[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000149925A - Positive active material for lithium secondary battery, its manufacture, and its use - Google Patents

Positive active material for lithium secondary battery, its manufacture, and its use

Info

Publication number
JP2000149925A
JP2000149925A JP10323322A JP32332298A JP2000149925A JP 2000149925 A JP2000149925 A JP 2000149925A JP 10323322 A JP10323322 A JP 10323322A JP 32332298 A JP32332298 A JP 32332298A JP 2000149925 A JP2000149925 A JP 2000149925A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lithium
secondary battery
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10323322A
Other languages
Japanese (ja)
Other versions
JP2974213B1 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Akira Ueki
明 植木
Kazuhiro Miyoshi
和弘 三好
Tetsuo Yamada
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP10323322A priority Critical patent/JP2974213B1/en
Application granted granted Critical
Publication of JP2974213B1 publication Critical patent/JP2974213B1/en
Publication of JP2000149925A publication Critical patent/JP2000149925A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium manganate base positive active material with high cycle characteristics and long storage characteristics even under high temperature and its use. SOLUTION: This positive active material for a lithium secondary battery contains lithium manganate of cubic system spinel structure as the main component, and has a concentration gradient layer in which the concentration of oxygen atom-substituted fluorine gradually decreases from the surface layer toward the inside of particles of the positive active material, and depth until the difference of fluorine concentration between the surface and the inside of the particle decreases to 10% of the difference between the fluorine concentration on the surface layer side interface and that of the inside of the particle is 0.5-80 nm from the surface layer side interface, atomic ratio F/Mn of the total content of fluorine to the total content of manganese in the positive active material is 0.002-0.05, and its lattice constant is 0.82405 nm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
適した正極材料及びその製造方法並びにその用途に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode material suitable for a lithium secondary battery, a method for producing the same, and a use thereof.

【0002】[0002]

【従来の技術】近年、ノート型パーソナルコンピュータ
ー、携帯電話等ポータブル機器の性能の進歩は著しく、
小型軽量化、高性能化が促進され、それに伴い、これら
機器の電源として搭載される電池についても、小型軽量
で高性能の充放電サイクル劣化の少ない二次電池が必要
とされ、リチウムイオン二次電池が実用化された。ま
た、環境問題が深刻化する中、電気自動車用の二次電池
や夜間の余剰電力の平均化使用のための電力貯蔵用の二
次電池としてリチウムイオン二次電池を使用する研究が
行われている。正極材料に関しては、現在市販のリチウ
ムイオン二次電池の正極材料として用いられているLi
CoO2は高価なコバルトを原料に用いるため、製造コ
ストを下げるため安価なニッケルやマンガンを原料とす
るリチウム含有遷移金属酸化物であるLiNiO2やL
iMn24が注目され、その研究が活発に進められてい
る。
2. Description of the Related Art In recent years, the performance of portable devices such as notebook personal computers and mobile phones has been remarkably advanced.
With the promotion of miniaturization, lightening and high performance, batteries used as power supplies for these devices also need to be small, lightweight, and high performance secondary batteries with little deterioration in charge / discharge cycles. The battery has been put to practical use. In addition, as environmental problems become more serious, research is being conducted on the use of lithium-ion secondary batteries as secondary batteries for electric vehicles and as secondary batteries for storing power for averaging excess power at night. I have. Regarding the positive electrode material, Li which is currently used as a positive electrode material of a commercially available lithium ion secondary battery
Since CoO 2 uses expensive cobalt as a raw material, LiNiO 2 or L, which is a lithium-containing transition metal oxide made from inexpensive nickel or manganese as a raw material in order to reduce manufacturing costs, is used.
Attention has been paid to iMn 2 O 4 , and its research is being actively promoted.

【0003】しかしながら、従来のリチウム含有遷移金
属酸化物を正極材料として用いるリチウム二次電池は、
充放電の繰り返しによる容量減少や保存特性が50℃程
度以上の高温で顕著に悪くなるという問題がある。この
原因としては、正極と負極と電解液の界面における電解
液の分解と被膜の形成、正極材料からの金属元素の溶出
などが考えられている(特にスピネル型構造を有するマ
ンガン酸リチウムにおいてはこの現象が顕著である)。
正極から金属元素が溶出すると正極材料内の構造が変化
したり、正極材料と導電剤との接触が損なわれたりして
容量が低下すると考えられている。この様な高温での二
次電池としての諸特性の低下は、高熱を発するノート型
パーソナルコンピューターや炎天下にさらされる自動車
で使用する場合に改善が必須であるといえる。
However, a conventional lithium secondary battery using a lithium-containing transition metal oxide as a positive electrode material is:
There is a problem that the capacity is reduced due to repetition of charge and discharge and the storage characteristics are significantly deteriorated at a high temperature of about 50 ° C. or higher. This is considered to be caused by decomposition of the electrolytic solution and formation of a coating film at the interface between the positive electrode, the negative electrode and the electrolytic solution, and elution of a metal element from the positive electrode material (especially in lithium manganate having a spinel structure). The phenomenon is remarkable).
It is considered that when the metal element elutes from the positive electrode, the structure in the positive electrode material changes, or the contact between the positive electrode material and the conductive agent is damaged, and the capacity decreases. It can be said that such a decrease in the characteristics of the secondary battery at a high temperature must be improved when the battery is used in a notebook personal computer that emits high heat or in an automobile exposed to the sun.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、リチ
ウム二次電池用の正極材料として、高温下でもサイクル
特性や保存安定性が良好で且つ高容量が得られる立方晶
のスピネル型構造からなるマンガン酸リチウム系正極活
物質及びその製造方法を提供することにあり、このマン
ガン酸リチウムを正極に用いて高温下でもサイクル特性
や保存特性が良好で且つ高容量、高出力が得られるリチ
ウム二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode material for a lithium secondary battery from a cubic spinel structure having good cycle characteristics and storage stability even at a high temperature and a high capacity. To provide a lithium manganate-based positive electrode active material and a method for producing the same, wherein the lithium manganate is used as a positive electrode and has good cycle characteristics and storage characteristics even at high temperatures, and has high capacity and high output. Another object is to provide a battery.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を行った結果、本発明に至っ
た。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention.

【0006】本発明は、立方晶のスピネル型構造からな
るマンガン酸リチウムを主成分とするリチウム二次電池
用正極活物質において、該正極活物質の粒子の表層側か
ら内部に向かって酸素原子を置換したフッ素の濃度が減
少してゆく濃度傾斜層が存在し、粒子内部とのフッ素濃
度の差が、表層側界面のフッ素濃度と粒子内部のフッ素
濃度との差の10%に減衰するまでの深さが、表層側界
面から0.5〜80nmであるような傾斜構造を有し、
かつ正極活物質中の全フッ素量と全マンガン量との原子
比F/Mnが0.002〜0.05であり、その格子定
数が0.82405nm以下であることを特徴とするリ
チウム二次電池用正極活物質に関する。
The present invention relates to a positive electrode active material for a lithium secondary battery mainly composed of lithium manganate having a cubic spinel structure, wherein oxygen atoms are introduced from the surface of particles of the positive electrode active material toward the inside. There is a concentration gradient layer in which the concentration of substituted fluorine decreases, and the difference in fluorine concentration between the inside of the particle and the concentration of fluorine in the particle decreases to 10% of the difference between the concentration of fluorine in the interface on the surface layer side and the concentration of fluorine in the inside of the particle. Depth has a tilted structure such that it is 0.5 to 80 nm from the surface side interface,
And a lithium secondary battery wherein the atomic ratio F / Mn between the total amount of fluorine and the total amount of manganese in the positive electrode active material is 0.002 to 0.05, and the lattice constant is 0.82405 nm or less. The present invention relates to a positive electrode active material for use.

【0007】また、本発明は、リチウム化合物、マンガ
ン化合物及びLiFからなる混合物を500℃〜800
℃で焼成した後、水洗処理により未反応のLiFを除去
することを特徴とする前記記載のリチウム二次電池用正
極活物質の製造方法に関する。また、本発明は、リチウ
ム化合物、マンガン化合物、B、Mg、Al、P、C
a、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、
Ba、Ga、Taから選ばれる置換元素化合物の少なく
とも1種類以上及びLiFの混合物を500℃〜800
℃で焼成した後、水洗処理により未反応のLiFを除去
することを特徴とする前記記載のリチウム二次電池用正
極活物質の製造方法に関する。さらに、本発明は、前記
記載のリチウム二次電池用正極活物質を正極に用いるこ
とを特徴とするリチウム二次電池に関する。
Further, the present invention relates to a method for preparing a mixture comprising a lithium compound, a manganese compound and LiF from 500 ° C. to 800 ° C.
The method for producing a positive electrode active material for a lithium secondary battery as described above, wherein the unreacted LiF is removed by baking at a temperature of ° C. and then washing with water. Further, the present invention relates to a lithium compound, a manganese compound, B, Mg, Al, P, C
a, Ti, V, Cr, Fe, Co, Ni, Cu, Zn,
A mixture of at least one or more kinds of substitution element compounds selected from Ba, Ga, and Ta and LiF is mixed at 500 ° C to 800
The method for producing a positive electrode active material for a lithium secondary battery as described above, wherein the unreacted LiF is removed by baking at a temperature of ° C. and then washing with water. Furthermore, the present invention relates to a lithium secondary battery using the above-described positive electrode active material for a lithium secondary battery for a positive electrode.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の立方晶のスピネル型結晶構造のマンガン
酸リチウムを正極材料として使用することにより、高温
下でのリチウム二次電池のサイクル特性や保存特性を向
上させることができる。これは、(1)正極活物質と電
解液との界面においてLiFがスピネル型結晶構造の内
部に固溶した層が介在することによりMnによる触媒的
な電解液の分解が抑制されること、(2)この様な層で
覆われていない場合、電解液中の酸(H+)の正極への
アタックにより正極材料中の酸素が水として電解液中へ
溶け出すと同時に電荷補償の為にMn(2+)が電解液中に
溶け出すが、正極活物質の粒子の表層側から内部に向か
ってスピネル型結晶構造中の酸素原子を置換したフッ素
の濃度が減少してゆく濃度傾斜層が存在すると、Liイ
オンの出入りは妨げられずに、Mnイオンの伝導が抑制
され、これによりMnの溶出が抑制されることによると
考えられる。しかしながら、フッ素濃度の高い部分では
Liイオン伝導性はそれ程大きくはなく、また、スピネ
ル型結晶構造中の酸素原子をフッ素原子で置換すると電
荷補償によりMn3+の濃度が減少し、4V領域での電気
容量が減少する(充電:Mn3+→Mn4+)ので傾斜層の
厚さ、すなわち、粒子内部とのフッ素濃度の差が、表層
側界面のフッ素濃度と粒子内部のフッ素濃度との差の1
0%に減衰するまでの深さが、表層側界面から80nm
以下で、かつ、正極活物質中の全フッ素量と全マンガン
量との原子比F/Mnが0.05以下であることが好ま
しい。さらに、傾斜層の厚さが0.5nm未満になると
傾斜層の厚さが薄すぎ、あるいは、正極活物質中の全フ
ッ素量と全マンガン量との原子比F/Mnが0.002
未満になるとフッ素濃度が少なすぎ、上記の効果が期待
できないので好ましくない。また、正極活物質の立方晶
のスピネル型結晶構造の格子定数が0.82405nm
以下、特に0.82405nm〜0.8192nmであ
ることが好ましい。格子定数が0.82405nmを超
えて過度に大きくなると、スピネル型結晶内部における
マンガン−酸素間またはマンガン−フッ素間の結合距離
が長くなるために、これらの原子間の結合強度が低下し
て、格子の安定性が低下する。このため、充放電サイク
ルによって膨張−収縮を繰り返すと結晶構造が崩壊し
て、サイクル特性が悪化し、充放電の繰り返しに耐える
ことができなくなる。また、格子定数が0.8192n
mよりも過度に小さくなると、結晶格子が小さくなり過
ぎ、リチウムイオンの移動速度が低下し、連続的に高エ
ネルギー密度の電流を取り出す場合には、充放電特性が
悪くなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. By using the lithium manganate having a cubic spinel-type crystal structure of the present invention as a positive electrode material, cycle characteristics and storage characteristics of a lithium secondary battery at high temperatures can be improved. This is because (1) the catalytic decomposition of the electrolytic solution by Mn is suppressed by the presence of a layer in which LiF forms a solid solution inside the spinel crystal structure at the interface between the positive electrode active material and the electrolytic solution; 2) When not covered with such a layer, the oxygen in the cathode material is dissolved as water into the electrolyte due to the attack of the acid (H + ) in the electrolyte on the cathode, and at the same time, Mn for charge compensation. (2+) dissolves into the electrolyte solution, but there is a concentration gradient layer in which the concentration of fluorine substituted for oxygen atoms in the spinel crystal structure decreases from the surface side of the particles of the positive electrode active material to the inside. Then, it is considered that the conduction of Mn ions is suppressed without obstructing the entrance and exit of Li ions, and thereby the elution of Mn is suppressed. However, the Li ion conductivity is not so large in the portion where the fluorine concentration is high, and when the oxygen atom in the spinel type crystal structure is replaced with a fluorine atom, the concentration of Mn 3+ decreases due to charge compensation and the concentration in the 4 V region is reduced. Since the electric capacity decreases (charging: Mn 3+ → Mn 4+ ), the thickness of the gradient layer, that is, the difference in fluorine concentration between the inside of the particle and the fluorine concentration in the surface side interface is different from the concentration of fluorine in the inside of the particle. Of 1
Depth to 0% is 80 nm from the surface side interface
It is preferable that the atomic ratio F / Mn between the total amount of fluorine and the total amount of manganese in the positive electrode active material is 0.05 or less. Further, when the thickness of the gradient layer is less than 0.5 nm, the thickness of the gradient layer is too small, or the atomic ratio F / Mn between the total amount of fluorine and the total amount of manganese in the positive electrode active material is 0.002.
If it is less than this, the fluorine concentration is too low and the above effects cannot be expected, which is not preferable. The lattice constant of the cubic spinel-type crystal structure of the positive electrode active material is 0.82405 nm.
Hereinafter, it is particularly preferable to be 0.82405 nm to 0.8192 nm. If the lattice constant exceeds 0.82405 nm and becomes excessively large, the bonding distance between manganese-oxygen or manganese-fluorine inside the spinel-type crystal becomes longer, so that the bonding strength between these atoms decreases, and the lattice constant decreases. Stability decreases. For this reason, when expansion and contraction are repeated by the charge / discharge cycle, the crystal structure collapses, the cycle characteristics deteriorate, and it becomes impossible to withstand repeated charge / discharge. The lattice constant is 0.8192n
If it is excessively smaller than m, the crystal lattice becomes too small, the moving speed of lithium ions decreases, and the charge / discharge characteristics deteriorate when a current having a high energy density is continuously taken out.

【0009】本発明のリチウム二次電池用正極活物質に
おいて、立方晶のスピネル型構造を有するマンガン酸リ
チウムの結晶中におけるリチウムまたはマンガンの占有
する格子サイトの一部がB、Mg、Al、P、Ca、T
i、V、Cr、Fe、Co、Ni、Cu、Zn、Ba、
Ga、Taから選ばれる少なくとも1種類以上の元素で
置換されたものでもよい。
In the positive electrode active material for a lithium secondary battery according to the present invention, lithium, manganese, or a part of lattice sites occupied by lithium or manganese in the crystal of lithium manganate having a cubic spinel structure is B, Mg, Al, P. , Ca, T
i, V, Cr, Fe, Co, Ni, Cu, Zn, Ba,
It may be substituted with at least one or more elements selected from Ga and Ta.

【0010】本発明のリチウム二次電池用正極材料の製
造方法について説明する。原料としてはマンガン酸リチ
ウムのリチウム源となるリチウム化合物とマンガン源と
なるマンガン化合物とLiF、さらにマンガン酸リチウ
ムの結晶中におけるリチウムまたはマンガンの占有する
格子サイトの一部を置換する場合には置換元素源として
この元素を含む化合物である。
The method for producing the cathode material for a lithium secondary battery according to the present invention will be described. As raw materials, a lithium compound serving as a lithium source of lithium manganate, a manganese compound serving as a manganese source and LiF, and a substitution element when substituting a part of a lattice site occupied by lithium or manganese in lithium manganate crystals. Compounds containing this element as a source.

【0011】リチウム源となるリチウム化合物としては
熱処理時に酸化物となるものであれば特に限定されない
が、酸化リチウム、炭酸リチウム、水酸化リチウム、硝
酸リチウム、塩化リチウム、酢酸リチウム、蓚酸リチウ
ム等が挙げられる。マンガン源となるマンガン化合物と
しては熱処理時に酸化物となるものであれば特に限定さ
れないが、MnO、Mn34、Mn23、MnO2など
の酸化マンガン、炭酸マンガン、水酸化マンガン、硝酸
マンガン、酢酸マンガン、蓚酸マンガン等が挙げられ
る。置換元素(X)源としては置換元素であるB、M
g、Al、P、Ca、Ti、V、Cr、Fe、Co、N
i、Cu、Zn、Ba、Ga、Taを含む化合物で熱処
理時に酸化物となるものであれば特に限定されないが、
置換元素(X)を含む酸化物、炭酸塩、水酸化物、硝酸
塩、酢酸塩、蓚酸塩等が挙げられる。
The lithium compound serving as a lithium source is not particularly limited as long as it becomes an oxide during heat treatment, and examples thereof include lithium oxide, lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium acetate and lithium oxalate. Can be Is not particularly limited as long as it becomes oxide during the heat treatment on a manganese compound as a source of manganese, MnO, Mn 3 O 4, Mn 2 O 3, MnO 2 manganese oxide such as manganese carbonate, manganese hydroxide, nitrate Manganese, manganese acetate, manganese oxalate and the like can be mentioned. The source of the substitution element (X) is a substitution element B or M
g, Al, P, Ca, Ti, V, Cr, Fe, Co, N
The compound containing i, Cu, Zn, Ba, Ga, and Ta is not particularly limited as long as it becomes an oxide during heat treatment.
Oxides, carbonates, hydroxides, nitrates, acetates, oxalates and the like containing the substitution element (X) can be mentioned.

【0012】まず、これらの原料を混合するが、混合粉
中のリチウム源のリチウム化合物中のLiの全原子数を
Li、Mnの全原子数をmMn、置換元素Xの全原子数を
Xとすると、混合粉の組成としては、0.5≦mLi
(mMn+mX)≦0.7であることが好ましい。mLi
(mMn+mX)の値が0.5より過度に小さい場合に
は、スピネルの構造が不安定になり、0.7より過度に
大きい場合には、Mnの平均酸化数が高くなり、Mn3+
の濃度が減少し、4V領域での電気容量が極めて少なく
なるので好ましくない。また、混合粉中のLiFの量
は、混合粉中のLiFの全モル数をmLiFとすると、原
子比mLiF/mMnが0.02≦mLiF/mMn≦2であるこ
とが好ましい。m LiF/mMnが0.02より過度に小さ
い場合にはLiFの量が少なすぎ、傾斜層の厚さが薄く
なりすぎるので好ましくない。また、mLiF/mMnが2
より過度に大きい場合にはLiFの量が多すぎ、傾斜層
の厚さが厚くなりすぎるため好ましくない。
First, these raw materials are mixed.
The total number of atoms of Li in the lithium compound of the lithium source
mLi, Mn to mMn, The total number of atoms of the substitution element X
mXThen, the composition of the mixed powder is 0.5 ≦ mLi/
(MMn+ MX) ≦ 0.7 is preferred. mLi/
(MMn+ MX) Is too small below 0.5
Indicates that the structure of the spinel becomes unstable,
When it is large, the average oxidation number of Mn becomes high, and Mn becomes3+
And the electric capacity in the 4V region is extremely small.
Is not preferred. Also, the amount of LiF in the mixed powder
Represents the total number of moles of LiF in the mixed powder as mLiFThen
Child ratio mLiF/ MMnIs 0.02 ≦ mLiF/ MMn≤2
Is preferred. m LiF/ MMnIs excessively smaller than 0.02
In this case, the amount of LiF is too small and the thickness of the gradient layer is thin.
It is not preferable because it becomes too much. Also, mLiF/ MMnIs 2
If it is too large, the amount of LiF is too large,
Is too thick, which is not preferred.

【0013】混合方法としては特に限定されず、乳鉢、
ミキサー、ボールミル等を用いて混合する乾式法、水や
エタノールなどを用いる湿式混合法など均一に混合でき
る方法であればよい。
[0013] The mixing method is not particularly limited.
Any method can be used as long as it can be uniformly mixed, such as a dry method using a mixer or a ball mill or a wet mixing method using water or ethanol.

【0014】本発明のリチウム二次電池用正極材料の製
造においては、前記の混合物を500℃〜800℃で1
時間以上熱処理を行う。800℃より過度に高い温度で
はLiFとマンガン酸リチウムの反応が進行し、LiF
がスピネル構造の結晶粒子の内部まで固溶してしまい、
F濃度が平均化され傾斜層が形成されないので好ましく
ない。また、500℃より過度に低い温度ではマンガン
酸リチウムの結晶粒子の成長が促進され難くなり、正極
材料の比表面積が大きくなるので単位面積当たりのF量
が少なくなりすぎ、粒子表面のF濃度が低下するので好
ましくない。また、リチウム源となるリチウム化合物と
LiFの二成分状態図において共晶温度(硝酸リチウ
ム;251℃、水酸化リチウム;431℃、炭酸リチウ
ム;609℃、塩化リチウム;501℃)より低い温度
域ではLiFが溶融状態を経ることがないためLiFが
全表面を覆うのが困難になるとともに、反応性が低下
し、LiFが粒子表面から内部に固溶していくことが困
難になるので好ましくない。従って、リチウム源として
LiFとの共晶温度が450℃より高いリチウム化合物
を使用する場合は共晶温度より高い温度で熱処理するこ
とが好ましい。500℃〜800℃で焼成した後の水洗
処理は、LiFの水に対する溶解度が0.133wt%
(25℃)であることを考慮し、未反応で残ったLiF
が完全に洗い流される量以上の水を使用して、場合によ
っては、熱水を使用することにより行うことが出来る。
水洗後は、濾過により水を除去し、十分に乾燥すること
が好ましい。
In the production of the positive electrode material for a lithium secondary battery according to the present invention, the above mixture is heated at 500 ° C. to 800 ° C. for 1 hour.
Heat treatment for more than an hour. At a temperature excessively higher than 800 ° C., the reaction between LiF and lithium manganate proceeds, and LiF
Will form a solid solution inside the crystal grains of the spinel structure,
This is not preferable because the F concentration is averaged and a gradient layer is not formed. On the other hand, if the temperature is excessively lower than 500 ° C., the growth of lithium manganate crystal particles becomes difficult to promote, and the specific surface area of the positive electrode material increases, so that the F amount per unit area becomes too small, and the F concentration on the particle surface becomes low. It is not preferable because it lowers. In a binary phase diagram of a lithium compound serving as a lithium source and LiF, in a temperature range lower than the eutectic temperature (lithium nitrate; 251 ° C, lithium hydroxide; 431 ° C, lithium carbonate: 609 ° C, lithium chloride; 501 ° C). Since LiF does not go through a molten state, it is difficult to cover the entire surface of LiF, and the reactivity is reduced, and it is difficult to dissolve LiF from the particle surface to the inside, which is not preferable. Therefore, when a lithium compound having a eutectic temperature with LiF higher than 450 ° C. is used as the lithium source, it is preferable to perform the heat treatment at a temperature higher than the eutectic temperature. In the water washing treatment after firing at 500 ° C. to 800 ° C., the solubility of LiF in water is 0.133 wt%.
(25 ° C.), and the unreacted LiF
Can be performed by using more water than the amount by which water is completely washed out, and in some cases, using hot water.
After washing with water, it is preferable to remove water by filtration and dry sufficiently.

【0015】次に、本発明のリチウム二次電池について
詳細に説明する。本発明のリチウム二次電池の正極は、
前述した本発明のリチウム二次電池用正極材料を活物質
として含むものである。該正極は、具体的には、該リチ
ウム二次電池用正極活物質、導電剤、バインダーからな
り、導電材としては、天然黒鉛、人造黒鉛、コークス類
などの炭素質材料が挙げられ、バインダーとしては、ポ
リフッ化ビニリデン、ポリテトラフルオロエチレン、ポ
リエチレン、ポリプロピレンなどの熱可塑性樹脂が挙げ
られる。
Next, the lithium secondary battery of the present invention will be described in detail. The positive electrode of the lithium secondary battery of the present invention,
The positive electrode material for a lithium secondary battery of the present invention described above is included as an active material. The positive electrode is, specifically, the positive electrode active material for a lithium secondary battery, a conductive agent, a binder, as the conductive material, natural graphite, artificial graphite, carbonaceous materials such as cokes, and as a binder Examples thereof include thermoplastic resins such as polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, and polypropylene.

【0016】本発明のリチウム二次電池の負極として
は、リチウム金属、リチウム合金、またはリチウムイオ
ンを吸蔵、放出可能な材料が用いられる。リチウムイオ
ンを吸蔵、放出可能な材料としては、天然黒鉛、人造黒
鉛、コークス類、カーボンブラック、熱分解炭素類、炭
素繊維などの炭素質材料が挙げられる。
As the negative electrode of the lithium secondary battery of the present invention, a lithium metal, a lithium alloy, or a material capable of inserting and extracting lithium ions is used. Materials capable of occluding and releasing lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, and carbon fibers.

【0017】本発明のリチウム二次電池の電解質として
は、リチウム塩を有機溶媒に溶解させた非水電解質溶
液、または、固体電解質のいずれかから選ばれる公知の
ものが用いられる。リチウム塩としては、LiCl
4、LiPF6、LiAsF6、LiBF4、LiCF3
SO3などのうち一種あるいは二種以上の混合物が挙げ
られる。
As the electrolyte of the lithium secondary battery of the present invention, a known electrolyte selected from a non-aqueous electrolyte solution obtained by dissolving a lithium salt in an organic solvent and a solid electrolyte is used. As the lithium salt, LiCl
O 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3
One or a mixture of two or more of SO 3 and the like can be mentioned.

【0018】有機溶媒としてはプロピレンカーボネー
ト、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネートなどのカーボネート類、1,2−ジ
メトキシエタン、1,3−ジメトキシプロパン、テトラ
ヒドロフランなどのエーテル類、ギ酸メチル、酢酸メチ
ル、γ-ブチルラクトンなどのエステル類、アセトニト
リル、ブチロニトリルなどのニトリル類、N,N−ジメ
チルホルムアミドなどのアミド類、スルホラン、ジメチ
ルスルホキシド、1,3−プロパンサルトンなどの含硫
黄化合物が挙げられるが、通常はこれらのうち二種以上
を混合して用いる。
Examples of the organic solvent include carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate and diethyl carbonate, ethers such as 1,2-dimethoxyethane, 1,3-dimethoxypropane and tetrahydrofuran, methyl formate, methyl acetate, γ Esters such as -butyl lactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide; and sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone. Are used by mixing two or more of them.

【0019】固体電解質としてはポリエチレンオキサイ
ド誘導体か該誘導体を含むポリマー、ポリプロピレンオ
キサイド誘導体か該誘導体を含むポリマーなどの有機固
体電解質や、Li3N、LiI、Li3N−LiI−Li
OH、Li4SiO4、Li4SiO4−Li3PO4などの
無機固体電解質が挙げられる。また、高分子に非水電解
質溶液を保持させたゲル状のものを用いることもでき
る。本発明のリチウム二次電池の形状は特に限定され
ず、ペーパー型、コイン型、円筒型、角型などのいずれ
であってもよい。
Examples of the solid electrolyte include organic solid electrolytes such as a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative or a polymer containing the derivative, Li 3 N, LiI, and Li 3 N—LiI—Li.
Inorganic solid electrolytes such as OH, Li 4 SiO 4 and Li 4 SiO 4 —Li 3 PO 4 are exemplified. Further, a gel in which a non-aqueous electrolyte solution is held in a polymer can also be used. The shape of the lithium secondary battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.

【0020】[0020]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらによって何ら限定されるもの
ではない。 実施例1〜15及び比較例1〜4 表1に示す割合(表中、比は全て原子またはモル比)で
LiOH・H2OとMnO2置換元素X源及びLiFを乳
鉢でよく混合し、更に乾式振動ミルでよく混合した後、
表1に示す焼成温度で空気中焼成し、更に、未反応で残
ったLiFをを取り除くため水で洗浄を行った後、濾
過、乾燥して正極活物質粉末を得た。図1に実施例1で
得られた正極材料のX線回折測定の結果を示す。得られ
た正極活物質は、JCPDS:No.35−782のL
iMn24と同様のパターンを示すスピネル型結晶構造
の単相であることが分かった。他の実施例及び比較例の
正極活物質も同様のパターンであった。また、実施例及
び比較例の正極活物質のスピネル型結晶構造の格子定数
を表2に示す。
The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the invention thereto. Examples 1 to 15 and Comparative Examples 1 to 4 LiOH · H 2 O, a MnO 2 substitution element X source and LiF were mixed well in a mortar at the ratios shown in Table 1 (all ratios are atomic or molar ratios), After further mixing well with a dry vibration mill,
The powder was fired in the air at the firing temperature shown in Table 1, washed with water to remove unreacted LiF, filtered, and dried to obtain a positive electrode active material powder. FIG. 1 shows the result of X-ray diffraction measurement of the positive electrode material obtained in Example 1. The obtained positive electrode active material was prepared according to JCPDS: No. L of 35-782
It was found to be a single phase having a spinel type crystal structure showing a pattern similar to that of iMn 2 O 4 . The positive electrode active materials of the other Examples and Comparative Examples had the same pattern. Table 2 shows the lattice constants of the spinel-type crystal structures of the positive electrode active materials of Examples and Comparative Examples.

【0021】[0021]

【表1】 (* 表1中、比はすべて原子またはモル比)[Table 1] (* In Table 1, all ratios are atomic or molar.)

【0022】[0022]

【表2】 [Table 2]

【0023】『正極活物質表面におけるF濃度傾斜層の
厚さの評価及び正極活物質中のF含有量の評価』実施例
1〜15及び比較例1〜4で得られた正極活物質粉末の
粒子表面について、粒子の表面の任意の位置をイオンビ
ームによりスパッタしながらTOF−SIMSによりフ
ッ素イオンの深さ方向の濃度分布を調べFイオン強度が
表層部分での強度の10%になる深さ(傾斜層の厚さ)
を求めた。その結果を表3に示す。なお、厚さは、単結
晶Si換算の厚さである。また、実施例1〜15及び比
較例1〜4で得られた正極活物質粉末を湿式分解した
後、Mnの含有量をICPにより、Fの含有量をイオン
クロマトグラフにより測定し、原子比F/Mnを求め
た。その結果を表3に示す。
"Evaluation of the Thickness of the F Concentration Gradient Layer on the Surface of the Positive Electrode Active Material and Evaluation of the F Content in the Positive Electrode Active Material" of the positive electrode active material powders obtained in Examples 1 to 15 and Comparative Examples 1 to 4 On the particle surface, the concentration distribution in the depth direction of fluorine ions is examined by TOF-SIMS while sputtering an arbitrary position on the particle surface with an ion beam, and the depth at which the F ion intensity becomes 10% of the intensity at the surface layer ( The thickness of the inclined layer)
I asked. Table 3 shows the results. Note that the thickness is a thickness in terms of single crystal Si. Further, after the positive electrode active material powders obtained in Examples 1 to 15 and Comparative Examples 1 to 4 were wet-decomposed, the content of Mn was measured by ICP, and the content of F was measured by ion chromatography, and the atomic ratio F was measured. / Mn was determined. Table 3 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】『充放電特性の評価』実施例1〜15及び
比較例1〜4で得られた正極材料を使用し、以下のよう
にコイン型テストセルを構成し、高温(60℃)におけ
る充放電特性を測定した。正極活物質粉末80重量部と
導電剤のアセチレンブラックとグラファイトをそれぞれ
5重量部ずつとフッ素系高分子バインダーのポリフッ化
ビニリデン10重量部とを1−メチル−2−ピロリドン
溶媒中で均一に混合したものをアルミニウム箔の集電体
上に塗布し、1−メチル−2−ピロリドンを充分に乾燥
して加圧成型、加熱処理して約2cm2の円盤状の正極
を作製した。この際、正極中に最終的に含まれる活物質
量は約20mgとなるように調整した。負極活物質の天
然黒鉛90重量部とフッ素系高分子バインダーのポリフ
ッ化ビニリデン10重量部とを1−メチル−2−ピロリ
ドン溶媒中で均一に混合したものを銅箔の集電体上に塗
布し、1−メチル−2−ピロリドンを充分に乾燥して加
圧成型、加熱処理して約2cm2の円盤状の負極を作製
した。この際、負極中に最終的に含まれる活物質量は約
10mgとなるように調整した。この様にして得られた
正極と負極とを用い、更に、非水電解液にLiPF6
エチレンカーボネートとジメチルカーボネートを体積比
で1:2の割合で混合した溶媒中に1Mの濃度で溶解さ
せたものを用い、コイン型の電池を作製した。この電池
を用い高温(60℃)での充放電サイクル試験を行っ
た。充放電を行う期間は1週間とし、1週間経過後充放
電を止め、速やかに次の項で説明するMn溶出量の評価
の実験を行った。充放電の条件は以下のように設定し
た。充電は定電流−定電圧モードで、定電流時の電流密
度を0.4mA/cm2、定電圧設定値を4.2V、充
電開始からの全充電時間を5時間とした。即ち、充放電
のスタート時は定電流で充電を行い、電池の電圧が4.
2Vに達した時点(理論容量から5時間より必ず短い)
で定電圧モードに切り替え、充電開始から5時間経過後
充電は終了する。放電は0.4mA/cm2定電流モー
ドで電池の電圧が2.7Vに達した時点で放電が終了す
るように設定した。1サイクル目の放電容量を100と
した場合の25サイクル目の放電容量維持率(%)を表
4に示す。
[Evaluation of Charging and Discharging Characteristics] Using the positive electrode materials obtained in Examples 1 to 15 and Comparative Examples 1 to 4, a coin-type test cell was constructed as follows and charged at a high temperature (60 ° C.). The discharge characteristics were measured. 80 parts by weight of the positive electrode active material powder, 5 parts by weight of acetylene black and graphite as conductive agents and 10 parts by weight of polyvinylidene fluoride as a fluoropolymer binder were uniformly mixed in a 1-methyl-2-pyrrolidone solvent. The resultant was applied on a current collector of aluminum foil, 1-methyl-2-pyrrolidone was sufficiently dried, molded under pressure, and heat-treated to produce a disk-shaped positive electrode of about 2 cm 2 . At this time, the amount of the active material finally contained in the positive electrode was adjusted to be about 20 mg. A mixture obtained by uniformly mixing 90 parts by weight of natural graphite as a negative electrode active material and 10 parts by weight of polyvinylidene fluoride as a fluorine-based polymer binder in a 1-methyl-2-pyrrolidone solvent is applied on a copper foil current collector. , 1-methyl-2-pyrrolidone was sufficiently dried, molded under pressure, and heat-treated to produce a disc-shaped negative electrode of about 2 cm 2 . At this time, the amount of the active material finally contained in the negative electrode was adjusted to be about 10 mg. Using the positive electrode and the negative electrode thus obtained, LiPF 6 was further dissolved in a nonaqueous electrolyte at a concentration of 1 M in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. Using this, a coin-type battery was produced. A charge / discharge cycle test at a high temperature (60 ° C.) was performed using this battery. The charging / discharging period was set to one week, and after one week, the charging / discharging was stopped, and an experiment for evaluating the amount of Mn elution described in the next section was immediately performed. Charge and discharge conditions were set as follows. The charging was performed in a constant current-constant voltage mode, the current density at the time of constant current was 0.4 mA / cm 2 , the constant voltage set value was 4.2 V, and the total charging time from the start of charging was 5 hours. That is, at the start of charging / discharging, charging is performed with a constant current, and the voltage of the battery becomes 4.
When the voltage reaches 2 V (it is always shorter than 5 hours from the theoretical capacity)
To switch to the constant voltage mode, and the charging ends after 5 hours from the start of charging. The discharge was set in the 0.4 mA / cm 2 constant current mode so that the discharge was terminated when the voltage of the battery reached 2.7 V. Table 4 shows the discharge capacity retention rate (%) at the 25th cycle when the discharge capacity at the first cycle is 100.

【0026】[0026]

【表4】 [Table 4]

【0027】表4より、実施例1〜15の電池は正極活
物質表面にF濃度の傾斜層を有しない比較例1、2に比
べて高温(60℃)サイクル特性が向上していることが
分かる。一方、比較例3の電池の放電容量維持率は比較
例1よりは高いが比較例2よりやや小さい値となった。
これは、F濃度傾斜層の厚さが薄すぎるため傾斜層によ
る高温での充放電特性改善の効果が十分に現れなかった
ためと考えられる。また、比較例4の電池は比較例2と
同程度であった。これは、F濃度傾斜層の厚さが厚すぎ
るためLiイオンの拡散が妨げられ、過負荷状態になっ
たためと考えられる。
From Table 4, it can be seen that the batteries of Examples 1 to 15 have improved high-temperature (60 ° C.) cycle characteristics as compared with Comparative Examples 1 and 2, which have no gradient layer of F concentration on the surface of the positive electrode active material. I understand. On the other hand, the discharge capacity retention ratio of the battery of Comparative Example 3 was higher than that of Comparative Example 1, but slightly smaller than that of Comparative Example 2.
This is probably because the effect of improving the charge / discharge characteristics at a high temperature by the gradient layer was not sufficiently exhibited because the thickness of the F concentration gradient layer was too thin. Further, the battery of Comparative Example 4 was comparable to that of Comparative Example 2. This is presumably because the thickness of the F-concentration gradient layer was too thick, preventing the diffusion of Li ions and causing an overload.

【0028】『電解液中へのMn溶出量の評価』上記の
充放電特性の評価(1週間の充放電)終了後の電池を分
解し、電解液中に存在するMnと負極上に析出したMn
の全量(即ち、Mn溶出量)を、電解液と負極を酸中で
加熱分解して検液を作製しこれをICPによりMn濃度
分析を行うことにより求めた。この様にして求めた正極
活物質20mg当たりの全Mn溶出量(μg)を表5に
示す。
[Evaluation of the amount of Mn eluted in the electrolyte] The battery after completion of the above-described evaluation of the charge / discharge characteristics (one-week charge / discharge) was disassembled, and Mn present in the electrolyte and precipitated on the negative electrode. Mn
Was determined by subjecting the electrolytic solution and the negative electrode to thermal decomposition in an acid to prepare a test solution, and performing Mn concentration analysis by ICP. Table 5 shows the total elution amount of Mn (μg) per 20 mg of the positive electrode active material thus determined.

【0029】[0029]

【表5】 [Table 5]

【0030】表5より、実施例1〜15の電池は正極活
物質表面にF濃度の傾斜層を有しない比較例1、2に比
べて一週間の高温(60℃)サイクルによりMn溶出量
が減少していることが分かる。一方、比較例3の電池の
Mn溶出量は比較例1よりは少ないが比較例2よりやや
多い値となった。これは、F濃度の傾斜層の厚さが薄す
ぎるため傾斜層によるMn溶出抑制の効果が十分に現れ
なかったためと考えられる。
As shown in Table 5, the batteries of Examples 1 to 15 exhibited a higher Mn elution amount by one week of high temperature (60 ° C.) cycle than Comparative Examples 1 and 2 having no gradient layer of F concentration on the surface of the positive electrode active material. It can be seen that it has decreased. On the other hand, the amount of Mn eluted in the battery of Comparative Example 3 was smaller than that of Comparative Example 1, but slightly larger than that of Comparative Example 2. This is considered to be because the effect of suppressing the Mn elution by the gradient layer was not sufficiently exhibited because the thickness of the gradient layer having the F concentration was too small.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、正極活
物質が、スピネル型構造からなるマンガン酸リチウムを
主成分とし、その粒子の表層側から内部に向かってF濃
度が減少していく濃度傾斜層が存在し、表層部分のF濃
度の10%に減衰するまでの深さが、表層部分から0.
5〜80nmであるような傾斜構造を有し、かつ正極活
物質の全Fと全Mnの原子比F/Mnが0.002〜
0.05であるように制御することにより、リチウム二
次電池用の正極材料として、高出力、高エネルギー密度
が得られ、高温下でもサイクル特性や保存特性が良好な
マンガン酸リチウム系の正極活物質及びその製造方法を
提供することができ、この材料を正極に用いて高温下で
もサイクル特性や保存特性が良好なリチウム二次電池を
提供することができる。
As is apparent from the above description, the positive electrode active material is mainly composed of lithium manganate having a spinel structure, and the concentration of F decreases from the surface to the inside of the particles. The depth from the surface layer to the depth of 10% of the F concentration in the surface layer is 0.1 mm from the surface layer.
It has a gradient structure of 5 to 80 nm, and the atomic ratio F / Mn of all F and all Mn of the positive electrode active material is 0.002 to 0.002.
By controlling it to be 0.05, a high output and a high energy density can be obtained as a positive electrode material for a lithium secondary battery, and a lithium manganate-based positive electrode active material having good cycle characteristics and storage characteristics even at high temperatures. A substance and a method for producing the same can be provided. A lithium secondary battery having excellent cycle characteristics and storage characteristics even at a high temperature can be provided by using this material for a positive electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた正極活物質のX線回折図で
ある。
FIG. 1 is an X-ray diffraction diagram of a positive electrode active material obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 哲夫 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 Fターム(参考) 4G048 AA04 AA05 AA06 AB05 AB08 AC06 AD06 AE05 AE06 5H029 AJ04 AJ05 AK03 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 AM12 AM16 CJ02 CJ08 CJ12 DJ12 DJ16 DJ17 EJ07 HJ01 HJ02 HJ04 HJ13 HJ14 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tetsuo Yamada 5F, 1978 Kogushi, Ube City, Ube City, Yamaguchi Prefecture F-term in Ube Research Institute Ube Research Laboratories 4G048 AA04 AA05 AA06 AB05 AB08 AC06 AD06 AE05 AE06 5H029 AJ04 AJ05 AK03 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 AM12 AM16 CJ02 CJ08 CJ12 DJ12 DJ16 DJ17 EJ07 HJ01 HJ02 HJ04 HJ13 HJ14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 立方晶のスピネル型構造からなるマンガ
ン酸リチウムを主成分とするリチウム二次電池用正極活
物質において、該正極活物質の粒子の表層側から内部に
向かって酸素原子を置換したフッ素の濃度が減少してゆ
く濃度傾斜層が存在し、粒子内部とのフッ素濃度の差
が、表層側界面のフッ素濃度と粒子内部のフッ素濃度と
の差の10%に減衰するまでの深さが、表層側界面から
0.5〜80nmであるような傾斜構造を有し、かつ正
極活物質中の全フッ素量と全マンガン量との原子比F/
Mnが0.002〜0.05であり、その格子定数が
0.82405nm以下であることを特徴とするリチウ
ム二次電池用正極活物質。
In a positive electrode active material for a lithium secondary battery mainly composed of lithium manganate having a cubic spinel structure, oxygen atoms are substituted from the surface side of particles of the positive electrode active material toward the inside. There is a concentration gradient layer in which the concentration of fluorine decreases, and the depth at which the difference in fluorine concentration between the inside of the particle and the concentration of fluorine in the particle attenuates to 10% of the difference between the concentration of fluorine at the surface side interface and the concentration of fluorine inside the particle. Has an inclined structure of 0.5 to 80 nm from the surface side interface, and has an atomic ratio F / between the total fluorine amount and the total manganese amount in the positive electrode active material.
A positive electrode active material for a lithium secondary battery, wherein Mn is 0.002 to 0.05 and the lattice constant is 0.82405 nm or less.
【請求項2】 立方晶のスピネル型構造を有するマンガ
ン酸リチウムの結晶中におけるリチウムまたはマンガン
の占有する格子サイトの一部がB、Mg、Al、P、C
a、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、
Ba、Ga、Taから選ばれる少なくとも1種類以上の
元素で置換されたものであることを特徴とする請求項1
記載のリチウム二次電池用正極活物質。
2. In a lithium manganate crystal having a cubic spinel structure, a part of lattice sites occupied by lithium or manganese is B, Mg, Al, P, C.
a, Ti, V, Cr, Fe, Co, Ni, Cu, Zn,
2. A material which is substituted by at least one element selected from Ba, Ga, and Ta.
The positive electrode active material for a lithium secondary battery according to the above.
【請求項3】 リチウム化合物、マンガン化合物及びL
iFからなる混合物を500℃〜800℃で焼成した
後、水洗処理により未反応のLiFを除去することを特
徴とする請求項1記載のリチウム二次電池用正極活物質
の製造方法。
3. A lithium compound, a manganese compound and L
The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein after baking the mixture of iF at 500 ° C to 800 ° C, unreacted LiF is removed by a water washing treatment.
【請求項4】 リチウム化合物、マンガン化合物、B、
Mg、Al、P、Ca、Ti、V、Cr、Fe、Co、
Ni、Cu、Zn、Ba、Ga、Taから選ばれる置換
元素化合物の少なくとも1種類以上及びLiFの混合物
を500℃〜800℃で焼成した後、水洗処理により未
反応のLiFを除去することを特徴とする請求項2記載
のリチウム二次電池用正極活物質の製造方法。
4. A lithium compound, a manganese compound, B,
Mg, Al, P, Ca, Ti, V, Cr, Fe, Co,
After baking a mixture of at least one or more kinds of substitution element compounds selected from Ni, Cu, Zn, Ba, Ga, and Ta and LiF at 500 ° C to 800 ° C, unreacted LiF is removed by washing with water. The method for producing a positive electrode active material for a lithium secondary battery according to claim 2.
【請求項5】 請求項1または2記載のリチウム二次電
池用正極活物質を正極に用いることを特徴とするリチウ
ム二次電池。
5. A lithium secondary battery, wherein the positive electrode active material for a lithium secondary battery according to claim 1 is used for a positive electrode.
JP10323322A 1998-11-13 1998-11-13 Positive electrode active material for lithium secondary battery, method for producing the same and use thereof Expired - Fee Related JP2974213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10323322A JP2974213B1 (en) 1998-11-13 1998-11-13 Positive electrode active material for lithium secondary battery, method for producing the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10323322A JP2974213B1 (en) 1998-11-13 1998-11-13 Positive electrode active material for lithium secondary battery, method for producing the same and use thereof

Publications (2)

Publication Number Publication Date
JP2974213B1 JP2974213B1 (en) 1999-11-10
JP2000149925A true JP2000149925A (en) 2000-05-30

Family

ID=18153505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10323322A Expired - Fee Related JP2974213B1 (en) 1998-11-13 1998-11-13 Positive electrode active material for lithium secondary battery, method for producing the same and use thereof

Country Status (1)

Country Link
JP (1) JP2974213B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091016A1 (en) * 2003-04-09 2004-10-21 Lg Chem Ltd. Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP2006351487A (en) * 2005-06-20 2006-12-28 Sony Corp Positive active material, its manufacturing method, and battery
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2011001666A1 (en) 2009-06-30 2011-01-06 パナソニック株式会社 Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2011187193A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same
JP2016025010A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary batteries and its use
JP2016025009A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium secondary batteries and its use
CN109546096A (en) * 2017-09-22 2019-03-29 丰田自动车株式会社 Positive electrode and the lithium secondary battery for using the positive electrode
WO2019064816A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US10312514B2 (en) 2014-07-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022156706A1 (en) * 2021-01-21 2022-07-28 宁德新能源科技有限公司 Positive electrode plate and electrochemical device and electronic device comprising positive electrode plate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091016A1 (en) * 2003-04-09 2004-10-21 Lg Chem Ltd. Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2006351487A (en) * 2005-06-20 2006-12-28 Sony Corp Positive active material, its manufacturing method, and battery
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
WO2011001666A1 (en) 2009-06-30 2011-01-06 パナソニック株式会社 Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102160216A (en) * 2009-06-30 2011-08-17 松下电器产业株式会社 Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2011001666A1 (en) * 2009-06-30 2012-12-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery positive electrode, method for producing the same, and non-aqueous electrolyte secondary battery
KR101225239B1 (en) * 2009-06-30 2013-01-22 파나소닉 주식회사 Positive electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2011187193A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
US9315882B2 (en) 2011-10-24 2016-04-19 Lg Chem, Ltd. Method for preparing anode active material, anode active material prepared therefrom and lithium secondary battery having the same
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same
JP2016025010A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary batteries and its use
JP2016025009A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium secondary batteries and its use
US9786907B2 (en) 2014-07-22 2017-10-10 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10312514B2 (en) 2014-07-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10340513B2 (en) 2014-07-22 2019-07-02 Toyota Jidosha Kabushiki Kaisha Positive active material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN109546096A (en) * 2017-09-22 2019-03-29 丰田自动车株式会社 Positive electrode and the lithium secondary battery for using the positive electrode
CN109546096B (en) * 2017-09-22 2022-01-25 丰田自动车株式会社 Positive electrode material and lithium secondary battery using the same
WO2019064816A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JPWO2019064816A1 (en) * 2017-09-27 2020-09-03 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP7122542B2 (en) 2017-09-27 2022-08-22 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
WO2022156706A1 (en) * 2021-01-21 2022-07-28 宁德新能源科技有限公司 Positive electrode plate and electrochemical device and electronic device comprising positive electrode plate

Also Published As

Publication number Publication date
JP2974213B1 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP4325167B2 (en) Non-aqueous electrolyte secondary battery electrode material
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
WO2009060603A4 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising the same
US20150228969A1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US6274273B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2023513029A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery containing the same
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP4458232B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2002083597A (en) Lithium secondary battery
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2022122997A (en) Positive electrode active material and lithium secondary battery including the same
JP4853608B2 (en) Lithium secondary battery
JP4191281B2 (en) Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2003208893A (en) Non-aqueous secondary battery and charging method thereof
CN107112527B (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP6139573B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees