[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000017336A - Production of sendust thin sheet - Google Patents

Production of sendust thin sheet

Info

Publication number
JP2000017336A
JP2000017336A JP19654598A JP19654598A JP2000017336A JP 2000017336 A JP2000017336 A JP 2000017336A JP 19654598 A JP19654598 A JP 19654598A JP 19654598 A JP19654598 A JP 19654598A JP 2000017336 A JP2000017336 A JP 2000017336A
Authority
JP
Japan
Prior art keywords
silicon steel
thin plate
powder
rolling
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19654598A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Akira Makita
顕 槇田
Masao Nomi
正夫 能見
Tsunekazu Saigo
恒和 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19654598A priority Critical patent/JP2000017336A/en
Priority to EP99922573A priority patent/EP1026267A4/en
Priority to PCT/JP1999/002860 priority patent/WO1999063120A1/en
Priority to US09/463,778 priority patent/US6444049B1/en
Priority to KR1020007001009A priority patent/KR100360533B1/en
Priority to CN99801041A priority patent/CN1099468C/en
Publication of JP2000017336A publication Critical patent/JP2000017336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily mass-produce a thin sheet having excellent magnetic properties by executing cold rolling using a sintered body or the like of silicon steel having specified average crystal grain size as the stock, impregnating this rolling stock with Al and executing annealing. SOLUTION: A sintered body or a melted lump of silicon steel of <=300 μm average crystal grain size in which the content of Si in Fe is controlled to, by weight, 8.3 to 11.7% and Al to 0 to 2.0% is used as the stock, and this is subjected to cold rolling. The stock sintered body is composed of the one of <=5 mm thickness produced by a powder metallurgy method of executing molding by powder injection molding or the like or a hot molding method such as hot press or the like, and the stock melted lump is the one of <=5 mm thickness cast by a water cooled type mold in which casting thickness is <=5 mm. On both sides of this rolling stock, Al is deposited or film-formed, which is thereafter diffused into the inside by heat treatment, and, simultaneously, the crystal grain size is coarsened to obtain a sendust thin sheet of, by weight, about 2 to 6% Al, about 8 to 11% Si, and the balance Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧延の困難なF
e−Si−Al合金(センダスト)の薄板の製造方法に
係り、予め平均結晶粒径が小さく、厚み5mm以下の薄
板状の珪素鋼の焼結体あるいは溶解塊を作製し、結晶粒
界の滑り性を向上させることにより、これを素材として
そのまま冷間圧延することを可能にし、さらに圧延後の
薄板両面にAlを付着させた後、熱処理することにより
該薄板の内部まで拡散浸透させ、所要組成からなる極薄
のセンダスト薄板を得る製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an F-type steel which is difficult to roll.
According to a method of manufacturing a thin plate of an e-Si-Al alloy (Sendust), a sintered body or a molten mass of a thin silicon steel sheet having a small average crystal grain size and a thickness of 5 mm or less is prepared in advance, and slip of a crystal grain boundary is performed. By improving this property, it is possible to perform cold rolling as it is as a raw material. Further, after Al is attached to both surfaces of the rolled thin sheet, heat treatment is performed to diffuse and infiltrate into the inside of the thin sheet. The present invention relates to a method for producing an ultra-thin sendust thin plate comprising:

【0002】[0002]

【従来の技術】センダストは、透磁率が高いために軟質
磁性材料としては非常に優れているが、非常に脆くかつ
硬いために、従来よりセンダスト薄板の製造は困難とさ
れてきた。
2. Description of the Related Art Sendust is very excellent as a soft magnetic material because of its high magnetic permeability, but it has been difficult to manufacture Sendust thin plates conventionally because it is very brittle and hard.

【0003】このためにセンダストの所要成分よりFe
が少ない含有量のインゴットを作製した後、粉砕し、該
粉砕粉にFe粉を添加して所要組成にして該Fe粉にバ
インダーの役目をさせて、圧延、熱処理を繰り返して、
厚みが0.35mm程度のセンダスト薄板を製造する方
法(H.H.Helms and E.Adams:
J.Appl.Phys.35(1964)3)が提案
された。
[0003] For this purpose, the required components of Sendust are converted to Fe
After preparing an ingot having a small content, pulverize, adding Fe powder to the pulverized powder to make a required composition to serve as a binder to the Fe powder, rolling, heat treatment is repeated,
A method for producing a sendust thin plate having a thickness of about 0.35 mm (HH Helms and E. Adams:
J. Appl. Phys. 35 (1964) 3) has been proposed.

【0004】上記の粉末冶金を用いた方法は、添加元素
の拡散が不十分なために、磁気特性を低下させるという
問題があり、汎用されるには至らなかった。
[0004] The above-mentioned method using powder metallurgy has a problem that the magnetic properties are deteriorated due to insufficient diffusion of the additional element, and has not been widely used.

【0005】[0005]

【発明が解決しようとする課題】このために、欠陥の少
ないセンダストの結晶を作製し、これを薄く切断加工し
たり、スパッター法により所要基板上に蒸着させてセン
ダスト薄板となし、VTR用磁気ヘッドとしてその優れ
た機能を利用している。
For this purpose, a sendust crystal having few defects is prepared and thinly cut or formed on a required substrate by sputtering to form a sendust thin plate. Utilizing its excellent features.

【0006】すなわち、従来は、製造に際して多大の手
間を要して量産が困難なため、センダスト薄板の生産量
は非常に少なく、また用途が限られているのが現状であ
る。
That is, conventionally, since mass production is difficult and mass production is difficult in the past, the production amount of sendust thin plate is extremely small, and the application is limited at present.

【0007】この発明は、センダスト薄板が製造困難で
積層鉄心などを構成することができなかった現状に鑑
み、冷間庄延によりセンダスト薄板の作製が可能であ
り、しかも非常に優れた磁気特性を有するセンダスト薄
板が得られる、センダスト薄板製造方法の提供を目的と
している。
SUMMARY OF THE INVENTION In view of the present situation where thin Sendust sheets are difficult to manufacture and laminated iron cores and the like cannot be constructed, Sendust sheets can be manufactured by cold rolling, and very excellent magnetic properties can be obtained. It is an object of the present invention to provide a sendust thin plate manufacturing method that can obtain a sendust thin plate having the same.

【0008】[0008]

【課題を解決するための手段】発明者らは、Fe−Si
−Al合金とは別に、Si含有量が3wt%以上の珪素
鋼板を冷間圧延可能にすることを目的に、冷間圧延性の
良好な珪素鋼の製造方法について種々検討した結果、平
均結晶粒径のサイズに着目し、従来の溶融徐冷した珪素
鋼よりも微細化した平均結晶粒径の鋼材を作製し、冷間
圧延することにより圧延が可能であり、また特に該鋼材
の板厚を5mm以下とし、さらに平行度を0.5mm以
下とすることによって比較的容易に圧延できることを知
見した。
Means for Solving the Problems The present inventors have proposed Fe-Si
As a result of various studies on a method of manufacturing a silicon steel sheet having a good cold-rolling property for the purpose of making it possible to cold-roll a silicon steel sheet having a Si content of 3 wt% or more, apart from the Al alloy, Focusing on the size of the diameter, it is possible to produce a steel material having an average crystal grain size that is finer than the conventional melt-annealed silicon steel, and to perform rolling by cold rolling, and particularly to reduce the thickness of the steel material. It has been found that the rolling can be performed relatively easily by setting the parallelism to 5 mm or less and the parallelism to 0.5 mm or less.

【0009】また、発明者らは、Fe中のSi含有量3
〜10wt%の珪素鋼板の冷間圧延による製造方法にお
いて、圧延前の珪素鋼として平均結晶粒径が300μm
以下に微細化された焼結体もしくは溶解急冷薄板を使用
することにより、結晶粒界の滑り性を著しく向上させる
ことができ、冷間圧延が可能になると同時に非常に薄い
板厚で、しかも非常に優れた磁気特性を有する圧延珪素
鋼板の製造方法を開示した。
In addition, the inventors have found that the content of Si in Fe 3
In a method of cold rolling a silicon steel sheet of 10 wt% to 10 wt%, the average crystal grain size of the silicon steel before rolling is 300 μm.
By using a sintered body or a melt-quenched thin plate that has been refined below, the slipperiness of the crystal grain boundaries can be significantly improved, and cold rolling becomes possible, and at the same time, a very thin plate thickness and A method for producing a rolled silicon steel sheet having excellent magnetic properties has been disclosed.

【0010】さらに発明者らは、Fe−Si−Al合金
を製造することを目的に、微細な平均結晶粒径を有する
珪素鋼の焼結体あるいは溶解塊からなる素材を冷間圧延
して得た珪素鋼板の両面に、Alを種々の条件で蒸着さ
せた後、熱処理することにより、その表面からAlが内
部まで拡散し、また透磁率も珪素鋼板に比べて飛躍的に
向上して磁気特性の優れたセンダスト薄板が得られるこ
とを知見し、この発明を完成した。
[0010] Furthermore, the present inventors obtained a material obtained by cold rolling a sintered body or a molten mass of silicon steel having a fine average crystal grain size for the purpose of producing an Fe-Si-Al alloy. After depositing Al under various conditions on both sides of the silicon steel sheet, heat treatment diffuses Al from the surface to the inside, and the magnetic permeability is dramatically improved compared to the silicon steel sheet, resulting in magnetic properties. It has been found that a sendust thin plate excellent in the above can be obtained, and the present invention has been completed.

【0011】すなわち、この発明は、300μm以下の
微細な平均結晶粒径を有する珪素鋼板を圧延した後、真
空蒸着法やスパッター法、CVD(Chemical
Vapor Deposition)法等により圧延珪
素鋼板の両面にAlを含浸させた後、焼き鈍しを施して
拡散浸透させることにより、非常に薄くて磁気特性にも
優れた薄板が得られるセンダスト薄板の製造方法であ
る。
That is, according to the present invention, after a silicon steel sheet having a fine average crystal grain size of 300 μm or less is rolled, a vacuum evaporation method, a sputtering method, a CVD (Chemical) method is used.
This is a method for producing a sendust thin plate in which both surfaces of a rolled silicon steel plate are impregnated with Al by a vapor deposition method or the like and then annealed to diffuse and infiltrate, thereby obtaining a very thin thin plate having excellent magnetic properties. .

【0012】[0012]

【発明の実施の形態】この発明は、焼結体としたりある
いは溶融急冷することにより、従来の溶融徐冷した珪素
鋼よりも微細化した平均結晶粒径が300μm以下と微
細化した珪素鋼の圧延素材を作製し、これを冷間圧延
し、得られた該圧延珪素鋼板の両面に真空蒸着法、スパ
ッター法、CVD法などにより、Alを付着させた後、
熱処理して薄板内部まで拡散させることにより、非常に
優れた磁気特性を有するセンダスト薄板を得る製造方法
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a silicon steel which has been refined by sintering or quenching by quenching to have an average crystal grain size of 300 μm or less, which is finer than that of conventional melt-cooled silicon steel. After preparing a rolled material, this is cold-rolled, and a vacuum evaporation method, a sputtering method, a CVD method or the like is used to deposit Al on both sides of the obtained rolled silicon steel sheet,
This is a method for producing a sendust thin plate having extremely excellent magnetic properties by heat treatment and diffusion into the inside of the thin plate.

【0013】使用原料 この発明において、素材の珪素鋼の成分としては、Fe
中のSiの含有量が8.3〜11.7wt%で、Alの
含有量が0〜2wt%の所要組成からなることが望まし
い。該使用原料粉末としては、Fe粉末とFe‐Si粉
末あるいはFe粉末とFe‐Si‐Al粉末を所定の割
合で配合した混合粉、もしくは所定の組成を有するFe
‐Si化合物やFe‐Si‐Al化合物粉末を使用する
方法がある。
Raw Materials Used In the present invention, the component of the raw material silicon steel is Fe
It is desirable that the content of Si is 8.3 to 11.7 wt% and the content of Al is 0 to 2 wt%. As the raw material powder used, Fe powder and Fe-Si powder, or mixed powder in which Fe powder and Fe-Si-Al powder are blended at a predetermined ratio, or Fe powder having a predetermined composition
-Si compound or Fe-Si-Al compound powder is used.

【0014】該混合粉末原料としては、所望組成よりも
多くのSiを含有した、脆性破壊しやすい成分のFe‐
Si化合物のガスアトマイズ粉末もしくは該成分を有す
るインゴットを粉砕してジェットミル粉砕した粉末とカ
ーボニル鉄粉を所定の割合で配合した混合粉末、あるい
は所望組成よりも多くのSiを含有した、脆性破壊しや
すい成分にAlを微量添加したFe‐Si‐Al化合物
のガスアトマイズ粉末もしくは該成分を有するインゴッ
トを粉砕してジェットミル粉砕した粉末とカーボニル鉄
粉を所定の割合で配合した混合粉末が望ましい。
As the mixed powder raw material, Fe-containing component containing more Si than a desired composition and susceptible to brittle fracture is used.
A gas atomized powder of a Si compound or a mixed powder obtained by pulverizing a jet mill-pulverized powder and an ingot having the component and a carbonyl iron powder in a predetermined ratio, or containing more Si than a desired composition and easily brittle. A gas atomized powder of a Fe-Si-Al compound in which a small amount of Al is added to a component, or a mixed powder obtained by crushing an ingot having the component and jet milling the powder and carbonyl iron powder in a predetermined ratio is desirable.

【0015】また使用するFe‐Si‐(Al)化合物
としては、β相のFe2Si化合物やε相のFeSi化
合物、さらにζβ相のFeSi2化合物が脆性破壊しや
すいので、好ましい。Fe‐Si化合物中のSi含有量
としては、20wt%〜51wt%が好ましい。Si含
有量がこの範囲外となると、非常に酸化しやすくなり、
磁気特性の劣化を引き起こす。またFe‐Si化合物中
のAl含有量としては、0〜6.0wt%が好ましい。
Al含有量がこの範囲外となると、冷間圧延時にヒビ、
ワレが発生しやすくなると同時に、更に酸化しやすくな
るので、磁気特性の劣化を招く。
As the Fe-Si- (Al) compound to be used, a β-phase Fe 2 Si compound, an ε-phase FeSi compound, and a Δβ-phase FeSi 2 compound are preferable because they are liable to brittle fracture. The Si content in the Fe-Si compound is preferably 20 wt% to 51 wt%. When the Si content is out of this range, it becomes very easy to oxidize,
This causes deterioration of magnetic characteristics. The Al content in the Fe-Si compound is preferably 0 to 6.0 wt%.
If the Al content is out of this range, cracks during cold rolling,
Cracks are more likely to occur, and at the same time, they are more likely to be oxidized, thereby deteriorating magnetic properties.

【0016】Fe‐Si化合物やFe‐Si‐Al化合
物の粉末の平均粒度は3μm〜100μmの範囲が最も
望ましく、平均粒度が3μm未満では、粉末自体に多量
の酸素を含有しやすくなり、磁気特性が劣化し、また1
00μmを超える場合は、焼結体がポーラスになりやす
く焼結密度が低下するので、冷間圧延時にヒビ、ワレ発
生の原因になる。
The average particle size of the powder of the Fe—Si compound or the Fe—Si—Al compound is most preferably in the range of 3 μm to 100 μm. If the average particle size is less than 3 μm, the powder itself tends to contain a large amount of oxygen, and the magnetic properties Deteriorated, and 1
If it exceeds 00 μm, the sintered body tends to be porous, and the sintered density is lowered, which causes cracks and cracks during cold rolling.

【0017】一方、カーボニル鉄粉は、市販の3〜10
μmの粒径を有し、できるだけ酸素量の少ない粉末が望
ましい。いずれにしてもFe粉末とFe‐Si化合物粉
末あるいはFe粉末とFe‐Si‐Al化合物粉末の混
合粉末の酸素含有量は、少なければ少ないほど良いが、
少なくとも3000ppm以下が望ましい。
On the other hand, carbonyl iron powder is commercially available 3 to 10
A powder having a particle size of μm and containing as little oxygen as possible is desirable. In any case, the smaller the oxygen content of the Fe powder and the Fe-Si compound powder or the mixed powder of the Fe powder and the Fe-Si-Al compound powder, the better, the better.
Desirable is at least 3000 ppm or less.

【0018】所望の組成を有する原料粉末を使用する場
合は、初めから該成分を含有したガスアトマイズ粉もし
くは水アトマイズ粉が適しており、その平均粒度は、1
0〜100μmが望ましい。また使用する原料粉末の含
有酸素量は、少なければ少ないほど良いが、少なくとも
3000ppm以下が望ましい。
When a raw material powder having a desired composition is used, a gas atomized powder or a water atomized powder containing the component from the beginning is suitable.
It is preferably from 0 to 100 μm. The oxygen content of the raw material powder used is preferably as small as possible, but is preferably at least 3000 ppm or less.

【0019】上記アトマイズ粉の平均粒度が10μm未
満では、焼結体の密度は向上するが、粉末自体に多量の
酸素を含有するので、冷間圧延時にヒビ、ワレ発生の原
因になりやすく、且つ磁気特性の劣化の原因にもなる。
また平均粒度が100μmを超える場合は、焼結体がポ
ーラスになりやすく焼結密度が低下するので、これも冷
間圧延時のヒビ、ワレ発生の原因になる。
When the average particle size of the atomized powder is less than 10 μm, the density of the sintered body is improved, but since the powder itself contains a large amount of oxygen, it is liable to cause cracks and cracks during cold rolling, and It also causes deterioration of magnetic characteristics.
If the average particle size exceeds 100 μm, the sintered body tends to become porous and the sintering density decreases, which also causes cracks and cracks during cold rolling.

【0020】また、この発明において、素材が珪素鋼の
溶解鋼板の場合には、前述の成分を含有するように配
合、溶解すれば、使用原料として利用できる。
In the present invention, when the material is a molten steel sheet of silicon steel, it can be used as a raw material if it is blended and dissolved so as to contain the above-mentioned components.

【0021】圧延前の珪素鋼 圧延前の焼結体の作製には、粉末冶金的手法が採用でき
るが、金属射出成形、圧粉成形、スリップキャスト法等
による焼結体あるいはホットプレスやプラズマ焼結等の
熱間成形法による焼結体の作製が適している。
Silicon steel before rolling Rolled metallurgy can be used to produce a sintered body before rolling. A sintered body by metal injection molding, powder compaction, slip casting or the like, or hot pressing or plasma sintering can be used. Production of a sintered body by hot forming such as sintering is suitable.

【0022】具体的には、金属射出成形、圧粉成形、ス
リップキャスト成形は、珪素鋼粉末にバインダーを添加
し成形する方法であり、成形後、脱バインダー、焼結を
行って作成する方法である。また、熱間成形法は、炭素
金型の中に原料粉末を入れ、熱間中(1000℃〜13
00℃)で圧力をかけて成形と焼成を同時に行う方法で
ある。
Specifically, metal injection molding, compaction molding, and slip cast molding are methods in which a binder is added to silicon steel powder and molding is performed. is there. In the hot forming method, the raw material powder is placed in a carbon mold and is heated (1000 ° C. to 13 ° C.).
(00 ° C.) to perform molding and firing simultaneously.

【0023】一般に該成分の珪素鋼粉末は、Siを含有
するために非常に酸化し易く、また成形用にバインダー
を使用すると特に酸化したり、炭化したりするので、脱
バインダーと焼結時の雰囲気制御は不可欠である。ま
た、酸化や炭化した焼結体は硬く、脆くなるので、冷間
圧延すると、ヒビ、ワレが発生すると同時に焼き鈍し後
の磁気特性も著しく低下する。このために焼結体中に含
まれる酸素量と炭素量は、それぞれ3000ppmと2
00ppm以下が望ましい。
In general, the silicon steel powder of this component is very easily oxidized because it contains Si, and when a binder is used for molding, it is particularly oxidized or carbonized. Atmosphere control is essential. Further, since the oxidized or carbonized sintered body is hard and brittle, when cold-rolled, cracks and cracks are generated, and the magnetic properties after annealing are significantly reduced. Therefore, the amount of oxygen and the amount of carbon contained in the sintered body are 3000 ppm and 2 ppm, respectively.
00 ppm or less is desirable.

【0024】焼結温度は、組成、平均粒度、成形方法等
によって異なるが、平均結晶粒径が300μm以下にな
るように、1150℃から1300℃の温度で不活性ガ
ス雰囲気中、水素ガス雰囲気中、真空中等焼結雰囲気
は、成形方法に応して使い分ければ良い。しかし出来る
限り焼結時の変形を防止しなければ、冷間圧延時のヒ
ビ、ワレ発生の原因になる。
The sintering temperature varies depending on the composition, the average grain size, the molding method, etc., and is set at a temperature of 1150 ° C. to 1300 ° C. in an inert gas atmosphere or a hydrogen gas atmosphere so that the average crystal grain size becomes 300 μm or less. The sintering atmosphere, such as in a vacuum, may be properly used depending on the molding method. However, if deformation during sintering is not prevented as much as possible, cracks and cracks may occur during cold rolling.

【0025】一方、溶解珪素鋼素材は、所定の成分で配
合して高周波溶解した後、水冷式の鋳込み厚みが5mm
以下の薄い鋳型に溶解珪素鋼を流し込み、急冷して微細
な結晶粒径を有する珪素鋼板となすものであり、特に厚
みを薄くした方が微細な結晶粒径の珪素鋼素材を作製し
やすくなる。
On the other hand, the molten silicon steel material is mixed with a predetermined component and melted at a high frequency.
The molten silicon steel is poured into the following thin mold and quenched to form a silicon steel sheet having a fine crystal grain size.The thinner the thickness, the easier it is to produce a silicon steel material with a fine crystal grain size .

【0026】圧延 珪素鋼は、一般の金属と比べて硬くて脆い性質があるた
めに、冷間圧延用のロール径とその周速度は、圧延前の
板厚とその平行度によって変える必要がある。つまり圧
延前の板厚が厚く、平行度が悪ければ、小さいロール径
で、しかも低周速度で圧延しなければならない。
Rolled silicon steel has the property of being hard and brittle compared to general metals, so that the roll diameter for cold rolling and its peripheral speed need to be changed depending on the thickness before rolling and its parallelism. . That is, if the sheet thickness before rolling is large and the parallelism is poor, it is necessary to perform rolling with a small roll diameter and at a low peripheral speed.

【0027】しかし逆に板厚が薄く、平行度さえ良けれ
ば、この条件はかなり緩和される。特に熱間圧延の場合
には、珪素鋼は組成変形しやすくなるので、ロール径と
周速度の条件は、冷間圧延に比べて大幅に緩和される。
冷間圧延前に熱間圧延をすることは有効であるが、最終
的には冷間圧延を行わなければ、薄板の圧延は不可能と
なる。表面層が酸化し磁気特性が劣化するためである。
いずれの方法でも圧延前の鋼板の平行度を0.5mm以
下にしなければ、良好な圧延珪素鋼板は作製できない。
On the other hand, if the thickness is small and the degree of parallelism is good, this condition is considerably relaxed. In particular, in the case of hot rolling, since the composition of silicon steel is easily deformed, the conditions of the roll diameter and the peripheral speed are remarkably relaxed as compared with the cold rolling.
It is effective to perform hot rolling before cold rolling, but finally, if cold rolling is not performed, rolling of a thin plate becomes impossible. This is because the surface layer is oxidized and the magnetic properties deteriorate.
In any method, unless the parallelism of the steel sheet before rolling is set to 0.5 mm or less, a good rolled silicon steel sheet cannot be produced.

【0028】この発明では、珪素鋼の平均結晶粒径30
0μm以下の場合、圧延前の板厚が5mm以下で平行度
0.5mm以下の珪素鋼板では、ロール径は60φ以下
で、ロール周速度60mm/sec以下の条件であれ
ば、冷間圧延工程の間に焼き鈍し工程を入れずに、ヒ
ビ、ワレが起きずに冷間圧延できることがわかった。
In the present invention, the average crystal grain size of silicon steel is 30
In the case of 0 μm or less, in the case of a silicon steel sheet having a thickness before rolling of 5 mm or less and a parallelism of 0.5 mm or less, if the roll diameter is 60φ or less and the roll peripheral speed is 60 mm / sec or less, the cold rolling process is performed. It was found that it was possible to perform cold rolling without any cracks or cracks without an annealing step between them.

【0029】この発明において、珪素鋼板の板厚が1m
m以下になれば、ロール径のさらに小さいロールで圧延
した方が、圧延効率と厚み寸法精度が向上し、しかもヒ
ビ、ワレも発生しにくくなる傾向がある。
In the present invention, the thickness of the silicon steel sheet is 1 m
When the diameter is less than m, rolling with a roll having a smaller roll diameter improves rolling efficiency and thickness dimensional accuracy, and tends to cause less cracks and cracks.

【0030】珪素鋼の平均結晶粒径300μmを超える
場合には、ロール径とロール周速度に関係なく、圧延時
にヒビ、ワレが発生する。また平均結晶粒径5μm未満
の珪素鋼板の作製は、粉末冶金的な焼結法でのみ作製可
能であり、それは焼結温度を下げるか、成形密度を下げ
て焼結する方法であるが、いずれの方法でも気孔率の高
い焼結体になるので、圧延時に必ずヒビ、ワレが発生す
る。
When the average crystal grain size of the silicon steel exceeds 300 μm, cracks and cracks occur during rolling regardless of the roll diameter and the roll peripheral speed. In addition, the production of silicon steel sheet having an average crystal grain size of less than 5 μm can be produced only by a powder metallurgy sintering method, which is a method of lowering the sintering temperature or lowering the molding density and sintering. Even with the method described above, a sintered body having a high porosity is obtained, so that cracks and cracks always occur during rolling.

【0031】圧延後の板厚は、1mm以下にした方が蒸
着後のAlは珪素鋼板内部まで拡散し易い。さらに最適
圧延条件下では、50μmの板厚まで簡単に冷間圧延で
きることがわかった。
When the thickness of the sheet after rolling is set to 1 mm or less, Al after vapor deposition easily diffuses into the inside of the silicon steel sheet. Furthermore, it was found that under optimal rolling conditions, cold rolling can be easily performed to a thickness of 50 μm.

【0032】また上記の方法で圧延した珪素鋼板は、圧
延後に切断機、打抜機による加工が可能であり、加工後
に後述のAl含浸を行うことにより、種々の形状のセン
ダスト薄板の製品対応が可能である。
The silicon steel sheet rolled by the above-mentioned method can be processed by a cutting machine or a punching machine after rolling, and can be applied to sendust thin sheets of various shapes by performing Al impregnation described later after the processing. It is.

【0033】この発明による圧延珪素鋼板は、通常の
(110)面を集合組織とする方向性珪素鋼板とは違っ
て、(100)面を集合組織とする方向性珪素鋼板の特
徴を有する。
The rolled silicon steel sheet according to the present invention has the characteristics of a directional silicon steel sheet having a (100) plane as a texture unlike a normal directional silicon steel sheet having a (110) plane as a texture.

【0034】Al含浸 所望の組成のセンダスト薄板を作製するために、シート
状の圧延珪素鋼板の両面に、Alを含浸させるが、具体
的にはAlを真空蒸着法、スパッター法、CVD法等に
より、拡散後所定の組成になるように付着、成膜する。
Alの付着、成膜量は、拡散後の最終成分がAl:2〜
6wt%、Si:8〜11wt%、残部Feとなるよう
に適宜決定するとよい。
Al impregnation In order to prepare a sendust thin plate having a desired composition, both sides of a sheet-shaped rolled silicon steel sheet are impregnated with Al. Specifically, Al is impregnated by a vacuum evaporation method, a sputtering method, a CVD method, or the like. After the diffusion, a film is attached and formed to have a predetermined composition.
The amount of Al adhesion and film formation is as follows.
It may be determined appropriately so as to be 6 wt%, Si: 8 to 11 wt%, and the balance Fe.

【0035】上記の付着、成膜条件は、圧延珪素鋼板の
板厚、組成、蒸着方法によって異なるが、冷間圧延後表
面を清浄にした珪素鋼板に直接蒸着した方がAlは均一
に拡散しやすく、磁気特性も向上しやすい特徴がある。
つまり、圧延後の結晶粒径は焼き鈍し後の結晶粒径に比
べて小さく、また残留結晶歪みが大きいために、Alが
粒界拡散し易いということである。
The conditions for adhesion and film formation vary depending on the thickness, composition, and vapor deposition method of the rolled silicon steel sheet. However, Al is more uniformly diffused when directly deposited on a silicon steel sheet whose surface has been cleaned after cold rolling. It is easy to improve the magnetic properties.
That is, the crystal grain size after rolling is smaller than the crystal grain size after annealing, and the residual crystal strain is large, so that Al is easily diffused at the grain boundary.

【0036】さらにこの発明の圧延珪素鋼板は、通常の
(110)面を集合組織とする方向性珪素鋼板とは違っ
て、(100)面を集合組織とする方向性珪素鋼板の特
徴を有し、圧延面が最密面ではないので、蒸着後の熱処
理時に結晶粒内拡散も起こし易い利点もある。
Further, the rolled silicon steel sheet of the present invention has a feature of a directional silicon steel sheet having a (100) plane as a texture unlike a normal directional silicon steel sheet having a (110) plane as a texture. In addition, since the rolled surface is not the closest surface, there is an advantage that intracrystalline diffusion is liable to occur during heat treatment after vapor deposition.

【0037】焼き鈍し この発明によるAlを着設した珪素鋼板の焼き鈍しは、
例えば蒸着したAlを鋼板内部まで拡散浸透させ、でき
るかぎり均一組成のセンダスト薄板を作製するために行
うものである。すなわち、従来では、圧延珪素鋼板の焼
き鈍しは、圧延時のヒビ、ワレ防止のために、何回か圧
延した後に必ず行われていが、この発明では、Alの拡
散浸透と磁壁移動の障害となる結晶粒界を減らし、保磁
力を低下させて透磁率の向上を目的に、結晶粒径の粗大
化を狙ったものである。
Annealing Annealing of a silicon steel sheet provided with Al according to the present invention is as follows.
For example, this is performed to diffuse and infiltrate the deposited Al into the inside of the steel plate to produce a sendust thin plate having a composition as uniform as possible. That is, conventionally, annealing of a rolled silicon steel sheet is always performed after rolling several times in order to prevent cracks and cracks during rolling. However, in the present invention, it becomes an obstacle to diffusion infiltration of Al and domain wall movement. The purpose of the present invention is to increase the crystal grain size for the purpose of improving the magnetic permeability by reducing the crystal grain boundaries and reducing the coercive force.

【0038】この発明において、焼き鈍しの熱処理温度
は、珪素鋼板の組成とAlの付着量、さらに圧延前の平
均結晶粒径によって適宜選定する必要がある。この温度
は、真空中で熱処理する場合には、1000〜1100
℃と低く設定し、不活性ガス雰囲気中で熱処理する場合
には、1100〜1200℃の僅かに高い温度に設定
し、Alが拡散浸透した後に、1200〜1300℃の
温度に昇温して結晶粒径を粗大化させるような熱処理工
程が適している。
In the present invention, it is necessary to appropriately select the annealing heat treatment temperature according to the composition of the silicon steel sheet, the amount of Al attached, and the average crystal grain size before rolling. This temperature is 1000 to 1100 when heat treatment is performed in vacuum.
° C and heat treatment in an inert gas atmosphere, set to a slightly higher temperature of 1100 to 1200 ° C, and after diffusion and infiltration of Al, raise the temperature to 1200 to 1300 ° C and crystallize. A heat treatment step for increasing the particle size is suitable.

【0039】真空中ではこの焼き鈍し温度が高過ぎる
と、Alが鋼板から蒸発して拡散浸透し難くなる。Al
が拡散した後の温度が高過ぎると、結晶粒が異常粒成長
しすぎて鋼板が非常に脆くなり、逆に温度が低過ぎる
と、粒成長しないために、磁気特性が向上しなくなるの
で、上記温度範囲が最適温度である。上記温度での焼き
鈍しによって平均結晶粒径は、約0.5〜3mmにまで
成長させることができる。この焼き鈍しによってセンダ
スト薄板の磁気特性は、通常の溶製材に近い特性が得ら
れることを確認した。
In a vacuum, if the annealing temperature is too high, Al will evaporate from the steel sheet and will not easily diffuse and permeate. Al
If the temperature after the diffusion is too high, the crystal grains will grow abnormally abnormally and the steel sheet will become very brittle.On the other hand, if the temperature is too low, the grains will not grow and the magnetic properties will not improve, so The temperature range is the optimal temperature. By annealing at the above temperature, the average crystal grain size can be grown to about 0.5 to 3 mm. It was confirmed that the magnetic properties of the sendust thin plate obtained by this annealing were similar to those of a normal ingot.

【0040】従来、センダスト合金は、硬くて脆いこと
により、圧延困難で薄板状のシート材を作製することは
不可能とされてきた。しかし、この発明では、出発原料
としてFe粉とFe‐Si粉末あるいはFe粉とFe‐
Si‐Al粉末を所定の割合で配合した混合粉もしくは
所望組成の粉末を用いて、平均結晶粒径300μm以下
の焼結体あるいは溶解急冷薄板を5mm以下の厚みで作
製することにより、結晶粒界の滑り性を向上させること
ができ、冷間圧延が可能になった。
Conventionally, sendust alloys are hard and brittle, so that it has been difficult to roll and it is impossible to produce thin sheet materials. However, in the present invention, Fe powder and Fe-Si powder or Fe powder and Fe-
By using a mixed powder in which Si-Al powder is blended at a predetermined ratio or a powder having a desired composition, a sintered body having a mean crystal grain size of 300 μm or less or a melt-quenched thin plate having a thickness of 5 mm or less is produced. Can be improved, and cold rolling has become possible.

【0041】さらにこの発明では、前記圧延珪素鋼板の
両面にAlを付着、成膜した後、熱処理してAlの拡散
と結晶粒の粗大化を図ることにより、センダスト薄板と
しての磁気特性は、従来の溶製材とほぼ同等になり、磁
気特性の優れたセンダスト薄板が作製できることを確認
した。
Further, according to the present invention, Al is deposited on both surfaces of the rolled silicon steel sheet, a film is formed, and then heat treatment is performed to diffuse Al and increase the crystal grain size. It was confirmed that a sendust thin plate with excellent magnetic properties could be produced, which was almost equivalent to the ingot material of No. 1.

【0042】また、素材の圧延珪素鋼板は、圧延後の切
断、打抜等の加工が可能であり、各種用途に応じて種々
の形状のセンダスト薄板の製品が作製できるので、低コ
ストで高特性、高寸法精度のセンダスト薄板の作製が可
能である利点を有する。
The rolled silicon steel sheet can be cut and punched after rolling, and can be used to produce sendust thin sheets of various shapes according to various applications. It has the advantage that a sendust thin plate with high dimensional accuracy can be manufactured.

【0043】[0043]

【実施例】実施例1 焼結珪素鋼板の原料粉末として、表1に示すような成分
のFe‐Si化合物とFe‐Si‐Al化合物になるよ
うに高周波溶解してインゴットを作製した後、粗粉砕、
ジェットミル粉砕して表1に示すような平均粒度の粉末
を作製した。
Example 1 As a raw material powder for a sintered silicon steel sheet, an ingot was produced by high frequency melting to obtain an Fe-Si compound and an Fe-Si-Al compound having the components shown in Table 1, and then a coarse ingot was produced. Grinding,
The powder having an average particle size as shown in Table 1 was prepared by jet milling.

【0044】また、鉄粉末として表1に示すような成分
と平均粒度のカーボニル鉄粉を使用した。Fe‐Si化
合物あるいはFe‐Si‐Al化合物とカーボニル鉄粉
を表2に示すような割合で配合した後、Vコーンで混合
した。
Further, carbonyl iron powder having the components shown in Table 1 and the average particle size was used as the iron powder. The Fe-Si compound or the Fe-Si-Al compound and the carbonyl iron powder were blended at the ratio shown in Table 2, and then mixed with a V cone.

【0045】さらに所望組成の粉末としては、表3に示
すような成分と平均粒度のガスアトマイズ粉末を使用し
た。各原料粉末に表4に示すような添加量でPVA(ポ
リビニールアルコール)バインダー、水、可塑剤を添加
し、スラリー状となし、該スラリーを完全密閉型スプレ
ードライヤー装置により窒素ガスで熱風入口温度100
℃、出口温度40℃に設定して造粒を行った。
Further, as the powder having a desired composition, the components shown in Table 3 and gas atomized powder having an average particle size were used. To each raw material powder, a PVA (polyvinyl alcohol) binder, water, and a plasticizer were added in the amounts shown in Table 4 to form a slurry, and the slurry was heated with nitrogen gas using a completely hermetic spray dryer with hot air at the inlet temperature. 100
C., and the outlet temperature was set at 40.degree. C. to perform granulation.

【0046】平均粒径約80μmの該造粒粉を圧縮プレ
ス機で圧力2ton/cm2で表5に示すような形状に
圧粉成形した後、真空中で表5に示すような脱バインダ
ー、焼結温度で焼結を行って表6に示す寸法の焼結体を
得た。得られた焼結体の平行度、残留酸素量、残留炭素
量、平均結晶粒径、相対密度を表7に示す。
The granulated powder having an average particle size of about 80 μm was pressed with a compression press into a shape as shown in Table 5 at a pressure of 2 ton / cm 2 , and then debindered as shown in Table 5 in a vacuum. Sintering was performed at the sintering temperature to obtain a sintered body having the dimensions shown in Table 6. Table 7 shows the parallelism, residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained sintered body.

【0047】表8に示す寸法の焼結体をまず外径60m
mの2段ロールで、ロール周速度60mm/secで圧
延率50%まで冷間圧延した後、さらに外径20φの4
段ロールにより同一ロール周速度で表8に示す厚みまで
冷間圧延した。その圧延状態を表9に示す。
First, a sintered body having the dimensions shown in Table 8
cold rolled to a rolling reduction of 50% at a roll peripheral speed of 60 mm / sec with a two-stage roll of
It cold-rolled by the step roll at the same roll peripheral speed to the thickness shown in Table 8. Table 9 shows the rolling state.

【0048】また圧延後、20φ×10φのリングを打
ち抜いた後、鋼板の両面にAlを表10に示す厚みで真
空蒸着し、表10に示すような焼き鈍し温度で熱処理を
して直流磁気特性を測定した。その結果を表11に示
す。表9中の圧延状態で、◎は非常に良好、○は良好、
△は圧延板の端面にヒビ発生、×は全面にワレ発生を表
す。
Also, after rolling, a 20φ × 10φ ring was punched out, Al was vacuum-deposited on both sides of the steel sheet at a thickness shown in Table 10, and a heat treatment was performed at an annealing temperature shown in Table 10 to improve the DC magnetic characteristics. It was measured. Table 11 shows the results. In the rolling state in Table 9, ◎ is very good, ○ is good,
Represents the occurrence of cracks on the end face of the rolled sheet, and x represents occurrence of cracks on the entire surface.

【0049】実施例2 表3に示すような成分の溶融珪素鋼を高周波溶解した
後、水冷した厚み5mmの薄板状の鋳型に流し込み、急
冷して50×50×5mmの鋼板と水冷せずに徐冷した
鋼板を作製した。得られた鋼板の残留酸素量、残留炭素
量、平均結晶粒径、相対密度を表6に示す。
Example 2 A molten silicon steel having the components shown in Table 3 was subjected to high frequency melting, poured into a water-cooled 5 mm-thick thin plate mold, quenched, and cooled to a 50 × 50 × 5 mm steel sheet without water cooling. A slowly cooled steel sheet was produced. Table 6 shows the residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained steel sheet.

【0050】冷間圧延前に、圧延時のワレ、ヒビ防止の
ために、50×50mmの両面をサーフェイスグライン
ダーで表面の凹凸を除去した鋼板(実施例No.18、
19)と研磨をしない鋼板(実施例No.17)を準備
した。実施例1と同一冷間圧延条件で表8に示す厚みま
で圧延した結果を表8に示す。
Before cold rolling, in order to prevent cracks and cracks during rolling, both sides of a 50 × 50 mm steel plate were subjected to surface grinding to remove irregularities on the surface (Example No. 18,
19) and an unpolished steel plate (Example No. 17) were prepared. Table 8 shows the results of rolling to the thickness shown in Table 8 under the same cold rolling conditions as in Example 1.

【0051】また圧延後、20φ×10φのリングを打
ち抜いた後、鋼板の両面にAlを表9に示す厚みで真空
蒸着し、表9に示すような焼き鈍し温度で熱処理をして
直流磁気特性を測定した。その結果を水冷せずに作製し
た溶製材の磁気特性と比較して表10に示す。
Also, after rolling, a 20φ × 10φ ring was punched out, Al was vacuum-deposited on both sides of the steel sheet at a thickness shown in Table 9, and a heat treatment was performed at an annealing temperature shown in Table 9 to improve the DC magnetic characteristics. It was measured. The results are shown in Table 10 in comparison with the magnetic properties of the ingots produced without water cooling.

【0052】磁気特性の比較例として通常のFe−6.
5Siとセンダスト合金の溶製材の磁気特性を表10に
示す。
As a comparative example of the magnetic characteristics, a conventional Fe-6.
Table 10 shows the magnetic properties of the ingots of 5Si and Sendust alloy.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】[0060]

【表8】 [Table 8]

【0061】[0061]

【表9】 [Table 9]

【0062】[0062]

【表10】 [Table 10]

【0063】[0063]

【発明の効果】従来からセンダストの薄板の製造は困難
とされてきたが、予め平均結晶粒径を微細化し、圧延前
の板厚を薄くして厚み5mm以下の薄板状の珪素鋼の焼
結体あるいは溶解塊を作製し、かつ薄板の平行度を上げ
ることにより、結晶粒界の滑り性が向上し、冷間圧延と
打抜き加工が可能となり、さらに圧延後該薄板の両面に
Alを蒸着した後、熱処理によってAlを該薄板の内部
まで拡散浸透させると同時に結晶粒径を粗大化させるこ
とにより、溶製材と同等の優れた磁気特性を有するセン
ダスト薄板が得られ、極めて薄いセンダスト板が容易に
量産できる。従って、今後このセンダストはトランスや
ヨーク材等、広範囲にわたってその用途は飛躍的に拡大
するものと予想される。
Although it has been conventionally difficult to manufacture thin Sendust sheets, the average crystal grain size is reduced beforehand, and the sheet thickness before rolling is reduced to sinter a thin silicon steel sheet having a thickness of 5 mm or less. By producing a body or a molten mass, and by increasing the parallelism of the sheet, the slipperiness of the grain boundaries is improved, cold rolling and punching become possible, and Al was deposited on both sides of the sheet after rolling. Later, by heat treatment, Al is diffused and penetrated into the inside of the thin plate and, at the same time, the crystal grain size is coarsened, so that a sendust thin plate having excellent magnetic properties equivalent to that of the ingot material can be obtained. Can be mass-produced. Therefore, it is expected that the use of this sendust will dramatically expand over a wide range such as transformers and yoke materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能見 正夫 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 西郷 恒和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Nomi 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Tsunekazu Saigo Egawa, Shimamoto-cho, Mishima-gun, Osaka 2-15-15 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均結晶粒径300μm以下の珪素鋼の
焼結体あるいは溶解塊を素材としてこれを冷間圧延し、
圧延材にAlを含浸させた後、焼き鈍しを施して磁気特
性の優れたセンダスト薄板を得るセンダスト薄板の製造
方法。
1. A cold rolling of a sintered body or a molten mass of silicon steel having an average crystal grain size of 300 μm or less,
A method for producing a sendust thin plate in which rolled material is impregnated with Al and then annealed to obtain a sendust thin plate having excellent magnetic properties.
【請求項2】 請求項1において、素材の成分は、Fe
中のSi含有量が8.3〜11.7wt%であるセンダ
スト薄板の製造方法。
2. The material according to claim 1, wherein the component of the material is Fe.
A method for producing a sendust thin plate having a Si content of 8.3 to 11.7 wt%.
【請求項3】 請求項1において、素材の成分は、Fe
中のSi含有量が8.3〜11.7wt%、Al含有量
が0〜2.0wt%であるセンダスト薄板の製造方法。
3. The material according to claim 1, wherein the component of the material is Fe.
A method for producing a sendust thin plate having a Si content of 8.3 to 11.7 wt% and an Al content of 0 to 2.0 wt%.
【請求項4】 請求項1において、得られたセンダスト
薄板の成分は、Si:8〜11wt%、Al:2〜6w
t%、残部Fe及び不可避的不純物であるセンダスト薄
板の製造方法。
4. The composition according to claim 1, wherein the components of the obtained sendust thin plate are: Si: 8 to 11 wt%, Al: 2 to 6 w
t%, balance Fe and unavoidable impurities.
【請求項5】 請求項1において、素材の焼結体は、粉
末射出成形、圧粉成形、スリップキャスト法により成形
して焼結する粉末冶金法、またはホットプレスやプラズ
マ焼結等の熱間成形法にて作製した、微細な結晶粒径を
有し、かつ厚み5mm以下の焼結体であるセンダスト薄
板の製造方法。
5. The method according to claim 1, wherein the sintered body of the material is formed by powder injection molding, powder compaction, powder metallurgy formed by sintering by a slip casting method, or hot pressing such as hot pressing or plasma sintering. A method for producing a sendust thin plate which is a sintered body having a fine crystal grain size and a thickness of 5 mm or less, produced by a molding method.
【請求項6】 請求項1において、素材の溶解塊は、鋳
込み厚みが5mm以下の水冷鋳型に溶解珪素鋼を流し込
み、鋳造した厚み5mm以下の溶解塊であるセンダスト
薄板の製造方法。
6. The method for producing a sendust thin plate according to claim 1, wherein the molten mass of the raw material is a molten mass of 5 mm or less cast by casting molten silicon steel into a water-cooled mold having a casting thickness of 5 mm or less.
【請求項7】 請求項1において、Alの含浸方法とし
ては、珪素鋼の圧延材の両面にAlを被着または成膜し
た後、熱処理により含浸させるセンダスト薄板の製造方
法。
7. The method for producing a sendust thin plate according to claim 1, wherein the method of impregnating Al is to apply or deposit Al on both surfaces of a rolled material of silicon steel and then impregnate it by heat treatment.
JP19654598A 1998-05-29 1998-06-26 Production of sendust thin sheet Pending JP2000017336A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19654598A JP2000017336A (en) 1998-06-26 1998-06-26 Production of sendust thin sheet
EP99922573A EP1026267A4 (en) 1998-05-29 1999-05-28 Method for producing high silicon steel, and silicon steel
PCT/JP1999/002860 WO1999063120A1 (en) 1998-05-29 1999-05-28 Method for producing high silicon steel, and silicon steel
US09/463,778 US6444049B1 (en) 1998-05-29 1999-05-28 Method for producing high silicon steel, and silicon steel
KR1020007001009A KR100360533B1 (en) 1998-05-29 1999-05-28 Method for producing high silicon steel, and silicon steel
CN99801041A CN1099468C (en) 1998-05-29 1999-05-28 Method for producing high silicon steel and silicon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19654598A JP2000017336A (en) 1998-06-26 1998-06-26 Production of sendust thin sheet

Publications (1)

Publication Number Publication Date
JP2000017336A true JP2000017336A (en) 2000-01-18

Family

ID=16359532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19654598A Pending JP2000017336A (en) 1998-05-29 1998-06-26 Production of sendust thin sheet

Country Status (1)

Country Link
JP (1) JP2000017336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038830A1 (en) * 2003-10-15 2005-04-28 Sumitomo Electric Industries, Ltd. Soft magnetism material and powder magnetic core
JP2013095955A (en) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp METHOD FOR PRODUCING Fe-BASED METAL PLATE HAVING HIGH ACCUMULATION DEGREE OF {200} PLANE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038830A1 (en) * 2003-10-15 2005-04-28 Sumitomo Electric Industries, Ltd. Soft magnetism material and powder magnetic core
US7588648B2 (en) 2003-10-15 2009-09-15 Sumitomo Electric Industries, Inc. Soft magnetism material and powder magnetic core
JP2013095955A (en) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp METHOD FOR PRODUCING Fe-BASED METAL PLATE HAVING HIGH ACCUMULATION DEGREE OF {200} PLANE

Similar Documents

Publication Publication Date Title
US6444049B1 (en) Method for producing high silicon steel, and silicon steel
JP5933535B2 (en) Rare earth magnet manufacturing method
JP2002503764A (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
JP5654126B2 (en) Co-Cr-Pt-B alloy sputtering target and method for producing the same
EP1479787B2 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP5265867B2 (en) Method for producing a high density semi-finished product or component
US5032190A (en) Sheet processing for ODS iron-base alloys
EP1738377B1 (en) Alloy lump for r-t-b type sintered magnet, producing method thereof, and magnet
WO2013133163A1 (en) Sputtering target for magnetic recording medium, and process for producing same
JP2000017336A (en) Production of sendust thin sheet
JP2002194475A (en) THIN SHEET OF Fe-Co BASED ALLOY AND ITS PRODUCTION METHOD
KR20150028037A (en) Method for preparing of platinum-rodium-oxide based alloys materials
JP2000045025A (en) Production of rolled silicon steel
JP2000345240A (en) Production of sendust thin sheet
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
KR20130007676A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JP2000144345A (en) Silicon steel, its production, production of rolled silicon steel sheet and electric apparatus provided with the silicon steel
JPH11343518A (en) Production of rolled silicon steel plate and its stock
JPH02138706A (en) Anisotropic permanent magnet
JPH04263069A (en) Sputtering target and its production
JPS6216444B2 (en)
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2000144248A (en) Production of rolled silicon steel sheet
JPH05135924A (en) Manufacture of rare earth permanent magnet