JP2000015043A - Dust concentration control method at outlet of flue gas desulfurization unit - Google Patents
Dust concentration control method at outlet of flue gas desulfurization unitInfo
- Publication number
- JP2000015043A JP2000015043A JP10186102A JP18610298A JP2000015043A JP 2000015043 A JP2000015043 A JP 2000015043A JP 10186102 A JP10186102 A JP 10186102A JP 18610298 A JP18610298 A JP 18610298A JP 2000015043 A JP2000015043 A JP 2000015043A
- Authority
- JP
- Japan
- Prior art keywords
- outlet
- dust concentration
- dust
- concentration
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000428 dust Substances 0.000 title claims abstract description 73
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 15
- 230000023556 desulfurization Effects 0.000 title claims abstract description 15
- 239000003546 flue gas Substances 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 40
- 238000010521 absorption reaction Methods 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 21
- 230000002745 absorbent Effects 0.000 claims description 24
- 239000002250 absorbent Substances 0.000 claims description 24
- 238000005507 spraying Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 25
- 239000004071 soot Substances 0.000 abstract description 2
- 229910052602 gypsum Inorganic materials 0.000 description 28
- 239000010440 gypsum Substances 0.000 description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000003472 neutralizing effect Effects 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 239000002562 thickening agent Substances 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
Abstract
(57)【要約】
【課題】 吸収塔へ流入する煤塵濃度に応じて循環ポン
プの運転台数を適正化し得、出口煤塵濃度を確実に設定
値以下に抑制し得ると共に、循環ポンプの運転における
経済性をも向上し得る排煙脱硫装置の出口煤塵濃度制御
方法を提供する。
【解決手段】 制御器34において、負荷に基づいて求
められる入口煤塵濃度と、入口煤塵粒径分布と、粒径毎
の部分捕集効率とに基づいて出口煤塵濃度を求め、該出
口煤塵濃度を設定値以下とするために必要となる液ガス
比を求め、検出された排ガス流量29に対する吸収液1
の循環量31の比率が前記液ガス比と等しくなるよう循
環ポンプ4の起動・停止を行って運転台数を制御し、前
記出口煤塵濃度を設定値以下にするよう構成する。
PROBLEM TO BE SOLVED: To optimize the number of circulating pumps to be operated in accordance with the concentration of dust flowing into an absorption tower, to reliably suppress the dust concentration at an outlet to a set value or less, and to realize an economical operation of the circulating pump. Provided is a method for controlling the concentration of dust and soot at an outlet of a flue gas desulfurization device which can also improve the performance. In a controller, an outlet dust concentration is determined based on an inlet dust concentration determined based on a load, an inlet dust particle size distribution, and a partial collection efficiency for each particle size, and the outlet dust concentration is determined. The liquid-gas ratio required to be equal to or less than the set value is obtained, and the absorption liquid 1 with respect to the detected exhaust gas flow rate 29 is determined.
The number of operating pumps is controlled by starting and stopping the circulation pump 4 so that the ratio of the circulation amount 31 becomes equal to the liquid-gas ratio, and the outlet dust concentration is set to a set value or less.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排煙脱硫装置の出
口煤塵濃度制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling dust concentration at an outlet of a flue gas desulfurization apparatus.
【0002】[0002]
【従来の技術】一般に、発電所等においては、石炭焚ボ
イラ等から排出される排ガスからSO2(硫黄酸化物)
を吸収除去するために、吸収剤として炭酸カルシウム
(CaCO3)を用いた排煙脱硫装置が設けられるが、
該排煙脱硫装置は、通常、図7に示されるように、下部
に吸収液1の液溜部1aが形成され且つ上部に多数のス
プレーノズル2が配設された吸収塔3と、該吸収塔3の
液溜部1aの吸収液1を汲み上げ前記スプレーノズル2
から噴霧させて循環させる複数台の循環ポンプ4と、前
記吸収塔3の液溜部1aに酸化空気を供給する酸化空気
ブロワ5と、前記吸収塔3の液溜部1aから抜き出され
る吸収液1より石膏6を回収する石膏回収装置7とを備
えてなる構成を有している。2. Description of the Related Art Generally, in a power plant or the like, SO 2 (sulfur oxide) is produced from exhaust gas discharged from a coal-fired boiler or the like.
A flue gas desulfurization device using calcium carbonate (CaCO 3 ) as an absorbent is provided to absorb and remove
As shown in FIG. 7, the flue gas desulfurization apparatus generally includes an absorption tower 3 having a lower part formed with a liquid reservoir 1a for absorbing liquid 1 and a plurality of spray nozzles 2 disposed at an upper part. The absorption liquid 1 in the liquid reservoir 1a of the tower 3 is pumped up and the spray nozzle 2
A plurality of circulation pumps 4 for spraying and circulating the oxidized air, an oxidizing air blower 5 for supplying oxidized air to the liquid reservoir 1a of the absorption tower 3, and an absorbent extracted from the liquid reservoir 1a of the absorption tower 3. 1 and a gypsum collecting device 7 for collecting the gypsum 6.
【0003】前記石膏回収装置7は、吸収塔3の液溜部
1aから抜出ライン8を介して抜き出される吸収液1
に、中和剤供給ライン9を介して供給される苛性ソーダ
(NaOH)等の中和剤を添加する中和タンク10と、
該中和タンク10で中和された吸収液11が中和吸収液
ライン12を介して導入され、該吸収液11中の固形分
を沈降させ且つ上澄みのオーバフロー水13を排水ライ
ン14を介して排水処理装置15へ導く石膏シックナ1
6と、該石膏シックナ16で沈降させた固形分を含むス
ラリー17がスラリーライン18を介して導入され、該
スラリー17を脱水して石膏6と濾液19に分離し且つ
該石膏6と分離された濾液19を濾液ライン20を介し
て前記石膏シックナ16へ導く石膏脱水機21とを備え
ている。尚、前記スラリーライン18の途中には、前記
石膏シックナ16から石膏脱水機21へ導入されるスラ
リー17が一時的に貯留される石膏脱水機供給タンク2
2を設け、前記濾液ライン20の途中には、前記石膏脱
水機21から石膏シックナ16へ戻される濾液19が一
時的に貯留される石膏脱水機排水ピット23を設け、前
記排水ライン14の途中には、前記石膏シックナ16か
ら排水処理装置15へ排出されるオーバフロー水13が
一時的に貯留されるオーバフロー水タンク24を設けて
ある。又、前記中和剤供給ライン9の途中には、前記中
和タンク10へ供給される中和剤の流量を調整する流量
調整弁25を設け、前記中和タンク10には、該中和タ
ンク10内の吸収液11のpHを検出し且つ該pHが予
め設定されたpH設定値(通常は7.0)となるよう前
記流量調整弁25に開度指令26を出力するpH指示調
節計27を設けてある。[0003] The gypsum recovery device 7 is provided with an absorbent 1 that is withdrawn from a liquid reservoir 1 a of the absorption tower 3 through a withdrawal line 8.
A neutralization tank 10 for adding a neutralizing agent such as caustic soda (NaOH) supplied through a neutralizing agent supply line 9;
The absorbing solution 11 neutralized in the neutralizing tank 10 is introduced through a neutralizing absorbing solution line 12 to settle solids in the absorbing solution 11 and to remove a supernatant overflow water 13 through a drain line 14. Gypsum thickener 1 leading to wastewater treatment equipment 15
6 and a slurry 17 containing the solids settled by the gypsum thickener 16 were introduced through a slurry line 18, and the slurry 17 was dewatered to be separated into the gypsum 6 and the filtrate 19 and separated from the gypsum 6. A gypsum dewatering machine 21 for guiding the filtrate 19 to the gypsum thickener 16 via a filtrate line 20 is provided. In the middle of the slurry line 18, the gypsum dewatering machine supply tank 2 in which the slurry 17 introduced from the gypsum thickener 16 to the gypsum dewatering machine 21 is temporarily stored is provided.
2, a gypsum dewatering machine drain pit 23 for temporarily storing the filtrate 19 returned from the gypsum dewatering machine 21 to the gypsum thickener 16 is provided in the middle of the filtrate line 20. Is provided with an overflow water tank 24 in which overflow water 13 discharged from the gypsum thickener 16 to the wastewater treatment device 15 is temporarily stored. In the middle of the neutralizing agent supply line 9, there is provided a flow rate adjusting valve 25 for adjusting the flow rate of the neutralizing agent supplied to the neutralizing tank 10. A pH indicating controller 27 that detects the pH of the absorbing liquid 11 in 10 and outputs an opening command 26 to the flow regulating valve 25 so that the pH becomes a preset pH set value (usually 7.0). Is provided.
【0004】前述の如き排煙脱硫装置の場合、吸収液1
が循環ポンプ4の作動によりスプレーノズル2から噴霧
されつつ循環しており、図示していない石炭焚ボイラ等
から吸収塔3に送り込まれた排ガスは、前記スプレーノ
ズル2から噴霧される吸収液1と接触することにより、
SO2(硫黄酸化物)が吸収除去された後、外部へ排出
される。[0004] In the case of the above-mentioned flue gas desulfurization apparatus, the absorption liquid 1
Is circulated while being sprayed from the spray nozzle 2 by the operation of the circulation pump 4, and the exhaust gas sent to the absorption tower 3 from a coal-fired boiler or the like (not shown) is mixed with the absorbent 1 sprayed from the spray nozzle 2. By contacting
After SO 2 (sulfur oxide) is absorbed and removed, it is discharged to the outside.
【0005】一方、前記排ガスからSO2を吸収した吸
収液1は、液溜部1aに滴下し、酸化空気ブロワ5の作
動によって液溜部1a内へ供給される酸化空気により強
制的に酸化され、石膏(硫酸カルシウム(CaS
O4))が生成され、該石膏を含む液溜部1a内の吸収
液1の一部は、抜出ライン8を介して前記石膏回収装置
7の中和タンク10へ抜き出され、該中和タンク10に
おいて、中和剤供給ライン9を介して供給される苛性ソ
ーダ(NaOH)等の中和剤により中和され、該中和タ
ンク10で中和された吸収液11は、中和吸収液ライン
12を介して石膏シックナ16へ導入され、該石膏シッ
クナ16において前記吸収液11中の固形分が沈降し、
該固形分を含むスラリー17は、スラリーライン18と
石膏脱水機供給タンク22を介して石膏脱水機21へ導
入され、該石膏脱水機21において前記スラリー17が
脱水されて石膏6と濾液19に分離され、該石膏6と分
離された濾液19は、濾液ライン20と石膏脱水機排水
ピット23を介して前記石膏シックナ16へ戻され、該
石膏シックナ16における上澄みのオーバフロー水13
は、排水ライン14とオーバフロー水タンク24を介し
て排水処理装置15へ導かれ、該排水処理装置15にお
いて硝化菌の作用により有害な窒素化合物が分解され、
且つCOD(化学的酸素要求量)で表わされる還元性物
質が高分子材料からなる吸着樹脂により吸着された後、
外部へ排出される。On the other hand, the absorbent 1 having absorbed SO 2 from the exhaust gas drops into the liquid reservoir 1a and is forcibly oxidized by the oxidizing air supplied into the liquid reservoir 1a by the operation of the oxidizing air blower 5. , Gypsum (calcium sulfate (CaS
O 4 )) is produced, and a part of the absorbent 1 in the reservoir 1 a containing the gypsum is withdrawn through a withdrawal line 8 to a neutralization tank 10 of the gypsum recovery device 7. In the sum tank 10, the absorbent 11 neutralized by the neutralizing agent such as caustic soda (NaOH) supplied through the neutralizing agent supply line 9 and neutralized in the neutralizing tank 10 is used as the neutralized absorbing liquid. Introduced into the gypsum thickener 16 through the line 12, in which the solid content in the absorbent 11 settles,
The slurry 17 containing the solid content is introduced into the gypsum dewatering machine 21 via the slurry line 18 and the gypsum dewatering machine supply tank 22, and the slurry 17 is dewatered in the gypsum dewatering machine 21 and separated into the gypsum 6 and the filtrate 19. The gypsum 6 and the separated filtrate 19 are returned to the gypsum thickener 16 through the filtrate line 20 and the gypsum dewatering machine drain pit 23, and the supernatant overflow water 13 in the gypsum thickener 16 is removed.
Is led to a wastewater treatment device 15 through a wastewater line 14 and an overflow water tank 24, and in the wastewater treatment device 15, harmful nitrogen compounds are decomposed by the action of nitrifying bacteria,
And after the reducing substance represented by COD (Chemical Oxygen Demand) is adsorbed by the adsorption resin composed of a polymer material,
It is discharged outside.
【0006】又、前記吸収塔3には、必要に応じて適
宜、所要量の吸収剤スラリーが吸収剤スラリー供給ライ
ン28から供給されるようになっている。Further, a required amount of absorbent slurry is supplied to the absorption tower 3 from an absorbent slurry supply line 28 as needed.
【0007】[0007]
【発明が解決しようとする課題】前述の如き排煙脱硫装
置においては、最近、SO2濃度だけでなく、煤塵濃度
に関しての性能要求も厳しくなってきている。In the flue gas desulfurization apparatus as described above, recently, not only the SO 2 concentration but also the performance requirements regarding the dust concentration have become strict.
【0008】しかしながら、前記煤塵濃度に関しては、
循環ポンプ4の運転台数を余裕を見込んで多めに設定
し、吸収塔3内へスプレーノズル2から噴霧する吸収液
1の量を多めにすることにより、吸収塔3で捕集される
煤塵量を増やし、吸収塔3の出口煤塵濃度を低下させ規
制値を下回るようにする程度のことしか行われておら
ず、しかも、これらの操作は、運転員の勘や出口煤塵濃
度の手分析に頼っている部分が多く、具体的な制御につ
いては確立されていないのが現状であり、循環ポンプ4
の運転における経済性の面でも問題を有していた。However, regarding the dust concentration,
The number of operating circulation pumps 4 is set large in consideration of a margin, and the amount of the absorbent 1 sprayed from the spray nozzle 2 into the absorption tower 3 is increased, so that the amount of dust collected in the absorption tower 3 is reduced. Only to an extent that the dust concentration at the outlet of the absorption tower 3 is reduced to fall below the regulation value, and furthermore, these operations rely on the intuition of the operator and the manual analysis of the dust concentration at the outlet. At present, specific control has not been established, and the circulation pump 4
There was also a problem in terms of economics in operation of the vehicle.
【0009】本発明は、斯かる実情に鑑み、吸収塔へ流
入する煤塵濃度に応じて循環ポンプの運転台数を適正化
し得、出口煤塵濃度を確実に設定値以下に抑制し得ると
共に、循環ポンプの運転における経済性をも向上し得る
排煙脱硫装置の出口煤塵濃度制御方法を提供しようとす
るものである。In view of such circumstances, the present invention can optimize the number of operating circulation pumps according to the dust concentration flowing into the absorption tower, and can reliably suppress the dust concentration at the outlet to a set value or less. It is an object of the present invention to provide a method for controlling the concentration of dust and soot at the outlet of a flue gas desulfurization apparatus, which can also improve the economical efficiency of the operation of the apparatus.
【0010】[0010]
【課題を解決するための手段】本発明は、吸収液を複数
台の循環ポンプの作動により吸収塔内に噴霧して循環さ
せつつ、石炭焚ボイラから排出される排ガスと接触せし
めて排ガス中のSO2を吸収除去する排煙脱硫装置の出
口煤塵濃度制御方法であって、負荷に基づいて求められ
る入口煤塵濃度と、入口煤塵粒径分布と、粒径毎の部分
捕集効率とに基づいて出口煤塵濃度を求め、該出口煤塵
濃度を設定値以下とするために必要となる液ガス比を求
め、検出された排ガス流量に対する吸収液の循環量の比
率が前記液ガス比と等しくなるよう循環ポンプの起動・
停止を行って運転台数を制御し、前記出口煤塵濃度を設
定値以下にすることを特徴とする排煙脱硫装置の出口煤
塵濃度制御方法にかかるものである。SUMMARY OF THE INVENTION According to the present invention, while absorbing and circulating an absorbing solution into an absorption tower by operating a plurality of circulating pumps, the absorbing solution is brought into contact with exhaust gas discharged from a coal-fired boiler to reduce the amount of the exhaust gas. a outlet dust concentration control method of the exhaust gas desulfurizer for absorbing and removing SO 2, an inlet dust concentration is determined based on the load, the inlet dust particle size distribution, based on the partial efficiency of collecting particles each diameter The outlet dust concentration is determined, and the liquid-gas ratio required to make the outlet dust concentration equal to or less than the set value is determined, and the ratio of the circulation amount of the absorbing liquid to the detected exhaust gas flow rate is set to be equal to the liquid-gas ratio. Starting the pump
The present invention relates to an outlet dust concentration control method for a flue gas desulfurization device, characterized in that the number of operating units is controlled by stopping the operation and the outlet dust concentration is set to a set value or less.
【0011】上記手段によれば、以下のような作用が得
られる。According to the above means, the following effects can be obtained.
【0012】排煙脱硫装置の運転時には、負荷に基づい
て求められる入口煤塵濃度と、入口煤塵粒径分布と、粒
径毎の部分捕集効率とに基づいて出口煤塵濃度が求めら
れ、該出口煤塵濃度を設定値以下とするために必要とな
る液ガス比が求められ、検出された排ガス流量に対する
吸収液の循環量の比率が前記液ガス比と等しくなるよう
循環ポンプの起動・停止が行われて運転台数が制御さ
れ、前記出口煤塵濃度が設定値以下に保持される。During operation of the flue gas desulfurization apparatus, the outlet dust concentration is determined based on the inlet dust concentration determined based on the load, the inlet dust particle size distribution, and the partial collection efficiency for each particle size. The liquid / gas ratio required to reduce the dust concentration to the set value or less is determined, and the circulation pump is started / stopped so that the ratio of the circulating amount of the absorbent to the detected exhaust gas flow rate becomes equal to the liquid / gas ratio. The number of operating units is controlled, and the outlet dust concentration is maintained at or below a set value.
【0013】この結果、運転員の勘や出口煤塵濃度の手
分析に頼ることなく、所望の脱塵性能が得られ、循環ポ
ンプの運転も経済的に行えるようになる。As a result, the desired dust removal performance can be obtained without relying on the operator's intuition and the manual analysis of the dust concentration at the outlet, and the circulation pump can be operated economically.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0015】図1〜図6は本発明を実施する形態の一例
であって、図中、図7と同一の符号を付した部分は同一
物を表わしており、基本的な構成は図7に示す従来のも
のと同様であるが、本図示例の特徴とするところは、図
1〜図6に示す如く、排ガス流量29を検出する排ガス
流量検出器30と、吸収液1の循環量31を検出する吸
収液循環流量検出器32と、前記排ガス流量検出器30
で検出された排ガス流量29と前記吸収液循環流量検出
器32で検出された吸収液1の循環量31とが入力さ
れ、循環ポンプ4へ起動・停止の制御信号33を出力す
る制御器34とを追加装備し、該制御器34において、
負荷に基づいて求められる入口煤塵濃度と、入口煤塵粒
径分布と、粒径毎の部分捕集効率とに基づいて出口煤塵
濃度を求め、該出口煤塵濃度を設定値以下とするために
必要となる液ガス比を求め、検出された前記排ガス流量
29に対する吸収液1の循環量31の比率が前記液ガス
比と等しくなるよう循環ポンプ4の起動・停止を行って
運転台数を制御し、前記出口煤塵濃度を設定値以下にす
るよう構成した点にある。FIGS. 1 to 6 show an embodiment of the present invention. In the drawings, the portions denoted by the same reference numerals as those in FIG. 7 represent the same components, and the basic configuration is shown in FIG. The present embodiment is the same as the conventional one shown in FIGS. 1 to 6, but is characterized by an exhaust gas flow rate detector 30 for detecting an exhaust gas flow rate 29 and a circulating amount 31 of the absorbent 1 as shown in FIGS. An absorbent circulating flow detector 32 for detecting the exhaust gas flow detector 30;
And a controller 34 which receives the exhaust gas flow rate 29 detected by the above and the circulating amount 31 of the absorbing liquid 1 detected by the absorbing liquid circulating flow rate detector 32 and outputs a start / stop control signal 33 to the circulating pump 4. Is additionally equipped, and in the controller 34,
It is necessary to determine the inlet dust concentration based on the load, the inlet dust concentration, the inlet dust particle size distribution, and the outlet dust concentration based on the partial collection efficiency for each particle size, and to reduce the outlet dust concentration to a set value or less. The circulating pump 4 is started and stopped so that the ratio of the circulating amount 31 of the absorbing liquid 1 to the detected exhaust gas flow rate 29 becomes equal to the liquefied gas ratio. The point is that the outlet dust concentration is set to be lower than the set value.
【0016】尚、前記吸収液1の循環量については、循
環ポンプ4の運転台数から認識することも可能であるた
め、循環ポンプ4の運転台数から吸収液1の循環量を認
識するようにした場合には、前記吸収液循環流量検出器
32は必ずしも設ける必要はない。Since the amount of circulation of the absorbing liquid 1 can be recognized from the number of operating circulation pumps 4, the amount of circulation of the absorbing liquid 1 is recognized from the number of operating circulation pumps 4. In such a case, it is not always necessary to provide the absorbent circulation flow rate detector 32.
【0017】前記負荷に基づいて求められる入口煤塵濃
度は、試運転時において採取されたデータに基づき、図
2に示す如く、関数として前記制御器34に記憶されて
おり、最新の負荷データにより常に書き換えられるよう
になっている。The inlet dust concentration obtained based on the load is stored as a function in the controller 34 as shown in FIG. 2 based on data collected during the test operation, and is constantly rewritten with the latest load data. Is to be done.
【0018】前記入口煤塵粒径分布は、吸収塔3へ流入
してくる入口煤塵のうちどの程度の粒径の煤塵がそれぞ
れ濃度にしてどのくらいずつ含まれているかを示すもの
であって、例えば、図3に示すように、試運転時におい
て予め採取されたデータとして前記制御器34に記憶さ
れている。The above-mentioned inlet dust particle size distribution indicates how much of the inlet dust flowing into the absorption tower 3 is contained in each concentration and how much, for example, As shown in FIG. 3, the data is stored in the controller 34 as data collected in advance during the test operation.
【0019】前記粒径毎の部分捕集効率は、吸収塔3へ
流入してくる入口煤塵のうちどの程度の粒径の煤塵であ
ればどの程度捕集されるかを示すものであって、これは
液ガス比(L/G)に応じて変化するものであり、例え
ば、図4に示すように、試運転時において予め採取され
たデータとして前記制御器34に記憶されている。The partial collection efficiency for each particle size indicates how much particle size dust is collected in the entrance dust flowing into the absorption tower 3 and This changes according to the liquid / gas ratio (L / G), and is stored in the controller 34 as data collected in advance during a test run, for example, as shown in FIG.
【0020】ここで、ある液ガス比(L/G)における
捕集限界粒径を、図5に示す如く、Dcとし、最大粒径
をDmax、入口煤塵粒径分布をP(D)(図3参照)と
した場合、部分捕集効率ηt(D)[%]は、 D≧Dcの時、ηt(D)=100 D<Dcの時、ηt(D)=100−100×exp{−
K×(L/G)} (但し、Kはボイラ側の燃焼特性や石炭性状で決まる定
係数)となるので、全体としての脱塵効率η[%]は、Here, as shown in FIG. 5, the collection limit particle diameter at a certain liquid / gas ratio (L / G) is Dc, the maximum particle diameter is Dmax, and the inlet dust particle diameter distribution is P (D) (FIG. 3), the partial collection efficiency ηt (D) [%] is ηt (D) = 100 when D ≧ Dc, ηt (D) = 100−100 × expex− when D <Dc.
K × (L / G)} (where K is a constant coefficient determined by the combustion characteristics of the boiler and the properties of the coal), so the overall dust removal efficiency η [%] is
【数1】 で求められ、該脱塵効率ηを図2で求めた入口煤塵濃度
に掛けることにより、吸収塔3の出口煤塵濃度が求めら
れようになっている。(Equation 1) By multiplying the dust removal efficiency η by the inlet dust concentration obtained in FIG. 2, the outlet dust concentration of the absorption tower 3 is obtained.
【0021】又、前記制御器34には、試運転時におい
て採取されたデータに基づき、図6に示すように、液ガ
ス比に対する出口煤塵濃度の関数が記憶されており、前
記脱塵効率ηを入口煤塵濃度に掛けることによって求め
た吸収塔3の出口煤塵濃度を設定値以下とするために必
要となる液ガス比を、図6の関数から逆算する形で求
め、前記排ガス流量29に対する吸収液1の循環量31
の比率が前記液ガス比と等しくなるよう制御器34から
循環ポンプ4へ起動・停止の制御信号33を出力するよ
うになっている。The controller 34 stores, as shown in FIG. 6, a function of the concentration of the outlet dust with respect to the liquid-gas ratio based on the data collected during the test operation. The liquid-gas ratio required to reduce the outlet dust concentration of the absorption tower 3 obtained by multiplying the inlet dust concentration to a set value or less is obtained from the function of FIG. Circulation amount of 1 31
The controller 34 outputs a start / stop control signal 33 from the controller 34 to the circulation pump 4 so that the ratio becomes equal to the liquid-gas ratio.
【0022】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.
【0023】排煙脱硫装置の運転時には、排ガス流量検
出器30で排ガス流量29が検出され、吸収液循環流量
検出器32で吸収液1の循環量31が検出され、前記排
ガス流量検出器30で検出された排ガス流量29と前記
吸収液循環流量検出器32で検出された吸収液1の循環
量31とが制御器34へ入力される。During operation of the flue gas desulfurization apparatus, the exhaust gas flow rate detector 30 detects the exhaust gas flow rate 29, the absorbent circulating flow rate detector 32 detects the circulating amount 31 of the absorbent 1, and the exhaust gas flow rate detector 30. The detected exhaust gas flow rate 29 and the circulating amount 31 of the absorbent 1 detected by the absorbent circulating flow detector 32 are input to the controller 34.
【0024】前記制御器34においては、負荷に基づい
て求められる入口煤塵濃度(図2参照)と、入口煤塵粒
径分布(図3参照)と、粒径毎の部分捕集効率(図4参
照)とに基づいて出口煤塵濃度が求められ、該出口煤塵
濃度を設定値以下とするために必要となる液ガス比が図
6に示す如く求められ、検出された前記排ガス流量29
に対する吸収液1の循環量31の比率が前記液ガス比と
等しくなるよう、制御器34から循環ポンプ4へ起動・
停止の制御信号33が出力され、該循環ポンプ4の起動
・停止が行われて運転台数が制御され、前記出口煤塵濃
度が設定値以下に保持される。In the controller 34, the inlet dust concentration (see FIG. 2) obtained based on the load, the inlet dust particle size distribution (see FIG. 3), and the partial collection efficiency for each particle size (see FIG. 4) ), And the liquid-gas ratio required to make the outlet dust concentration equal to or less than the set value is determined as shown in FIG.
From the controller 34 to the circulation pump 4 so that the ratio of the circulation amount 31 of the absorbent 1 to
The stop control signal 33 is output, the circulating pump 4 is started / stopped, the number of operating pumps is controlled, and the outlet dust concentration is kept below a set value.
【0025】この結果、運転員の勘や出口煤塵濃度の手
分析に頼ることなく、所望の脱塵性能が得られ、循環ポ
ンプ4の運転も経済的に行えるようになる。As a result, the desired dust removal performance can be obtained without relying on the intuition of the operator or the manual analysis of the dust concentration at the outlet, and the operation of the circulation pump 4 can be performed economically.
【0026】こうして、吸収塔3へ流入する煤塵濃度に
応じて循環ポンプ4の運転台数を適正化し得、出口煤塵
濃度を確実に設定値以下に抑制し得ると共に、循環ポン
プ4の運転における経済性をも向上し得る。In this way, the number of operating circulation pumps 4 can be optimized in accordance with the concentration of the dust flowing into the absorption tower 3, and the concentration of the dust and dust at the outlet can be reliably suppressed to a set value or less. Can also be improved.
【0027】尚、本発明の排煙脱硫装置の出口煤塵濃度
制御方法は、上述の図示例にのみ限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々変更
を加え得ることは勿論である。It should be noted that the method for controlling the concentration of dust at the outlet of a flue gas desulfurization apparatus according to the present invention is not limited to the above-described example, and various changes can be made without departing from the gist of the present invention. Of course.
【0028】[0028]
【発明の効果】以上、説明したように本発明の排煙脱硫
装置の出口煤塵濃度制御方法によれば、吸収塔へ流入す
る煤塵濃度に応じて循環ポンプの運転台数を適正化し
得、出口煤塵濃度を確実に設定値以下に抑制し得ると共
に、循環ポンプの運転における経済性をも向上し得ると
いう優れた効果を奏し得る。As described above, according to the method for controlling the concentration of dust in the outlet of a flue gas desulfurization apparatus according to the present invention, the number of operating circulation pumps can be optimized according to the concentration of dust in the absorption tower. It is possible to achieve an excellent effect that the concentration can be surely suppressed to a set value or less, and the economy of the operation of the circulation pump can be improved.
【図1】本発明を実施する形態の一例の全体概要構成図
である。FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.
【図2】負荷に対する入口煤塵濃度の関数を表わす線図
である。FIG. 2 is a diagram showing a function of an inlet dust concentration with respect to a load.
【図3】入口煤塵粒径分布を表わす線図である。FIG. 3 is a diagram showing an inlet dust particle size distribution.
【図4】粒径毎の部分捕集効率を表わす線図である。FIG. 4 is a diagram showing a partial collection efficiency for each particle size.
【図5】ある液ガス比における粒径毎の部分捕集効率を
表わす線図である。FIG. 5 is a diagram showing a partial collection efficiency for each particle size at a certain liquid-gas ratio.
【図6】液ガス比に対する出口煤塵濃度の関数を表わす
線図である。FIG. 6 is a diagram showing a function of an outlet dust concentration with respect to a liquid-gas ratio.
【図7】従来例の全体概要構成図である。FIG. 7 is an overall schematic configuration diagram of a conventional example.
1 吸収液 3 吸収塔 4 循環ポンプ 29 排ガス流量 30 排ガス流量検出器 31 循環量 32 吸収液循環流量検出器 33 制御信号 34 制御器 DESCRIPTION OF SYMBOLS 1 Absorbent liquid 3 Absorption tower 4 Circulation pump 29 Exhaust gas flow rate 30 Exhaust gas flow rate detector 31 Circulation amount 32 Absorbent liquid circulating flow rate detector 33 Control signal 34 Controller
Claims (1)
り吸収塔内に噴霧して循環させつつ、石炭焚ボイラから
排出される排ガスと接触せしめて排ガス中のSO2を吸
収除去する排煙脱硫装置の出口煤塵濃度制御方法であっ
て、 負荷に基づいて求められる入口煤塵濃度と、入口煤塵粒
径分布と、粒径毎の部分捕集効率とに基づいて出口煤塵
濃度を求め、該出口煤塵濃度を設定値以下とするために
必要となる液ガス比を求め、検出された排ガス流量に対
する吸収液の循環量の比率が前記液ガス比と等しくなる
よう循環ポンプの起動・停止を行って運転台数を制御
し、前記出口煤塵濃度を設定値以下にすることを特徴と
する排煙脱硫装置の出口煤塵濃度制御方法。1. A flue gas for absorbing and removing SO 2 in exhaust gas by contacting exhaust gas discharged from a coal-fired boiler while spraying and circulating the absorbent into an absorption tower by operating a plurality of circulation pumps. A method of controlling the concentration of dust at an outlet of a desulfurization device, comprising: determining an outlet dust concentration based on an inlet dust concentration determined based on a load, an inlet dust particle size distribution, and a partial collection efficiency for each particle size. Determine the liquid-gas ratio required to reduce the dust concentration below the set value, start and stop the circulation pump so that the ratio of the circulating amount of the absorbent to the detected exhaust gas flow rate is equal to the liquid-gas ratio. An exhaust dust concentration control method for a flue gas desulfurization device, wherein the number of operating units is controlled and the outlet dust concentration is set to a set value or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10186102A JP2000015043A (en) | 1998-07-01 | 1998-07-01 | Dust concentration control method at outlet of flue gas desulfurization unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10186102A JP2000015043A (en) | 1998-07-01 | 1998-07-01 | Dust concentration control method at outlet of flue gas desulfurization unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000015043A true JP2000015043A (en) | 2000-01-18 |
Family
ID=16182408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10186102A Pending JP2000015043A (en) | 1998-07-01 | 1998-07-01 | Dust concentration control method at outlet of flue gas desulfurization unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000015043A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019172088A1 (en) | 2018-03-06 | 2019-09-12 | 三菱日立パワーシステムズ株式会社 | Operation support system and operation support method for desulfurization equipment |
-
1998
- 1998-07-01 JP JP10186102A patent/JP2000015043A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019172088A1 (en) | 2018-03-06 | 2019-09-12 | 三菱日立パワーシステムズ株式会社 | Operation support system and operation support method for desulfurization equipment |
KR20200115639A (en) | 2018-03-06 | 2020-10-07 | 미츠비시 파워 가부시키가이샤 | Driving support system and driving support method of desulfurization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK172817B1 (en) | Process for desulphurizing flue gas by the wet method | |
CN107847857B (en) | Wet flue gas desulfurization device and method for operating wet flue gas desulfurization device | |
KR101462054B1 (en) | Apparatus for Eliminating Hydrogen Sulfide and Harmful Gas | |
JP5081000B2 (en) | Method for controlling the amount of air supplied for oxidation in wet flue gas desulfurization equipment | |
JP2001170444A (en) | Wet flue gas desulfurization equipment | |
KR100318084B1 (en) | A method and apparatus for removing gaseous elementary mercury from a gas | |
JP3836048B2 (en) | Wet flue gas desulfurization method and apparatus | |
CN1712113A (en) | Smoke desulfidation from amino bialkali method | |
JP7196575B2 (en) | Method for detoxifying exhaust gas containing sulfur dioxide | |
JP3337382B2 (en) | Exhaust gas treatment method | |
CN104445569A (en) | Method and system for seawater foam control | |
JP2003305332A (en) | Method and apparatus for controlling desulfurization drainage in wet flue gas desulfurization equipment | |
JP2001179048A (en) | Method for desulfurizing exhaust gas by magnesium hydroxide system | |
JP2000015043A (en) | Dust concentration control method at outlet of flue gas desulfurization unit | |
JPH11262628A (en) | Flue gas desulfurization equipment | |
JP4433268B2 (en) | Wet flue gas desulfurization method and apparatus | |
JPS62193630A (en) | Method and equipment for wet stack-gas desulfurization | |
JP4670160B2 (en) | Wet flue gas desulfurization equipment | |
EP3144051B1 (en) | Mercury control in a seawater flue gas desulfurization system | |
JP3748861B2 (en) | Exhaust gas desulfurization method by metathesis method | |
JP2000015051A (en) | Absorption tower bleed liquid flow control method for flue gas desulfurization equipment | |
JP3294073B2 (en) | Flue gas treatment system | |
JP2608067B2 (en) | COD treatment control equipment for wet flue gas desulfurization equipment wastewater | |
JP2001120947A (en) | Method and device for controlling stack gas desulfurizing device | |
JPH10202050A (en) | Method and apparatus for suppressing selenium oxidation in flue gas desulfurization equipment |