[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000017781A - Earthquake energy absorbing beam member - Google Patents

Earthquake energy absorbing beam member

Info

Publication number
JP2000017781A
JP2000017781A JP10186136A JP18613698A JP2000017781A JP 2000017781 A JP2000017781 A JP 2000017781A JP 10186136 A JP10186136 A JP 10186136A JP 18613698 A JP18613698 A JP 18613698A JP 2000017781 A JP2000017781 A JP 2000017781A
Authority
JP
Japan
Prior art keywords
flange
beam member
earthquake
center
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10186136A
Other languages
Japanese (ja)
Inventor
Shinichi Takahashi
新一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10186136A priority Critical patent/JP2000017781A/en
Publication of JP2000017781A publication Critical patent/JP2000017781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the rupture of a portion of a beam end due to the accumulation of fatigue by being intensively and repeatedly plastized during great earthquake and to increase energy absorbing efficiency. SOLUTION: The flange 11 of a beam member 1 in a sectional H-shape, integrated as a portion of a beam at the end of the beam, is accommodated to bending moment distribution arising in the beam during an earthquake, with the width increased from the center side of the beam of the end side. In this way, the flange 11 of the beam member 1 is yielded throughout the total length in a preset area at the same time during an earthquake.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は鉄骨造の柱・梁架
構の梁端部に組み込まれる形で使用され、地震時のエネ
ルギ吸収能力の大きい弾塑性履歴特性を持たせた地震エ
ネルギ吸収梁部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic energy absorbing beam member which is used in a form incorporated into a beam end of a steel column / beam frame and has an elasto-plastic hysteresis characteristic having a large energy absorbing capacity at the time of an earthquake. It is about.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】鉄骨造
の柱・梁架構の梁における地震時の曲げモーメントは図
6−(c) に破線で示すように梁中央が反曲点となり、梁
端部が最大となる三角形状の分布となるが、図6−(a)
に示すように梁のフランジが全長に亘って同一幅である
場合、曲げ応力度は梁端部で最大となるため、図6−
(a) ,(b) にハッチで示すように梁の降伏はこの端部で
生じ、大地震時には梁端部の同じ部分が繰り返して塑性
化することによる疲労蓄積によって破断することが想定
される。
2. Description of the Related Art The bending moment at the time of an earthquake in a beam of a steel-framed column / beam frame at the center of the beam becomes an inflection point as shown by a broken line in FIG. Fig. 6- (a)
As shown in Fig. 6, when the beam flanges have the same width over the entire length, the bending stress becomes maximum at the beam end.
As shown by hatches in (a) and (b), the yielding of the beam occurs at this end, and it is assumed that during a large earthquake, the same part of the beam end repeatedly breaks due to fatigue accumulation due to repeated plasticization. .

【0003】疲労蓄積による梁端部の破断を防止するた
めに、従来は梁フランジの板厚を増す等、鋼材の量を増
加させることで対応しているが、梁端部の塑性化領域は
いわば長さのない点で、塑性流れが生じにくい部分であ
り、鋼材には図8に示すように降伏(εy )後、塑性歪
み(ε)の増加に伴う歪み硬化により応力(σy )が上
昇し、降伏後も一定の剛性を保有し続ける特性があるた
め、鋼材量を増しても歪みの伸展による応力上昇( sσ
y )によって破断に至る可能性がある。
Conventionally, in order to prevent the beam end from being broken due to the accumulation of fatigue, it is conventionally required to increase the thickness of the beam flange or to increase the amount of steel material. It is a part having no length, so that plastic flow hardly occurs. After yielding (ε y ), as shown in FIG. 8, the steel material has a stress (σ y ) due to strain hardening accompanying an increase in plastic strain (ε). Has a characteristic of maintaining a constant rigidity even after yielding. Therefore, even if the amount of steel material is increased, the stress rise due to the extension of strain ( s σ
y ) may lead to breakage.

【0004】梁の塑性化は図9に示すように梁端部が降
伏応力度σy に達するときの曲げモーメントMP の作用
後、破断歪みに達するまでの歪みの増大による応力上昇
sσy )を生じさせる曲げモーメント sP が降伏時
の曲げモーメントMP を上回る区間で起こる。
[0004] plasticization of the beam stresses increase due to increased strain to reach the bend after the action of moment M P, breaking strain when the beam-portion as shown in FIG. 9 reaches the yield stress of σ y (s σ bending moment s M P cause y) occurs in a section above the bending moment M P at the time of surrender.

【0005】塑性化部分の破断はこの他、図7に示すよ
うに梁部材のウェブにスカーラップの形成等による断面
欠損があれば、歪み硬化に伴う応力上昇により柱・梁接
合部の応力が上昇することで、ウェブの耐力低下を招く
ため、その断面欠損部分でも起こる。
In addition, as shown in FIG. 7, if the web of the beam member has a cross-sectional defect due to the formation of scar wrap, etc., the stress at the column-beam joint is increased due to the increase in stress accompanying strain hardening. Ascending raises a reduction in the proof stress of the web, so that it also occurs at a portion where the cross section is defective.

【0006】この発明は上記背景より、梁端部寄りのあ
る区間で地震時に実質的に同時に塑性化し、エネルギを
効率的に吸収する梁部材を提案するものである。
In view of the above background, the present invention proposes a beam member that plasticizes substantially simultaneously during an earthquake in a section near the beam end and efficiently absorbs energy.

【0007】[0007]

【課題を解決するための手段】本発明では梁の端部位置
に、梁の一部として一体化するH形断面の梁部材のフラ
ンジを地震時の梁に生ずる曲げモーメント分布に対応さ
せた形にし、その幅を梁の中央側から端部側へかけて拡
大させることにより、地震時に梁部材のフランジを設定
した領域全長に亘って同時に降伏させ、地震時のエネル
ギ吸収効率を高める。
According to the present invention, a flange of an H-shaped beam member integrated as a part of a beam is provided at an end position of the beam so as to correspond to a bending moment distribution generated in the beam during an earthquake. By increasing the width from the center to the end of the beam, the flange of the beam member is simultaneously yielded over the entire length of the set area at the time of the earthquake, and the energy absorption efficiency at the time of the earthquake is increased.

【0008】地震時に梁に生ずる曲げモーメントは鉛直
荷重による平常時の曲げモーメントを無視すれば、図2
に破線で示すように梁の中央が0で、端部が最大となる
三角形状に分布する。一方、フランジの幅が梁の中央側
から端部側へかけて拡大した梁部材を組み込んだ梁の、
ある断面における曲げ耐力は軸方向に実線で示す形で分
布するため、梁の全長の内、梁部材を組み込んだ区間に
おいては軸方向のいずれの位置においても地震時に曲げ
耐力を超える曲げモーメントによって降伏応力に達し、
一様に降伏して塑性化することになる。
The bending moment generated in the beam during an earthquake can be obtained by ignoring the normal bending moment due to the vertical load, as shown in FIG.
As shown by a broken line, the beam is distributed in a triangular shape in which the center of the beam is 0 and the ends are maximum. On the other hand, for a beam incorporating a beam member whose flange width increased from the center to the end of the beam,
Since the bending strength at a certain cross section is distributed in the axial direction as shown by the solid line, in the section where the beam member is incorporated within the entire length of the beam, any position in the axial direction yields due to the bending moment exceeding the bending strength at the time of the earthquake. Reaches the stress,
It will yield uniformly and become plastic.

【0009】梁が全長に亘って一様断面である場合、梁
の曲げ耐力は図6−(c) に実線で示すように梁中央から
梁端部まで軸方向に一定であるため、前記の通り、塑性
化の領域は梁端部に集中し、その一箇所のみが繰り返し
て塑性化することによる疲労の蓄積があるが、本発明の
梁部材は設定した領域全長に亘って一様に塑性化するた
め、塑性化の領域が拡張し、疲労の蓄積が生じない。
When the beam has a uniform cross section over the entire length, the bending strength of the beam is constant in the axial direction from the beam center to the beam end as shown by the solid line in FIG. As described above, the plasticized region is concentrated at the end of the beam, and only one of the regions has accumulated fatigue due to repeated plasticization, but the beam member of the present invention has a uniform plasticity over the entire length of the set region. Therefore, the region of plasticization is expanded and the accumulation of fatigue does not occur.

【0010】また塑性化領域が一定の長さを持つこと
で、その長さの範囲内で塑性流れが起こるため、歪み硬
化による応力上昇がなく、図4に示すように塑性化後の
剛性が0となる完全弾塑性型の復元力特性を示すことに
なり、歪みの伸展があっても破断する可能性が小さくな
る。
[0010] Further, since the plasticized region has a certain length, a plastic flow occurs within the range of the length, so that there is no increase in stress due to strain hardening, and as shown in FIG. It shows the restoring force characteristic of a perfect elasto-plastic type, which is 0, and the possibility of breakage is reduced even if the strain is extended.

【0011】地震時に塑性化する材料の吸収エネルギ量
は塑性歪みと、塑性化する範囲の体積との積で決まるこ
とから、本発明の梁部材のように塑性化領域が一定の長
さを持つことで、塑性化する範囲の体積が増加するた
め、塑性歪みが小さくても一定の吸収エネルギ量を得る
ことができる。
Since the amount of absorbed energy of a material to be plasticized during an earthquake is determined by the product of the plastic strain and the volume of the plasticized area, the plasticized region has a fixed length as in the beam member of the present invention. This increases the volume in the plasticizing range, so that a constant amount of absorbed energy can be obtained even if the plastic strain is small.

【0012】また鋼材は塑性歪みのレベルが低い程、繰
り返しの塑性化に対して破断までの累積塑性エネルギ量
が増大する性質を持つが、本発明のようにエネルギ吸収
部分である塑性化部分の体積を増大できる結果、塑性化
部分の塑性歪みのレベルを低下させることが可能にな
り、破断までの累積エネルギ量を大きく稼ぐことができ
る。このことから、本発明の梁部材を組み込んだ柱・梁
架構は破断しにくい、変形能力の高い耐震架構となる。
Further, the steel material has such a property that as the level of plastic strain is lower, the amount of accumulated plastic energy up to fracture increases with repeated plasticization. However, as in the present invention, the plasticized portion, which is an energy absorbing portion, is formed. As a result of being able to increase the volume, the level of plastic strain in the plasticized portion can be reduced, and the amount of accumulated energy until fracture can be greatly increased. From this, the column / beam frame incorporating the beam member of the present invention is a seismic frame with high deformation capability that is difficult to break.

【0013】梁部材のフランジの平面形状は、請求項2
に記載のように軸方向の設定した領域全長に亘って地震
時の曲げモーメント分布に一致するようにフランジの曲
げ耐力が分布する台形状をし、軸方向のある断面におけ
る曲げモーメントがその断面における曲げ耐力となると
きに、その他の断面における曲げモーメントがその断面
における曲げ耐力となるため、梁部材のフランジのある
断面が降伏するときに他の断面も同時に降伏することに
なる。
The planar shape of the flange of the beam member is defined in claim 2.
Has a trapezoidal shape in which the bending strength of the flange is distributed so as to match the bending moment distribution during the earthquake over the entire length of the set region in the axial direction, and the bending moment in a certain cross section in the axial direction is When the bending strength is obtained, the bending moment in the other cross section becomes the bending strength in the cross section. Therefore, when the cross section with the flange of the beam member yields, the other cross section also yields at the same time.

【0014】具体的には以下のようにフランジの梁中央
側端部の幅と、フランジの梁端部側端部の幅の関係が決
められる。
More specifically, the relationship between the width of the flange center side end of the flange and the width of the flange beam end side end of the flange is determined as follows.

【0015】図3に示すように梁中央から梁部材の梁中
央側の端部までの距離をa、梁部材の梁端部側の端部ま
での距離をbとし、ウェブの全塑性モーメントをM1、
フランジの梁中央側端部の全塑性モーメントをM2とし
たとき、フランジの梁端部側端部の全塑性モーメントM
f(b) はa:b=(M1+M2):(M1+Mf(b))
よりMf(b) =b/a・(M1+M2)−M1となる。
As shown in FIG. 3, a is the distance from the beam center to the end of the beam member on the beam center side, b is the distance from the beam end to the beam end side of the beam member, and the total plastic moment of the web is M1,
When the total plastic moment at the beam center end of the flange is M2, the total plastic moment M at the beam end of the flange is M2.
f (b) is a: b = (M1 + M2) :( M1 + Mf (b))
Thus, Mf (b) = b / a · (M1 + M2) −M1.

【0016】フランジの板厚をh、フランジの梁中央側
端部の幅をBとすれば、フランジの梁中央側端部の降伏
応力度σa=6・M2/B・h2 、フランジの梁端部側
端部の幅をB’とすれば、フランジの梁端部側端部の降
伏応力度σb=6・Mf(b)/B’・h2 であり、σa
=σbより、請求項3に記載のようにB’=(Mf(b)
/M2)・B={b/a・(M1/M2+1)−(M1
/M2)}・Bの関係が導かれる。
Assuming that the thickness of the flange is h and the width of the end of the flange at the center of the beam is B, the yield stress σa at the end of the flange at the center of the beam is σa = 6 · M2 / B · h 2 , Assuming that the width of the end portion is B ′, the yield stress degree σb = 6 · Mf (b) / B ′ · h 2 at the beam end portion of the flange, and σa
= Σb, B ′ = (Mf (b)
/ M2) · B = {b / a · (M1 / M2 + 1) − (M1
/ M2)} · B is derived.

【0017】梁端部の塑性化によって地震時のエネルギ
を吸収することは特開平8-151686号においても提案され
ているが、この例では材料自体の特性を利用して柱や梁
の母材を弾性状態にしたままハンチ部材を塑性化させる
ために、ハンチ部材に母材より相対的に降伏耐力の小さ
い材料を使用し、また一次設計レベルの外力によってエ
ネルギ吸収効果を得ることを目的としていることから、
二次設計レベルの外力に対してはハンチ部材の降伏後の
歪みが大きくなり、十分なエネルギ吸収効果を期待でき
ないことが考えられる。
Although it is proposed in JP-A-8-151686 to absorb the energy at the time of an earthquake by plasticizing the beam end, in this example, the base material of the column or beam is utilized by utilizing the characteristics of the material itself. In order to plasticize the haunch member while maintaining the elasticity of the haunch member, the haunch member is made of a material having a smaller yield strength than the base material, and the purpose is to obtain an energy absorbing effect by an external force at the primary design level. From that
It is conceivable that the distortion after the yield of the haunch member becomes large with respect to the external force at the secondary design level, and a sufficient energy absorbing effect cannot be expected.

【0018】これに対し、本発明ではフランジの幅を地
震時の梁に生ずる曲げモーメント分布に対応させ、特に
フランジの曲げ耐力分布が地震時の曲げモーメント分布
に一致するように梁部材のフランジの形状を決定するこ
とで、梁部材のフランジが曲げ耐力に達する曲げモーメ
ントの作用時にも梁部材が一体化する梁中央寄りの梁本
体の曲げ耐力にはその曲げモーメントに対して余力があ
ることになるため、梁本体と梁部材に同一の材料を使用
しても梁部材の降伏以前に梁本体が降伏することはな
く、必ずしも梁部材に梁本体の降伏耐力より小さい材料
を使用する必要はない。
On the other hand, in the present invention, the width of the flange is made to correspond to the bending moment distribution generated in the beam at the time of the earthquake, and in particular, the bending strength distribution of the flange is matched with the bending moment distribution at the time of the earthquake. By determining the shape, the bending strength of the beam body near the center of the beam where the beam member is integrated even when the bending moment at which the flange of the beam member reaches the bending strength has extra capacity for the bending moment Therefore, even if the same material is used for the beam body and the beam member, the beam body does not yield before the yielding of the beam member, and it is not necessary to use a material smaller than the yield strength of the beam body for the beam member. .

【0019】このことから、梁本体に梁部材と同一の材
料を使用した場合、または梁部材より降伏耐力の大きい
材料をした場合には梁部材が降伏した後にも余力を持つ
梁本体の断面を低減することが可能になる。
From the above, when the same material as the beam member is used for the beam body, or when a material having a higher yield strength than the beam member is used, the cross section of the beam body having extra capacity even after yielding of the beam member is reduced. It becomes possible to reduce.

【0020】また本発明では塑性化領域が梁部材の設定
した領域全長に亘るため、上記の通り、大地震(二次設
計レベルの外力)時の振動による疲労蓄積があっても塑
性化領域が破断に至ることがないため、十分なエネルギ
吸収効果を期待できる。
Further, in the present invention, since the plasticized region extends over the entire length of the region set by the beam member, as described above, even if there is fatigue accumulation due to vibration during a large earthquake (external force at the secondary design level), the plasticized region is formed. Since no break occurs, a sufficient energy absorbing effect can be expected.

【0021】更に上記例ではハンチ部材が鉛直ハンチ形
であることから、梁端部での梁成が大きくなるため、梁
端部側の下端が天井から突出することがある等、建築計
画に影響を与える可能性があるが、本発明の梁部材のフ
ランジは水平ハンチ形であるため、建築計画に影響を及
ぼすことはない。
Further, in the above example, since the haunch member is of a vertical haunch type, the beam structure at the beam end becomes large, so that the lower end on the beam end side may protrude from the ceiling, which may affect the construction plan. However, since the flange of the beam member of the present invention has a horizontal haunch shape, it does not affect the architectural plan.

【0022】[0022]

【発明の実施の形態】この発明は図1に示すように鉄骨
造の柱・梁架構において、梁の端部位置に、梁の一部と
して一体化する梁部材1であり、梁の全長の内、中央寄
りに位置する梁本体2の断面形状に対応し、フランジ11
とウェブ12からH形断面で構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, the present invention relates to a beam member 1 integrated as a part of a beam at an end position of the beam in a steel column / beam frame. Corresponding to the cross-sectional shape of the beam body 2 located closer to the center
And an H-shaped cross section from the web 12.

【0023】図面では梁部材1の柱4側にブラケット3
が位置し、梁部材1が梁本体2とブラケット3に挟み込
まれる形で梁の一部となっているが、梁部材1は柱4に
直接接合される場合もある。フランジ11とウェブ12は梁
本体2のフランジとウェブに連続する。
In the drawing, a bracket 3 is provided on the column 4 side of the beam member 1.
And the beam member 1 is a part of the beam sandwiched between the beam body 2 and the bracket 3, but the beam member 1 may be directly joined to the column 4. The flange 11 and the web 12 are continuous with the flange and the web of the beam body 2.

【0024】梁部材1のフランジ11は図2に示す、地震
時の梁に生ずる曲げモーメント分布に対応し、幅が梁の
中央側から端部側へかけて拡大する台形状をし、その梁
端部側端部の幅B’は前記の通り、梁本体2のフランジ
に連続する梁中央側端部の幅Bから決められる。
The flange 11 of the beam member 1 has a trapezoidal shape whose width increases from the center to the end of the beam, corresponding to the bending moment distribution generated in the beam during an earthquake, as shown in FIG. As described above, the width B ′ of the end side end is determined from the width B of the beam center side end that is continuous with the flange of the beam main body 2.

【0025】またフランジ11の梁端部側端部の幅B’と
梁中央側端部の幅B、及び梁の有効スパンbが決まって
いる場合は前記の式から、梁中央から梁部材1の梁中央
側の端部までの距離aが求められる。
When the width B 'of the end of the flange 11 on the beam end side, the width B of the end on the center side of the beam, and the effective span b of the beam are determined, the above equation is used to calculate the beam member 1 from the center of the beam. The distance a to the end on the center side of the beam is obtained.

【0026】例えば梁の有効スパンが6.0m(図3におけ
るbが3.0m)のときに、梁部材1のフランジ11の梁中央
側端部の幅を 200mm、梁端部側端部の幅を 400mmとした
場合の図3におけるaを求めると、M1を700t・cm、M
2を 2235t・cmと設定したとき、前記式B’={b/a
・(M1/M2+1)−(M1/M2)}・Bより、a
=1.7mと算出される。
For example, when the effective span of the beam is 6.0 m (b in FIG. 3 is 3.0 m), the width of the center of the flange 11 of the beam member 1 on the center side of the beam is 200 mm, and the width of the end of the beam end side is 200 mm. When a in FIG. 3 is set to 400 mm, M1 is 700 t · cm, M
When 2 is set to 2235 t · cm, the above equation B ′ = {b / a
From (M1 / M2 + 1)-(M1 / M2)} · B, a
= 1.7m.

【0027】梁部材1は等辺台形状に加工したフランジ
プレートとウェブプレートを溶接によりH形断面に組み
立てることにより、またはロール成形されたH形鋼のフ
ランジをガスやNC切削により等辺台形状に加工するこ
とにより製作され、梁本体2との接合、あるいは梁本体
2とブラケット3との接合は溶接により、もしくはスプ
ライスプレートとボルトにより行われる。
The beam member 1 is formed by assembling a flange plate and a web plate processed into an equal trapezoidal shape into an H-shaped cross section by welding, or processing a flange of a roll-formed H-shaped steel into an equilateral trapezoidal shape by gas or NC cutting. The joining with the beam main body 2 or the joining between the beam main body 2 and the bracket 3 is performed by welding or with a splice plate and bolts.

【0028】フランジ11を繰り返しの塑性化に対して破
断しにくくする上では、フランジ11の部分に伸び性能の
大きいBT−LYP235等の極軟鋼を使用することも考えられ
るが、この発明では前記の通り、フランジ11の塑性歪み
を小さく抑えることで破断までの累積エネルギ量を稼
ぎ、破断を遅らせることができることから、SN400(SS40
0)、SN490(SM490)等の普通鋼材も使用される。
In order to make the flange 11 less likely to break due to repeated plasticization, it is conceivable to use an extremely mild steel such as BT-LYP235 having a high elongation performance in the flange 11 portion. As described above, by suppressing the plastic strain of the flange 11 to a small value, the accumulated energy up to the fracture can be gained and the fracture can be delayed, so that the SN400 (SS40
Ordinary steel materials such as 0) and SN490 (SM490) are also used.

【0029】図5に本発明の梁部材1を梁本体2に一体
化させた梁10を使用した架構の例を示す。
FIG. 5 shows an example of a frame using the beam 10 in which the beam member 1 of the present invention is integrated with the beam main body 2.

【0030】架構を構成する梁の全部に梁部材1を組み
込んだ梁10を使用し、全梁10の梁部材1を同時期に降伏
させるとすれば、架構全体として降伏後に復元力を失
い、大変形を生ずることになることから、全梁部材1に
同時に降伏が起こらないよう、各梁10の梁部材1の降伏
の時期を変えるか、図5に示すように平面上、全梁の内
の半数以下程度の梁に梁部材1を組み込んだ梁10を使用
することになる。
If a beam 10 in which the beam member 1 is incorporated in all of the beams constituting the frame is used, and the beam members 1 of all the beams 10 are yielded at the same time, the restoring force of the frame as a whole is lost after yielding. Since large deformation will occur, the yielding time of the beam member 1 of each beam 10 is changed to prevent the simultaneous yielding of all the beam members 1 or, as shown in FIG. The beam 10 in which the beam member 1 is incorporated in about half or less of the beams will be used.

【0031】[0031]

【発明の効果】梁の端部位置に、梁の一部として一体化
する梁部材のフランジを地震時の梁に生ずる曲げモーメ
ント分布に対応させた形にするため、地震時に梁部材の
フランジを設定した領域全長に亘って同時に降伏させる
ことができ、一定の長さを持つ領域で降伏が起こる結
果、地震時のエネルギ吸収効率が高まる。
According to the present invention, in order to make the flange of the beam member integrated as a part of the beam at the end position of the beam correspond to the bending moment distribution generated in the beam at the time of the earthquake, the flange of the beam member at the time of the earthquake is formed. Yield can be performed simultaneously over the entire length of the set area. Yield occurs in an area having a certain length, resulting in an increase in energy absorption efficiency during an earthquake.

【0032】梁部材が設定した領域全長に亘って一様に
塑性化することで、塑性化の領域が拡張し、疲労の蓄積
が生じないため、疲労蓄積よって破断することが防止さ
れる。
By uniformly plasticizing over the entire length of the region set by the beam member, the plasticized region is expanded and no accumulation of fatigue occurs, so that fracture due to accumulation of fatigue is prevented.

【0033】塑性化領域が一定の長さを持つことで、そ
の長さの範囲内で塑性流れが起こり、歪み硬化による応
力上昇がなくなるため、歪みの伸展があっても破断する
可能性が小さくなる。また歪み硬化による応力上昇がな
くなることで、梁端部の設計応力を低減することができ
る。
When the plasticized region has a certain length, a plastic flow occurs within the range of the length and the stress does not increase due to strain hardening. Become. Further, since the stress increase due to the strain hardening is eliminated, the design stress at the beam end can be reduced.

【0034】塑性化領域が一定の長さを持つことで、塑
性化する範囲の体積が増加するため、塑性歪みが小さく
ても、塑性歪みと塑性化する範囲の体積との積で決まる
吸収エネルギ量を稼ぐことができる。
Since the plasticized region has a certain length, the volume in the plasticizing range increases, so that even if the plastic strain is small, the absorbed energy determined by the product of the plastic strain and the volume in the plasticizing range. You can make money.

【0035】鋼材は塑性歪みのレベルが低い程、繰り返
しの塑性化に対して破断までの累積塑性エネルギ量が増
大する性質を持つが、一定の吸収エネルギ量を稼ぐ上
で、塑性化部分の塑性歪みのレベルを低下させることが
可能になるため、破断までの累積エネルギ量が大きくな
る。この結果、本発明の梁部材を組み込んだ柱・梁架構
は破断しにくい、変形能力の高い耐震架構を形成するこ
とができる。
Steel has the property that the lower the level of plastic strain, the greater the amount of cumulative plastic energy up to fracture with repeated plasticization. However, in order to obtain a certain amount of absorbed energy, the plasticity of the plasticized portion Since the level of strain can be reduced, the amount of accumulated energy until breakage increases. As a result, a column / beam frame incorporating the beam member of the present invention can form a seismic frame with high deformation capability that is difficult to break.

【0036】梁部材のフランジの幅を地震時の梁に生ず
る曲げモーメント分布に対応させ、特にフランジの曲げ
耐力分布が地震時の曲げモーメント分布に一致するよう
に梁部材のフランジの形状を決定することで、梁部材の
フランジが曲げ耐力に達する曲げモーメントの作用時に
も梁部材が一体化する梁中央寄りの梁本体の曲げ耐力は
その曲げモーメントに対して余力を持つため、梁本体に
梁部材と同一の材料、または梁部材より降伏耐力の大き
い材料をした場合には梁部材が降伏した後にも余力を持
つ梁本体の中央部分の断面を低減することが可能にな
る。
The width of the flange of the beam member is made to correspond to the bending moment distribution generated in the beam at the time of the earthquake, and in particular, the shape of the flange of the beam member is determined so that the bending strength distribution of the flange matches the bending moment distribution at the time of the earthquake. Therefore, even when the bending moment at which the flange of the beam member reaches the bending strength is applied, the bending strength of the beam body near the center of the beam where the beam member is integrated has a margin for the bending moment. In the case where the same material as the above or a material having a higher yield strength than the beam member is used, it is possible to reduce the cross section of the central portion of the beam main body which has extra capacity even after the beam member yields.

【0037】また梁本体と梁部材に同一の材料を使用し
ても梁部材の降伏以前に梁本体が降伏することはなく、
必ずしも梁部材に梁本体の降伏耐力より小さい材料を使
用する必要はない。
Even if the same material is used for the beam body and the beam member, the beam body does not yield before the beam member yields.
It is not necessary to use a material smaller than the yield strength of the beam body for the beam member.

【0038】本発明の梁部材のフランジは水平ハンチ形
であるため、建築計画への影響は生じない。
Since the flange of the beam member of the present invention is of a horizontal haunch type, there is no influence on the construction plan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) は梁部材を組み込んだ梁を示した平面図、
(b) は(a) の立面図である。
FIG. 1 (a) is a plan view showing a beam incorporating a beam member,
(b) is an elevation view of (a).

【図2】地震時の曲げモーメント分布と梁の曲げ耐力分
布の関係を示した図である。
FIG. 2 is a diagram showing a relationship between a bending moment distribution during an earthquake and a bending strength distribution of a beam.

【図3】梁部材における曲げモーメント分布と曲げ耐力
分布が一致する場合のウェブの全塑性モーメントとフラ
ンジの全塑性モーメントの関係を示した図である。
FIG. 3 is a diagram showing a relationship between a total plastic moment of a web and a total plastic moment of a flange when a bending moment distribution and a bending strength distribution of a beam member match.

【図4】梁部材の復元力特性を示した荷重−変形曲線図
である。
FIG. 4 is a load-deformation curve diagram showing a restoring force characteristic of a beam member.

【図5】梁部材を組み込んだ梁を用いた架構を示した立
面図である。
FIG. 5 is an elevation view showing a frame using a beam incorporating a beam member.

【図6】(a) は従来の梁を示した平面図、(b) は(a) の
立面図、(c) は地震時の曲げモーメント分布と梁の曲げ
耐力分布の関係を示した図である。
Fig. 6 (a) is a plan view showing a conventional beam, (b) is an elevation view of (a), and (c) shows the relationship between the bending moment distribution during an earthquake and the bending strength distribution of the beam. FIG.

【図7】従来の柱・梁接合部を示した立面図である。FIG. 7 is an elevation view showing a conventional column / beam joint.

【図8】鋼材の歪み硬化に伴う応力上昇の様子を示した
応力度−歪み度曲線図である。
FIG. 8 is a stress degree-strain degree curve diagram showing a state of stress increase accompanying strain hardening of a steel material.

【図9】歪み硬化に伴う応力上昇があるときの曲げモー
メントの様子を示した分布図である。
FIG. 9 is a distribution diagram showing a state of a bending moment when a stress rises due to strain hardening.

【符号の説明】[Explanation of symbols]

1……梁部材、11……フランジ、12……ウェブ、2……
梁本体、3……ブラケット、4……柱、10……梁。
1 ... beam member, 11 ... flange, 12 ... web, 2 ...
Beam main body, 3 ... Bracket, 4 ... Column, 10 ... Beam.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄骨造の柱・梁架構において、梁の端部
位置に、梁の一部として一体化するH形断面の梁部材で
あり、フランジの幅が地震時の梁に生ずる曲げモーメン
ト分布に対応して梁の中央側から端部側へかけて拡大
し、フランジが地震時に軸方向の設定した領域全長に亘
って実質的に同時に降伏する地震エネルギ吸収梁部材。
1. A beam member having an H-shaped cross section which is integrated as a part of a beam at an end position of the beam in a steel frame / column frame, wherein the width of the flange is a bending moment generated in the beam during an earthquake A seismic energy absorbing beam member that expands from the center to the end of the beam in response to the distribution and the flanges yield substantially simultaneously over the entire length of the axially set area during an earthquake.
【請求項2】 軸方向の設定した領域全長に亘り、地震
時の曲げモーメント分布に一致するようにフランジの曲
げ耐力が分布し、フランジは台形状の平面形状をしてい
る請求項1記載の地震エネルギ吸収梁部材。
2. The method according to claim 1, wherein the bending strength of the flange is distributed over the entire set length in the axial direction so as to match the bending moment distribution during the earthquake, and the flange has a trapezoidal planar shape. Seismic energy absorbing beam members.
【請求項3】 梁中央から梁部材の梁中央側の端部まで
の距離をa、梁部材の梁端部側の端部までの距離をbと
し、梁部材のウェブの全塑性モーメントをM1、フラン
ジの梁中央側端部の全塑性モーメントをM2とし、フラ
ンジの梁中央側端部の幅をB、フランジの梁端部側端部
の幅をB’としたとき、B’={b/a・(M1/M2
+1)−(M1/M2)}・Bの関係を実質的に満たし
ている請求項2記載の地震エネルギ吸収梁部材。
3. The distance from the beam center to the end of the beam member on the beam center side is a, the distance from the beam member to the end on the beam end side is b, and the total plastic moment of the web of the beam member is M1. When the total plastic moment at the beam center end of the flange is M2, the width at the beam center end of the flange is B, and the width at the beam end side of the flange is B ′, B ′ = {b / A · (M1 / M2
The seismic energy absorbing beam member according to claim 2, which substantially satisfies the relationship of (+1)-(M1 / M2)} · B.
JP10186136A 1998-07-01 1998-07-01 Earthquake energy absorbing beam member Pending JP2000017781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186136A JP2000017781A (en) 1998-07-01 1998-07-01 Earthquake energy absorbing beam member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186136A JP2000017781A (en) 1998-07-01 1998-07-01 Earthquake energy absorbing beam member

Publications (1)

Publication Number Publication Date
JP2000017781A true JP2000017781A (en) 2000-01-18

Family

ID=16183014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186136A Pending JP2000017781A (en) 1998-07-01 1998-07-01 Earthquake energy absorbing beam member

Country Status (1)

Country Link
JP (1) JP2000017781A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064901A (en) * 2001-08-23 2003-03-05 Shimizu Corp Boundary beam damper
JP2003082763A (en) * 2001-09-13 2003-03-19 Nkk Corp Column-beam joint structure and design method thereof
JP2008057323A (en) * 2007-11-17 2008-03-13 Okabe Co Ltd Exposed steel frame plinth structure
JP2017145593A (en) * 2016-02-16 2017-08-24 前田建設工業株式会社 Steel beam
JP7542019B2 (en) 2022-01-05 2024-08-29 東急建設株式会社 Steel beam-column joint structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064901A (en) * 2001-08-23 2003-03-05 Shimizu Corp Boundary beam damper
JP2003082763A (en) * 2001-09-13 2003-03-19 Nkk Corp Column-beam joint structure and design method thereof
JP2008057323A (en) * 2007-11-17 2008-03-13 Okabe Co Ltd Exposed steel frame plinth structure
JP4683571B2 (en) * 2007-11-17 2011-05-18 岡部株式会社 Steel structure exposed column base structure
JP2017145593A (en) * 2016-02-16 2017-08-24 前田建設工業株式会社 Steel beam
JP7542019B2 (en) 2022-01-05 2024-08-29 東急建設株式会社 Steel beam-column joint structure

Similar Documents

Publication Publication Date Title
US6739099B2 (en) Column-and-beam join structure
US5595040A (en) Beam-to-column connection
US5913794A (en) Ductile steel beam-to-column connection
JP2004278293A (en) Beam joint structure and buckling restraining member used therefor
TWI428494B (en) Hysteresis damping construct
JP2019214881A (en) Buckling restrained brace
JPH11140978A (en) Steel bracket with h-shaped section for connection of column and beam
JP2002220873A (en) Beam end joint part structure of h-shape steel beam
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
JP2000017781A (en) Earthquake energy absorbing beam member
JP2875106B2 (en) Reinforcement structure and metal fittings for structural members
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP3016634B2 (en) Damping structure
JPH1161994A (en) Column-beam joint of steel frame and connection method thereof
JP2000136565A (en) Beam joint structure of h-steel column
JPH10227061A (en) Eccentric type tensile brace structure
JPH10184075A (en) Earthquake-resistant wall made of steel
JP7351271B2 (en) Steel beams, column-beam joint structures, and structures containing them
JP2008018849A (en) Energy absorption member
JP3125156B2 (en) Steel column
JP2001055704A (en) Rigid-frame pier
JP3663561B2 (en) Steel beam
JP2024044770A (en) buckling restraint brace
JP2023144551A (en) buckling restraint brace
JP4214473B2 (en) Vehicle guard fence post and vehicle guard fence

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127