[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000149950A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000149950A
JP2000149950A JP10326431A JP32643198A JP2000149950A JP 2000149950 A JP2000149950 A JP 2000149950A JP 10326431 A JP10326431 A JP 10326431A JP 32643198 A JP32643198 A JP 32643198A JP 2000149950 A JP2000149950 A JP 2000149950A
Authority
JP
Japan
Prior art keywords
cobalt
positive electrode
nickel
magnesium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10326431A
Other languages
Japanese (ja)
Inventor
Shinya Kitano
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10326431A priority Critical patent/JP2000149950A/en
Publication of JP2000149950A publication Critical patent/JP2000149950A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a discharge characteristic at high capacity and a high rate by covering each particle surface of a high-capacity positive electrode active material with magnesium-containing cobalt acid lithium that is excellent in electron conductivity and has a single layer structure. SOLUTION: Each particle surface of LiNi1-y-zCoyMzO2 (0<=y<=0.25, 0<=z<=0.15, M is a metal excluding Co and Ni) is provided with a positive electrode active material covered with magnesium containing cobalt acid lithium having a single layer structure. A coprecipitation method is used for the synthesis of the positive electrode active material, and an aqueous solution in which nickel nitrate and cobalt nitrate are dissolved is kept at 30 deg.C, a sodium hydroxide aqueous solution is dripped into it, and hydroxides of nickel and cobalt are produced by coprecipitating them. Then, the positive electrode active material is synthesized by adding water to the nickel-cobalt hydroxide to form a dispersed solution, by dripping a sodium hydroxide aqueous solution and an aqueous solution in which cobalt nitrate and magnesium nitrate are dissolved into it, and by depositing a magnesium-cobalt hydroxide on the surface of the nickel-cobalt hydroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の急激な小型軽量化に伴い、そ
の電源である電池に対して小形で軽量かつ高エネルギー
密度、更に繰り返し充放電が可能な二次電池開発への要
求が高まっている。また、大気汚染や二酸化炭素の増加
等の環境問題により、電気自動車の早期実用化が望まれ
ており、高効率、高出力、高エネルギー密度、軽量等の
特徴を有する優れた二次電池の開発が要望されている。
2. Description of the Related Art With the rapid reduction in size and weight of electronic equipment, there is an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. . In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and development of excellent secondary batteries having characteristics such as high efficiency, high output, high energy density, and light weight. Is required.

【0003】これらの要求を満たす二次電池として、非
水電解質を使用した二次電池が実用化されている。この
電池は、従来の水溶液電解液を使用した電池の数倍のエ
ネルギー密度を有している。その例として、非水電解質
二次電池の正極にコバルト複合酸化物、ニッケル複合酸
化物又はスピネル型リチウムマンガン酸化物を用い、負
極にリチウムが吸蔵・放出可能な炭素材料やスズ酸化物
などを用いた長寿命な4V級非水電解質二次電池が実用
化されている。
As a secondary battery satisfying these requirements, a secondary battery using a non-aqueous electrolyte has been put to practical use. This battery has several times the energy density of a battery using a conventional aqueous electrolyte solution. For example, a cobalt composite oxide, nickel composite oxide or spinel lithium manganese oxide is used for the positive electrode of a non-aqueous electrolyte secondary battery, and a carbon material or tin oxide capable of inserting and extracting lithium is used for the negative electrode. Long-life 4V-class non-aqueous electrolyte secondary batteries have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】この非水電解質二次電
池、特に正極活物質としてリチウムニッケル系複合酸化
物を使用する電池では、リチウムコバルト系複合酸化物
使用する電池に比べ高容量化が期待できる。しかしなが
ら、放電末期において分極による電圧降下が著しく大き
いため、ハイレート放電時の特性が劣るといった問題が
ある。そこで、本発明の目的とするところは、高容量か
つハイレート時の放電特性に優れた非水電解質二次電池
を提供することを目的とする。
The non-aqueous electrolyte secondary battery, particularly a battery using a lithium nickel composite oxide as a positive electrode active material, is expected to have a higher capacity than a battery using a lithium cobalt composite oxide. it can. However, since the voltage drop due to polarization is remarkably large at the end of discharge, there is a problem that characteristics at the time of high-rate discharge are inferior. Then, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having high capacity and excellent discharge characteristics at a high rate.

【0005】[0005]

【課題を解決するための手段】本発明になる非水電解質
二次電池は、LiNi1-y-zCoxMzO2(0≦y≦0.25、0
≦z≦0.15、MはCo,Ni以外の金属)の粒子表面が単
層構造のマグネシウム含有コバルト酸リチウムで被覆さ
れた正極活物質を備えたことを特徴とする非水電解質二
次電池。
The non-aqueous electrolyte secondary battery according to the present invention comprises LiNi 1 -yz Co x M z O 2 (0 ≦ y ≦ 0.25, 0
≦ z ≦ 0.15, M is a positive electrode active material coated with a magnesium-containing lithium cobalt oxide having a single-layer structure with a particle surface of a metal other than Co and Ni). .

【0006】[0006]

【発明の実施の形態】以下に、好適な一実施の形態を用
いて本発明を説明するが、本発明の趣旨を越えない限
り、以下に限定されるものでないことはいうまでもな
い。本発明になる非水電解質二次電池は、LiNi1-y-zCoy
MzO2(0≦y≦0.25、0≦z≦0.15、MはCo,Ni
以外の金属)の粒子表面が単層構造のマグネシウム含有
コバルト酸リチウムで被覆された正極活物質を備えたこ
とを特徴とするものであり、高容量のLiNi1-y-zCoyMzO2
正極活物質の粒子表面を電子導電性に優れた単層構造の
マグネシウム含有コバルト酸リチウム(LiCo1-xMgxO2
で被覆することにより、正極活物質の電子伝導度を向上
することができる。その結果、活物質の粒子間の抵抗を
小さくすることができ、ハイレート時の放電特性を改善
することができる。表1に単層構造のマグネシウム含有
コバルト酸リチウム(LiCo1-xMgxO2)のMgの組成比
(x)と、電子伝導度、放電容量及び容量劣化率(20サイク
ル後)との関係を示す。これらの電気化学的特性について
は、3端子ガラスセルを用いて測定を行なった。正極を
製作するにあたっては、正極材料にマグネシウム含有コ
バルト酸リチウム(LiCo1-xMgxO2;ただし、Xは0、
0.01、0.03、0.05、0.10、0.15)
を使用し、このマグネシウム含有コバルト酸リチウム
(LiCo1-xMgxO2;ただし、Xは0、0.01、0.0
3、0.05、0.10、0.15)の粉末88重量部
と、導電助剤であるカーボンブラック7重量部と、結着
材であるポリフッ化ビニリデン5重量部とを混合し、N-
メチル-2-ピロリドン溶液を適宜加えながら混練してス
ラリーを作製した。そして、このスラリーを正極集電体
であるアルミニウム箔にドクターブレード法により塗布
し、これを150℃で真空乾燥させてそれぞれの正極を作
製した。上記で作製した正極を作用極に用い、リチウム
金属電極を対極と参照極とに用いた。電解液にはエチレ
ンカーボネートとジエチルカーボネートを1:1の体積比
で混合させた混合溶媒に六フッ化燐酸リチウムLiPF6を1
mol/lの割合で溶解させた溶媒を用いた。充放電試験
は、上記で作製した3端子ガラスセルを用いてそれぞれ
について行った。充電電流は、0.5mA/cm2とし、リチウ
ム金属に対して4.3Vまで充電した後、0.5mA/cm2の放電
電流でリチウム金属に対して3.0Vまで放電した。また、
サイクル試験はこの操作を繰り返すことによって行なっ
た。電子伝導度測定用試料は、上記で合成したLiCo1-xM
gxO2を4mm×5mm×20mmの角柱に加圧成形後、800℃で12
時間焼結させた後、金ペーストを両端に塗布後、ペース
トを乾燥固化させてそれぞれ製作した。電子伝導度測定
は、二端子法によりドライ雰囲気(露点−60℃以下)下で
直流法を用いて測定を行なった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to a preferred embodiment, but it goes without saying that the present invention is not limited to the following without departing from the spirit of the present invention. The non-aqueous electrolyte secondary battery according to the present invention is LiNi 1-yz Co y
M z O 2 (0 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.15, M is Co, Ni
(A metal other than metal) is provided with a positive electrode active material coated with a magnesium-containing lithium cobalt oxide having a single-layer structure, and has a high capacity of LiNi 1-yz Co y M z O 2.
Magnesium-containing lithium cobaltate (LiCo 1-x Mg x O 2 ) with a single-layer structure with excellent electron conductivity on the surface of the particles of the positive electrode active material
By coating with, the electron conductivity of the positive electrode active material can be improved. As a result, the resistance between the particles of the active material can be reduced, and the discharge characteristics at a high rate can be improved. Table 1 shows the relationship between the Mg composition ratio (x) of single-layer magnesium-containing lithium cobalt oxide (LiCo 1-x Mg x O 2 ) and the electronic conductivity, discharge capacity, and capacity deterioration rate (after 20 cycles). Is shown. These electrochemical properties were measured using a three-terminal glass cell. In manufacturing the positive electrode, the positive electrode material is made of magnesium-containing lithium cobalt oxide (LiCo 1-x Mg x O 2 ; where X is 0,
0.01, 0.03, 0.05, 0.10, 0.15)
And the magnesium-containing lithium cobaltate (LiCo 1-x Mg x O 2 ; where X is 0, 0.01, 0.0
3, 0.05, 0.10, and 0.15) of powder, 7 parts by weight of carbon black as a conductive additive, and 5 parts by weight of polyvinylidene fluoride as a binder. -
A slurry was prepared by kneading while appropriately adding a methyl-2-pyrrolidone solution. Then, this slurry was applied to an aluminum foil as a positive electrode current collector by a doctor blade method, and this was vacuum-dried at 150 ° C. to produce each positive electrode. The positive electrode prepared above was used as a working electrode, and a lithium metal electrode was used as a counter electrode and a reference electrode. Lithium hexafluorophosphate LiPF 6 was added to a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
A solvent dissolved at a rate of mol / l was used. The charge / discharge test was performed for each of the three-terminal glass cells prepared above. The charging current was set to 0.5 mA / cm 2, and after charging to lithium metal to 4.3 V, the battery was discharged to lithium metal to 3.0 V at a discharge current of 0.5 mA / cm 2 . Also,
The cycle test was performed by repeating this operation. The sample for electronic conductivity measurement was LiCo 1-x M synthesized above.
After pressing g x O 2 into a 4 mm x 5 mm x 20 mm prism, press
After sintering for a period of time, a gold paste was applied to both ends, and then the paste was dried and solidified to produce each. The electron conductivity was measured by a DC method under a dry atmosphere (dew point −60 ° C. or lower) by a two-terminal method.

【0007】[0007]

【表1】 [Table 1]

【0008】表1より、被覆するマグネシウム含有リチ
ウムコバルト酸のMgの組成比Xが、原子比で0.01以
上0.1未満、より好ましくは0.01以上0.03以
下とするのが望ましいことがわかった。この範囲であれ
ば電子伝導度、放電容量及び容量劣化率(20サイクル後)の全
てにおいて良好な性能を示すことが明らかである。次
に、本発明になる正極活物質を合成した。すなわち、Li
Co0.99Mg0.01O2で被覆したLiNi0.8Co0.2O2の合成には、
共沈法を用いて行なった。まず、0.8mol/lの硝酸ニッケ
ルと0.2mol/lの硝酸コバルトを溶解させた水溶液を30
℃に保ち、水酸化ナトリウム水溶液を滴下することによ
りpHを10〜13として、ニッケルとコバルトの水酸化物
(Ni0.8Co0.2(OH)2)を共沈させ生成した。次に、この2
mol/lのニッケル−コバルト水酸化物に水を加え分散液
とし、この分散液に水酸化ナトリウム水溶液を滴下する
ことによりpHを10〜13に保ちながら、この分散液に0.99
mol/lの硝酸コバルトと0.01mol/lの硝酸マグネシウムと
を溶解させた水溶液を滴下し、ニッケル−コバルト水酸
化物の表面にマグネシウム−コバルト水酸化物を析出さ
せて、マグネシウム−コバルト水酸化物で被覆されたニ
ッケル−コバルト水酸化物を合成した。このとき、硝酸
コバルトと硝酸マグネシウムとを溶解させた水溶液の滴
下量は、分散液に加えたニッケル−コバルト水酸化物の
モル数に対して1モル%となるようにした。ここで、水
酸化物の組成は、硝酸ニッケル、硝酸コバルト、硝酸マ
グネシウム溶液の濃度を調整することにより調整するこ
とができ、また、被覆量は、硝酸コバルト−マグネシウ
ム水溶液の滴下量を調整することにより調整することが
できる。次に、合成した水酸化物を水洗、乾燥を行なっ
た後、このマグネシウム−コバルト水酸化物で被覆され
たニッケル−コバルト水酸化物に水酸化リチウムをマグ
ネシウム−コバルト水酸化物で被覆されたニッケル−コ
バルト水酸化物1モルに対し水酸化リチウムが1モルにな
るように混合し、酸素や空気などの酸化雰囲気中、600
〜900℃で24時間焼成することにより、LiCo0.99Mg0.01O
2で被覆したLiNi 0.8Co0.2O2を合成した。なお、第三元
素のMを添加したLiNi1-y-zCoxMzO2を合成する場合は、
ニッケル−コバルト水酸化物を合成する際に第三元素の
Mを添加することにより合成することができる。上記の
共沈法により合成した、LiCo0.99Mg0.01O2で被覆したLi
Ni0.8Co0.2O2について電子伝導度とハイレート時の放電
容量および充放電特性について上記と同様の方法で測定
を行なった。また、LiCo0.99Mg0.01O2で被覆したLiNi
0.8Co0.2O2について、LiCo0.99Mg0.01O2の被覆量がLiCo
0.99Mg0.01O2:LiNi0.8Co0.2O2のモル比で5:95、10:9
0、20:80、30:70、40:60、50:50としたものを上記
同様の手法にて調整し、同様の試験を行った。この結果
を表2に示す。なお、充電電流は0.5mA/cm2とし、リチウ
ム金属に対して4.3Vまで充電した後、5mA/cm2の放電電
流でリチウム金属に対して3.0Vまで放電した。また、サ
イクル試験はこの操作を繰り返すことによって行なっ
た。
From Table 1, it can be seen that the magnesium-containing lithium coating
The composition ratio X of Mg of um cobaltate is 0.01 or less in atomic ratio.
Less than 0.1, more preferably 0.01 or more and 0.03 or less
It turns out that it is desirable to make it below. In this range
If the electronic conductivity, discharge capacity and capacity deterioration rate (after 20 cycles)
It is evident that they show good performance. Next
Next, a positive electrode active material according to the present invention was synthesized. That is, Li
Co0.99Mg0.01OTwoLiNi coated with0.8Co0.2OTwoThe synthesis of
This was performed using a coprecipitation method. First, 0.8 mol / l nickel nitrate
Solution containing 0.2 mol / l cobalt nitrate dissolved in 30
° C and dropping aqueous sodium hydroxide solution.
PH of 10 to 13 and nickel and cobalt hydroxide
(Ni0.8Co0.2(OH)Two) Was produced by coprecipitation. Next, this 2
Dispersion by adding water to mol / l nickel-cobalt hydroxide
And an aqueous solution of sodium hydroxide is added dropwise to the dispersion.
While maintaining the pH at 10-13, 0.99
mol / l cobalt nitrate and 0.01 mol / l magnesium nitrate
An aqueous solution in which is dissolved is dropped, and nickel-cobalt hydroxyl is added.
Of magnesium-cobalt hydroxide on the surface of the oxide
And coated with magnesium-cobalt hydroxide.
A nickel-cobalt hydroxide was synthesized. At this time, nitric acid
Drops of aqueous solution dissolving cobalt and magnesium nitrate
The lower amount is the amount of nickel-cobalt hydroxide added to the dispersion.
It was adjusted to 1 mol% based on the number of moles. Where water
The composition of the oxide is nickel nitrate, cobalt nitrate,
Adjust by adjusting the concentration of the gnesium solution.
And the coating amount is cobalt nitrate-magnesium.
Can be adjusted by adjusting the drop amount of the aqueous solution.
it can. Next, the synthesized hydroxide is washed with water and dried.
And then coated with this magnesium-cobalt hydroxide
Lithium hydroxide in nickel-cobalt hydroxide
Nickel-co coated with nesium-cobalt hydroxide
1 mole of lithium hydroxide per mole of Baltic hydroxide
Mixed in an oxidizing atmosphere such as oxygen or air
By firing at ~ 900 ° C for 24 hours, LiCo0.99Mg0.01O
TwoLiNi coated with 0.8Co0.2OTwoWas synthesized. The third element
LiNi with elemental M added1-yzCoxMzOTwoWhen synthesizing
When synthesizing nickel-cobalt hydroxide,
It can be synthesized by adding M. above
LiCo synthesized by coprecipitation method0.99Mg0.01OTwoLi coated with
Ni0.8Co0.2OTwoThe electronic conductivity and discharge at high rate
Measure capacity and charge / discharge characteristics in the same way as above
Was performed. Also, LiCo0.99Mg0.01OTwoLiNi coated with
0.8Co0.2OTwoAbout LiCo0.99Mg0.01OTwoOf LiCo
0.99Mg0.01OTwo: LiNi0.8Co0.2OTwo5:95, 10: 9 by molar ratio of
0, 20:80, 30:70, 40:60, 50:50 and above
Adjustment was performed in the same manner and a similar test was performed. As a result
Are shown in Table 2. The charging current is 0.5mA / cmTwoAnd then
5mA / cm after charging to 4.3VTwoDischarge electricity
The battery was discharged to 3.0 V against lithium metal. Also,
The cycle test is performed by repeating this operation.
Was.

【0009】[0009]

【表2】 [Table 2]

【0010】表2より、LiCo0.99Mg0.01O2で被覆するこ
とにより、電子伝導度が向上することがわかった。ま
た、被覆層のモル比が5%までは放電容量が増加してい
るが、被覆層のモル比を更に増やすと放電容量は減少し
ている。これは、容量の小さいLiCo0.99Mg0.01O2の割合
が増えるためである。また、被覆層の割合が増えるにし
たがい、ハイレートでの放電特性が向上することが明ら
かとなった。一方、サイクル特性は、被覆層のモル比が
5から20%の範囲で良好な特性を示している。以上の
ように、LiCo0.99Mg0.01O2 の被覆量はLiNi0.8Co0.2O2
に対してモル比で1%〜40%の範囲とすることによ
り、優れた効果を得ることができる。より好ましくは5
%〜20%にするのがよい。なお、被覆方法としては上
記の方法に限定されることなく公知の方法が使用でき
る。また、LiNi1-y-zCoyMzO2(0≦y≦0.25、0≦
z≦0.15、MはCo,Ni以外の金属)の第三元素である
Mとしては、ニッケル−コバルト水酸化物と共沈するこ
とのできる金属であれば特に限定されないが、より好ま
しくは、Al、Mg、Ti、Mn、Fe、Cr、Cuが良い。また、Li
Ni1-y-zCoyMzO2(0≦y≦0.25、0≦z≦0.1
5、MはCo,Ni以外の金属)及びLiCo1-xMgxO2(0.01
≦x<0.1)において、示した組成においては上記と
同様の結果が得られる。加えて、LiNi1-y-zCoyMzO
2(0.15≦y≦0.25、0≦z≦0.15、MはCo,
Ni以外の金属)の粒子としては一次、二次粒子どちらで
あってもよいが、好ましくは一次粒子のほうがよい。加
えて、本発明にかかる正極活物質は電子電導性に優れる
ため、従来正極合剤層に含有するアセチレンブラックや
金属粒子等の導伝助剤量を減らすことができる。この減
少分を正極活物質に置き換えればさらなる高容量化が可
能である。電池の形状としては、角形、円筒形、コイン
形またはペーパー形等形状はどんなものであってもよい
し、電池の構造、正極や負極の構造、構成についても限
定されるものではない。本発明になる非水電解質二次電
池においては、その構成として正極、負極及びセパレー
タと非水電解液との組み合わせ、若しくは正極、負極及
びセパレータとしての有機又は無機固体電解質と非水電
解液との組み合わせ、若しくは正極、負極及びセパレー
タ、有機又は無機固体電解質と非水電解液との組み合わ
せ、又は正極、負極及びセパレータとしての有機又は無
機固体電解質と非水電解液との組み合わせであっても構
わない。むろん、イオン導電性の固体電解質であれば非
水電解液は不要な構成となる。さらに、セパレータある
いはセパレータとしての有機又は無機固体電解質、並び
に非水電解液、電解質塩等は、いずれも公知のものの使
用が可能である。
From Table 2, it was found that coating with LiCo 0.99 Mg 0.01 O 2 improves the electron conductivity. Further, the discharge capacity increases up to a molar ratio of the coating layer of up to 5%, but the discharge capacity decreases as the molar ratio of the coating layer further increases. This is because the proportion of LiCo 0.99 Mg 0.01 O 2 having a small capacity increases. It was also found that the higher the rate of the coating layer, the higher the discharge characteristics at high rates. On the other hand, the cycle characteristics show good characteristics when the molar ratio of the coating layer is in the range of 5 to 20%. As described above, the coating amount of LiCo 0.99 Mg 0.01 O 2 is LiNi 0.8 Co 0.2 O 2
By controlling the molar ratio to 1% to 40%, an excellent effect can be obtained. More preferably 5
% To 20%. The coating method is not limited to the above method, and a known method can be used. Also, LiNi 1-yz Co y M z O 2 (0 ≦ y ≦ 0.25, 0 ≦
z ≦ 0.15, M is the third element of metals other than Co and Ni)
M is not particularly limited as long as it is a metal that can co-precipitate with nickel-cobalt hydroxide, but is more preferably Al, Mg, Ti, Mn, Fe, Cr, or Cu. Also, Li
Ni 1-yz Co y M z O 2 (0 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.1
5. M is a metal other than Co and Ni) and LiCo 1-x Mg x O 2 (0.01
≦ x <0.1), the same results are obtained with the composition shown. In addition, LiNi 1-yz Co y M z O
2 (0.15 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.15, M is Co,
The particles of metal (other than Ni) may be primary or secondary particles, but primary particles are preferred. In addition, since the positive electrode active material according to the present invention has excellent electron conductivity, the amount of a conduction aid such as acetylene black and metal particles conventionally contained in the positive electrode mixture layer can be reduced. If the reduced amount is replaced with a positive electrode active material, it is possible to further increase the capacity. The shape of the battery may be any shape such as a square shape, a cylindrical shape, a coin shape or a paper shape, and the structure of the battery, and the structures and configurations of the positive electrode and the negative electrode are not limited. In the non-aqueous electrolyte secondary battery according to the present invention, as a configuration thereof, a combination of a positive electrode, a negative electrode and a separator with a non-aqueous electrolyte, or a positive electrode, an organic or inorganic solid electrolyte and a non-aqueous electrolyte as a negative electrode and a separator. A combination, or a combination of a positive electrode, a negative electrode and a separator, a combination of an organic or inorganic solid electrolyte and a non-aqueous electrolyte, or a combination of a positive electrode, a negative electrode and a separator of an organic or inorganic solid electrolyte and a non-aqueous electrolyte as a separator may be used. . Of course, a non-aqueous electrolyte is unnecessary if it is an ion conductive solid electrolyte. Further, as the separator or the organic or inorganic solid electrolyte as the separator, the non-aqueous electrolyte, the electrolyte salt, etc., any known one can be used.

【0011】さらに、有機溶媒も基本的に限定されるも
のではない。従来リチウム電池に用いられているもので
あれば本発明と同様の効果が得られる。例えば溶媒とし
ては、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、スルホランなどの高誘電率溶
媒に1,2−ジメトキシエタン、ジメチルカーボネー
ト、エチルメチルカーボネート、ジエチルカーボネー
ト、メチルフォルメートなどの低粘度溶媒を混合したも
のが用いることができる。
Furthermore, the organic solvent is not fundamentally limited. The same effects as those of the present invention can be obtained as long as they are conventionally used for lithium batteries. For example, as a solvent, a low-viscosity solvent such as 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and methyl formate is mixed with a high dielectric constant solvent such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and sulfolane. What was done can be used.

【0012】本発明において、非水電解質リチウムイオ
ン二次電池に適用する場合、負極のホスト物質はリチウ
ムイオンを吸蔵、放出できるものであればいかなるもの
でもかまわないし、たとえば、コークス、カーボン、ア
モルファスカーボン、SnO、SnO2、Sn1-xx
(M=Hg,P,B,Si,Ge又はSb、ただし0≦
X<1)、Sn1-xx2(M=Hg,P,B,Si,
Ge又はSb、ただし0≦X<1)、Sn32(OH)
2、Sn3-xx2(OH)2(M=Mg,P,B,S
i,Ge,Sb,As又はMn、ただし0≦X<3)、
LiSiO2、SiO2又はLiSnO2の中から選ばれ
る1種又は2種以上であることを例示することができ
る。
In the present invention, when applied to a non-aqueous electrolyte lithium ion secondary battery, the host material of the negative electrode may be any material as long as it can occlude and release lithium ions. For example, coke, carbon, amorphous carbon , SnO, SnO 2 , Sn 1-x M x O
(M = Hg, P, B, Si, Ge or Sb, provided that 0 ≦
X <1), Sn 1- x M x O 2 (M = Hg, P, B, Si,
Ge or Sb, provided that 0 ≦ X <1), Sn 3 O 2 (OH)
2 , Sn 3-x M x O 2 (OH) 2 (M = Mg, P, B, S
i, Ge, Sb, As or Mn, provided that 0 ≦ X <3),
One or more selected from LiSiO 2 , SiO 2 and LiSnO 2 can be exemplified.

【0013】[0013]

【発明の効果】本発明によれば、高容量かつハイレート
時の放電特性に優れた非水電解質二次電池を提供するこ
とができる。よって、本発明の工業的価値は極めて高
い。
According to the present invention, a non-aqueous electrolyte secondary battery having a high capacity and excellent discharge characteristics at a high rate can be provided. Therefore, the industrial value of the present invention is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 LiNi1-y-zCoyMzO2(0≦y≦0.25、
0≦z≦0.15、MはCo,Ni以外の金属)の粒子表面が
単層構造のLiCo1-xMgxO2(0.01≦x<0.1)で被
覆された正極活物質を備えたことを特徴とする非水電解
質二次電池。
1. The method according to claim 1, wherein LiNi 1-yz Co y M z O 2 (0 ≦ y ≦ 0.25,
0 ≦ z ≦ 0.15, M is a positive electrode active material whose particle surface is coated with a single-layer LiCo 1-x Mg x O 2 (0.01 ≦ x <0.1) A non-aqueous electrolyte secondary battery comprising a substance.
JP10326431A 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery Pending JP2000149950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10326431A JP2000149950A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10326431A JP2000149950A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000149950A true JP2000149950A (en) 2000-05-30

Family

ID=18187735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10326431A Pending JP2000149950A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000149950A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103824A2 (en) * 2001-06-15 2002-12-27 Kureha Chemical Industry Company, Limited Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
CN1324736C (en) * 2003-04-11 2007-07-04 索尼株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
JP2008147199A (en) * 2008-01-28 2008-06-26 Canon Inc Suitability judging method of positive electrode active material
US7462422B2 (en) 2004-02-16 2008-12-09 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary cell
EP2157639A1 (en) 2008-08-04 2010-02-24 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8062794B2 (en) 2003-04-11 2011-11-22 Sony Corporation Positive active material and nonaqueous electrolyte secondary battery produced using the same
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
JP2012109197A (en) * 2010-10-21 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
US8349489B2 (en) 2008-02-13 2013-01-08 Sony Corporation Cathode active material, cathode therewith and nonaqueous electrolyte secondary battery
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8828606B2 (en) 2007-08-02 2014-09-09 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2014528891A (en) * 2011-08-16 2014-10-30 ティアックス エルエルシーTiax Llc Polycrystalline metal oxide, method for producing the same, and product containing the same
US8877377B2 (en) 2007-10-19 2014-11-04 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
JP2016051503A (en) * 2014-08-28 2016-04-11 Csエナジーマテリアルズ株式会社 Positive electrode substance for lithium ion battery, and method for manufacturing the same
CN112820554A (en) * 2020-06-22 2021-05-18 深圳大学 Nickel-cobalt hydroxide composite material, preparation method thereof and supercapacitor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103824A2 (en) * 2001-06-15 2002-12-27 Kureha Chemical Industry Company, Limited Gradient cathode material for lithium rechargeable batteries
WO2002103824A3 (en) * 2001-06-15 2004-04-22 Kureha Chemical Ind Co Ltd Gradient cathode material for lithium rechargeable batteries
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
JP4695831B2 (en) * 2001-06-15 2011-06-08 ティアックス エルエルシー Inclined cathode material for lithium secondary battery
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN1324736C (en) * 2003-04-11 2007-07-04 索尼株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8062794B2 (en) 2003-04-11 2011-11-22 Sony Corporation Positive active material and nonaqueous electrolyte secondary battery produced using the same
US7462422B2 (en) 2004-02-16 2008-12-09 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary cell
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
US8828606B2 (en) 2007-08-02 2014-09-09 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
US8877377B2 (en) 2007-10-19 2014-11-04 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
JP2008147199A (en) * 2008-01-28 2008-06-26 Canon Inc Suitability judging method of positive electrode active material
US8349489B2 (en) 2008-02-13 2013-01-08 Sony Corporation Cathode active material, cathode therewith and nonaqueous electrolyte secondary battery
US8377589B2 (en) 2008-02-13 2013-02-19 Sony Corporation Cathode active material, cathode therewith and nonaqueous electrolyte secondary battery
USRE45310E1 (en) 2008-02-13 2014-12-30 Sony Corporation Cathode active material, cathode therewith and nonaqueous electrolyte secondary battery
EP2157639A1 (en) 2008-08-04 2010-02-24 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
JP2012109197A (en) * 2010-10-21 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2014528891A (en) * 2011-08-16 2014-10-30 ティアックス エルエルシーTiax Llc Polycrystalline metal oxide, method for producing the same, and product containing the same
JP2017105709A (en) * 2011-08-16 2017-06-15 ティアックス エルエルシーTiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
JP2016051503A (en) * 2014-08-28 2016-04-11 Csエナジーマテリアルズ株式会社 Positive electrode substance for lithium ion battery, and method for manufacturing the same
CN112820554A (en) * 2020-06-22 2021-05-18 深圳大学 Nickel-cobalt hydroxide composite material, preparation method thereof and supercapacitor
CN112820554B (en) * 2020-06-22 2022-07-26 深圳大学 Nickel-cobalt hydroxide composite material, preparation method thereof and supercapacitor

Similar Documents

Publication Publication Date Title
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP2000149950A (en) Nonaqueous electrolyte secondary battery
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
TW565961B (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4092064B2 (en) Lithium secondary battery
KR101532807B1 (en) Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US20050220700A1 (en) Positive electrode active material powder for lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
TWI285975B (en) Positive electrode material and battery using the same
JP2001291518A (en) Positive active material for lithium secondary battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2011129066A1 (en) Lithium-ion secondary battery
JP2002100356A (en) Lithium secondary battery
JP4788075B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2003017055A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP4082855B2 (en) Lithium secondary battery
JP4096094B2 (en) Method for producing layered rock salt type lithium nickelate powder
WO2020022305A1 (en) Positive electrode active material
JP7209093B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same