JP2000030776A - Connecting structure for superconducting current lead part - Google Patents
Connecting structure for superconducting current lead partInfo
- Publication number
- JP2000030776A JP2000030776A JP10192148A JP19214898A JP2000030776A JP 2000030776 A JP2000030776 A JP 2000030776A JP 10192148 A JP10192148 A JP 10192148A JP 19214898 A JP19214898 A JP 19214898A JP 2000030776 A JP2000030776 A JP 2000030776A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- temperature side
- connection electrode
- rod
- terminal block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、極低温機器の電流
導入部に用いられる超電導電流リード部の接続構造に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure for a superconducting current lead used in a current introduction section of a cryogenic device.
【0002】[0002]
【従来の技術】一般に、交流超電導コイル、超電導変圧
器などの超電導機器は、液体ヘリウムなどの極低温冷媒
中に浸漬して用いられ、それらの機器から導出された超
電導導線は、冷媒中において外部電源から導かれた電流
リード線に接続されている。また、通常の超電導機器に
おいては高価な液体ヘリウムの蒸散を防止するとともに
一次冷却をする目的から、超電導機器の外周部に液体窒
素を用いた一次冷却系が配置された構造が採用されてい
る。ところで、ここでの電流リード線としては、常電導
性のものよりも、超電導性のものの使用が望ましいとさ
れている。そこで、超電導電流リード線としてロッド状
の超電導導体の使用が考えられているが、その場合、超
電導導体の両端に接続用の金属端子を設ける必要があ
る。2. Description of the Related Art In general, superconducting devices such as an AC superconducting coil and a superconducting transformer are used by being immersed in a cryogenic refrigerant such as liquid helium. It is connected to a current lead led from a power supply. Further, in a normal superconducting device, a structure in which a primary cooling system using liquid nitrogen is arranged on an outer peripheral portion of the superconducting device is adopted for the purpose of preventing evaporation of expensive liquid helium and performing primary cooling. By the way, it is considered that a superconducting wire is more preferable than a normal conducting wire. Therefore, use of a rod-shaped superconducting conductor as a superconducting current lead wire has been considered. In this case, it is necessary to provide metal terminals for connection at both ends of the superconducting conductor.
【0003】ところが、超電導機器は中心部が4.2K
程度の極低温で使用されるため、冷却するとリード部の
超電導導体が収縮するが、このとき超電導導体と接続さ
れている金属端子が超電導機器の匡体に固定されている
と、超電導導体の収縮により機械的な応力がリード部の
超電導導体にかかり、リード部の超電導導体が破壊され
てしまうという問題があった。また、リード部用の超電
導体としては、液体窒素で冷却可能な臨界温度の高い酸
化物超電導体を用いることが考えられているが、酸化物
超電導体はセラミックであり、極めて脆いので、機械的
な応力の負荷は避けなくてはならない。そこで従来、前
述のような問題を解決するために、ロッド状の酸化物超
電導導体と金属端子との間にフレキシブル線を配設した
接続構造が考えられている。[0003] However, the superconducting equipment has a central part of 4.2K.
When used at very low temperatures, the superconducting conductor on the lead shrinks when cooled, but if the metal terminal connected to the superconducting conductor is fixed to the housing of the superconducting device, the superconducting conductor shrinks. Accordingly, there is a problem that a mechanical stress is applied to the superconducting conductor in the lead portion, and the superconducting conductor in the lead portion is broken. Also, as the superconductor for the lead portion, it is considered to use an oxide superconductor having a high critical temperature that can be cooled by liquid nitrogen, but since the oxide superconductor is a ceramic and extremely brittle, it is mechanically High stress loading must be avoided. Therefore, conventionally, in order to solve the above-mentioned problem, a connection structure in which a flexible wire is disposed between a rod-shaped oxide superconductor and a metal terminal has been considered.
【0004】図9は、この種の超電導導体の接続構造の
一例を示す縦断面図であり、この例の構造においては低
温側(例えば4.2Kなどの液体ヘリウムで冷却される
極低温側)の接続電極1と高温側(例えば、77Kなど
の液体窒素で冷却される高温側)の接続電極2との間に
酸化物超電導材料からなる超電導ロッド3が配置されて
いる。そして、この超電導ロッド3の両端部に筒形の電
極端子5、5が半田付けにより固定され、一方の電極端
子5が高温側の接続電極2に一体化され、他方の電極端
子5がフレキシブル導体6を介して低温側の接続電極1
に接続されている。 更に、超電導ロッド3と電極端子
5、5とフレキシブル導体6を覆って筒形のカバー部材
7が接続電極1、2を接続するように配置されている。FIG. 9 is a longitudinal sectional view showing an example of this type of superconducting conductor connection structure. In this example, the structure is of a low temperature side (for example, a cryogenic side cooled by liquid helium such as 4.2K). A superconducting rod 3 made of an oxide superconducting material is arranged between the connecting electrode 1 on the high-temperature side (for example, the high-temperature side cooled by liquid nitrogen such as 77K). Then, cylindrical electrode terminals 5 and 5 are fixed to both ends of the superconducting rod 3 by soldering, one electrode terminal 5 is integrated with the connection electrode 2 on the high temperature side, and the other electrode terminal 5 is a flexible conductor. 6 and the connection electrode 1 on the low temperature side
It is connected to the. Further, a cylindrical cover member 7 covering the superconducting rod 3, the electrode terminals 5, 5 and the flexible conductor 6 is arranged so as to connect the connection electrodes 1 and 2.
【0005】前記フレキシブル導体6は良導電性の金属
細線を編組構造としてなるもので、接続電極1と電極端
子5に半田付け等の接合手段で接続され、このフレキシ
ブル導体6が可撓性を有している。The flexible conductor 6 has a braided structure made of a fine conductive metal wire, and is connected to the connection electrode 1 and the electrode terminal 5 by joining means such as soldering. The flexible conductor 6 has flexibility. are doing.
【0006】図9に示す超電導導体の接続構造において
は、接続電極2が外部電源に接続され、接続電極1が液
体ヘリウムに浸漬された超電導コイルの超電導線に接続
されるようになっている。このような超電導導体の接続
構造にあっては、接続電極1、2の間にフレキシブル導
体6が介在されているので、常温からの冷却に伴って超
電導ロッド3が収縮した場合、フレキシブル線6が変形
することでカバー部材7と超電導ロッド3との熱収縮差
を吸収して超電導ロッド3に機械歪が負荷されることを
防止できるように構成されている。In the superconducting conductor connection structure shown in FIG. 9, the connection electrode 2 is connected to an external power supply, and the connection electrode 1 is connected to a superconducting wire of a superconducting coil immersed in liquid helium. In such a superconducting conductor connection structure, since the flexible conductor 6 is interposed between the connection electrodes 1 and 2, when the superconducting rod 3 contracts with cooling from room temperature, the flexible wire 6 The superconducting rod 3 is configured so as to absorb the thermal contraction difference between the cover member 7 and the superconducting rod 3 and prevent the superconducting rod 3 from being loaded with mechanical strain.
【0007】[0007]
【発明が解決しようとする課題】ところで、図9に示す
接続構造にあっては、高温側の接続電極2と超電導ロッ
ド3が半田付けで直結され、外部から衝撃が加わった場
合に衝撃が直接超電導ロッド3に負荷されることとなる
ので、外部からの衝撃に対して強い構造とはなされてい
ない問題があった。In the connection structure shown in FIG. 9, the connection electrode 2 on the high temperature side and the superconducting rod 3 are directly connected by soldering, and when an external impact is applied, the impact is directly applied. Since the superconducting rod 3 is loaded, there is a problem that the structure is not made strong against external impact.
【0008】本発明は、上記事情に鑑みてなされたもの
で、電流リード接続部分における熱収縮に起因する機械
的応力を超電導ロッドに負荷されない構造を採用したも
のであって、しかも外部からの衝撃に対する安全性も高
めた超電導電流リード部の接続構造を提供することにあ
る。The present invention has been made in view of the above circumstances, and employs a structure in which a mechanical stress caused by thermal contraction at a current lead connection portion is not applied to a superconducting rod, and furthermore, an external shock is applied. It is another object of the present invention to provide a connection structure for a superconducting current lead portion which is also improved in safety.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明は、
極低温機器の電流導入部に用いられる超電導電流リード
部の接続構造において、低温側の金属製の接続電極部と
高温側の金属製の接続電極部との間に酸化物超電導材料
からなる超電導ロッドが配置され、該超電導ロッドの両
端部に良導電性の端子ブロックが接続されるとともに、
前記一方の端子ブロックが低温側の接続電極部との間に
高導電性の金属細線を編んでなるフレキシブル導体を介
して接続され、前記他方の端子ブロックが高温側の接続
電極部との間に高導電性の金属細線を編んでなるフレキ
シブル導体を介して接続される一方、両端子ブロックの
外方に前記高温側の接続電極部と低温側の接続電極部と
に取り付けられて前記端子ブロックと超電導ブロックと
フレキシブル導体を覆う絶縁材料製のカバー部材が設け
られてなることを特徴とする。According to the first aspect of the present invention,
A superconducting rod made of an oxide superconducting material between a low-temperature side metal connection electrode and a high-temperature side metal connection electrode in a connection structure of a superconducting current lead used for a current introduction part of a cryogenic device. Are arranged, and a terminal block of good conductivity is connected to both ends of the superconducting rod,
The one terminal block is connected to a low-temperature side connection electrode portion via a flexible conductor formed by knitting a highly conductive thin metal wire, and the other terminal block is connected to a high-temperature side connection electrode portion. The terminal block is connected to the high-temperature side connection electrode section and the low-temperature side connection electrode section outside the both terminal blocks while being connected via a flexible conductor formed by knitting a highly conductive thin metal wire. A cover member made of an insulating material that covers the superconducting block and the flexible conductor is provided.
【0010】請求項2記載の発明は、前記カバー部材と
各端子ブロックとの間に弾性体からなる緩衝材が介装さ
れてなることを特徴とする。請求項3記載の発明は、前
記フレキシブル導体がその長さをその径よりも小さくし
た短尺構造とされたことを特徴とする。The invention according to claim 2 is characterized in that a cushioning material made of an elastic body is interposed between the cover member and each terminal block. The invention according to claim 3 is characterized in that the flexible conductor has a short structure whose length is smaller than its diameter.
【0011】[0011]
【発明の実施の形態】以下、本発明の超電導リード部の
接続構造の一実施形態について図面を参照して説明す
る。図1は、本発明に係る超電導電流リード部の接続構
造の一実施形態を示す縦断面図である。この例の構造
は、図示略の外部電源に接続されるとともに超電導機器
の一次冷却系に用いられている液体窒素で冷却される高
温側の接続電極部10と、液体ヘリウムで冷却されて使
用される超電導コイル等の超電導装置に接続される低温
側の接続電極部11と、これらの接続電極部10、11
の間に設けられた酸化物超電導材料からなる超電導ロッ
ド12とを主体として構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a connection structure for a superconducting lead according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of a connection structure of a superconducting current lead portion according to the present invention. The structure of this example is connected to an external power supply (not shown) and is connected to a high-temperature side connection electrode portion 10 cooled by liquid nitrogen used in a primary cooling system of a superconducting device, and cooled by liquid helium. Low-temperature-side connection electrode portion 11 connected to a superconducting device such as a superconducting coil, and connection electrode portions 10 and 11
And a superconducting rod 12 made of an oxide superconducting material provided therebetween.
【0012】前記超電導ロッド12の両端部には、良導
電性の金属製の端子ブロック15、15が取り付けら
れ、高温側の接続電極部10と端子ブロック15との間
には第1のフレキシブル導体16が設けられ、低温側の
接続電極部11と端子ブロック15との間には第2のフ
レキシブル導体17が設けられている。また、端子ブロ
ック15、15の外部側にはこれらを覆う繊維強化プラ
スチック製のカバー部材18が配置されている。At both ends of the superconducting rod 12, terminal blocks 15, 15 made of highly conductive metal are attached, and a first flexible conductor is provided between the high-temperature side connection electrode section 10 and the terminal block 15. The second flexible conductor 17 is provided between the low-temperature side connection electrode portion 11 and the terminal block 15. Further, a cover member 18 made of fiber-reinforced plastic is arranged outside the terminal blocks 15 and 15 to cover them.
【0013】前記高温側の接続電極部10は、図2と図
3に示すように矩形ブロック状の基台部20とこの基台
部20の一面に突設された円柱状の接続部21とからな
り、接続部21の先端面中央部にはフレキシブル導体1
6を半田付けするための丸型の凹部22が形成されると
ともに、接続部21の周面には周回りに90度間隔でネ
ジ穴等の固定部23が複数形成されている。前記低温側
の接続電極部11は、図4に示すように円柱型の基台部
25とこの基台部25を延出させて形成した円柱形の接
続部26とからなり、基台部25にはこれを直径方向に
貫通して形成された固定孔27が3つ形成され、接続部
26の先端面の中央部にはフレキシブル導体17を半田
付けするための丸型の凹部28が形成されるとともに、
接続部21の周面には周回りに90度間隔でネジ穴等の
固定部29が複数形成されている。As shown in FIGS. 2 and 3, the connection electrode portion 10 on the high-temperature side includes a rectangular block-shaped base portion 20 and a cylindrical connection portion 21 protruding from one surface of the base portion 20. And the flexible conductor 1
A round concave portion 22 for soldering 6 is formed, and a plurality of fixing portions 23 such as screw holes are formed on the peripheral surface of the connecting portion 21 at intervals of 90 degrees around the circumference. As shown in FIG. 4, the low-temperature-side connection electrode portion 11 includes a columnar base portion 25 and a columnar connection portion 26 formed by extending the base portion 25. Are formed with three fixing holes 27 formed diametrically therethrough, and a round concave portion 28 for soldering the flexible conductor 17 is formed in the center of the distal end surface of the connecting portion 26. Along with
A plurality of fixing portions 29 such as screw holes are formed on the peripheral surface of the connecting portion 21 at intervals of 90 degrees around the circumference.
【0014】前記カバー部材18は、図5と図6に示す
ように半割り筒形のカバー本体30を一組筒形に組み合
わせて構成されるもので、その一端部側に前述の接続電
極部10の固定部23にボルト止めするための透孔32
・・・が形成され、その他端部側に前述の接続電極部11
の固定部29にボルト止めするための透孔33・・・が形
成され、その中央部には超電導ロッド12の抵抗計測装
置等を挿通するための通過孔34が複数形成されてい
る。このカバー本体39は、ガラス繊維を充填したエポ
キシ樹脂等の繊維強化プラスチックから構成されてい
る。As shown in FIGS. 5 and 6, the cover member 18 is formed by combining a half-tubular cover body 30 into a single cylindrical body. Through holes 32 for bolting to fixing portions 23 of 10
Are formed, and the connection electrode portion 11 described above is provided on the other end side.
Are formed in the fixing portion 29 of the superconducting rod 12, and a plurality of through holes 34 for inserting a resistance measuring device or the like of the superconducting rod 12 are formed in a central portion thereof. The cover body 39 is made of fiber reinforced plastic such as epoxy resin filled with glass fiber.
【0015】前記端子ブロック15は図7と図8に示す
ように円柱状の基台部40の先端面側に円錐台状の先端
部41を形成してなるもので、基台部40の後端面には
前述のフレキシブル導体に接合するための丸型の凹部4
2が形成されるとともに、先端部41と基台部40の上
部にかけて切り込み型のスリット43が形成されてい
る。このスリット43は先に説明した超電導ロッド12
の端部を挿入してこれを半田付け固定するためのもの
で、超電導ロッド12の端部が挿入可能な大きさに形成
されている。As shown in FIGS. 7 and 8, the terminal block 15 is formed by forming a truncated cone-shaped tip portion 41 on the tip end surface side of a columnar base portion 40. A round recess 4 for joining to the above-mentioned flexible conductor is provided on the end face.
2, and a notch-shaped slit 43 is formed over the distal end portion 41 and the upper portion of the base portion 40. The slit 43 is provided for the superconducting rod 12 described above.
Are inserted and fixed by soldering, and the end of the superconducting rod 12 is formed in a size that can be inserted.
【0016】前記超電導ロッド12としては、Y1Ba2
Cu3O7-xの組成にて代表されるY−Ba−Cu−O系
の酸化物超電導導体、A−B−Cu−O系(ただし、A
はLa,Ce,Y,Sc,Ybなどの周期律表IIIa族元素の
1種以上を示し、BはSr,Baなどの周期律表IIa族元
素の1種以上を示す)の酸化物超電導導体、Tl2Ba2
Ca2Cu3OZの組成式で代表されるTl−Ba−Ca
−Cu−O系の酸化物超電導導体などの各種酸化物系の
ロッド状の超電導導体が用いられる。As the superconducting rod 12, Y 1 Ba 2
Cu 3 O 7-x is represented by the composition of Y-Ba-Cu-O based oxide superconductor, A-B-Cu-O system (where, A
Represents one or more elements of group IIIa of the periodic table such as La, Ce, Y, Sc, and Yb, and B represents one or more elements of group IIa of the periodic table such as Sr and Ba). , Tl 2 Ba 2
Tl-Ba-Ca represented by the composition formula of Ca 2 Cu 3 O Z
Various oxide-based rod-shaped superconducting conductors such as -Cu-O-based oxide superconducting conductors are used.
【0017】前記フレキシブル導体16、17として
は、網目構造を有する略円柱状、または棒状のものであ
り、かつ外部からの応力に対して変形可能なものであ
り、高導電性材料からなる細線を編むことにより形成さ
れたものである。ここでの高導電性材料からなる細線と
しては、Ag,Cu等の金属製細線が好適に用いられ
る。なお、金属製細線の径が太過ぎるとフレキシブル導
体16、17が硬くなり、超電導ロッド12が収縮した
ときに変形しにくく、収縮応力を充分吸収することがで
きない。The flexible conductors 16 and 17 are substantially cylindrical or rod-shaped having a mesh structure, and are deformable by external stress. It is formed by knitting. As the thin wire made of a highly conductive material here, a thin metal wire such as Ag or Cu is preferably used. If the diameter of the thin metal wire is too large, the flexible conductors 16 and 17 become hard, so that the superconducting rod 12 is not easily deformed when contracted, and the contraction stress cannot be sufficiently absorbed.
【0018】また、電流容量を大きくするためにフレキ
シブル導体16、17の断面積をできる限り大きくする
ことが好ましい。また、低温側のフレキシブル導体17
においては、これを液体ヘリウムにおいて極低温に冷却
することで充分に電気抵抗を低くすることができるの
で、接続時の接続抵抗などの問題は生じない。更に、フ
レキシブル導体17自身を図1に示す如く充分に短く形
成する(例えば、フレキシブル導体17の長さをその直
径よりも小さくする)ことでフレキシブル導体17の電
気抵抗をできる限り少なくすることができる。一方、高
温側のフレキシブル導体16においては液体窒素で冷却
するので、液体ヘリウムで冷却するよりは高抵抗となり
得るが、フレキシブル導体16をフレキシブル導体17
よりも更に短尺とする、例えば、フレキシブル導体16
の長さをその直径(縦幅)よりも短くすることで低抵抗
化することが可能であり、フレキシブル導体16での抵
抗増加も最小限にすることができる。In order to increase the current capacity, it is preferable to increase the cross-sectional area of the flexible conductors 16 and 17 as much as possible. Also, the low-temperature side flexible conductor 17
In this case, the electric resistance can be sufficiently reduced by cooling the liquid helium to cryogenic temperature, so that problems such as connection resistance at the time of connection do not occur. Further, by forming the flexible conductor 17 itself sufficiently short as shown in FIG. 1 (for example, making the length of the flexible conductor 17 smaller than its diameter), the electric resistance of the flexible conductor 17 can be reduced as much as possible. . On the other hand, since the flexible conductor 16 on the high temperature side is cooled by liquid nitrogen, the resistance can be higher than that of cooling by liquid helium.
For example, the flexible conductor 16
By making the length shorter than the diameter (longitudinal width) of the flexible conductor 16, the resistance can be reduced, and the increase in resistance of the flexible conductor 16 can be minimized.
【0019】次に、この実施形態の構造では図1に示す
ように、超電導ロッド12の中央部側に先端部41を向
けた端子ブロック15が超電導ロッド12の両端部に位
置するように取り付けられている。各端子ブロック15
はその内部に形成されたスリット43に超電導ロッド1
2の端部を挿入し、スリット43に半田を流し込むこと
で超電導ロッド12の端部側に固定されている。また、
一方の端子ブロック15の外側に位置する凹部42にフ
レキシブル導体16の端部が半田付けされ、他方の端子
ブロック15の外側に位置する凹部42にフレキシブル
導体17の端部が半田付けされるとともに、フレキシブ
ル導体16の他端部側は高温側の接続電極部10の凹部
22に半田付けされ、フレキシブル導体17の他端部側
は低温側の接続電極部11の凹部28に半田付けされて
いる。Next, in the structure of this embodiment, as shown in FIG. 1, the terminal block 15 with the tip 41 directed toward the center of the superconducting rod 12 is mounted so as to be located at both ends of the superconducting rod 12. ing. Each terminal block 15
Is a superconducting rod 1 formed in a slit 43 formed therein.
2 is fixed to the end side of the superconducting rod 12 by inserting solder into the slit 43. Also,
The end of the flexible conductor 16 is soldered to the recess 42 located outside the one terminal block 15, and the end of the flexible conductor 17 is soldered to the recess 42 located outside the other terminal block 15. The other end of the flexible conductor 16 is soldered to the recess 22 of the connection electrode 10 on the high temperature side, and the other end of the flexible conductor 17 is soldered to the recess 28 of the connection electrode 11 on the low temperature.
【0020】そして、各端子ブロック15の外周部には
ゴム等の弾性材料からなる緩衝材45が巻回固定され、
この緩衝材45の外部側にカバー本体30、30が筒状
に組み合わせて配置され、各カバー本体30の一端側の
各透孔32を貫通させたボルトを接続電極部10の固定
部23に螺合し、カバー本体30の他端側の透孔33を
貫通させてボルトを接続電極部11の固定部29に螺合
することでカバー本体30、30で接続電極部10、1
1が連結されている。なお、本実施形態において前記緩
衝材45は例えば厚さ1mm、幅2mm程度の筒状のも
のなどを用いることができる。A cushioning member 45 made of an elastic material such as rubber is wound and fixed around the outer periphery of each terminal block 15.
The cover bodies 30, 30 are arranged in a cylindrical combination outside the cushioning material 45, and bolts that penetrate through the respective through holes 32 on one end side of the cover bodies 30 are screwed into the fixing portions 23 of the connection electrode unit 10. Then, the bolts are screwed into the fixing portions 29 of the connection electrode portions 11 through the through holes 33 on the other end side of the cover body 30, so that the connection electrode portions 10, 1
1 are connected. In the present embodiment, the cushioning material 45 may be, for example, a cylindrical material having a thickness of about 1 mm and a width of about 2 mm.
【0021】この実施形態の超電導電流リード部の構造
にあっては、超電導ロッド12の一端部側と接続電極部
10との間にフレキシブル導体16を介在させ、超電導
ロッド12の他端部側と接続電極11との間にフレキシ
ブル導体17を介在させているので、全体を冷却した場
合に、カバー部材18と超電導ロッド12との間に熱膨
張係数差があった場合、超電導ロッド12の収縮に対応
してフレキシブル導体16、17が変形し、熱膨張係数
差に起因する収縮応力を吸収できるので、超電導ロッド
12に機械的応力がかかることがなく、超電導ロッド1
2の損傷あるいは破壊を防止することができる。また、
電流容量を大きくする場合、フレキシブル導体16、1
7の断面積を大きく形成するとともに、それを半田付け
する接続電極部10、11の凹部22、28を大きく形
成することで容易に対応することができ、また、これら
の断面積を増加させても個々の電流経路は高導電性の細
線であるので変形し易く、しかもこの高導電性の細線は
網目を構成しているので、バネ定数が大きくなりにく
く、断面積の増加に伴う収縮応力の吸収能力が低下しに
くい。さらに、超電導電流リード部の全長に対するフレ
キシブル導体16、17の長さが短いので、電流容量を
大きくする場合でも超電導電流リード部の小型化を図る
ことができる。In the structure of the superconducting current lead portion of this embodiment, a flexible conductor 16 is interposed between one end of the superconducting rod 12 and the connection electrode portion 10, and is connected to the other end of the superconducting rod 12. Since the flexible conductor 17 is interposed between the superconducting rod 12 and the connecting electrode 11, when the whole is cooled, if there is a difference in the thermal expansion coefficient between the cover member 18 and the superconducting rod 12, the contraction of the superconducting rod 12 is prevented. Correspondingly, the flexible conductors 16 and 17 are deformed and can absorb the contraction stress caused by the difference in the coefficient of thermal expansion, so that no mechanical stress is applied to the superconducting rod 12 and the superconducting rod 1
2 can be prevented from being damaged or destroyed. Also,
When increasing the current capacity, the flexible conductors 16, 1
7 can be easily coped with by forming the cross-sectional area of the connection electrode portions 10 and 11 to be large, and by increasing the cross-sectional area of the connection electrode portions 10 and 11. Also, each current path is a highly conductive thin wire, so it is easy to deform.Moreover, since this highly conductive thin wire forms a mesh, the spring constant is hardly increased, and the contraction stress accompanying the increase in the cross-sectional area is reduced. The absorption capacity is not easily reduced. Further, since the lengths of the flexible conductors 16 and 17 are short with respect to the entire length of the superconducting current lead portion, the size of the superconducting current lead portion can be reduced even when the current capacity is increased.
【0022】図1に示す構造において、接続電極部11
側は液体ヘリウムで極低温(約4.2K)に冷却される
とともに接続電極部10側は液体窒素で液体ヘリウム温
度よりは温度の高い低温(77K程度)に冷却されて使
用される。従って常温からそれぞれの温度に冷却される
場合に、カバー部材18と超電導ロッド12との熱膨張
係数差によって超電導ロッド12には機械応力が作用し
ようとするが、超電導ロッド12の両端部側にそれぞれ
フレキシブル導体16、17を配しているので、これら
が変形することで超電導ロッド12に機械応力は作用し
ない。また、カバー部材18の外部あるいは接続電極部
10、11の外部側から超電導ロッド12の径方向に仮
に衝撃等が作用しても、緩衝材45とフレキシブル導体
16、17が衝撃を吸収するので、超電導ロッド12に
損傷を与えたりこれを破壊してしまうことはない。ここ
で、超電導ロッド12の両端側にフレキシブル導体1
6、17を配し、更に緩衝材45を配することに意義が
あるので、仮に従来構造の如く低温側のみにフレキシブ
ル導体17を配し、更に緩衝材45を配しても、フレキ
シブル導体を設けていない高温側の端子ブロック近傍で
超電導ロッド12を損傷させてしまうおそれが高い。In the structure shown in FIG.
The side is cooled with liquid helium to a very low temperature (about 4.2K) and the connection electrode section 10 side is cooled with liquid nitrogen to a low temperature (about 77K) higher than the liquid helium temperature before use. Therefore, when the superconducting rod 12 is cooled from room temperature to each temperature, mechanical stress tends to act on the superconducting rod 12 due to a difference in thermal expansion coefficient between the cover member 18 and the superconducting rod 12. Since the flexible conductors 16 and 17 are disposed, no mechanical stress acts on the superconducting rod 12 due to the deformation thereof. Further, even if a shock or the like acts on the superconducting rod 12 in the radial direction from outside the cover member 18 or outside the connection electrode portions 10 and 11, the shock absorbing material 45 and the flexible conductors 16 and 17 absorb the shock. The superconducting rod 12 will not be damaged or destroyed. Here, the flexible conductor 1 is attached to both ends of the superconducting rod 12.
Since it is significant to dispose the flexible conductors 6 and 17 and the cushioning material 45, even if the flexible conductor 17 is arranged only on the low temperature side and the cushioning material 45 is further arranged as in the conventional structure, the flexible conductor is There is a high possibility that the superconducting rod 12 will be damaged near the high-temperature side terminal block where it is not provided.
【0023】[0023]
【実施例】(実施例)図1に示すような超電導ロッドの
両端にそれぞれ純銅製の端子ブロックがハンダ付けによ
り接続され、さらに端子ブロックの外側に銅の編組線を
棒状に整形してなるフレキシブル導体を半田付けし、更
にそれらの外側にそれぞれ銅製の接続電極部を半田付け
した。さらにこれらの外側に繊維強化プラスチック製の
カバー本体を被せてこれらを覆い、カバー本体の両端部
を接続電極部にボルト止めして固定した。なお、カバー
本体の内面側の端子ブロックと位置が合う部分には半割
筒型のゴムシートからなる緩衝材を配置し、カバー本体
が筒型に組み合わされた場合に緩衝材で端子ブロックの
外周部を筒状に囲むことができるようにしてからカバー
本体を筒型に取り付けた。ここでの超電導ロッドとして
は、径2.5mm、長さ160mmのY1Ba2Cu 3O7-x
(Y123)超電導導体を用いた。また、フレキシブル
導体としてはCu製網線を外径20mmの棒状に整形し
たものを使用した。フレキシブル導体と接続電極部が半
田付けされる凹部の深さは3mm、高温側、および低温
側の接続電極部の全長をいずれも68mm、端子ブロッ
クの全長を36mmとした。ついで、高温側の接続電極
部を外部電源に接続し、低温側の接続電極部を交流超電
導コイルに巻かれた超電導導線に接続して超電導機器を
作製した。EXAMPLE (Example) A superconducting rod as shown in FIG.
Pure copper terminal blocks are soldered at both ends.
And a copper braided wire outside the terminal block.
Solder a flexible conductor shaped like a bar,
Solder the copper connection electrodes to the outside of them
did. In addition, fiber reinforced plastic
Cover them with the cover body and cover both ends.
Was fixed to the connection electrode part by bolting. The cover
Half the part where the position matches the terminal block on the inner side of the main unit
A cushioning material consisting of a cylindrical rubber sheet is placed, and the cover body
When the terminal block is combined with a cylindrical
Cover so that the outer peripheral part can be surrounded in a cylindrical shape
The main body was attached to a cylinder. As a superconducting rod here
Is Y with a diameter of 2.5 mm and a length of 160 mm1BaTwoCu ThreeO7-x
(Y123) A superconducting conductor was used. Also flexible
As a conductor, a Cu mesh wire is shaped into a rod shape with an outer diameter of 20 mm.
Was used. Flexible conductor and connection electrode part are half
The depth of the recess to be padded is 3mm, high temperature side and low temperature
The total length of the connection electrodes on both sides is 68 mm and the terminal block
The overall length of the hole was 36 mm. Next, the connection electrode on the high temperature side
To the external power supply, and connect the low-
Connected to the superconducting wire wound on the conducting coil to
Produced.
【0024】そして、実施例の超電導電流リード部につ
いて、交流電流の通電特性について試験した。前述の交
流超電導コイルと、これから導出された超電導導線と、
実施例の超電導リード部を、密閉したデュワーベッセル
に収容し、超電導導線と低温側の接続電極部が浸漬され
るまで液体ヘリウムを充填した。この系に接続電極部を
通じて電圧100V、電流30Aの交流を負荷した。2
時間の運転期間中、超電導コイルには設計値の95%の
電流が流れて正常に作動した。また、この通電試験終了
後、液体ヘリウムによる冷却を停止して全体を常温に戻
し、その後、再び液体ヘリウムによる冷却を行って再度
通電する試験を繰り返し3回行ったが、性能が劣化する
ことはなかった。Then, the superconducting current lead portion of the embodiment was tested for the AC current conduction characteristics. The above-described AC superconducting coil and a superconducting wire derived therefrom,
The superconducting lead portion of the example was accommodated in a sealed Dewar vessel, and filled with liquid helium until the superconducting wire and the low-temperature side connection electrode portion were immersed. An AC voltage of 100 V and a current of 30 A was applied to the system through the connection electrode. 2
During the operation period of time, a current of 95% of the design value flowed through the superconducting coil, and the superconducting coil operated normally. After the completion of the energization test, cooling with liquid helium was stopped and the whole was returned to normal temperature. Thereafter, a test in which cooling with liquid helium was performed again and energization was performed again and again was performed three times. Did not.
【0025】(比較例)比較のため、高温側の接続電極
部と端子ブロックとの間のフレキシブル導体を省略して
高温側の接続電極部に端子ブロックを半田により直付け
し、更に端子ブロック周囲の緩衝材を省略した構造とし
た以外は実施例とほぼ同様の超電導電流リード部を作製
した。COMPARATIVE EXAMPLE For comparison, the flexible conductor between the high-temperature side connection electrode portion and the terminal block was omitted, the terminal block was directly attached to the high-temperature side connection electrode portion by soldering, and the periphery of the terminal block was further removed. Substantially the same superconductive current lead as in the example except that the buffer material was omitted.
【0026】そして、比較例の超電導電流リード部につ
いて、前述の実施例と同様にして交流電流の通電特性に
ついて試験した。その結果、2時間の運転期間中、超電
導コイルには設計値の95%の電流が流れて正常に作動
した。しかし、この通電試験終了後、液体ヘリウムによ
る冷却を停止して全体を常温に戻し、その後、再び液体
ヘリウムによる冷却を行って再度通電する試験を繰り返
し3回行ったところ、通電電流が3%低下した。これ
は、極低温から常温への温度履歴を繰り返すことで超電
導ロッドに何らかの熱収縮応力が作用し、超電導ロッド
の超電導特性が劣化したためであると推定される。Then, the superconducting current lead portion of the comparative example was tested for the alternating current conduction characteristics in the same manner as in the above-described embodiment. As a result, during the operation period of 2 hours, a current of 95% of the designed value flowed in the superconducting coil, and the superconducting coil operated normally. However, after completion of the energization test, the cooling with liquid helium was stopped and the whole was returned to room temperature. Thereafter, the test with cooling with liquid helium and energizing again was repeated three times, and the energizing current decreased by 3%. did. It is presumed that this is because the repetition of the temperature history from the extremely low temperature to the normal temperature causes some heat shrinkage stress to act on the superconducting rod, and the superconducting characteristics of the superconducting rod have deteriorated.
【0027】[0027]
【発明の効果】以上説明したように本発明の超電導電流
リード部の接続構造にあっては、酸化物超電導材料から
なる超電導ロッドの両端側にそれぞれフレキシブル導体
を配して接続電極部に接続したので、超電導ロッドとそ
れに接続される接続電極部の熱膨張率が異なり、冷却時
に超電導ロッドに熱収縮に起因する応力が作用しようと
しても、超電導ロッドの両端側でそれぞれフレキシブル
導体が緩衝作用を奏する結果、冷却時の熱収縮に起因す
る機械応力を超電導ロッドに作用させない効果を奏す
る。 従って、常温と極低音との間で繰り返し冷却を行
っても超電導ロッドに熱応力に伴う機械歪の悪影響を及
ぼすことがない効果を奏する。更に、超電導ロッドの両
端部にフレキシブル導体を配しているので、超電導ロッ
ドの径方向にカバー部材の外部から衝撃や力が作用して
もこれらが超電導ロッドに伝わりにくい構造となってい
て、衝撃や外力に強い超電導リード部の接続構造を提供
できる。As described above, in the connection structure of the superconducting current lead portion according to the present invention, flexible conductors are arranged on both ends of a superconducting rod made of an oxide superconducting material and connected to the connection electrode portion. Therefore, even if the thermal expansion coefficient of the superconducting rod and the connection electrode portion connected thereto are different, and the stress caused by thermal contraction acts on the superconducting rod at the time of cooling, the flexible conductor exerts a buffering action at both ends of the superconducting rod. As a result, there is an effect that mechanical stress caused by heat shrinkage during cooling is not applied to the superconducting rod. Therefore, even if the cooling is repeatedly performed between the room temperature and the extremely low tone, there is an effect that the superconducting rod is not adversely affected by the mechanical strain due to the thermal stress. Furthermore, since flexible conductors are arranged at both ends of the superconducting rod, even if an impact or force acts from the outside of the cover member in the radial direction of the superconducting rod, it is difficult for these to be transmitted to the superconducting rod. And a connection structure for a superconducting lead portion resistant to external force.
【0028】また、超電導ロッドの両端部にフレキシブ
ル導体を配した上に、カバー部材と端子電極との間に緩
衝材を介在させたので、外部からの衝撃がカバー部材と
接続電極から作用しても内部の超電導ロッドに機械的な
歪を更に一層与えにくい構造となっている。従って外部
衝撃にも特に強い超電導電流リード部の接続構造を提供
できる。Also, since flexible conductors are arranged at both ends of the superconducting rod and a buffer material is interposed between the cover member and the terminal electrode, external impact acts on the cover member and the connection electrode. Also has a structure in which mechanical strain is hardly applied to the internal superconducting rod. Therefore, it is possible to provide a connection structure of the superconducting current lead portion which is particularly resistant to external impact.
【0029】更に、フレキシブル導体を短尺構造とする
ならば、フレキシブル導体における抵抗増加を極めて少
なくすることができるとともに、超電導電流リード部の
全体の長さの増加を抑えることができ、電流リード部の
小型化、軽量化を図ることができる。Further, if the flexible conductor has a short structure, the increase in the resistance of the flexible conductor can be extremely reduced, and the increase in the overall length of the superconducting current lead can be suppressed. The size and weight can be reduced.
【図1】 本発明に係る超電導電流リード部の一実施形
態を示す縦断面図。FIG. 1 is a longitudinal sectional view showing one embodiment of a superconducting current lead portion according to the present invention.
【図2】 図1に示す構造に用いられる高温側の接続電
極部の平面図。FIG. 2 is a plan view of a high-temperature side connection electrode portion used in the structure shown in FIG. 1;
【図3】 図2に示す接続電極部の側面図。FIG. 3 is a side view of the connection electrode unit shown in FIG. 2;
【図4】 図1に示す構造に用いられる低温側の接続電
極部の平面図。FIG. 4 is a plan view of a low-temperature side connection electrode portion used in the structure shown in FIG. 1;
【図5】 図1に示す構造に用いられるカバー部材の平
面図。FIG. 5 is a plan view of a cover member used in the structure shown in FIG. 1;
【図6】 図5に示すカバー部材の側面図。FIG. 6 is a side view of the cover member shown in FIG. 5;
【図7】 図1に示す構造に用いられる端子ブロックの
側面図。FIG. 7 is a side view of a terminal block used in the structure shown in FIG. 1;
【図8】 図7に示す端子ブロックの正面図。FIG. 8 is a front view of the terminal block shown in FIG. 7;
【図9】 先に本発明者が用いていた超電導電流リード
部の構造を示す縦断面図。FIG. 9 is a longitudinal sectional view showing a structure of a superconducting current lead portion used by the present inventors.
10、11・・・接続電極、12・・・超電導ロッド、15・・
・端子電極、16、17・・・フレキシブル導体、18・・・
カバー部材、45・・・緩衝材。10, 11 ... connection electrode, 12 ... superconducting rod, 15 ...
.Terminal electrodes, 16, 17 ... flexible conductors, 18 ...
Cover member, 45 ... cushioning material.
Claims (3)
電導電流リード部の接続構造において、低温側の金属製
の接続電極部と高温側の金属製の接続電極部との間に酸
化物超電導材料からなる超電導ロッドが配置され、該超
電導ロッドの両端部に良導電性の端子ブロックが接続さ
れるとともに、前記一方の端子ブロックが低温側の接続
電極部との間に高導電性の金属細線を編んでなるフレキ
シブル導体を介して接続され、前記他方の端子ブロック
が高温側の接続電極部との間に高導電性の金属細線を編
んでなるフレキシブル導体を介して接続される一方、両
端子ブロックの外方に前記高温側の接続電極部と低温側
の接続電極部に取り付けられて前記端子ブロックと超電
導ロッドとフレキシブル導体を覆う絶縁材料製のカバー
部材が設けられてなることを特徴とする超電導電流リー
ド部の接続構造。In a connection structure of a superconducting current lead portion used for a current introduction portion of a cryogenic device, an oxide superconducting material is provided between a low-temperature side metal connection electrode portion and a high-temperature side metal connection electrode portion. A superconducting rod made of a material is disposed, and a terminal block having good conductivity is connected to both ends of the superconducting rod, and the one terminal block is connected to a low-temperature side connection electrode part by a highly conductive thin metal wire. The other terminal block is connected via a flexible conductor formed by knitting a highly conductive thin metal wire between the other terminal block and the connection electrode portion on the high-temperature side, while both terminals are connected to each other. A cover member made of an insulating material attached to the high-temperature side connection electrode section and the low-temperature side connection electrode section to cover the terminal block, the superconducting rod, and the flexible conductor is provided outside the block. A connection structure for a superconducting current lead portion, characterized in that:
に弾性体からなる緩衝材が介装されてなることを特徴と
する請求項1に記載の超電導電流リード部の接続構造。2. The superconducting current lead connection structure according to claim 1, wherein a buffer material made of an elastic material is interposed between said cover member and each terminal block.
径よりも小さくした短尺構造とされたことを特徴とする
請求項1または2に記載の超電導電流リード部の接続構
造。3. The connection structure for a superconducting current lead according to claim 1, wherein the flexible conductor has a short structure having a length smaller than a diameter thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10192148A JP2000030776A (en) | 1998-07-07 | 1998-07-07 | Connecting structure for superconducting current lead part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10192148A JP2000030776A (en) | 1998-07-07 | 1998-07-07 | Connecting structure for superconducting current lead part |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000030776A true JP2000030776A (en) | 2000-01-28 |
Family
ID=16286507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10192148A Withdrawn JP2000030776A (en) | 1998-07-07 | 1998-07-07 | Connecting structure for superconducting current lead part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000030776A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250269A (en) * | 2006-03-14 | 2007-09-27 | Nippon Steel Corp | Oxide superconductor conducting element |
KR101011234B1 (en) | 2004-12-01 | 2011-01-26 | 넥쌍 | A connection arrangement for superconductor cable shields |
KR101091187B1 (en) | 2009-05-26 | 2011-12-09 | 한국전기연구원 | superconducting current lead |
KR101349371B1 (en) * | 2012-11-07 | 2014-01-14 | 한국전기연구원 | Flexible superconducting current lead |
JP2015122163A (en) * | 2013-12-20 | 2015-07-02 | 昭和電線ケーブルシステム株式会社 | Superconductive current lead |
JP2015185423A (en) * | 2014-03-25 | 2015-10-22 | 昭和電線ケーブルシステム株式会社 | Superconductive current lead |
JP2015211009A (en) * | 2014-04-30 | 2015-11-24 | 昭和電線ケーブルシステム株式会社 | Superconducting current lead and method of manufacturing superconducting current lead |
JP2016076344A (en) * | 2014-10-03 | 2016-05-12 | 昭和電線ケーブルシステム株式会社 | Superconducting current lead |
JP2018092941A (en) * | 2018-01-16 | 2018-06-14 | 昭和電線ケーブルシステム株式会社 | Superconductive current reed |
JP2021515414A (en) * | 2018-09-26 | 2021-06-17 | 中国科学院合肥物質科学研究院Hefei Institutes Of Physical Science, Chinese Academy Of Sciences | Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead |
-
1998
- 1998-07-07 JP JP10192148A patent/JP2000030776A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101011234B1 (en) | 2004-12-01 | 2011-01-26 | 넥쌍 | A connection arrangement for superconductor cable shields |
JP2007250269A (en) * | 2006-03-14 | 2007-09-27 | Nippon Steel Corp | Oxide superconductor conducting element |
JP4728847B2 (en) * | 2006-03-14 | 2011-07-20 | 新日本製鐵株式会社 | Oxide superconductor conducting element |
KR101091187B1 (en) | 2009-05-26 | 2011-12-09 | 한국전기연구원 | superconducting current lead |
KR101349371B1 (en) * | 2012-11-07 | 2014-01-14 | 한국전기연구원 | Flexible superconducting current lead |
JP2015122163A (en) * | 2013-12-20 | 2015-07-02 | 昭和電線ケーブルシステム株式会社 | Superconductive current lead |
JP2015185423A (en) * | 2014-03-25 | 2015-10-22 | 昭和電線ケーブルシステム株式会社 | Superconductive current lead |
JP2015211009A (en) * | 2014-04-30 | 2015-11-24 | 昭和電線ケーブルシステム株式会社 | Superconducting current lead and method of manufacturing superconducting current lead |
JP2016076344A (en) * | 2014-10-03 | 2016-05-12 | 昭和電線ケーブルシステム株式会社 | Superconducting current lead |
JP2018092941A (en) * | 2018-01-16 | 2018-06-14 | 昭和電線ケーブルシステム株式会社 | Superconductive current reed |
JP2021515414A (en) * | 2018-09-26 | 2021-06-17 | 中国科学院合肥物質科学研究院Hefei Institutes Of Physical Science, Chinese Academy Of Sciences | Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5691679A (en) | Ceramic superconducting lead resistant to moisture and breakage | |
US5742217A (en) | High temperature superconductor lead assembly | |
EP1489693B1 (en) | joint structure of superconducting cable and insulating spacer for connecting superconducting cable | |
JP2000030776A (en) | Connecting structure for superconducting current lead part | |
KR20040111104A (en) | Termination structure of cryogenic cable | |
JP2980808B2 (en) | Oxide superconducting current lead device | |
US5571606A (en) | Ceramic superconducting lead resistant to breakage | |
US8880134B2 (en) | Superconductor device | |
JP2756551B2 (en) | Conduction-cooled superconducting magnet device | |
JP2008305765A (en) | Oxide superconductive current lead | |
JP3701985B2 (en) | Oxide superconducting current lead | |
JP2012099573A (en) | Superconductive current lead and superconducting magnet device | |
US5759960A (en) | Superconductive device having a ceramic superconducting lead resistant to breakage | |
JPH08321416A (en) | Current lead for superconducting device | |
JP3125532B2 (en) | Current lead using oxide superconductor | |
JP3711159B2 (en) | Oxide superconducting current lead | |
KR100394229B1 (en) | Superconductive joint device and method between the multi-filament super-conductors and fixing apparatus therefor | |
JPH0869719A (en) | Current lead for superconducting device | |
JPH07142771A (en) | Current lead device | |
JP3127705B2 (en) | Current lead using oxide superconductor | |
JPH01185129A (en) | Current limiter | |
JP2000082851A (en) | Current lead for supfrconducting device | |
JP2000101153A (en) | Current lead for superconducting device | |
JPH10321271A (en) | Connecting structure of superconductive conductor | |
JPH02256206A (en) | Superconducting power lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051004 |