JP2000012061A - Fuel cell power generating system - Google Patents
Fuel cell power generating systemInfo
- Publication number
- JP2000012061A JP2000012061A JP10190963A JP19096398A JP2000012061A JP 2000012061 A JP2000012061 A JP 2000012061A JP 10190963 A JP10190963 A JP 10190963A JP 19096398 A JP19096398 A JP 19096398A JP 2000012061 A JP2000012061 A JP 2000012061A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- fuel
- fuel cell
- hydrogen storage
- storage alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,炭化水素系燃料か
ら製造した水素を主とする改質燃料に対して,水素吸蔵
合金を利用して得た高純度水素を連続的に燃料電池に供
給して発電する方法に関する。The present invention relates to a method for continuously supplying high-purity hydrogen obtained by using a hydrogen storage alloy to a fuel cell for a reformed fuel mainly comprising hydrogen produced from a hydrocarbon fuel. And how to generate electricity.
【0002】[0002]
【従来の技術】一般に,燃料電池によって発電する場合
には,燃料として水素を用いる必要がある。図4に水素
を燃料電池に直接供給し発電する従来方式の一例を示
す。高純度水素のみを供給する場合,燃料電池内におけ
る燃料供給系統の終端すなわち燃料電池内のガス流路出
口をクローズ(閉鎖系)にして適度な加圧条件としてお
けば,発電に使われた水素の分だけ燃料電池内の圧力が
低下するため,自動的に水素が連続供給され無駄なく効
率的に利用できる(例えば,三洋電機株式会社製可搬型
燃料電池FCP-1000KH)。水素供給に関わる貯蔵方法に
は,水素ボンベを用いての圧縮ガスとしての高密度充填
の他,水素吸蔵合金や低液体水素によるケースがある。2. Description of the Related Art Generally, when power is generated by a fuel cell, it is necessary to use hydrogen as a fuel. FIG. 4 shows an example of a conventional system in which hydrogen is directly supplied to a fuel cell to generate power. When supplying only high-purity hydrogen, if the end of the fuel supply system in the fuel cell, that is, the gas flow path outlet in the fuel cell is closed (closed system) and appropriate pressurized conditions are set, the hydrogen used for power generation Because the pressure inside the fuel cell is reduced by the amount, hydrogen is automatically supplied continuously and can be used efficiently without waste (for example, the portable fuel cell FCP-1000KH manufactured by Sanyo Electric Co., Ltd.). As a storage method related to hydrogen supply, there are cases of high-density filling as a compressed gas using a hydrogen cylinder, a case using a hydrogen storage alloy and low liquid hydrogen.
【0003】一方,一般に入手し易い天然ガス(主にメ
タン),ガソリン(主にオクタン),メタノール等の炭
化水素系燃料を改質して水素を製造する方法を適用し
た,自動車用もしくは家庭用等の可搬型燃料電池発電装
置の開発が進められている(例えば,三菱電機技報・Vo
l.70・No.9・「固体高分子型燃料電池可搬電源システ
ム」・1996)。この従来方式の一例を図5に示す。この
方式では水素不足による燃料電池内での逆反応(水電解
反応)を防ぐために燃料利用率を100%より低い設定(多
くの例では80%程度)にしておく必要があり,利用され
なかった燃料オフガスを無駄にしないように燃料改質装
置の熱源用燃料として使う等の工夫が施されている。[0003] On the other hand, a method for producing hydrogen by reforming a hydrocarbon fuel such as natural gas (mainly methane), gasoline (mainly octane), methanol, etc., which is easily available, is used for automobiles or households. Development of portable fuel cell power generators such as Mitsubishi Electric Technical Report, Vo
l.70, No. 9, "Polymer fuel cell portable power supply system", 1996). FIG. 5 shows an example of this conventional method. In this method, the fuel utilization must be set lower than 100% (about 80% in many cases) to prevent reverse reaction (water electrolysis reaction) in the fuel cell due to insufficient hydrogen, and it was not used. In order not to waste the fuel off-gas, various measures have been taken such as using it as a heat source fuel for a fuel reformer.
【0004】[0004]
【発明が解決しようとする課題】しかしながら,二次エ
ネルギーとしての水素を供給する社会基盤は整備されて
おらず,水素そのものの入手が一般に容易ではない。However, the infrastructure for supplying hydrogen as secondary energy has not been established, and it is generally not easy to obtain hydrogen itself.
【0005】また,改質燃料では燃料となる水素以外に
CO2等が多量に含まれているため,燃料電池の燃料供
給系統をオープン(開放系)にして常に一定量以上連続
して流しておく必要がある。このため,そのままオープ
ンの状態では利用されない水素が大気に放出され燃料の
無駄となる上,負荷の需要すなわち発電量の変動に応じ
た燃料流量の制御が必要となる。図5で示すように燃料
をできるだけ有効利用する場合でも,システムが煩雑に
なるに加えて,部分負荷運転を行うためには複雑かつ微
妙な制御を要する。[0005] In addition, since reformed fuel contains a large amount of CO2 and the like in addition to hydrogen serving as fuel, the fuel supply system of the fuel cell is opened (open system) and constantly flows continuously for a predetermined amount or more. There is a need. For this reason, hydrogen that is not used in the open state is released to the atmosphere, wasting fuel, and the fuel flow needs to be controlled in accordance with the load demand, that is, the fluctuation of the power generation amount. As shown in FIG. 5, even when the fuel is used as efficiently as possible, the system becomes complicated and complicated and delicate control is required to perform the partial load operation.
【0006】部分負荷運転を避けて燃料電池を定格で運
転する場合には,負荷への出力変動を吸収するためのバ
ッファとしてバッテリー等のエネルギー貯蔵装置を付加
しなければ,効率的な運用はできない。[0006] When the fuel cell is operated at the rated value while avoiding the partial load operation, efficient operation cannot be performed unless an energy storage device such as a battery is added as a buffer for absorbing output fluctuation to the load. .
【0007】以上のような従来技術で民生用に燃料電池
発電装置を利用するには,操作性,制御性,経済性等に
関してあまり好ましいものとはいえない。[0007] In order to use the fuel cell power generator for consumer use with the above-mentioned conventional techniques, it cannot be said that the operability, controllability, economy, etc. are very favorable.
【0008】[0008]
【発明が解決しようとする課題】本発明は,一般に普及
している天然ガスやガソリン等の取り扱いに優れた燃料
を使用し,その改質燃料中の水素を無駄なく利用でき,
かつ負荷変動に応じた部分負荷運転に非制御で柔軟に対
応可能な高効率の燃料電池発電装置を構築することを目
的としてなされたものである。SUMMARY OF THE INVENTION The present invention uses a fuel that is widely used in handling natural gas, gasoline, and the like, and can use the hydrogen in the reformed fuel without waste.
Another object of the present invention is to construct a high-efficiency fuel cell power generation apparatus that can flexibly respond to a partial load operation according to a load change without control.
【0009】[0009]
【課題を解決するための手段】本発明者は,特に固体高
分子型燃料電池が自動車用や家庭用の小型電源として開
発が盛んな現状に鑑み,部分負荷運転および多種燃料利
用の両者を効率的に満足する方法についてソフトおよび
ハードの両面から研究した結果,水素吸蔵合金が水素の
みを選択的に高速で大量・高密度に吸蔵する機能がある
ことに着目し,本発明をするに至った。SUMMARY OF THE INVENTION In view of the current situation that solid polymer fuel cells are being actively developed as small power sources for automobiles and homes, the present inventor has made efficient use of both partial load operation and the use of various fuels. As a result of researching both methods of software and hardware in terms of a method that satisfies the requirements, we focused on the fact that the hydrogen storage alloy had the function of selectively storing only hydrogen at high speed and in large quantities and at high density, and came to the present invention. .
【0010】本装置の主要な系統は,燃料改質装置の後
段(下流)に水素吸蔵合金を用いた水素分離装置を,さ
らにその後段に燃料電池を配置する基本構成となる。水
素分離装置と燃料電池との燃料接続においては途中に不
純物ガス放出用の切換弁を設け,水素吸蔵工程時に不要
なガスを排出する。The main system of the present device has a basic configuration in which a hydrogen separator using a hydrogen storage alloy is disposed downstream (downstream) of the fuel reformer, and a fuel cell is disposed further downstream. In the fuel connection between the hydrogen separation device and the fuel cell, a switching valve for releasing impurity gas is provided on the way to discharge unnecessary gas during the hydrogen storage step.
【0011】[0011]
【発明の実施の形態】図面によって本発明装置の実施例
を説明する。図1には本発明の基本構成を示す。炭化水
素系の原燃料から水素燃料を製造する燃料改質装置2
は,従来型の水蒸気方式または最近開発が進められてい
る部分酸化方式を用いる。燃料改質装置2を出た改質燃
料には,水素(H2)の他,CO2,H2O,N2,O2,
CO等のガスが存在する。これらのガスは高温状態であ
るため,熱交換器4において適切な温度に調節した上で
水素分離装置6に送られる。水素分離装置6内の圧力容
器内に充填された水素吸蔵合金7を加冷温器8で冷却す
ると,水素吸蔵合金7は水素だけを選択的に合金内に吸
蔵する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the basic configuration of the present invention. Fuel reformer 2 for producing hydrogen fuel from hydrocarbon-based raw fuel
Uses the conventional steam system or the recently developed partial oxidation system. The reformed fuel leaving the fuel reformer 2 includes hydrogen (H2), CO2, H2O, N2, O2,
There are gases such as CO. Since these gases are in a high temperature state, they are adjusted to an appropriate temperature in the heat exchanger 4 and then sent to the hydrogen separator 6. When the hydrogen storage alloy 7 filled in the pressure vessel in the hydrogen separator 6 is cooled by the cooling / warming device 8, the hydrogen storage alloy 7 selectively stores only hydrogen in the alloy.
【0012】水素以外のガスは反応しないので,そのま
まガス流路出口切換弁10を大気放出側としておき,大
気放出11より排出するか,あるいは温室効果ガスであ
るCO2を大気中に排出しないように,CO2回収装置1
2にて回収する。Since gases other than hydrogen do not react, the gas flow path outlet switching valve 10 is left as it is to the atmosphere release side and discharged from the atmosphere release 11 or CO2 which is a greenhouse gas is not discharged to the atmosphere. , CO2 recovery equipment 1
Collect at 2.
【0013】次に水素分離装置6のガス流路入口弁5を
閉じ,ガス流路出口切換弁10を大気放出11またはC
O2回収装置12から燃料電池13に接続を切り換えた
上で,水素分離装置6内の水素吸蔵合金7を加冷温器8
で加熱して吸蔵されていた水素を高純度で燃料電池13
に供給する。燃料電池13内の燃料供給系統はクローズ
(閉鎖系)の状態としておく。この時,温度コントロー
ラ9による温度調整である程度の加圧制御をしながら,
水素の吸蔵量に応じ比較的長時間にわたり水素を供給す
る。Next, the gas flow path inlet valve 5 of the hydrogen separation device 6 is closed, and the gas flow path outlet switching valve 10 is set to the atmosphere release 11 or C.
After switching the connection from the O 2 recovery device 12 to the fuel cell 13, the hydrogen storage alloy 7 in the hydrogen separation device 6 is cooled by the heating / cooling device 8.
Hydrogen stored in the fuel cell 13 with high purity
To supply. The fuel supply system in the fuel cell 13 is kept closed (closed system). At this time, while controlling the pressurization to some extent by temperature adjustment by the temperature controller 9,
Hydrogen is supplied for a relatively long time according to the amount of stored hydrogen.
【0014】燃料電池13への水素供給が大きく必要で
ない時には,燃料流量調節弁1を用いて燃料改質装置2
への原燃料を供給停止するとともに燃料改質装置2他の
停止のように柔軟な制御を行い,全体のエネルギー効率
の向上に資する。When a large supply of hydrogen to the fuel cell 13 is not required, the fuel reforming device 2 is operated by using the fuel flow control valve 1.
The supply of the raw fuel to the fuel reformer 2 is stopped, and the fuel reformer 2 performs a flexible control like stopping the other fuels, thereby contributing to the improvement of the overall energy efficiency.
【0015】長時間の使用によって僅かの不純物ガスが
燃料電池13内に蓄積して,発電能力が低下した場合に
は,燃料供給系統の終端に配置するリーク弁14を開
き,燃料電池13内の不純物ガスを放出する。If a small amount of impurity gas accumulates in the fuel cell 13 due to long-term use and the power generation capacity is reduced, the leak valve 14 disposed at the end of the fuel supply system is opened to open the fuel cell 13. Releases impurity gas.
【0016】図2は実用的に水素を連続供給し,制御性
に優れ高いエネルギー効率を実現できるように考慮した
場合の実施例である。水素分離装置6に水素吸蔵合金7
を二系統以上設置することで水素の選択吸蔵および放出
を交互に行い,連続的に水素を燃料電池13に供給する
ことを可能とする。さらにこの時,水素吸蔵反応は発熱
反応であり水素放出反応は吸熱反応であるから,これら
両者の間をペルチェ素子等のヒートポンプ装置8’を用
いて熱の融通を行い,省エネルギーに寄与する。なお,
図3にこの操作の方法を表としてまとめる。FIG. 2 shows an embodiment in which hydrogen is continuously supplied for practical use, and consideration is given to achieving excellent controllability and high energy efficiency. Hydrogen storage alloy 7 in hydrogen separator 6
By installing two or more systems, hydrogen can be selectively stored and released alternately, and hydrogen can be continuously supplied to the fuel cell 13. Further, at this time, since the hydrogen storage reaction is an exothermic reaction and the hydrogen releasing reaction is an endothermic reaction, heat is exchanged between the two by using a heat pump device 8 'such as a Peltier element, thereby contributing to energy saving. In addition,
FIG. 3 summarizes this operation method as a table.
【0017】1回のサイクルで供給する水素が,燃料電
池13における負荷変動を十分吸収できる程度の量にな
るように,水素分離装置6の水素吸蔵量すなわち水素吸
蔵合金7の容量を確保する。The amount of hydrogen stored in the hydrogen separator 6, that is, the capacity of the hydrogen storage alloy 7, is ensured so that the amount of hydrogen supplied in one cycle is sufficient to absorb load fluctuations in the fuel cell 13.
【0018】なお,本発明における水素吸蔵合金は水素
以外の不純物に対して被毒しないことを前提としている
が,CO2,O2,H2Oには希土類系合金のLaNi5,
MmNi4.5Al0.5(Mm:ミッシュメタル〔希土類金属
混合物〕)等が被毒に強く,COにはチタン系合金のT
iFe0.85Mn0.15 が被毒に強いとされている。改質
燃料ガス中にはCOが比較的少量であるので,燃料改質
装置2と水素分離装置6との間にCO変成器3を設け完
全にCOを除去した形で用いれば,希土類系合金の利用
が望ましい。しかし,合金マイクロカプセル化によって
不純物ガスの被毒を防ぐ技術開発が進められており,そ
れが実用化した折りにはその限りではない。Although it is assumed that the hydrogen storage alloy of the present invention does not poison impurities other than hydrogen, CO2, O2 and H2O are rare earth alloys such as LaNi5 and LaNi5.
MmNi4.5Al0.5 (Mm: misch metal [rare earth metal mixture]) is highly resistant to poisoning and CO
iFe0.85Mn0.15 is said to be resistant to poisoning. Since CO is relatively small in the reformed fuel gas, if a CO converter 3 is provided between the fuel reformer 2 and the hydrogen separator 6 to completely remove CO, the rare earth alloy The use of is preferred. However, technology development to prevent the poisoning of impurity gases by alloy microencapsulation is underway, and this is not always the case when it is put to practical use.
【0019】以上の水素吸蔵合金の例はいずれも常温付
近で動作するものである。燃料改質装置2およびCO変
成器3における反応は高温で行われるため,これらを利
用する場合には水素分離装置6に入る前に熱交換器4に
よって改質燃料を適切な作動温度に調整しなければなら
ない。All of the above examples of the hydrogen storage alloy operate at around normal temperature. Since the reactions in the fuel reformer 2 and the CO converter 3 are performed at a high temperature, when using these, the reformed fuel is adjusted to an appropriate operating temperature by the heat exchanger 4 before entering the hydrogen separator 6. There must be.
【0020】水素吸蔵合金の種類には比較的高温で動作
するMg2Ni(約250℃)のようなものもある。したが
って,改質燃料を比較的高温のまま本方式で高純度水素
供給を実現する装置の可能性もある。Some types of hydrogen storage alloys, such as Mg2Ni (about 250 ° C.), operate at relatively high temperatures. Therefore, there is also a possibility of an apparatus that realizes high-purity hydrogen supply by the present method while keeping the reformed fuel at a relatively high temperature.
【0021】水素吸蔵合金は多くの水素吸蔵・放出のサ
イクルや被毒によって水素吸蔵・放出能力は低下する
が,真空中での加熱という簡単な処理によって回復する
とされている。それゆえ,新品に交換することなく定期
的なメンテナンスによって水素分離および吸蔵性能が維
持できる。It is said that the hydrogen storage alloy has a reduced hydrogen storage and release capability due to many hydrogen storage and release cycles and poisoning, but is recovered by a simple process of heating in a vacuum. Therefore, the hydrogen separation and occlusion performance can be maintained by regular maintenance without replacement with a new one.
【0022】水素分離の方法には水素吸蔵合金を用いる
本方式以外に,吸収法,深冷分離法,吸着法,膜拡散透
過法があり,これらの水素分離方法を単独もしくは組み
合わせた水素分離装置を用いて本燃料電池発電装置を構
成することも可能である。In addition to the present method using a hydrogen storage alloy, the hydrogen separation method includes an absorption method, a cryogenic separation method, an adsorption method, and a membrane diffusion permeation method. It is also possible to configure the present fuel cell power generation device by using
【0023】[0023]
【発明の効果】本発明の装置は,従来の燃料電池発電装
置に比べて次のような利点を有している。 1) 天然ガスやガソリンに代表される一般に入手可能で
取り扱いが容易な炭化水素系燃料を利用でき,燃料電池
の燃料としての水素を全く無駄なく発電電力に変換する
ことができる。 2) 水素吸蔵合金による水素分離装置が水素貯蔵として
エネルギーバッファ機能も兼ねている。そのため,燃料
電池が供給する電力の変動に対して,燃料改質装置等水
素分離装置前段の運転状態を変化させる必要がなく,常
に定常の最適運転をすることが可能である。 3) 高純度水素だけの燃料電池への加圧供給方式である
ので,負荷変動に応じた部分負荷運転に対しても水素の
供給流量調節等の制御がいらず,柔軟で応答の速い発電
ができる。 4) 温室効果ガスであるCO2を分離するため,回収装
置を付属することで大気放出を防止することが容易であ
る。 5) 従来の燃料電池発電システムのように,効率向上を
目的として発電に利用されなかった水素を燃料改質装置
の熱源とするための設備を設ける等の必要がなく,シス
テム全体および装置の運転における制御が簡略化できる
上,外乱に強い安定した発電装置となる。 6) 水素分離工程において二系統以上の水素吸蔵合金を
交互に切り換える簡単な操作で,燃料電池に水素を間断
なく供給することから連続発電が保証され,別種類の原
燃料を並行して利用することも可能である。また,水素
吸蔵時の発熱を水素放出時の吸熱に用いる工夫によって
さらなる省エネルギーが期待できる。 7) 燃料電池に水素を供給する時の加圧を温度で制御す
るので,制御が簡単で高い安全性が確保される。 8) 発電装置停止時に水素を蓄えておくことで,燃料改
質装置が運転状態になるまで待機することなく,極めて
短時間で発電が始動できる。 9) 動的な要素がない装置であり,静粛性に優れ,小型
・軽量で,長時間使用においてのメンテナンスをほとん
ど必要とせず信頼性が高い。 以上より,本発明は自動車用や家庭用等民生用小型電源
として安価で高性能な電源装置となりうる。The device of the present invention has the following advantages over the conventional fuel cell power generator. 1) Hydrocarbon fuel that is generally available and easily handled, such as natural gas and gasoline, can be used, and hydrogen as a fuel for a fuel cell can be converted to power generation without any waste. 2) A hydrogen separation device using a hydrogen storage alloy also has an energy buffer function as hydrogen storage. Therefore, it is not necessary to change the operation state of the former stage of the hydrogen separator such as the fuel reformer in response to the fluctuation of the power supplied by the fuel cell, and it is possible to always perform the steady optimal operation. 3) Since it is a pressurized supply system to a fuel cell using only high-purity hydrogen, there is no need to control the supply flow rate of hydrogen even for partial load operation according to load fluctuation, and flexible and fast-response power generation is achieved. it can. 4) It is easy to prevent atmospheric release by attaching a recovery device to separate CO2, which is a greenhouse gas. 5) Unlike the conventional fuel cell power generation system, there is no need to provide equipment to use hydrogen, which was not used for power generation to improve efficiency, as a heat source for the fuel reformer. Control can be simplified, and a stable power generation device resistant to disturbances can be obtained. 6) In the hydrogen separation process, a simple operation of alternately switching two or more hydrogen storage alloys alternately supplies hydrogen to the fuel cell without interruption, thus guaranteeing continuous power generation and using different types of raw fuel in parallel. It is also possible. Further energy savings can be expected by using the heat generated at the time of hydrogen storage for the heat absorption at the time of hydrogen release. 7) Since the pressurization when supplying hydrogen to the fuel cell is controlled by temperature, control is simple and high safety is ensured. 8) By storing hydrogen when the generator is stopped, power generation can be started in an extremely short time without waiting for the fuel reformer to be in operation. 9) It is a device without dynamic elements, has excellent quietness, is compact and lightweight, and requires little maintenance for long-time use, and is highly reliable. As described above, the present invention can be an inexpensive and high-performance power supply as a small consumer-use power supply for automobiles and homes.
【0024】[0024]
【図1】 基本構成図FIG. 1 Basic configuration diagram
【図2】 水素を連続的に燃料電池に供給する装置の実
施例FIG. 2 shows an embodiment of an apparatus for continuously supplying hydrogen to a fuel cell.
【図3】 図2の実施例における操作の方法FIG. 3 shows a method of operation in the embodiment of FIG.
【図4】 水素を直接供給する従来方式の燃料電池発電
装置の実施例FIG. 4 is an embodiment of a conventional fuel cell power generator that directly supplies hydrogen.
【図5】 炭化水素系燃料を改質する従来方式の燃料電
池発電装置の実施例FIG. 5 shows an embodiment of a conventional fuel cell power generator for reforming a hydrocarbon fuel.
1 燃料流量調節バルブ 2 燃料改質装置 3 CO変成器 4 熱交換器 5 ガス流路入口弁 6 水素分離装置 7 水素吸蔵合金 8 加冷温器, 8’ ヒートポンプ装置(例えばペル
チェ素子) 9 温度コントローラ 10 ガス流路出口切換弁 11 大気放出 12 CO2回収装置 13 燃料電池 14 リーク弁 15 ガス流路入口弁(5 ガス流路入口弁に相当) 16 ガス流路入口弁(5 ガス流路入口弁に相当) 17 ガス流路出口切換弁(10 ガス流路出口切換
弁に相当) 18 ガス流路出口切換弁(10 ガス流路出口切換
弁に相当) 19 温度・圧力センサー 20 水素ボンベDESCRIPTION OF SYMBOLS 1 Fuel flow control valve 2 Fuel reformer 3 CO transformer 4 Heat exchanger 5 Gas flow path inlet valve 6 Hydrogen separator 7 Hydrogen storage alloy 8 Cooling heater, 8 'Heat pump device (for example, Peltier device) 9 Temperature controller 10 Gas flow path outlet switching valve 11 Atmospheric release 12 CO2 recovery device 13 Fuel cell 14 Leak valve 15 Gas flow path inlet valve (equivalent to 5 gas flow path inlet valve) 16 Gas flow path inlet valve (equivalent to 5 gas flow path inlet valve) 17) Gas passage outlet switching valve (corresponding to 10 gas passage outlet switching valve) 18 Gas passage outlet switching valve (corresponding to 10 gas passage outlet switching valve) 19 Temperature / pressure sensor 20 Hydrogen cylinder
Claims (3)
化水素系燃料を水蒸気改質法または部分酸化法によって
水素を含む改質燃料に変換し,水素吸蔵合金のもつ選択
的水素吸蔵機能を用いてこの改質燃料から高純度水素ガ
スを分離するとともにCO2,H2O,N2等の主要な不
純物ガスを別に排出または回収して,燃料供給系統を閉
鎖系とした燃料電池に水素ガスのみを加圧供給すること
を特徴とする燃料電池発電装置。1. A hydrocarbon-based fuel such as natural gas, gasoline or methanol is converted into a reformed fuel containing hydrogen by a steam reforming method or a partial oxidation method, and the fuel is converted to a fuel containing hydrogen by a selective hydrogen storage function of a hydrogen storage alloy. Separates high-purity hydrogen gas from reformed fuel and separately discharges or recovers major impurity gases such as CO2, H2O, and N2, and pressurizes and supplies only hydrogen gas to a fuel cell with a closed fuel supply system. A fuel cell power generator characterized by the above-mentioned.
統を複数有し,水素吸蔵と放出のサイクルを一定時間毎
にずらして交互に行うことによって,燃料電池への水素
供給を連続的に行うことを特徴とする請求項1記載の燃
料電池発電装置。2. A method for continuously supplying hydrogen to a fuel cell by having a plurality of high-purity hydrogen separation systems using a hydrogen storage alloy and alternately performing a cycle of hydrogen storage and release at predetermined time intervals. The fuel cell power generator according to claim 1, wherein:
トポンプ装置の加冷温機能によって,水素の吸蔵(水素
貯蔵)・放出(燃料電池への水素供給)を制御するとと
もに,水素放出時に要する熱エネルギーを水素吸蔵時の
発熱から供給して省エネルギーを図ることを特徴とする
請求項2記載の燃料電池発電装置。3. A cooling / heating function of a heat pump device between a plurality of high-purity hydrogen separation systems controls hydrogen storage (hydrogen storage) / release (hydrogen supply to a fuel cell) and heat required at the time of hydrogen release. 3. The fuel cell power generator according to claim 2, wherein energy is supplied from heat generated during storage of hydrogen to save energy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10190963A JP2000012061A (en) | 1998-06-23 | 1998-06-23 | Fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10190963A JP2000012061A (en) | 1998-06-23 | 1998-06-23 | Fuel cell power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000012061A true JP2000012061A (en) | 2000-01-14 |
Family
ID=16266596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10190963A Pending JP2000012061A (en) | 1998-06-23 | 1998-06-23 | Fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000012061A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077267A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
WO2001077263A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
WO2001077260A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
US6837909B2 (en) | 2000-04-10 | 2005-01-04 | Nippon Oil Corporation | Fuel for use in a fuel cell system |
JP2011048920A (en) * | 2009-08-25 | 2011-03-10 | Kobe Steel Ltd | Fuel cell system, and method of operating the same |
CN109917761A (en) * | 2019-03-13 | 2019-06-21 | 浙江浙能长兴天然气热电有限公司 | A kind of method and system improving DCS of Power Plant security protection |
-
1998
- 1998-06-23 JP JP10190963A patent/JP2000012061A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077267A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
WO2001077263A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
WO2001077260A1 (en) * | 2000-04-10 | 2001-10-18 | Nippon Oil Corporation | Fuel for use in fuel cell system |
US6837909B2 (en) | 2000-04-10 | 2005-01-04 | Nippon Oil Corporation | Fuel for use in a fuel cell system |
US6939459B2 (en) | 2000-04-10 | 2005-09-06 | Nippon Oil Corporation | Fuel for use in fuel cell system |
JP2011048920A (en) * | 2009-08-25 | 2011-03-10 | Kobe Steel Ltd | Fuel cell system, and method of operating the same |
CN109917761A (en) * | 2019-03-13 | 2019-06-21 | 浙江浙能长兴天然气热电有限公司 | A kind of method and system improving DCS of Power Plant security protection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6063515A (en) | Integrated fuel cell electric power generation system for submarine applications | |
CA2259396C (en) | Fuel-cell power generating system | |
US6368735B1 (en) | Fuel cell power generation system and method for powering an electric vehicle | |
JP6644144B2 (en) | Energy storage using REP with engine | |
KR102044766B1 (en) | High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance | |
JP2000501227A (en) | Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment | |
CA2464966A1 (en) | Method and apparatus for by-product removal in a hydrogen generation system | |
CN114937798A (en) | Hydrogen fuel cell rapid power generation system for multi-fuel reforming hydrogen production | |
JP2000012061A (en) | Fuel cell power generating system | |
JP2001085040A (en) | Fuel cell power supply system and its operating method | |
JP4648650B2 (en) | Fuel cell system | |
JPH11176462A (en) | Peak cut type fuel cell system | |
KR102355411B1 (en) | Ship | |
WO2009082368A1 (en) | Rapid start-up and operating system for a fuel cell power plant utilizing a reformate fuel | |
JP3377523B2 (en) | Fuel cell system | |
JPH1167251A (en) | Fuel cell power generating device | |
JP3789720B2 (en) | High purity hydrogen powered fuel cell system | |
JPH0256866A (en) | Fuel cell power generating system | |
US20070298292A1 (en) | Regenerating an adsorption bed in a fuel cell-based system | |
RU2761902C1 (en) | Power plant based on a fuel cell, hydrocarbon to hydrocarbon converter and oxygen concentrator | |
JP2003229155A (en) | Fuel cell system | |
JP4938299B2 (en) | Operation method of fuel cell power generator | |
JP2769556B2 (en) | Fuel cell generator | |
US20090246568A1 (en) | System for the generation of electric power on-board a motor vehicle which is equipped with a fuel cell and associated method | |
JPS6398967A (en) | Fuel cell power generating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041022 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041022 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041022 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081111 |