[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000009471A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JP2000009471A
JP2000009471A JP10171870A JP17187098A JP2000009471A JP 2000009471 A JP2000009471 A JP 2000009471A JP 10171870 A JP10171870 A JP 10171870A JP 17187098 A JP17187098 A JP 17187098A JP 2000009471 A JP2000009471 A JP 2000009471A
Authority
JP
Japan
Prior art keywords
vibration
point
detection
angular velocity
vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10171870A
Other languages
Japanese (ja)
Other versions
JP3882972B2 (en
Inventor
Tadashi Touge
宗 志 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP17187098A priority Critical patent/JP3882972B2/en
Publication of JP2000009471A publication Critical patent/JP2000009471A/en
Application granted granted Critical
Publication of JP3882972B2 publication Critical patent/JP3882972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the angular velocity detection precision by stabilizing the continuous vibration of a vibrator. SOLUTION: The angular velocity sensor is provided with a pair of x vibrators 2 and 3 that are located at symmetrical positions in reference to a point O, a connection beam 1 that is continuous to them and is deflected at least in x direction, a first support beam 4 that is continuous to it and includes first flexible beams 41 and 42 being deflected in x and y directions between the point O and the connection beam, and is symmetrical in reference to the point O, detection vibrators 5/6 that are symmetrical in reference to the point O, second support beams 7/8 that are continuous to these, include second flexible beams 71, 72/81, and 82 being deflected in y direction in reference to the point O, and are symmetrical in reference to the point O, an anchor 120 for supporting the first support beam 4 and the second support beams 7/8 at the point O, excitation means 10A and 10B for vibrating and driving the x vibrators 2 and 3 in inverse phase, and means 111 and 112 for detecting the y vibration of the detection vibrators 5/6. The detection vibrators 5/6 are separated in x direction from the y axis and are symmetrical in reference to the point O.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板に対して浮動
支持された振動体を備える角速度センサに関し、特に、
これに限定する意図ではないが、半導体微細加工技術を
用いて形成される浮動半導体薄膜を櫛歯電極にて電気的
に吸引/解放してx方向に励振する角速度センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor having a vibrating body floatingly supported on a substrate.
Although not intended to be limited to this, the present invention relates to an angular velocity sensor that electrically attracts / releases a floating semiconductor thin film formed by using a semiconductor microfabrication technique with a comb-shaped electrode and excites the x-direction.

【0002】[0002]

【従来の技術】この種の角速度センサの代表的なもの
は、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛
歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備
え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触
で噛み合いかつ平行な左側固定櫛歯電極および右側固定
櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電
極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に
電圧を印加することにより、浮動薄膜がx方向に振動す
る。浮動薄膜に、z軸を中心とする回転の角速度が加わ
ると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、
y方向にも振動する楕円振動となる。浮動薄膜を導体と
しもしくは電極が接合したものとし、浮動薄膜のxz平
面に平行な検出電極を基板上に備えておくと、この検出
電極と浮動薄膜との間の静電容量が、楕円振動のy成分
(角速度成分)に対応して振動する。この静電容量の変
化(振幅)を測定することにより、角速度を求めること
が出来る(例えば特開平5−248872号公報,特開
平7−218268号公報,特開平8−152327号
公報,特開平9−127148号公報,特開平9−42
973号公報)。
2. Description of the Related Art A typical type of angular velocity sensor has a pair of floating comb electrodes (a left floating comb electrode and a right floating comb electrode) on the left side and one set on the right side of a floating thin film. And two sets of fixed comb electrodes (a left fixed comb electrode and a right fixed comb electrode that mesh with and are parallel to each set of floating comb electrodes in a non-contact manner) as left floating comb electrodes / left fixed comb electrodes. By alternately applying a voltage between the space and the right floating comb electrode / the right fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z-axis is applied to the floating thin film, Coriolis force is applied to the floating thin film, and the floating thin film becomes
An elliptical vibration that vibrates also in the y direction. If the floating thin film is used as a conductor or an electrode is bonded, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the capacitance between the detection electrode and the floating thin film becomes elliptical oscillation. Vibrates according to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be determined (for example, Japanese Patent Application Laid-Open Nos. 5-248873, 7-218268, 8-152327, and 9). -127148, JP-A-9-42
No. 973).

【0003】[0003]

【発明が解決しようとする課題】従来の角速度センサで
はアンカー部が多点にわかれており、互いに距離がある
ため振動子を単振動させる梁バネ部に温度変化等の外力
が加わると圧縮あるいは引張りの応力がかかる。そのた
め共振周波数が温度とともに変化し、ヒステリシスと不
連続点をもつ特性となる。それはセンサの精度を低下さ
せる。例えば特開平7−218268号公報に開示のご
とき、アンカー部が多点にわかれた従来の角度センサで
は、アンカー間に距離があるため駆動時の振動が検出側
の振動にもれ、そのため精度低下となることが考えられ
る。また、例えば特開平7−218268号公報に開示
のごときの、駆動の振動モードと検出の振動モードの不
動点が不一致のものでは、互いの振動もれと外力の影響
があると角速度検出精度が低下すると考えられる。ま
た、駆動の振動モードにコリオリ力による振動を低減さ
せる振動成分を含むと、角速度検出出力が小さい。従来
の振動子の振幅が、+x方向と−x方向とで異なって振
動が不安定になるときがあり、センサとして成立しない
ときがある。
In the conventional angular velocity sensor, the anchor portion is divided into multiple points, and since there is a distance between the anchor portions, compression or tension is applied when an external force such as a temperature change is applied to a beam spring portion for making the vibrator single vibration. Stress is applied. Therefore, the resonance frequency changes with the temperature, and the characteristic has hysteresis and discontinuous points. It reduces the accuracy of the sensor. For example, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-218268, in a conventional angle sensor having multiple anchor portions, vibration during driving leaks to the vibration on the detection side due to the distance between the anchors, thereby lowering accuracy. It is considered that Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-218268, in the case where the fixed points of the driving vibration mode and the detection vibration mode do not match, the angular velocity detection accuracy is affected by mutual vibration leakage and external force. It is thought to decrease. Further, when the driving vibration mode includes a vibration component that reduces vibration due to Coriolis force, the angular velocity detection output is small. In some cases, the amplitude of the conventional vibrator is different between the + x direction and the −x direction, and the vibration is unstable, and the vibration may not be established as a sensor.

【0004】本発明は、振動子の連続振動を安定なもの
とし、角速度検出精度を高くすることを目的とする。
An object of the present invention is to stabilize continuous vibration of a vibrator and to increase angular velocity detection accuracy.

【0005】[0005]

【課題を解決するための手段】(1)本発明の角速度セ
ンサは、x,y平面上の一点Oに関して対称な位置にあ
る、対のx振動子(2,3);x,y平面に分布し、点Oに
関して対称であって、対のx振動子(2,3)のそれぞれに
連続し、少くともx方向に撓む連結梁(1);連結梁に連
続し、かつ点Oと連結梁との間にx,y方向に撓む第1
可撓梁(41,42)を含む、点Oに関して対称な第1支持梁
(4);点Oに関して対称な検出振動子(5/6);検出振動子
に連続し、かつ点Oとの間にy方向に撓む第2可撓梁(7
1,72/81,82)を含む、点Oに関して対称な第2支持梁(7/
8);点Oにおいて第1支持梁(4)および第2支持梁(7/8)
を支持するアンカー(120); 対のx振動子(2,3)を、x
方向に逆相で振動駆動する励振手段(10A,10B);およ
び、 検出振動子(5/6)のy方向振動を検出する手段(11
1,112);を備える。なお、理解を容易にするためにカッ
コ内には、図面に示し後述する実施例の対応要素の符号
を、参考までに付記した。
(1) An angular velocity sensor according to the present invention includes a pair of x vibrators (2, 3) at symmetric positions with respect to a point O on an x, y plane; A connecting beam (1) distributed and symmetric with respect to the point O, continuous with each of the pair of x-vibrators (2, 3) and flexing at least in the x-direction; First bending in the x and y directions between connecting beam
First support beam symmetrical about point O, including flexible beams (41, 42)
(4); a detecting oscillator (5/6) symmetrical with respect to the point O; a second flexible beam (7
1,72 / 81,82), the second support beam (7 /
8); first support beam (4) and second support beam (7/8) at point O
Anchors (120) supporting the pair x transducers (2, 3), x
Exciting means (10A, 10B) driven to vibrate in the opposite phase to the direction; and means for detecting the y-direction vibration of the detecting vibrator (5/6) (11
1,112); In addition, in order to facilitate understanding, the reference numerals of the corresponding elements in the embodiments shown in the drawings and described later are added in the parentheses for reference.

【0006】これによれば、一点Oのアンカー(120)
が、第1支持梁(4)および連結梁(1)を介して、対のx振
動子(2,3)を支持し、また、第2支持梁(7/8)を介して検
出振動子(5/6)を支持するので、すなわち、対のx振動
子(2,3)の不動支持点および検出振動子(5/6)の不動支持
点が共に一点であってしかも同一点であるので、次の利
点が得られる: 1.従来の複数のアンカーによる点支持では、支持環境
温度あるいはx振動子の自己発熱,外力による、アンカ
ーを支持するベースのたわみによる影響で、従来はx振
動子の梁部に応力が加っていたが、本発明では上記のよ
うに一点Oで支持しているため、上述のような応力が梁
に加わらない。そのため外乱等による共振周波数の不連
続なずれやヒステリシスが減少する、 2.x振動子系および検出振動子系の静止点が点Oであ
り、そこで支持されているので、x振動子系と検出振動
子系との相互間に振動のもれが少なくなるため、角速度
検出精度が向上する、および、 3.点Oでアンカーにて支持される第1支持梁(4)が
x,y方向に撓む第1可撓梁(41,42/43,44)を含み、こ
の第1支持梁(4)に連結梁(1)が連続しこの連結梁がx方
向に撓むものであって、対のx振動子(2,3)に連続して
いるので、対のx振動子(2,3)はx方向に振動し易い。
しかして励振手段(10A,10B)が、点Oに関して対称な位
置にある対のx振動子(2,3)をx方向に逆相で振動駆動
するので、x駆動振動はほとんど単振動に近く、検出方
向yの振動を検出振動子に与えず、そのため角速度検出
精度向上する。
According to this, the anchor (120) of one point O
Supports the pair of x-vibrators (2, 3) via the first support beam (4) and the connecting beam (1), and detects the vibrator via the second support beam (7/8). Since (5/6) is supported, that is, the fixed support point of the pair of x oscillators (2, 3) and the fixed support point of the detection oscillator (5/6) are both one point and the same point. Therefore, the following advantages are obtained: In the conventional point support by a plurality of anchors, stress was conventionally applied to the beam portion of the x-vibrator due to the influence of the deflection of the base supporting the anchor due to the supporting environment temperature or self-heating of the x-vibrator and external force. However, in the present invention, since the beam is supported at one point O as described above, the above-described stress is not applied to the beam. Therefore, discontinuous shift of resonance frequency and hysteresis due to disturbance or the like are reduced. The stationary point of the x-vibrator system and the detection vibrator system is point O, and is supported there, so that the leakage of vibration between the x-vibrator system and the detection vibrator system is reduced, so that the angular velocity detection is performed. 2. The accuracy is improved, and The first support beam (4) supported by the anchor at the point O includes a first flexible beam (41, 42/43, 44) which bends in the x and y directions. Since the connecting beam (1) is continuous and the connecting beam bends in the x direction and is continuous with the pair of x vibrators (2, 3), the pair of x vibrators (2, 3) becomes x Vibration easily in the direction.
Thus, since the excitation means (10A, 10B) drives the pair of x vibrators (2, 3) symmetrical with respect to the point O in the x direction in the opposite phase, the x driving vibration is almost a simple vibration. In addition, the vibration in the detection direction y is not applied to the detection vibrator, so that the angular velocity detection accuracy is improved.

【0007】[0007]

【発明の実施の形態】(2)検出振動子(5/6)は、それ
ぞれがy軸からx方向に離れ、点Oに関して対称な位置
にあって対をなす。点Oを通りx,y軸に垂直なz軸廻
りの角速度がセンサに加わると、対のx振動子(2,3)の
それぞれのx振動が、y振動成分を有する楕円振動にな
って、連結梁(1)がz軸廻りのねじれ振動を生ずる。こ
のねじれ振動が第2支持梁(7,8)に伝播し、このねじれ
振動によって対の検出振動子(5,6)が第2可撓梁(71,77/
81,87)を介してy方向の、互に逆向きに振動するが、各
検出振動子(5,6)が、y軸からx方向に離れているの
で、ねじれ振動によるそれらのy振幅が、y軸からの距
離に比例して大きく、角速度値に対する検出振動子(5,
6)のy振動が大きく、角速度検出精度が高い。 (3)第2支持梁(7,8)は、x,y平面上に分布する検
出振動子(5,6)および第2可撓梁(71,77/81,87)を包囲し
第2可撓梁に連続してアンカー(120)で支持された補強
梁(74,75/84,85)を含む。この補強梁(74,75/84,85)で、
第2可撓梁(71,77/81,87)を介して両持ち(平衡支持)
形態で検出振動子(5,6)が支持されるので、検出振動子
(5,6)はy方向単振動をし易く、かつy方向振動が安定
し、角速度検出精度および安定性が高い。 (4)連結梁(1)は、点Oをル−プ中心とするル−プ状
である。これにより、ル-プ内(連結梁1のル−プ内空間)
に検出振動系(又はx振動系)を配置し、ル−プ外にx
振動系(検出振動系)を配置するなど、コンパクトにセ
ンサ要素を配置しうる。また、励振手段(10A,10B)に
て、対のx振動子(2,3)を、x方向に逆相で振動駆動す
るが、すなわち対のx振動子(2,3)を音叉として使用す
るが、第1支持梁(4)がx,y方向に撓む第1可撓梁(4
1,42/43,44)を含むので、連結梁(1)はy方向に撓み易
く、x逆相振動によって連結梁(1)のル−プはy方向に
拡縮し易く、対のx振動子(2,3)の逆相x振動が容易で
ある。たとえば励振手段(10A,10B)にて静電気駆動でx
駆動外力をx振動子(2,3)に加えた時、x振動子(2,3)は
逆相で共振しやすい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (2) The detection transducers (5/6) are separated from each other in the x-direction from the y-axis and are symmetrically positioned with respect to a point O to form a pair. When an angular velocity about the z axis passing through the point O and perpendicular to the x and y axes is applied to the sensor, each x vibration of the pair of x vibrators (2, 3) becomes an elliptical vibration having a y vibration component, The connecting beam (1) generates torsional vibration around the z-axis. This torsional vibration propagates to the second support beam (7, 8), and the torsional vibration causes the pair of detection vibrators (5, 6) to move to the second flexible beam (71, 77 /
81, 87), they vibrate in opposite directions in the y direction, but since each of the detection transducers (5, 6) is separated from the y axis in the x direction, their y amplitude due to torsional vibration is reduced. , The detection oscillator (5,
6) The y vibration is large and the angular velocity detection accuracy is high. (3) The second support beams (7, 8) surround the detection vibrators (5, 6) and the second flexible beams (71, 77/81, 87) distributed on the x, y plane, and A stiffening beam (74,75 / 84,85) supported by an anchor (120) in continuation of the flexible beam. With this reinforcement beam (74,75 / 84,85),
Doubly supported via the second flexible beam (71,77 / 81,87) (balanced support)
Since the detection transducers (5, 6) are supported in the form,
(5, 6) is easy to make a simple vibration in the y direction, the vibration in the y direction is stable, and the angular velocity detection accuracy and stability are high. (4) The connecting beam (1) has a loop shape with the point O as the loop center. As a result, the inside of the loop (the space inside the loop of the connecting beam 1)
A detection vibration system (or x vibration system) is placed at
The sensor element can be compactly arranged, for example, by arranging a vibration system (detection vibration system). Also, the pair of x vibrators (2, 3) are driven to vibrate in opposite phases in the x direction by the excitation means (10A, 10B), that is, the pair of x vibrators (2, 3) are used as tuning forks. However, the first support beam (4) is bent in the x and y directions.
1,42 / 43,44), the connecting beam (1) is easy to bend in the y-direction, the loop of the connecting beam (1) is easy to expand and contract in the y-direction due to x-negative phase vibration, and the pair of x-vibration The phase (x) vibration of the child (2, 3) is easy. For example, when driven by the excitation means (10A, 10B),
When a driving external force is applied to the x vibrator (2, 3), the x vibrator (2, 3) tends to resonate in the opposite phase.

【0008】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
[0008] Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0009】[0009]

【実施例】図1に、本発明の一実施例の機構要素を示
す。絶縁層を形成したシリコン基板100には、導電性
とするための不純物を含むポリシリコン(以下導電性ポ
リシリコン)の、浮動体アンカー120、ならびに、多
数の駆動電極91〜94のアンカーおよび多数の検出電
極111,112のアンカー、が接合しており、これら
のアンカーは、シリコン基板100上の絶縁層の上に形
成された配線により、図示しない接続電極に接続されて
いる。
FIG. 1 shows a mechanical element according to an embodiment of the present invention. On the silicon substrate 100 on which the insulating layer is formed, floating body anchors 120 of polysilicon containing impurities for making it conductive (hereinafter referred to as conductive polysilicon), anchors of many drive electrodes 91 to 94, and many The anchors of the detection electrodes 111 and 112 are joined, and these anchors are connected to a connection electrode (not shown) by wiring formed on an insulating layer on the silicon substrate 100.

【0010】リソグラフによる半導体プロセスを用い
て、シリコン基板100から浮きしかも浮動体アンカー
120に連続した、導電性ポリシリコンの、x方向に延
びる中心x梁46およびこれに連続し、アンカー120
を中心とする長方形の第1ル−プ45が形成されてい
る。
Using a lithographic semiconductor process, a center x-beam 46 of conductive polysilicon extending in the x-direction and floating from the silicon substrate 100 and continuous to the floating body anchor 120 and connected to the anchor 120
Is formed as a first loop 45 having a rectangular shape.

【0011】この第1ル−プ45の、アンカー120の
中心Oを通るy軸との交点からy方向に第1支持梁4
(yア−ム43,44および可撓性長方形ル−プ41,
42)が延び、ル−プ41,42の、y軸との交点で、
長方形の第2ル−プ1(x平行辺11,12,y平行辺
13,14)が、第1支持梁4に連続している。y平行
辺13,14の、x軸との交点で、それらに連続した第
1のx振動子21,22および第2のx振動子31,3
2が連続している。これらの要素も、シリコン基板10
0から浮いており、第1ル−プ45と同じ導電性ポリシ
リコンであり、中心Oにおいて、アンカー120によっ
て支持され、基板100からは浮いている。
The first support beam 4 extends in the y direction from the intersection of the first loop 45 with the y axis passing through the center O of the anchor 120.
(Y arms 43, 44 and flexible rectangular loops 41,
42) extends and at the intersection of the loops 41 and 42 with the y-axis,
A rectangular second loop 1 (x parallel sides 11, 12, and y parallel sides 13, 14) is continuous with the first support beam 4. At the intersection of the y-parallel sides 13 and 14 with the x-axis, the first x-vibrators 21 and 22 and the second x-vibrators 31 and 3 continuous with them are provided.
2 is continuous. These elements are also used in the silicon substrate 10
It is floating from zero, is the same conductive polysilicon as the first loop 45, is supported by the anchor 120 at the center O, and is floating from the substrate 100.

【0012】第1のx振動子21と22とは、第2ル−
プ1のy平行辺13に関して対称な形状でしかも対称な
位置にあり、第2のx振動子31,32は、y軸に関し
て第1のx振動子21,22と対称な形状でしかも対称
な位置にある。これらのx振動子21,22/31,3
2は、中心Oを通るx軸に関しても対称である。
The first x vibrators 21 and 22 are connected to a second loop.
The second x vibrators 31 and 32 are symmetrical in shape and symmetrical with respect to the y-axis with respect to the y-axis, and are symmetrical with respect to the y-axis. In position. These x vibrators 21, 22, 31 and 3
2 is also symmetric about the x-axis passing through the center O.

【0013】これらのx振動子21,22/31,32
には、y方向に等ピッチで分布しx方向に突出する櫛歯
状の可動電極23,33があり、駆動電極アンカーに連
続した、導電性ポリシリコンの駆動電極10A,10B
(91〜94)および駆動検出電極9A,9B(101
〜104)にも、可動電極23,33のy方向分布の空
間に突出する櫛歯状の固定電極がありy方向に分布して
いる。
These x-vibrators 21, 22, 31 and 32
Have comb-shaped movable electrodes 23 and 33 distributed at equal pitches in the y-direction and projecting in the x-direction.
(91-94) and the drive detection electrodes 9A, 9B (101
104), there is a comb-shaped fixed electrode protruding into the space of the movable electrode 23, 33 in the y-direction distribution, which is distributed in the y-direction.

【0014】駆動電極10A,10Bの91,93と9
2,94に交互に、x振動子2の電位(略機器ア−スレ
ベル)より高い電圧を印加することにより、x振動子2
がx方向に振動する。このx振動により、x振動子2と
駆動検出電極9A,9Bの101,103との間の静電
容量が振動し、かつその容量振動と逆位相でx振動子2
と102,104との間の静電容量が振動する。
Drive electrodes 10A, 10B 91, 93 and 9
By applying a voltage higher than the potential of the x oscillator 2 (approximately the equipment ground level) to the x oscillator 2
Vibrates in the x direction. Due to the x-vibration, the capacitance between the x-vibrator 2 and the drive detection electrodes 9A and 9B 101 and 103 vibrates, and the x-vibrator 2 has a phase opposite to the capacitance vibration.
And the capacitance between 102 and 104 oscillates.

【0015】x振動子3は、y軸に関してx振動子2と
対称な形状および位置であり、このx振動子3を駆動す
るための駆動電極(y軸に関して10A,10Bと対称
に位置するもの)に、x振動子2駆動パルスと逆位相の
駆動パルスを印加することにより、x振動子3がx振動
子2と逆位相でx方向に振動し、x振動子3と駆動検出
電極(y軸に関して9A,9Bと対称に位置するもの)
の間の静電容量が振動する。駆動パルスを振動子2,3
の共振周波数とすることにより、x振動子2と3が共振
音叉振動を生じ、エネルギ消費効率が高いx振動をす
る。
The x-vibrator 3 has a shape and a position symmetric with respect to the y-axis with respect to the x-vibrator 2, and a drive electrode for driving the x-vibrator 3 (a driving electrode which is symmetric with respect to the y-axis with 10A and 10B). ), A driving pulse having a phase opposite to that of the x-vibrator 2 is applied, so that the x-vibrator 3 vibrates in the x-direction in a phase opposite to that of the x-vibrator 2, and the x-vibrator 3 and the drive detection electrode (y 9A, 9B symmetrical about the axis)
The capacitance between the two oscillates. Drive pulses are applied to oscillators 2 and 3
With this resonance frequency, the x vibrators 2 and 3 generate resonance tuning fork vibration, and perform x vibration with high energy consumption efficiency.

【0016】このx振動により、長方形の第2ル−プ1
のy平行辺13と14の中点がx振動子2と3と同じく
x振動する。これによってx平行辺11,12の左右端
(y平行辺との連接点)は、x,y軸に対して略45度
方向に振動するが、x平行辺11,12の中点(y軸と
の交点)は、それに関してx平行辺11,12それぞれ
が対称であるので、x方向には振動せずy方向のみに振
動する。しかし可撓性長方形ル−プ41,42がy振動
を吸収するので、y振動はわずかしかyア−ム43,4
4に伝播せず、第1ル−プ45のx平行辺は振動するに
してもy方向にわずかであり、x方向には振動しない。
中心x梁46は、第1ル−プ45のy平行辺の中点で第
1ル−プ45に連続するので、仮に第1ル−プ45のx
平行辺がy方向に振動しても、中心x梁46はx方向に
振動しないのは勿論、y方向にも振動しない。したがっ
てアンカー120には、x振動は加わらない。x振動子
2,3のx励振に関してアンカー120(の中心O)は
静止点であり、結局、アンカー120はx振動子2,3
を、静止点にて支持していることになる。
Due to this x vibration, the second rectangular loop 1
Of the y-parallel sides 13 and 14 vibrate in the same manner as the x vibrators 2 and 3. As a result, the left and right ends of the x-parallel sides 11 and 12 (connecting points with the y-parallel sides) vibrate in the direction of approximately 45 degrees with respect to the x- and y-axes. Since the x-parallel sides 11 and 12 are symmetrical with respect to this, the vibrator does not vibrate in the x direction but vibrates only in the y direction. However, since the flexible rectangular loops 41 and 42 absorb the y vibration, the y vibration is slightly reduced.
4, the x-parallel side of the first loop 45 vibrates only slightly in the y-direction and does not vibrate in the x-direction.
The center x beam 46 is continuous with the first loop 45 at the midpoint of the y-parallel side of the first loop 45.
Even if the parallel sides vibrate in the y direction, the center x-beam 46 does not vibrate in the x direction, nor does it vibrate in the y direction. Therefore, no x vibration is applied to the anchor 120. With respect to the x excitation of the x oscillators 2 and 3, (the center O of) the anchor 120 is a stationary point, and eventually, the anchor 120 is connected to the x oscillators 2 and 3
Is supported at the stationary point.

【0017】前述の第1ル−プ45のy平行辺の、x振
動子2,3のx励振に関してx,yいずれの方向にも振
動しない中点に、検出振動子支持用の梁7のyア−ム7
3のy方向中心が連続しており、yア−ム73のy方向
端部にコの字型の可撓梁71,72が連続し、これらの
可撓梁71,72に第1の検出振動子5の半片51,5
2が連続している。これらの半片51,52は、振動子
の基幹(yア−ム)53で連続しており、第1の検出振
動子5は、x軸に関して対称な形状である。また、基幹
53に関して、可撓梁71,72およびyア−ム73と
対称な可撓梁77,78およびyア−ム76があってこ
れらも半片51,52に連続している。yア−ム76の
y方向中点(x軸との交点)に補強用のyア−ム75が
連続し、このyア−ム75のy方向端部にy平行辺が連
続し、このy平行辺がyア−ム74に連続し、このyア
−ム74が第1ル−プ45のy平行辺に連続している。
これらの補強用の部材75,74も、x軸に関して対称
に存在する。
The beam 7 for supporting the detection vibrator is located at the midpoint of the y-parallel side of the first loop 45 which does not vibrate in any of the x and y directions with respect to the x excitation of the x vibrators 2 and 3. y arm 7
3, the center of the y-direction is continuous, and U-shaped flexible beams 71, 72 are continuous at the y-direction end of the y-arm 73. Half pieces 51 and 5 of vibrator 5
2 is continuous. These halves 51 and 52 are continuous at the base (y-arm) 53 of the vibrator, and the first detecting vibrator 5 is symmetrical with respect to the x-axis. Further, with respect to the base 53, there are flexible beams 77, 78 and a y-arm 76 which are symmetrical with the flexible beams 71, 72 and the y-arm 73, and these are also connected to the halves 51, 52. A reinforcing y-arm 75 is continuous at a y-direction midpoint (intersection with the x-axis) of the y-arm 76, and a y-parallel side is continuous at an end of the y-arm 75 in the y-direction. The y-parallel side is continuous with the y-arm 74, and the y-arm 74 is continuous with the y-parallel side of the first loop 45.
These reinforcing members 75 and 74 also exist symmetrically with respect to the x-axis.

【0018】第2の検出用振動子6および支持用の梁8
が、y軸に関して、第1の検出用振動子5および支持用
の梁7と対称な形状であって対称位置に存在する。これ
ら、検出用振動子5,6および支持用の梁7,8は、中
心Oに関して点対称でありまた、x,y両軸に関して対
称に分布する。
The second detecting vibrator 6 and the supporting beam 8
Are symmetrical with respect to the y-axis with respect to the first detecting transducer 5 and the supporting beam 7, and exist at symmetrical positions. The detecting transducers 5 and 6 and the supporting beams 7 and 8 are point-symmetric with respect to the center O and are symmetrically distributed with respect to both the x and y axes.

【0019】以上に説明した検出用振動子5,6および
それらを支持する梁7,8も導電体ポリシリコンであ
り、アンカー120と実質上同電位である。検出振動子
5,6の半片51,52/61,62は、大略で長方形
ル−プ状であるが、その対向y平行辺をつなぐ、x軸に
平行な可動電極用の渡し梁がy方向に略等ピッチで分布
し、渡し梁の間の各空間に、各1対の導電体ポリシリコ
ンの固定検出電極111,112があり、基板100上
の検出電極用の各アンカーで支持されそれと電気的に連
続である(電気接続関係にある)。図2に、図1のA2
−A2線拡大断面を示す。
The above-described detecting vibrators 5, 6 and the beams 7, 8 supporting them are also made of conductive polysilicon and have substantially the same potential as the anchor 120. The half pieces 51, 52/61, and 62 of the detection vibrators 5 and 6 are roughly in the shape of a rectangular loop, and a bridge for a movable electrode parallel to the x-axis, which connects the opposing y-parallel sides, is in the y-direction. There is a pair of fixed detection electrodes 111 and 112 made of conductive polysilicon in each space between the bridge beams, supported by each anchor for the detection electrode on the substrate 100, and electrically connected thereto. (Continuous electrical connection). FIG. 2 shows A2 of FIG.
4 shows an enlarged cross section taken along line A2.

【0020】再度図1を参照すると、対の検出電極11
1,112間は絶縁されているが、第1の検出用振動子
5のy移動を検出するための各対電極の、各対間で対応
位置にある検出電極は共通接続されている。第2の検出
用振動子6のy移動を検出するための各対電極について
も同様である。
Referring again to FIG. 1, a pair of detection electrodes 11
Although the electrodes 1 and 112 are insulated, the detection electrodes at the corresponding positions between the pairs of the counter electrodes for detecting the y movement of the first detection transducer 5 are commonly connected. The same applies to each counter electrode for detecting the y movement of the second detection transducer 6.

【0021】x振動子2,3が逆位相でx方向に振動し
ているとき、例えば、中心Oを通るz軸と平行な軸廻り
の角速度が加わると、x振動子2,3の振動が、y成分
も有する楕円振動となり、第2ル−プ1にz軸廻りのね
じれ振動が現われこれによって第1ル−プ45にもz軸
廻りのねじれ振動が現われる。これによってア−ム7
3,76/83,86がy方向に振動し、検出用振動子
5,6がy方向に振動するが、検出用振動子5と6のy
振動は逆位相となる。
When the x vibrators 2 and 3 are vibrating in the x direction in opposite phases, for example, when an angular velocity about an axis parallel to the z axis passing through the center O is applied, the vibrations of the x vibrators 2 and 3 are increased. , Y component, and a torsional vibration about the z-axis appears in the second loop 1, and a torsional vibration about the z-axis also appears in the first loop 45. This allows arm 7
3, 76/83, and 86 vibrate in the y direction, and the detecting vibrators 5 and 6 vibrate in the y direction.
The vibrations are out of phase.

【0022】図3に、図1に示す角速度センサに接続さ
れた電気回路を示す。タイミング信号発生器TSGが、
x振動子2,3をx方向に共振周波数で逆相駆動する駆
動パルス信号を発生して、駆動回路a1〜a4,b1〜
b4に与えると共に、同期検波用の同期信号を同期検波
回路e1〜e5に与える。
FIG. 3 shows an electric circuit connected to the angular velocity sensor shown in FIG. The timing signal generator TSG
A drive pulse signal for driving the x vibrators 2 and 3 in the x direction in a reverse phase at a resonance frequency is generated, and drive circuits a1 to a4 and b1 to
In addition to b4, a synchronous signal for synchronous detection is applied to synchronous detection circuits e1 to e5.

【0023】図4に、駆動パルス信号に同期して駆動回
路a1〜a4,b1〜b4が駆動電極(10A,10
B:91〜94)に印加する電圧を示す。これにより、
x振動子2,3が、x方向の逆相の音叉振動をする。
FIG. 4 shows that the drive circuits a1 to a4 and b1 to b4 are driven by the drive electrodes (10A, 10A, 10B) in synchronization with the drive pulse signals.
B: 91 to 94). This allows
The x vibrators 2 and 3 perform tuning fork vibrations having the opposite phases in the x direction.

【0024】x振動子2のx振動により、駆動検出電極
(9A)の相対向するもの(101と103)の、振動
子2に対する静電容量が逆相で振動する。差動増幅器c
1〜c8(c1)が、これらの静電容量の振動を表わ
す、プリアンプが発生する静電容量信号を差動増幅し、
1個のプリアンプが発生する静電容量信号の振幅を略2
倍とし、ノイズを相殺した差動信号を発生し、差動増幅
器d1〜d4に与える。1つの差動増幅器(d1)に
は、2つの差動増幅器(c1,c2)の、互に逆相関係
の差動信号が与えられて、それらの差動信号を、差動増
幅器(d1)が同期検波回路e1〜e4(e1)に与え
る。同期検波回路e1〜e4(e1)は、駆動パルス信
号と同相の同期信号に同期して、差動増幅器(d1)が
与える差動信号すなわちx振動を表わすx振動検出電圧
を検波し、駆動パルス信号に対するx振動の位相ずれを
表わす信号を発生してフィ−ドバック処理回路FCRに
与える。 フィ−ドバック処理回路FCRは、同期検波
回路e1〜e4(e1)が与える位相ずれ信号レベルを
設定値に合わすための移相信号を、駆動回路a1〜a
4,b1〜b4(a1,b1)に与え、それを受けた駆
動回路は、移相信号に対応して、駆動パルス信号に対す
る出力駆動電圧V1〜V8(V1,V2)の位相をシフ
トする。同期検波回路e1〜e4のすべての位相ずれ信
号レベルが実質上設定値になった状態で、x振動子2,
3の共振音叉振動は安定したものとなる。
The x-vibration of the x-vibrator 2 causes the capacitance of the opposing (101 and 103) of the drive detection electrode (9A) to vibrate in the opposite phase with respect to the vibrator 2. Differential amplifier c
1 to c8 (c1) differentially amplify the capacitance signal generated by the preamplifier, which represents the oscillation of these capacitances,
The amplitude of the capacitance signal generated by one preamplifier is approximately 2
A differential signal is generated by canceling the noise, and given to differential amplifiers d1 to d4. One differential amplifier (d1) is supplied with differential signals of the two differential amplifiers (c1, c2) having mutually opposite phases, and the differential signals are converted to the differential amplifier (d1). To the synchronous detection circuits e1 to e4 (e1). Synchronous detection circuits e1 to e4 (e1) detect a differential signal provided by the differential amplifier (d1), that is, an x-vibration detection voltage representing x-vibration, in synchronization with a synchronous signal having the same phase as the drive pulse signal. A signal representing the phase shift of the x vibration with respect to the signal is generated and supplied to a feedback processing circuit FCR. The feedback processing circuit FCR supplies the phase shift signals for adjusting the phase shift signal levels provided by the synchronous detection circuits e1 to e4 (e1) to the set values and the drive circuits a1 to a4.
4, b1 to b4 (a1, b1), and the drive circuit receiving the shift shifts the phase of the output drive voltages V1 to V8 (V1, V2) with respect to the drive pulse signal in accordance with the phase shift signal. In a state where all the phase shift signal levels of the synchronous detection circuits e1 to e4 have become substantially set values, the x oscillator 2,
The resonance tuning fork vibration of No. 3 becomes stable.

【0025】安定した共振音叉振動の間に、中心Oを通
るz軸と平行な軸廻りの角速度が加わると、検出振動子
5と6に逆相の、y振動が現われ、その振幅が角速度の
絶対値に対応し、検出振動子5と6の位相差(±180
度)の符号が角速度の方向に対応する。
When an angular velocity about the axis parallel to the z-axis passing through the center O is applied during the stable resonance tuning fork vibration, y-vibrations appear in the detection vibrators 5 and 6 in opposite phases, and the amplitude of the vibration is the angular velocity. Corresponding to the absolute value, the phase difference between the detection transducers 5 and 6 (± 180
The sign of (degree) corresponds to the direction of the angular velocity.

【0026】検出振動子5,6(5)のy振動を検出す
る対の検出電極(111,112)の静電容量が、y振
動によって相対的に逆相で振動し、これを表わす静電容
量信号をプリアンプが発生して差動増幅器c9,c10
(c9)が、両信号の差動信号すなわち1個のプリアン
プが発生する静電容量信号の振幅を略2倍とし、ノイズ
を相殺した差動信号、を発生し、差動増幅器d5に与え
る。
The capacitance of the pair of detection electrodes (111, 112) for detecting the y-vibration of the detection vibrators 5, 6 (5) vibrates in a relatively opposite phase due to the y-vibration. A preamplifier generates a capacitance signal to generate differential amplifiers c9 and c10.
(C9) substantially doubles the differential signal of both signals, that is, the amplitude of the capacitance signal generated by one preamplifier, generates a differential signal in which noise is canceled, and provides the differential signal to the differential amplifier d5.

【0027】差動増幅器d5には、2つの差動増幅器c
9,c10の、互に逆相関係の差動信号が与えられて、
それらの差動信号を、差動増幅器d5が同期検波回路e
5に与える。同期検波回路e5は、駆動パルス信号と同
相の同期信号に同期して、差動増幅器d5が与える差動
信号すなわちy振動を表わすy振動検出電圧を検波し、
角速度を表わす信号を発生する。この角速度信号の極性
(±)は加わった角速度の方向を、信号レベルの絶対値
は角速度の大きさを表わす。
The differential amplifier d5 includes two differential amplifiers c
9 and c10, the differential signals of opposite phase relationship to each other are given,
The differential amplifier d5 converts these differential signals into a synchronous detection circuit e.
Give 5 The synchronous detection circuit e5 detects a differential signal provided by the differential amplifier d5, that is, a y-vibration detection voltage representing y-vibration, in synchronization with a synchronous signal in phase with the drive pulse signal.
A signal representing the angular velocity is generated. The polarity (±) of the angular velocity signal indicates the direction of the applied angular velocity, and the absolute value of the signal level indicates the magnitude of the angular velocity.

【0028】上述のようにx振動の検出(駆動フィード
バック),y振動の検出(ヨーレート)には、駆動回路
a1〜a4,b1〜b4が駆動電極に印加する電圧パル
ス原因のノイズが混入するが、駆動電極に対する検出電
極の相対位置がどこでも同じであり、しかも差動増幅器
c1〜c8,d1〜d5が、対称位置にある検出電極の
信号の差を演算するので、x励振によるノイズに関する
差動出力は、図4の最下列に示すような、駆動パルスの
立上り,立下り点で現われるノイズのみとなり、同基検
波回路e1〜e5で除去される。それにより、同期検波
回路e1〜e4の出力であるx振動フィ−ドバック信号
のS/Nが高く、同期検波回路e5の出力である角速度
信号のS/Nが高い。
As described above, detection of x vibration (drive feedback) and detection of y vibration (yaw rate) include noise caused by voltage pulses applied to the drive electrodes by the drive circuits a1 to a4 and b1 to b4. Since the relative position of the detection electrode with respect to the drive electrode is the same everywhere, and the differential amplifiers c1 to c8 and d1 to d5 calculate the difference between the signals of the detection electrodes at the symmetric positions, the differential with respect to noise due to x excitation is obtained. The output is only noise appearing at the rising and falling points of the drive pulse, as shown in the bottom row of FIG. 4, and is removed by the basic detection circuits e1 to e5. Thus, the S / N of the x vibration feedback signal output from the synchronous detection circuits e1 to e4 is high, and the S / N of the angular velocity signal output from the synchronous detection circuit e5 is high.

【0029】図5に、図1に示す角速度センサの振動系
の概要を模式的に示し、これを参照して図1に示す角速
度センサの特徴を説明すると、この角速度センサは、音
叉構造とし、x振動子2,3を、x方向に逆相で振動さ
せる。この状態を図5の(a)に示す。x振動子2,3
および検出振動子5,6に角速度が加わるとx振動子
2,3はx方向に振動しているため角速度に比例したコ
リオリ力を受け振動方向xと角速度の検出軸zに垂直な
y方向に振動する。検出振動子5,6は停止しているた
めコリオリ力は受けない。
FIG. 5 schematically shows the outline of the vibration system of the angular velocity sensor shown in FIG. 1. Referring to FIG. 5, the characteristics of the angular velocity sensor shown in FIG. 1 will be described. The x vibrators 2 and 3 are vibrated in the x direction in opposite phases. This state is shown in FIG. x vibrator 2,3
When an angular velocity is applied to the detection vibrators 5 and 6, the x vibrators 2 and 3 vibrate in the x direction, and receive Coriolis force proportional to the angular velocity in the y direction perpendicular to the vibration direction x and the detection axis z of the angular velocity. Vibrate. Since the detection oscillators 5 and 6 are stopped, they do not receive Coriolis force.

【0030】コリオリ力が加わったとき、x振動子2,
3は、y方向に振動し、それらのy方向変位が、角速度
に比例し、 y変位=(角速度×振動子の速度×振動子の質量)/y
方向のバネ常数 なるy変位となる。振動子2,3/5,6は、検出方向
yの共振時の振動モードがx振動子2,3が互いに逆相
で、検出振動子5,6も互いに逆相のため、y振動の中
心が角速度センサの浮動体全体の重心Oと一致してい
る。これにより、x振動子2,3がコリオリ力を受けた
とき、検出振動子5,6は、図5の(b)のようにy方
向に振動する。なお、x振動子2,3の共振周波数と、
検出振動子5,6の共振周波数は、感度と対応性のバラ
ンスから、x振動子2,3の共振周波数より、検出振動
子5,6の共振周波数の方が若干高く設定されている。
x振動子2,3の質量と検出振動子5,6の質量とそれ
ぞれの検出方向yのバネ常数の関係から、x振動子2,
3はy方向にほとんど変位しない構成になっている。そ
のかわり検出振動子5,6は大きく変位する。以上によ
りこのセンサの精度(S/N比)は、駆動(x)と検出
(y)の振動の互いの漏れ(クロストーク)が原理上少
ないため、向上できる。
When a Coriolis force is applied, the x oscillator 2,
3 vibrates in the y direction, and their displacement in the y direction is proportional to the angular velocity; y displacement = (angular velocity × vibrator velocity × vibrator mass) / y
The spring constant in the direction is y displacement, which is a constant. The vibrators 2, 3/5, and 6 have a vibration mode at the time of resonance in the detection direction y in which the x vibrators 2 and 3 have phases opposite to each other and the detection vibrators 5 and 6 also have phases opposite to each other. Coincides with the center of gravity O of the entire floating body of the angular velocity sensor. Thus, when the x vibrators 2 and 3 receive Coriolis force, the detection vibrators 5 and 6 vibrate in the y direction as shown in FIG. In addition, the resonance frequency of the x vibrators 2 and 3 and
The resonance frequencies of the detection vibrators 5 and 6 are set slightly higher than the resonance frequencies of the x vibrators 2 and 3 from the balance between sensitivity and correspondence.
From the relationship between the masses of the x oscillators 2 and 3, the masses of the detection oscillators 5 and 6, and the spring constants in the respective detection directions y, the x oscillators 2 and 3
Reference numeral 3 denotes a configuration that hardly displaces in the y direction. Instead, the detection oscillators 5 and 6 are displaced greatly. As described above, the accuracy (S / N ratio) of this sensor can be improved since the leakage (crosstalk) of the drive (x) and detection (y) vibrations is small in principle.

【0031】また、この構造は従来構造とは違い、強制
的に振動を押さえ込む形になっていないため、応力の影
響,温度変化に強い構造である。また、駆動と検出の振
動の不動点がセンサの重心にほぼ一致するため、また上
記のようにコリオリ力を受けたときに従来と比較し、全
く回転運動を伴わないため支持がなくても重心位置で支
持点は静止している。そのため外部からの振動(車両等
に搭載時)がセンサの駆動振動と検出振動にほとんど影
響を与えないため従来タイプに比べS/N比が向上す
る。また、上記のような支持であるため温度等による熱
膨張の影響が少なく温度補正の少なくてすむ。よって従
来タイプに比べS/N比が向上する。
Also, this structure is different from the conventional structure in that it does not forcibly suppress vibration, so that it is resistant to the influence of stress and temperature change. In addition, since the fixed point of the drive and detection vibrations almost coincides with the center of gravity of the sensor, and when subjected to Coriolis force as described above, it does not involve any rotational movement as compared with the conventional case, so even if there is no support, there is no center of gravity. In the position the support point is stationary. Therefore, since the external vibration (when mounted on a vehicle or the like) hardly affects the driving vibration and the detection vibration of the sensor, the S / N ratio is improved as compared with the conventional type. In addition, since the above-described support is used, the influence of thermal expansion due to temperature or the like is small, and the temperature correction can be reduced. Therefore, the S / N ratio is improved as compared with the conventional type.

【0032】図1に示す角速度センサは、x振動子2,
3の質量中心に、バネ部であるル−プ1が連続してそれ
らを浮動支持するので、振動質量(2,3)の自身の変
形によるばね効果の変化が実質上なく、x振動子2,3
のx振動は、単振動に近くなる。ばね(1)の長さを変
えることなく全体の大きさを小さくできる。x振動子
2,3に加わるx励振の駆動力がル−プ1との接続点
(一点)に加わるため、振動のモードにねじれ等の成分
が発生しにくく、x振動が単振動になる。
The angular velocity sensor shown in FIG.
At the center of mass of the loop 3, the loop 1, which is a spring portion, continuously floats and supports them, so that there is substantially no change in the spring effect due to the deformation of the vibrating mass (2, 3) itself. , 3
The x vibration of is close to a simple vibration. The overall size can be reduced without changing the length of the spring (1). Since a driving force of x excitation applied to the x vibrators 2 and 3 is applied to a connection point (one point) with the loop 1, a component such as a torsion is hardly generated in a mode of vibration, and the x vibration becomes a simple vibration.

【0033】また、図1に示す角速度センサは、双共振
のx振動系としているため、x振動子2,3の振幅が増
幅され変化が大きく取れる。これにより、少ないエネル
ギーで駆動できるため、低コスト化できる。変位出力を
大きく取れるため、S/Nが向上する。
Since the angular velocity sensor shown in FIG. 1 employs a bi-resonant x-vibration system, the amplitudes of the x-vibrators 2 and 3 are amplified and a large change can be obtained. As a result, driving can be performed with a small amount of energy, so that cost can be reduced. Since a large displacement output can be obtained, the S / N is improved.

【0034】更に、図1に示す角速度センサの、双共振
のそれぞれの振動モードの不動点が重心Oであり、かつ
x振動子2,3が該重心O(単一点)で支持されてい
る。これにより、x振動の振動漏れが原理上発生しない
ため、検出振動yの増幅率を大きく取れる。検出振動y
に不要な振動を誘起しないので、角速度信号のS/Nが
向上する。駆動振動に不要な振動が誘起されず、単振動
で駆動できる。そのためS/Nが向上する。
Further, in the angular velocity sensor shown in FIG. 1, the fixed point of each of the bi-resonant vibration modes is the center of gravity O, and the x vibrators 2 and 3 are supported by the center of gravity O (single point). As a result, the leakage of the x vibration does not occur in principle, so that the amplification factor of the detected vibration y can be increased. Detection vibration y
Since unnecessary vibration is not induced in the angular velocity signal, the S / N of the angular velocity signal is improved. Unnecessary vibration is not induced in driving vibration, and driving can be performed with simple vibration. Therefore, S / N is improved.

【0035】また、図1に示す角速度センサの、x振動
系およびy振動系の重心のそれぞれが一点Oであって、
同一点であるので、温度による熱膨張の影響によりバネ
部(1,4,7,8)に応力の負荷が発生せず、温度特
性がよくなる。特に、車載等、温度変化が大きい環境で
使用する場合に、角速度検出の信頼性(安定性)が高
い。
In the angular velocity sensor shown in FIG. 1, each of the centers of gravity of the x vibration system and the y vibration system is one point O,
Since they are the same point, no stress load is generated in the spring portions (1, 4, 7, 8) due to the effect of thermal expansion due to temperature, and the temperature characteristics are improved. In particular, the reliability (stability) of detecting the angular velocity is high when the device is used in an environment with a large temperature change such as a vehicle.

【0036】また、図1に示す角速度センサの、バネ部
(1,4,7,8)がすべて折り曲げ形状にて形成され
ているので、温度による熱膨張の影響によりバネ部に応
力の負荷が発生せず、温度特性がよくなる。同じ共振周
波数で比べると外形を小さくできるため、低コストであ
る。
Further, since the spring portions (1, 4, 7, 8) of the angular velocity sensor shown in FIG. 1 are all formed in a bent shape, a stress load is applied to the spring portions due to the influence of thermal expansion due to temperature. It does not occur and the temperature characteristics are improved. As compared with the same resonance frequency, the outer shape can be made smaller, so that the cost is lower.

【0037】また、x駆動振動のばねには応力緩和のば
ね(41,42)が追加されている。これによりx駆動
振動の非線型性が改善され、単振動で振動するためS/
Nが向上する。
Further, springs (41, 42) for stress relaxation are added to the spring for the x drive vibration. As a result, the nonlinearity of the x drive vibration is improved, and the x-drive vibration oscillates in a single vibration.
N is improved.

【0038】また、角速度が加わっていないとき、検出
振動子5,6は実質上静止であり検出振動yに駆動振動
xとの共振がないため、検出振動yが単振動し、角速度
信号のS/Nが向上する。
When the angular velocity is not applied, the detecting oscillators 5 and 6 are substantially stationary and the detecting vibration y does not resonate with the driving vibration x. / N is improved.

【0039】x振動子2,3の検出方向yの検出変位よ
り、検出振動子5,6のy検出変位の方が大きく設計さ
れている(2,3より5,6の質量の方が小さい)の
で、x駆動振動へのy検出振動の影響が相対的に低減
し、しかも角速度信号のS/Nが向上する。不動点Oに
対する検出振動子5,6の質量中心(53,63)のx
距離を大きくして、てこの原理により検出振動子5,6
のy方向変位を大きくできるため、角速度検出信号のS
/Nを高くすることができる。
The y-detection displacement of the detection oscillators 5, 6 is designed to be larger than the detection displacement of the x-vibrators 2, 3 in the detection direction y (the mass of 5, 6 is smaller than that of 2, 3). ), The influence of the y detection vibration on the x drive vibration is relatively reduced, and the S / N of the angular velocity signal is improved. X of the center of mass (53, 63) of detection transducers 5, 6 with respect to fixed point O
By increasing the distance, the detection oscillators 5, 6
Can be increased in the y direction, so that the angular velocity detection signal S
/ N can be increased.

【0040】図1に示す角速度センサの検出振動子5,
6は、y方向のばね性(可撓性)が高い可撓梁71,7
2を介して剛体に近いフレーム(74,75)で支持さ
れている。検出振動子5,6がねじれ回転のモードでは
なく互いに平行でかつ逆相でy振動するため、検出振動
yを静電容量で検出する場合、理想的な正弦出力がえら
れ、角速度信号のS/Nが向上する。
The detecting oscillator 5 of the angular velocity sensor shown in FIG.
6 are flexible beams 71, 7 having high spring property (flexibility) in the y direction.
2 and supported by frames (74, 75) close to a rigid body. Since the detection vibrators 5 and 6 vibrate not in the torsional rotation mode but in a parallel and opposite phase to each other, an ideal sine output is obtained when the detection vibration y is detected by the capacitance, and the angular velocity signal S / N is improved.

【0041】図1に示す角速度センサは、リソグラフを
用いる半導体プロセスにて、シリコンウェ−ハ上に構成
でき従来の半導体プロセスにて製作可能なため、低コス
トで生産しうる。浮動体(4,1〜3/5〜8)が1枚
板から形成され、半導体プロセスにて簡単に造形でき、
低コストで生産しうる。
The angular velocity sensor shown in FIG. 1 can be manufactured on a silicon wafer by a semiconductor process using a lithography and can be manufactured by a conventional semiconductor process, so that it can be manufactured at low cost. The floating body (4, 1-3 / 5-8) is formed from a single plate and can be easily formed by a semiconductor process.
Can be produced at low cost.

【0042】図6に、図1に示す角速度センサの変形例
の、図1のものとは異った構造部を示す。この変形例で
は、図1に示す浮動体アンカー120とx梁46との間
に、追加のル−プ47とy梁48を介挿し、これらでx
梁46をアンカー120に連結している。
FIG. 6 shows a modification of the angular velocity sensor shown in FIG. 1 which is different from that shown in FIG. In this modification, an additional loop 47 and a y-beam 48 are interposed between the floating body anchor 120 and the x-beam 46 shown in FIG.
Beam 46 is connected to anchor 120.

【0043】図7に、この変形例の振動系の概要を模式
的に示す。この変形例では、ル−プ47を付加している
ので、ねじれ振動の伝播は図1の実施例と同様に効果的
に行ない、励振振動xの遮断は、図1の実施例よりも効
果的である。すなわち、x振動子2,3のx振動を、検
出振動子5,6や基板100に伝えない効果が高い。
FIG. 7 schematically shows an outline of a vibration system of this modified example. In this modification, since the loop 47 is added, the propagation of the torsional vibration is effectively performed as in the embodiment of FIG. 1, and the blocking of the excitation vibration x is more effective than the embodiment of FIG. It is. That is, the effect of not transmitting the x vibration of the x vibrators 2 and 3 to the detection vibrators 5 and 6 and the substrate 100 is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の平面図である。FIG. 1 is a plan view of one embodiment of the present invention.

【図2】 図1のA2−A2線拡大断面図である。FIG. 2 is an enlarged sectional view taken along line A2-A2 of FIG.

【図3】 図1に示す実施例を励振し角速度信号を得る
ための電気回路を示すブロック図である。
FIG. 3 is a block diagram showing an electric circuit for exciting the embodiment shown in FIG. 1 and obtaining an angular velocity signal.

【図4】 図3に示す駆動回路a1〜a4,b1〜b4
が、x励振用の駆動電極91〜94に印加する電圧を示
すタイムチャ−トである。
FIG. 4 shows drive circuits a1 to a4 and b1 to b4 shown in FIG.
Is a time chart showing the voltage applied to the drive electrodes 91 to 94 for x excitation.

【図5】 図1に示す角速度センサの振動系の構成概要
を模式的に示す平面図であり、(a)は角速度が加わっ
ていない状態を、(b)は角速度が加わっている状態を
示す。
5A and 5B are plan views schematically showing a configuration outline of a vibration system of the angular velocity sensor shown in FIG. 1, wherein FIG. 5A shows a state where an angular velocity is not applied, and FIG. 5B shows a state where an angular velocity is applied. .

【図6】 図1に示す角速度センサの変更部を示す平面
図である。
FIG. 6 is a plan view showing a changed part of the angular velocity sensor shown in FIG. 1;

【図7】 図6に変更部を示す角速度センサの振動系の
構成概要を模式的に示す平面図である。
FIG. 7 is a plan view schematically showing a configuration outline of a vibration system of the angular velocity sensor showing a change unit in FIG. 6;

【符号の説明】[Explanation of symbols]

1:第2ル−プ 11〜14:x,y平
行辺 2,3:x振動子 21,22,31,3
2:x振動子 4:第1支持梁 41,42:可撓性長
方形ル−プ 43,44:yア−ム 45:第1ル−プ 46:x梁 47:追加のル−プ 48:y梁 5,6:検出振動子 51,52/61,62:半片 7,8:検出振動子支
持用の梁 9A,9B,91〜94:駆動検出電極 10A,10B,101〜104:駆動電極 100:基板 120:浮動体アンカ
1: second loop 11 to 14: x, y parallel sides 2, 3: x vibrator 21, 22, 31, 3
2: x vibrator 4: first support beam 41, 42: flexible rectangular loop 43, 44: y arm 45: first loop 46: x beam 47: additional loop 48: y beams 5, 6: detecting oscillators 51, 52/61, 62: half pieces 7, 8: beams for supporting the detecting oscillators 9A, 9B, 91 to 94: drive detection electrodes 10A, 10B, 101 to 104: drive electrodes 100: substrate 120: floating body anchor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】x,y平面上の一点Oに関して対称な位置
にある、対のx振動子;x,y平面に分布し、点Oに関
して対称であって、対のx振動子のそれぞれに連続し、
少くともx方向に撓む連結梁;連結梁に連続し、かつ点
Oと連結梁との間にx,y方向に撓む第1可撓梁を含
む、点Oに関して対称な第1支持梁;点Oに関して対称
な検出振動子;検出振動子に連続し、かつ点Oとの間に
y方向に撓む第2可撓梁を含む、点Oに関して対称な第
2支持梁;点Oにおいて第1支持梁および第2支持梁を
支持するアンカー;対のx振動子を、x方向に逆相で振
動駆動する励振手段;および、検出振動子のy方向振動
を検出する手段;を備える角速度センサ。
1. A pair of x oscillators which are symmetrically positioned with respect to a point O on the x, y plane; distributed in the x, y plane, symmetric with respect to the point O, and provided with a pair of x oscillators. Continuous,
A connecting beam that flexes at least in the x-direction; a first support beam that is symmetrical about point O, including a first flexible beam that is continuous with the connecting beam and that flexes in the x, y directions between point O and the connecting beam. A second support beam symmetrical with respect to point O, including a second flexible beam which is continuous with the detector and deflects in the y direction between point O and at the point O; An angular velocity comprising: an anchor supporting the first support beam and the second support beam; excitation means for driving the pair of x-vibrators in opposite phases in the x-direction; and means for detecting y-direction vibration of the detection vibrator. Sensor.
【請求項2】検出振動子は、それぞれがy軸からx方向
に離れ、点Oに関して対称な位置にあって対をなすもの
である、請求項1記載の角速度センサ。
2. The angular velocity sensor according to claim 1, wherein each of the detection vibrators is apart from each other in the x-direction from the y-axis and is symmetrical with respect to the point O to form a pair.
【請求項3】第2支持梁は、x,y平面上に分布する検
出振動子および第2可撓梁を包囲し第2可撓梁に連続し
てアンカーで支持された補強梁を含む、請求項1記載の
角速度センサ。
3. The second supporting beam includes a detection transducer distributed on an x, y plane and a reinforcing beam surrounding the second flexible beam and supported by the anchor continuously to the second flexible beam. The angular velocity sensor according to claim 1.
【請求項4】連結梁は、点Oをル−プ中心とするル−プ
状である、請求項1,請求項2又は請求項3記載の角速
度センサ。
4. The angular velocity sensor according to claim 1, wherein the connecting beam has a loop shape with the point O as a loop center.
JP17187098A 1998-06-18 1998-06-18 Angular velocity sensor Expired - Fee Related JP3882972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17187098A JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17187098A JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JP2000009471A true JP2000009471A (en) 2000-01-14
JP3882972B2 JP3882972B2 (en) 2007-02-21

Family

ID=15931328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17187098A Expired - Fee Related JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3882972B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337885A (en) * 1999-05-13 2000-12-08 Samsung Electro Mech Co Ltd Microgyroscope
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2008516217A (en) * 2004-10-06 2008-05-15 コミツサリア タ レネルジー アトミーク Vibration mass resonator
WO2009087858A1 (en) * 2008-01-07 2009-07-16 Murata Manufacturing Co., Ltd. Angular velocity sensor
US7762134B2 (en) 2006-09-20 2010-07-27 Denso Corporation Dynamic quantity sensor
JP2010531447A (en) * 2007-06-29 2010-09-24 ノースロップ グルマン リテフ ゲーエムベーハー Rotational speed sensor
JP2013145189A (en) * 2012-01-16 2013-07-25 Seiko Epson Corp Gyro sensor and electronic apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221778B (en) 2010-09-18 2016-03-30 快捷半导体公司 There is single micromechanics one chip three-axis gyroscope driven
WO2012037536A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
WO2012037538A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
DE112011103124T5 (en) 2010-09-18 2013-12-19 Fairchild Semiconductor Corporation Bearing for reducing quadrature for resonant micromechanical devices
EP2619536B1 (en) 2010-09-20 2016-11-02 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2648334B1 (en) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Mems device front-end charge amplifier
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
DE102013014881B4 (en) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Enhanced silicon via with multi-material fill
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248872A (en) * 1992-03-06 1993-09-28 Toshiba Corp Inertia sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
JPH08152327A (en) * 1994-11-30 1996-06-11 Nippondenso Co Ltd Semiconductor yaw rate sensor and its manufacture
JPH08220125A (en) * 1994-11-25 1996-08-30 Robert Bosch Gmbh Rotational angular velocity sensor
JPH0942973A (en) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd Angle speed sensor
JPH09119942A (en) * 1995-08-16 1997-05-06 Robert Bosch Gmbh Rotational angular velocity sensor
JPH09127148A (en) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd Angular speed sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248872A (en) * 1992-03-06 1993-09-28 Toshiba Corp Inertia sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
JPH08220125A (en) * 1994-11-25 1996-08-30 Robert Bosch Gmbh Rotational angular velocity sensor
JPH08152327A (en) * 1994-11-30 1996-06-11 Nippondenso Co Ltd Semiconductor yaw rate sensor and its manufacture
JPH0942973A (en) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd Angle speed sensor
JPH09119942A (en) * 1995-08-16 1997-05-06 Robert Bosch Gmbh Rotational angular velocity sensor
JPH09127148A (en) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd Angular speed sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337885A (en) * 1999-05-13 2000-12-08 Samsung Electro Mech Co Ltd Microgyroscope
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2008516217A (en) * 2004-10-06 2008-05-15 コミツサリア タ レネルジー アトミーク Vibration mass resonator
US7762134B2 (en) 2006-09-20 2010-07-27 Denso Corporation Dynamic quantity sensor
DE102007044204B4 (en) * 2006-09-20 2012-02-09 Denso Corporation Sensor of a dynamic size
JP2010531447A (en) * 2007-06-29 2010-09-24 ノースロップ グルマン リテフ ゲーエムベーハー Rotational speed sensor
WO2009087858A1 (en) * 2008-01-07 2009-07-16 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP4631992B2 (en) * 2008-01-07 2011-02-16 株式会社村田製作所 Angular velocity sensor
US8272267B2 (en) 2008-01-07 2012-09-25 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP2013145189A (en) * 2012-01-16 2013-07-25 Seiko Epson Corp Gyro sensor and electronic apparatus

Also Published As

Publication number Publication date
JP3882972B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP4075022B2 (en) Angular velocity sensor
JP3882973B2 (en) Angular velocity sensor
JP3882972B2 (en) Angular velocity sensor
JP4290986B2 (en) Rotation rate sensor
US6321598B1 (en) Angular velocity sensor device having oscillators
US5585562A (en) Vibration-sensing gyro
JP3805837B2 (en) Angular velocity detector
US7546768B2 (en) Mounting structure of angular rate sensor
JP2000046560A (en) Angular velocity sensor
US7523665B2 (en) Angular velocity sensor and method for operating the same
JP2002081939A (en) External force measuring apparatus
CN109444466B (en) FM inertial sensor and method for operating an FM inertial sensor
JPH1164002A (en) Angular velocity sensor
JP2000009470A (en) Angular velocity sensor
JP2000009475A (en) Angular velocity detection device
JPH1144541A (en) Angular velocity sensor
JP2000074673A (en) Compound movement sensor
JP2001194155A (en) Motion sensor
JP2000105124A (en) Electrostatic drive, electrostatic detecting type angular velocity sensor
JP2000018951A (en) Angular velocity detecting method and device thereof
JP3368723B2 (en) Vibrating gyro
JP2000018952A (en) Angular velocity sensor
JP3139205B2 (en) Acceleration sensor
JP2001264068A (en) Angular velocity sensor
JP3139212B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees