heating apparatus according to a second embodiment of the present invention.
The first recess 14 in the region of the diameter D 3 of the central portion of the second surface
c, and a size (depth) t between the concave portion 14c and the substrate mounting surface P defined by the support convex portion 13, for example.
3 causes the first gap 15c which is set to 0.5 mm, the second recess 14d is formed in the region extending up to the same diameter D 4 and the diameter of the substrate W around the first recess 14c Between the recess 14d and the substrate mounting surface P,
For example the size (depth) t 4 gives rise to a second gap 15d set in 1 mm, to form a third recess 14e further eccentric to the one region, the substrate and the concave portion 14e between the mounting surface P, for example the size (depth) t 5 is obtained by the so produce a third gap 15e set to 0.7 mm.

【0022】この例は、基板ヒータ11の表面、ひいて
はサセプタ12の表面温度が、中心部で低く、周縁部で
は高いが、一部偏心した位置に温度が低い領域があるよ
うなものに使用して最適なもので、このように構成する
ことで、基板Wへの伝熱量を均一に補正することがで
き、基板Wの面内温度分布をより均一にすることができ
る。
In this example, the surface temperature of the substrate heater 11 and, consequently, the surface temperature of the susceptor 12 are low at the center and high at the peripheral edge, but there is a region where the temperature is low at a position partially eccentric. With this configuration, the amount of heat transfer to the substrate W can be uniformly corrected, and the in-plane temperature distribution of the substrate W can be made more uniform.

【0023】図6は、本発明に係る基板加熱装置を用い
た成膜装置の構成を示す図である。この成膜装置は、例
えば、チタン酸バリウム/ストロンチウム等の高誘電体
又は強誘電体薄膜を形成するためのものであり、例え
ば、原料を気化する気化器40の下流側に原料ガス配管
41を介して密閉可能な成膜室(チャンバ)42が設け
られ、さらにその下流側に真空ポンプ43を備えた排気
管44が接続されている。この排気管44に成膜室42
内の圧力調節手段としての流量調節弁45が設けられて
いる。成膜室42には、酸素等の酸化ガスを供給する酸
化ガス配管46が接続され、更に、成膜室の内部には、
基板ヒータ11とサセプタ12とかならる基板加熱装置
10が配置され、これに対向してノズル孔47より原料
ガスや反応ガスを噴射するガス供給ヘッド48が設けら
れている。
FIG. 6 is a diagram showing a configuration of a film forming apparatus using the substrate heating apparatus according to the present invention. This film forming apparatus is for forming a high-dielectric or ferroelectric thin film of, for example, barium titanate / strontium. For example, a raw material gas pipe 41 is provided downstream of a vaporizer 40 for vaporizing a raw material. A film-forming chamber (chamber) 42 that can be hermetically sealed is provided, and an exhaust pipe 44 provided with a vacuum pump 43 is connected downstream thereof. This exhaust pipe 44 is connected to the film forming chamber 42.
A flow control valve 45 is provided as pressure control means in the inside. An oxidizing gas pipe 46 for supplying an oxidizing gas such as oxygen is connected to the film forming chamber 42. Further, inside the film forming chamber,
A substrate heating device 10 serving as a substrate heater 11 and a susceptor 12 is disposed, and a gas supply head 48 for injecting a source gas or a reaction gas from a nozzle hole 47 is provided to face the substrate heating device 10.

【0024】このような構成の成膜装置により、基板W
をサセプタ12上に載置し、基板Wを所定温度に維持し
つつガス供給ヘッド48のノズル穴47から原料ガスと
酸化ガスとの混合ガス(反応ガス)を基板Wに向けて噴
射して、基板Wの表面に薄膜を成長させる。
With the film forming apparatus having such a configuration, the substrate W
Is placed on the susceptor 12, and a mixed gas (reactive gas) of a source gas and an oxidizing gas is injected toward the substrate W from the nozzle hole 47 of the gas supply head 48 while maintaining the substrate W at a predetermined temperature. A thin film is grown on the surface of the substrate W.

【0025】この時、基板ヒータ11、ひいてはサセプ
タ12の表面に温度分布が生じていても、サセプタ12
と基板Wとの間に設けられた大きさの異なる隙間によっ
て、サセプタ12から基板Wへの伝熱量を均一にするこ
とができ、基板W面内の温度分布を均一にすることがで
きる。そのため、膜厚や膜質の面内均一性を向上させる
ことができる。
At this time, even if a temperature distribution occurs on the surface of the substrate heater 11 and thus the surface of the susceptor 12,
Due to the gaps of different sizes provided between the susceptor 12 and the substrate W, the amount of heat transfer from the susceptor 12 to the substrate W can be made uniform, and the temperature distribution in the surface of the substrate W can be made uniform. Therefore, the in-plane uniformity of the film thickness and film quality can be improved.

【0026】なお、前記実施の形態にあっては、基板支
持部材として、サセプタを使用し、このサセプタと基板
との間に大きさの異なる隙間を生じさせるようにした例
を示しているが、基板ヒータのみで基板加熱装置を構成
し、加熱板を支持部材として、この加熱板と基板との間
に大きさの異なる隙間を生じさせるようにしても良い。
In the above-described embodiment, an example is shown in which a susceptor is used as a substrate supporting member and gaps having different sizes are generated between the susceptor and the substrate. The substrate heating device may be configured only by the substrate heater, and the heating plate may be used as a supporting member to generate gaps having different sizes between the heating plate and the substrate.

【0027】[0027]

【実施例】(実施例1)図1及び図2に示すサセプタに
おいて、直径Dを140mmに、その隙間(t
を1mmに、直径Dを200mmに、その隙間
(t)を0.7mmに設定したもの(実施例1)と、
同図における基板載置面Pを平坦としたもの(従来例)
とを作成した。そして、これらのサセプタ上に熱電対付
ウエハ(温度測定用基板)を載せて、基板ヒータの設定
温度を700℃にした時の基板面内温度分布を測定した
結果を図7に示す。この時のチャンバ内圧力は1Tor
rである。従来例にあっては、図7(b)に示すよう
に、中心の温度が高く外周の温度が低い分布を持ち、面
内温度の最大値と最小値の差は約12℃であった。これ
に対して、実施例1にあっては、図7(a)に示すよう
に、全体的に温度は10℃強低くなったが、比較的平坦
な温度分布になり、面内温度の最大値と最小値の差は約
9℃になった。
EXAMPLES (Example 1) in the susceptor shown in FIG. 1 and FIG. 2, the diameter D 1 on 140 mm, the gap (t 1)
Is set to 1 mm, the diameter D 2 is set to 200 mm, and the gap (t 2 ) is set to 0.7 mm (Example 1).
In the figure, the substrate mounting surface P is flattened (conventional example)
And created. FIG. 7 shows the result of measuring the temperature distribution in the substrate surface when the wafer with the thermocouple (the substrate for temperature measurement) was placed on these susceptors and the set temperature of the substrate heater was set to 700 ° C. The pressure in the chamber at this time is 1 Torr
r. In the conventional example, as shown in FIG. 7 (b), the distribution was such that the temperature at the center was high and the temperature at the outer periphery was low, and the difference between the maximum and minimum values of the in-plane temperature was about 12 ° C. On the other hand, in the first embodiment, as shown in FIG. 7A, the overall temperature was slightly lower than 10 ° C., but the temperature became relatively flat and the maximum in-plane temperature was increased. The difference between the value and the minimum was about 9 ° C.

【0028】(実施例2)図4及び図5に示すサセプタ
において、第1の領域14cの隙間を0.5mmに、第
2の領域14dの隙間を1mmに、第3の領域14eの
隙間を0.7mmにしたもの(実施例2)と、同図にお
ける基板載置面Pを平坦としたもの(従来例)とを作成
した。そして、これらのサセプタ上に熱電対付ウエハ
(温度測定用基板)を載せて、基板ヒータの設定温度を
700℃にした時の基板面内温度分布を測定した結果を
図8に示す。この時のチャンバ内圧力は1Torrであ
る。なお、同図において、図4及び図5に示す凹陥部1
4c及び14eに相当する領域は、斜線で示している。
従来例にあっては、図8(b)に示すように、中心およ
びオリエンテーションフラットを時計の6時方向に置い
て12時〜3時方向の外周付近に相対的に温度の低い領
域を持ち、面内温度の最大値と最小値の差は約10℃で
あった。これに対して、実施例2にあっては、図8
(a)に示すように、全体的に温度は10℃強低くなっ
たが、比較的平坦な温度分布になり、面内温度の最大値
と最小値の差は約2℃になった。
(Embodiment 2) In the susceptor shown in FIGS. 4 and 5, the gap of the first area 14c is set to 0.5 mm, the gap of the second area 14d is set to 1 mm, and the gap of the third area 14e is set to 1 mm. One having a thickness of 0.7 mm (Example 2) and one having a flat substrate mounting surface P in FIG. FIG. 8 shows a result of measuring a temperature distribution in a substrate surface when a wafer with a thermocouple (a substrate for temperature measurement) was placed on these susceptors and the set temperature of the substrate heater was set to 700 ° C. The pressure in the chamber at this time is 1 Torr. Note that, in the same figure, the concave portion 1 shown in FIGS.
Areas corresponding to 4c and 14e are indicated by oblique lines.
In the conventional example, as shown in FIG. 8 (b), the center and the orientation flat are placed in the 6 o'clock direction of the watch, and there is a relatively low temperature region near the outer periphery in the 12:00 to 3 o'clock direction. The difference between the maximum value and the minimum value of the in-plane temperature was about 10 ° C. On the other hand, in the second embodiment, FIG.
As shown in (a), although the temperature as a whole was slightly lower than 10 ° C., the temperature distribution was relatively flat, and the difference between the maximum value and the minimum value of the in-plane temperature was about 2 ° C.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
基板を載置支持する基板支持部材と基板との隙間の大き
さを基板支持部材の表面温度が高い領域では大きく、低
い領域では小さく設定することで、基板への伝熱量を補
正して均一にすることができ、これにより基板の面内温
度分布をより均一にすることができる。従って、例えば
成膜装置に使用することで、膜厚や膜質の面内均一性を
著しく向上させることができる。
As described above, according to the present invention,
By setting the size of the gap between the substrate supporting member for mounting and supporting the substrate and the substrate to be large in the region where the surface temperature of the substrate supporting member is high and small in the region where the surface temperature of the substrate supporting member is low, the amount of heat transfer to the substrate is corrected and uniform. Therefore, the in-plane temperature distribution of the substrate can be made more uniform. Therefore, the in-plane uniformity of the film thickness and the film quality can be remarkably improved by using, for example, a film forming apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の基板加熱装置の断
面図である。
FIG. 1 is a sectional view of a substrate heating apparatus according to a first embodiment of the present invention.

【図2】図1の基板加熱装置に使用されたサセプタの平
面図である。
FIG. 2 is a plan view of a susceptor used in the substrate heating device of FIG.

【図3】熱板と基板の隙間および圧力を変化させた時の
熱板と基板間の伝熱量の計算例示すグラフである。
FIG. 3 is a graph showing a calculation example of a heat transfer amount between the hot plate and the substrate when the gap between the hot plate and the substrate and the pressure are changed.

【図4】本発明の第2の実施の形態の基板加熱装置の断
面図(図5のA−A線断面図)である。
FIG. 4 is a cross-sectional view (a cross-sectional view along line AA in FIG. 5) of the substrate heating apparatus according to the second embodiment of the present invention.

【図5】図4の基板加熱装置に使用されたサセプタの平
面図である。
FIG. 5 is a plan view of a susceptor used in the substrate heating device of FIG.

【図6】図1に示す基板加熱装置を使用した成膜装置の
概要を示す全体構成図である。
6 is an overall configuration diagram showing an outline of a film forming apparatus using the substrate heating apparatus shown in FIG.

【図7】図7(a)は、実施例1における温度分布を示
す図で、図7(b)は、従来例における温度分布を示す
図である。
FIG. 7A is a diagram illustrating a temperature distribution in the first embodiment, and FIG. 7B is a diagram illustrating a temperature distribution in a conventional example.

【図8】図8(a)は、実施例2における温度分布を示
す図で、図8(b)は、従来例における温度分布を示す
図である。
FIG. 8 (a) is a diagram showing a temperature distribution in Example 2, and FIG. 8 (b) is a diagram showing a temperature distribution in a conventional example.

【図9】従来のCVD装置を示す断面図である。FIG. 9 is a sectional view showing a conventional CVD apparatus.

【符号の説明】[Explanation of symbols]

10 基板加熱装置 11 基板ヒータ 12 サセプタ(基板支持部材) 14a,14b,14c,14d,14e 凹陥部 15a,15b,15c,15d,15e 隙間 40 気化器 42 成膜室 48 ガス供給ヘッド DESCRIPTION OF SYMBOLS 10 Substrate heating apparatus 11 Substrate heater 12 Susceptor (substrate support member) 14a, 14b, 14c, 14d, 14e Depressed part 15a, 15b, 15c, 15d, 15e Gap 40 Vaporizer 42 Film formation chamber 48 Gas supply head

フロントページの続き Fターム(参考) 4K030 AA14 BA42 EA01 FA10 GA02 JA03 KA23 KA46 LA01 5F045 AB40 AC11 AD11 AE21 AE23 BB02 DP03 EM02 EM08 EM09Continued on front page F term (reference) 4K030 AA14 BA42 EA01 FA10 GA02 JA03 KA23 KA46 LA01 5F045 AB40 AC11 AD11 AE21 AE23 BB02 DP03 EM02 EM08 EM09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板を支持し、かつ加熱手段により直接
的または間接的に基板を加熱する基板の加熱方法におい
て、 基板を支持する基板支持部材と、前記基板との間に隙間
を設け、該支持部材の表面温度が高い領域は前記隙間を
大きくし、該支持部材の表面温度が低い領域は前記隙間
を小さくして、前記基板を加熱することを特徴とする基
板加熱方法。
1. A substrate heating method for supporting a substrate and directly or indirectly heating the substrate by a heating means, wherein a gap is provided between the substrate supporting member for supporting the substrate and the substrate. A substrate heating method comprising: heating the substrate by increasing the gap in a region where the surface temperature of the support member is high, and decreasing the gap in a region where the surface temperature of the support member is low.
【請求項2】 基板を支持し、かつ加熱手段により直接
的または間接的に基板を加熱する基板加熱装置におい
て、 前記基板を支持する基板支持部材の表面に該支持部材で
支持した基板との間に隙間ができるように凹陥部を形成
し、この隙間の大きさは前記基板支持部材の表面温度が
高い領域では大きく、低い領域では小さく設定されてい
ることを特徴とする基板加熱装置。
2. A substrate heating apparatus which supports a substrate and directly or indirectly heats the substrate by a heating means, comprising: a substrate supporting member for supporting the substrate; A substrate heating apparatus, wherein a concave portion is formed so as to form a gap, and the size of the gap is set large in a region where the surface temperature of the substrate supporting member is high and small in a region where the surface temperature of the substrate supporting member is low.
【請求項3】 前記隙間の大きさは0.2〜2mmの範
囲に設定されていることを特徴とする請求項1に記載の
基板加熱方法。
3. The substrate heating method according to claim 1, wherein the size of the gap is set in a range of 0.2 to 2 mm.
【請求項4】 原料ガスを生成する気化器と、 前記原料ガスを内部に導入して基板に成膜を行う成膜室
と、 前記成膜室内に配置された請求項2に記載の基板加熱装
置とを有することを特徴とする成膜装置。
4. The substrate heating device according to claim 2, wherein a vaporizer for generating a raw material gas, a film forming chamber for introducing the raw material gas into the inside to form a film on a substrate, and the substrate heating device arranged in the film forming chamber. And a film forming apparatus.
JP10340405A 1998-11-30 1998-11-30 Substrate-heating method and device Withdrawn JP2000164588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340405A JP2000164588A (en) 1998-11-30 1998-11-30 Substrate-heating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340405A JP2000164588A (en) 1998-11-30 1998-11-30 Substrate-heating method and device

Publications (1)

Publication Number Publication Date
JP2000164588A true JP2000164588A (en) 2000-06-16

Family

ID=18336643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340405A Withdrawn JP2000164588A (en) 1998-11-30 1998-11-30 Substrate-heating method and device

Country Status (1)

Country Link
JP (1) JP2000164588A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086890A (en) * 2001-09-11 2003-03-20 Oki Electric Ind Co Ltd Method of manufacturing semiconductor light emitting element
WO2007018157A1 (en) * 2005-08-05 2007-02-15 Tokyo Electron Limited Substrate processing apparatus and substrate stage used therein
JP2007242709A (en) * 2006-03-06 2007-09-20 Shimadzu Corp Heating arrangement of vacuum apparatus
JP2009270143A (en) * 2008-05-02 2009-11-19 Nuflare Technology Inc Susceptor, semiconductor manufacturing apparatus, and semiconductor method for manufacturing
JP2009275255A (en) * 2008-05-14 2009-11-26 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2010245396A (en) * 2009-04-08 2010-10-28 Sumco Corp Manufacturing method and laminating apparatus for soi wafer
JP2012529173A (en) * 2009-06-01 2012-11-15 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate support unit and substrate processing apparatus including the same
JP2013048262A (en) * 2012-10-05 2013-03-07 Nuflare Technology Inc Susceptor, semiconductor manufacturing device, and semiconductor manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086890A (en) * 2001-09-11 2003-03-20 Oki Electric Ind Co Ltd Method of manufacturing semiconductor light emitting element
WO2007018157A1 (en) * 2005-08-05 2007-02-15 Tokyo Electron Limited Substrate processing apparatus and substrate stage used therein
JP2007242709A (en) * 2006-03-06 2007-09-20 Shimadzu Corp Heating arrangement of vacuum apparatus
JP2009270143A (en) * 2008-05-02 2009-11-19 Nuflare Technology Inc Susceptor, semiconductor manufacturing apparatus, and semiconductor method for manufacturing
US8999063B2 (en) 2008-05-02 2015-04-07 Nuflare Technology, Inc. Susceptor, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP2009275255A (en) * 2008-05-14 2009-11-26 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2010245396A (en) * 2009-04-08 2010-10-28 Sumco Corp Manufacturing method and laminating apparatus for soi wafer
JP2012529173A (en) * 2009-06-01 2012-11-15 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate support unit and substrate processing apparatus including the same
JP2013048262A (en) * 2012-10-05 2013-03-07 Nuflare Technology Inc Susceptor, semiconductor manufacturing device, and semiconductor manufacturing method

Similar Documents

Publication Publication Date Title
KR100861564B1 (en) Semiconductor substrate-supporting apparatus
JP3090339B2 (en) Vapor growth apparatus and method
US7700376B2 (en) Edge temperature compensation in thermal processing particularly useful for SOI wafers
WO1998053484A1 (en) Processing apparatus
US20100043709A1 (en) Chemical vapor deposition apparatus for equalizing heating temperature
JP2000164588A (en) Substrate-heating method and device
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JP2002327274A (en) Film forming apparatus
JP2004052098A (en) Substrate treatment apparatus and susceptor used for it
JP3764689B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JPH0878338A (en) Semiconductor manufacturing apparatus
JPS6053751B2 (en) plasma processing equipment
KR20070013364A (en) Heater module of chemical vapor deposition apparatus
JP3247581B2 (en) Gas supply device for semiconductor manufacturing apparatus and its supply method
JP2000260720A (en) Apparatus for manufacturing semiconductor
JPH0653139A (en) Susceptor
JPH0383894A (en) Gaseous phase growth device
JPH1041235A (en) Manufacturing equipment of semiconductor device
JPH0982695A (en) Semiconductor manufacturing equipment and manufacture of semiconductor device
JPH05209278A (en) Plasma vapor growth device
JPH029446B2 (en)
JPH04320026A (en) Wafer heating soaking plate
JPH08188876A (en) Semiconductor-producing device and semiconductor device-producing method
KR20230007939A (en) Method of processing substrate using heater temperature control
JPH04320031A (en) Wafer heating soaking plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040330