JP2000003811A - Helium recovering equipment for superconducting coil - Google Patents
Helium recovering equipment for superconducting coilInfo
- Publication number
- JP2000003811A JP2000003811A JP16840598A JP16840598A JP2000003811A JP 2000003811 A JP2000003811 A JP 2000003811A JP 16840598 A JP16840598 A JP 16840598A JP 16840598 A JP16840598 A JP 16840598A JP 2000003811 A JP2000003811 A JP 2000003811A
- Authority
- JP
- Japan
- Prior art keywords
- helium
- superconducting coil
- temperature
- heater
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超電導コイルにク
ェンチ現象が発生したとき内部のヘリウムを回収する超
電導コイルのヘリウム回収装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a helium recovery device for a superconducting coil for recovering helium therein when a quench phenomenon occurs in the superconducting coil.
【0002】[0002]
【従来の技術】超電導コイルにクェンチ現象が発生する
と、内部の温度が上昇しヘリウムガスの圧力が上昇する
ので、この圧力上昇によるコイルの破壊を避けるため、
内部のガスを外部に放出しなければならない。ここでク
ェンチ現象とは、超電導コイルを形成する超電導線の一
部が、摩擦熱や、超電導線の臨界状態(磁束密度、歪み
率、温度)を超えた場合、または電流転移現象により、
超伝導状態より、常伝導状態に移転することを言い、常
伝導に移転すると、移転した部分でジュール熱が発生
し、連鎖的に常伝導部分が伝搬する。この発熱により超
電導コイルを冷却しているヘリウムガスが加熱され、ヘ
リウムガスの圧力が上昇する。2. Description of the Related Art When a quench phenomenon occurs in a superconducting coil, the internal temperature rises and the pressure of helium gas rises.
The internal gas must be released to the outside. Here, the quench phenomenon means that a part of the superconducting wire forming the superconducting coil exceeds the frictional heat, the critical state of the superconducting wire (magnetic flux density, strain rate, temperature), or the current transition phenomenon,
The transition from the superconducting state to the normal conduction state. When the transition to the normal conduction occurs, Joule heat is generated at the transferred part, and the normal conduction part propagates in a chain. The helium gas cooling the superconducting coil is heated by this heat generation, and the pressure of the helium gas increases.
【0003】クェンチ現象が発生すると、ヘリウムガス
の圧力が高くなるので、超電導コイルの破損を防止する
ため、実験室規模のものでは直接大気放出していたが、
実用規模のプラントではタンク等に回収する。この場
合、超電導コイル近傍ではヘリウムの温度は4.5K程
度の超低温であり、へリウムガスを回収する低温タンク
(通常液体窒素により80K程度まで冷却されるので、
80K中圧回収タンクと呼ばれる。)に発生したヘリウ
ムガスを直接導入すると、熱衝撃でタンクが破損する。
このため加温器を設け、大気により加温し、80K程度
にしてからタンクに回収するようにしている。[0003] When the quench phenomenon occurs, the pressure of the helium gas increases, so that in order to prevent damage to the superconducting coil, it was directly released to the atmosphere on a laboratory scale.
In a practical-scale plant, it is collected in a tank. In this case, the temperature of helium near the superconducting coil is as low as about 4.5K, and a helium gas is collected at a low temperature tank (usually cooled to about 80K with liquid nitrogen,
It is called 80K medium pressure recovery tank. If the helium gas generated in (1) is directly introduced, the tank is damaged by thermal shock.
For this reason, a heater is provided, which is heated by the atmosphere to about 80K before being collected in the tank.
【0004】[0004]
【発明が解決しようとする課題】しかし、核融合炉用や
電力貯蔵用超電導コイルは、ヘリウムガス貯蔵量が膨大
であり、蓄積エネルギー量も膨大であるので、急速にヘ
リウムガスを抜き取るためには、大口径の配管を用い、
多数の加温器を設置する必要がある。また、真空断熱配
管を使用したクェンチガスラインでは、回収タンクに直
接低温ガスが流入し、タンクの熱応力割れの恐れがあ
る。However, superconducting coils for fusion reactors and electric power storage have a huge amount of helium gas storage and a huge amount of stored energy. , Using large-diameter piping,
It is necessary to install many heaters. Also, in a quench gas line using vacuum insulation pipes, low-temperature gas flows directly into the recovery tank, and there is a risk of thermal stress cracking of the tank.
【0005】本発明は、上述の問題点に鑑みてなされた
もので、超電導コイルから発生する低温のヘリウムガス
の温度を制御して回収タンクに導くようにした超電導コ
イルのヘリウム回収装置を提供することを目的する。The present invention has been made in view of the above-mentioned problems, and provides a helium recovery device for a superconducting coil in which the temperature of a low-temperature helium gas generated from a superconducting coil is controlled and guided to a recovery tank. Aim to be.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
請求項1の発明では、超電導コイル装置に接続されヘリ
ウムを導く真空断熱配管と、この真空断熱配管に接続さ
れヘリウムを収容する回収タンクと、を備え、前記真空
断熱配管にはヒータと温度計が設けられ、この温度計の
計測値に応じてヒータの出力を制御する。According to the first aspect of the present invention, there is provided a vacuum insulating pipe connected to a superconducting coil device for guiding helium, a recovery tank connected to the vacuum insulating pipe and containing helium. , And a heater and a thermometer are provided in the vacuum insulation pipe, and the output of the heater is controlled according to the measurement value of the thermometer.
【0007】クェンチ現象が発生し、生じたヘリウムガ
スは真空断熱配管に導かれる。真空断熱配管内では温度
計によりヘリウムガスの温度を計測し、その温度が回収
タンクに熱衝撃を与えない温度になるまでヒータで加熱
して、回収タンクに送り込む。これにより回収タンクは
熱衝撃から免れることができる。[0007] A quench phenomenon occurs, and the generated helium gas is led to a vacuum heat-insulating pipe. The temperature of the helium gas is measured by a thermometer in the vacuum insulated pipe, heated by a heater until the temperature does not give a thermal shock to the recovery tank, and sent to the recovery tank. This allows the recovery tank to be free from thermal shock.
【0008】請求項2の発明では、前記真空断熱配管内
の入り口と出口近傍に圧力計を設け、両圧力計の差圧に
応じてヒータの出力を制御する。According to the second aspect of the present invention, a pressure gauge is provided near the entrance and the exit in the vacuum insulation pipe, and the output of the heater is controlled according to the pressure difference between the two pressure gauges.
【0009】ヒータの出力が大き過ぎると、加熱摩擦損
失が生じて、ヘリウムガスが流れ難くなり、圧力計の圧
力差が小さくなる。この場合ヒータの出力を少なくして
加熱を抑制する。また、差圧が大きくヘリウムガスの温
度が低ければ、加熱を大きくする。If the output of the heater is too large, heat friction loss occurs, making it difficult for helium gas to flow, and reducing the pressure difference of the pressure gauge. In this case, heating is suppressed by reducing the output of the heater. If the pressure difference is large and the temperature of the helium gas is low, the heating is increased.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は実施形態の超電導コイルのヘ
リウム回収装置の構成を示す図である。超電導コイル1
はヘリウムで冷却されており、4.5K程度の温度とな
っている。真空断熱配管2は2重管で構成され、内管5
と外管6からなり、内管5と外管6の間の空間は真空と
して断熱層を構成しており、内管5内をヘリウムガスが
流れる。内管5の一端は弁4を介して超電導コイル1に
接続し、他端は80K中圧回収タンク3に接続されてい
る。80K中圧回収タンク3は液体窒素(温度78k)
によりほぼ80kの温度に保持されているタンクであ
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a helium recovery device for a superconducting coil according to an embodiment. Superconducting coil 1
Is cooled by helium and has a temperature of about 4.5K. The vacuum insulation pipe 2 is composed of a double pipe, and the inner pipe 5
And the outer tube 6, the space between the inner tube 5 and the outer tube 6 constitutes a heat insulating layer as a vacuum, and helium gas flows in the inner tube 5. One end of the inner pipe 5 is connected to the superconducting coil 1 via the valve 4, and the other end is connected to the 80K medium pressure recovery tank 3. 80K medium pressure recovery tank 3 is liquid nitrogen (temperature 78k)
Is a tank that is maintained at a temperature of approximately 80 k.
【0011】真空断熱配管2の内管5外周には軸に沿っ
て4個の電気ヒータH1,H2,H3,H4が設置され
ている。内管5の内部で各ヒータのヘリウムガスの流れ
方向上流側に測定部を有する温度計T1,T2,T3,
T4と、内管5の出口に測定部を持つ温度計T5が設け
られている。また、内管5内部の入り口と出口に測定部
を有する圧力計P1,P2が設けられている。各ヒータ
H1〜H4はヒータ制御装置により制御される。各温度
計T1〜T5の計測データは温度伝送器8を介してパー
ソナルコンピュータ9に送られ、パーソナルコンピュー
タ9は各温度計T1〜T5および圧力計P1,P2のデ
ータに基づき各ヒータH1〜H4の制御データをヒータ
制御装置7に指示する。[0011] Four electric heaters H1, H2, H3, and H4 are provided along the axis on the outer periphery of the inner pipe 5 of the vacuum heat insulating pipe 2. Thermometers T1, T2, T3 each having a measuring section inside the inner tube 5 on the upstream side in the helium gas flow direction of each heater.
T4 and a thermometer T5 having a measuring section at the outlet of the inner tube 5 are provided. Further, pressure gauges P1 and P2 each having a measurement section at the entrance and the exit inside the inner pipe 5 are provided. Each of the heaters H1 to H4 is controlled by a heater control device. The measurement data of each of the thermometers T1 to T5 is sent to a personal computer 9 via a temperature transmitter 8, and the personal computer 9 outputs the data of each of the heaters H1 to H4 based on the data of each of the thermometers T1 to T5 and the pressure gauges P1 and P2. The control data is instructed to the heater control device 7.
【0012】次にクェンチ現象発生時の動作について説
明する。 クェンチ現象により超電導コイル1内に発生したヘ
リウムガスの圧力を逃がすために、超電導コイル1と真
空断熱配管2の間の弁4を開く。 超電導コイル1内では、ヘリウムの圧力は、上昇し
ているが、圧力逃がし口の温度は、4.5K近傍である
ので、断熱膨張により、ヘリウム自体の温度は下がる。
一方、真空断熱配管2の内管5は80K から300K(常
温)の間の温度であるので、放出されたヘリウムは温め
られる。 ヘリウムを放出した初期段階では、真空断熱配管2
の熱容量により、ヘリウム放出前の真空断熱配管2の温
度と同程度の温度のヘリウムガスが80K中圧回収タン
ク3に流れ込む。 真空断熱配管2の形状に依存するが、時間がたつと
真空断熱配管2も冷却され、温度の低いヘリウムガスが
80K中圧回収タンク3に流入する。ここで、80K中
圧回収タンク3の熱容量が真空断熱配管2の熱容量より
も大きいので、流れ込むヘリウムガス温度と80K中圧
回収タンク3の温度の間に温度差が発生する。そのまま
放置すれば、大きな温度差となり、熱衝撃により80K
中圧回収タンク3は壊れる危険性が生ずる。 そこで、真空断熱配管2の内管5の温度監視を行い
ながら、真空断熱配管に設けられたヒータH1〜H4に
より放出されるヘリウムを加熱する。Next, the operation when the quench phenomenon occurs will be described. In order to release the pressure of the helium gas generated in the superconducting coil 1 due to the quench phenomenon, the valve 4 between the superconducting coil 1 and the vacuum insulation pipe 2 is opened. In the superconducting coil 1, the pressure of helium rises, but the temperature of the pressure relief port is around 4.5K, so the temperature of helium itself drops due to adiabatic expansion.
On the other hand, since the temperature of the inner tube 5 of the vacuum heat insulating pipe 2 is between 80K and 300K (normal temperature), the released helium is warmed. At the initial stage of releasing helium, vacuum insulation pipe 2
Helium gas having a temperature approximately equal to the temperature of the vacuum heat insulating pipe 2 before the release of helium flows into the 80K medium pressure recovery tank 3. Although depending on the shape of the vacuum heat insulating pipe 2, the vacuum heat insulating pipe 2 is also cooled over time, and the helium gas having a low temperature flows into the 80K medium pressure recovery tank 3. Here, since the heat capacity of the 80K medium pressure recovery tank 3 is larger than the heat capacity of the vacuum adiabatic pipe 2, a temperature difference occurs between the flowing helium gas temperature and the temperature of the 80K medium pressure recovery tank 3. If left as it is, a large temperature difference will occur and 80K due to thermal shock
The medium pressure recovery tank 3 has a risk of being broken. Therefore, while monitoring the temperature of the inner pipe 5 of the vacuum insulation pipe 2, the helium released by the heaters H1 to H4 provided in the vacuum insulation pipe is heated.
【0013】ヒータH1〜H4の出力制御は、温度計T
1〜T5の計測値、圧力計P1,P2の差圧に基づき行
われる。温度計T1〜T5による出力制御は、流れるヘ
リウムの温度を温度計T1〜T5の位置に応じてあらか
じめ定めた温度になるようにヒータH1〜H4の出力を
調整するものである。温度制御を小区間にて行うのは、
ヘリウムの物性が温度と圧力により変化するからであ
る。また、差圧による出力制御は、ヒータH1〜H4の
出力(真空断熱配管2の単位長さ当たりの熱通過量が大
き過ぎると、加熱摩擦損失が発生してヘリウムガスが流
れなくなるので、差圧が所定値以上となるように出力調
整を行う。これにより、真空断熱配管2の両端の差圧が
所定値以下となると、ヒータH1〜H4の出力を減少さ
せ、差圧を所定値以上とし、各温度計T1〜T5の値が
所定値となるよう各ヒータH1〜H4の出力を調整す
る。The output of the heaters H1 to H4 is controlled by a thermometer T.
The measurement is performed based on the measured values of 1 to T5 and the pressure difference between the pressure gauges P1 and P2. The output control by the thermometers T1 to T5 adjusts the outputs of the heaters H1 to H4 so that the temperature of the flowing helium becomes a predetermined temperature according to the positions of the thermometers T1 to T5. Performing temperature control in a small section
This is because the physical properties of helium change with temperature and pressure. In addition, the output control based on the differential pressure is based on the output of the heaters H1 to H4 (if the amount of heat passing per unit length of the vacuum heat insulating pipe 2 is too large, heating friction loss occurs and helium gas does not flow. The output is adjusted so that is equal to or more than a predetermined value.When the differential pressure at both ends of the vacuum heat insulating pipe 2 becomes equal to or less than a predetermined value, the outputs of the heaters H1 to H4 are reduced to make the differential pressure equal to or more than a predetermined value. The outputs of the heaters H1 to H4 are adjusted so that the values of the thermometers T1 to T5 become predetermined values.
【0014】図2はクェンチ現象発生により行われたヒ
ータ出力制御による温度計T1〜T5と圧力計P1,P
2の計測値を示す図である。はヘリウムガス発生開始
時を示し、は温度計T2によりヒータH1の制御開始
を示し、は温度計T3によりヒータH2の制御開始を
示し、は温度計T4によりヒータH3の制御開始を示
す。この場合、温度計T5は所定温度80Kになってい
るので、ヒータH4の加熱は行われない。また、圧力計
P1とP2の差圧は所定値以上となっており、ヘリウム
ガスが適正に流れていることを示す。FIG. 2 shows thermometers T1 to T5 and pressure gauges P1 and P1 based on heater output control performed by the occurrence of a quench phenomenon.
It is a figure which shows the measurement value of 2. Indicates the start of helium gas generation, indicates the start of control of the heater H1 by the thermometer T2, indicates the start of control of the heater H2 by the thermometer T3, and indicates the start of control of the heater H3 by the thermometer T4. In this case, since the temperature of the thermometer T5 has reached the predetermined temperature of 80K, the heater H4 is not heated. Further, the pressure difference between the pressure gauges P1 and P2 is equal to or higher than a predetermined value, indicating that the helium gas is flowing properly.
【0015】[0015]
【発明の効果】以上の説明より明らかなように、本発明
は、超電導コイルから発生するクェンチ現象によるヘリ
ウムガスを回収タンク等の下流側機器に導く真空断熱配
管を設け、この内部にヒータを設け、出口温度を制御し
て下流側に取り付けられた機器を熱衝撃から保護する。
これにより従来用いられていた加温器を不要または設け
てもそのサイズを小さくすることができる。また、ヒー
タの投入熱量を温度と圧力から制御することにより、加
熱摩擦損失を予想し、ヘリウムガスの加温、回収を効果
的に行うことができる。As is apparent from the above description, the present invention provides a vacuum insulation pipe for guiding helium gas generated by a quench phenomenon from a superconducting coil to downstream equipment such as a recovery tank, and a heater provided inside the pipe. In addition, the outlet temperature is controlled to protect the equipment mounted downstream from thermal shock.
This makes it possible to reduce the size of the conventionally used heater even if it is unnecessary or provided. Further, by controlling the amount of heat input to the heater from the temperature and the pressure, it is possible to anticipate a heating friction loss and to effectively heat and recover the helium gas.
【図1】本発明の実施形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.
【図2】ヒータ制御による温度計と圧力計のデータを示
す。FIG. 2 shows data of a thermometer and a pressure gauge under heater control.
1 超電導コイル 2 真空断熱配管 3 80K中圧回収タンク 4 弁 5 内管 6 外管 7 ヒータ制御装置 8 温度伝送器 9 パーソナルコンピュータ DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Vacuum insulation pipe 3 80K medium pressure recovery tank 4 Valve 5 Inner pipe 6 Outer pipe 7 Heater control device 8 Temperature transmitter 9 Personal computer
Claims (2)
導く真空断熱配管と、この真空断熱配管に接続されヘリ
ウムを収容する回収タンクと、を備え、前記真空断熱配
管にはヒータと温度計が設けられ、この温度計の計測値
に応じてヒータの出力を制御することを特徴とする超電
導コイルのヘリウム回収装置。1. A vacuum insulation pipe connected to a superconducting coil device for guiding helium, and a recovery tank connected to the vacuum insulation pipe and containing helium, wherein a heater and a thermometer are provided in the vacuum insulation pipe. A helium recovery device for a superconducting coil, wherein an output of the heater is controlled in accordance with a value measured by the thermometer.
に圧力計を設け、両圧力計の差圧に応じてヒータの出力
を制御することを特徴とする請求項1記載の超電導コイ
ルのヘリウム回収装置。2. The helium of a superconducting coil according to claim 1, wherein a pressure gauge is provided near an inlet and an outlet in the vacuum insulation pipe, and an output of the heater is controlled in accordance with a pressure difference between the two pressure gauges. Collection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16840598A JP4178486B2 (en) | 1998-06-16 | 1998-06-16 | Helium recovery device for superconducting coils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16840598A JP4178486B2 (en) | 1998-06-16 | 1998-06-16 | Helium recovery device for superconducting coils |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000003811A true JP2000003811A (en) | 2000-01-07 |
JP4178486B2 JP4178486B2 (en) | 2008-11-12 |
Family
ID=15867524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16840598A Expired - Fee Related JP4178486B2 (en) | 1998-06-16 | 1998-06-16 | Helium recovery device for superconducting coils |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178486B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2439094A (en) * | 2005-11-10 | 2007-12-19 | Gen Electric | A Cooling System for Superconducting Magnets Which Retains Boil-off Coolant |
-
1998
- 1998-06-16 JP JP16840598A patent/JP4178486B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2439094A (en) * | 2005-11-10 | 2007-12-19 | Gen Electric | A Cooling System for Superconducting Magnets Which Retains Boil-off Coolant |
Also Published As
Publication number | Publication date |
---|---|
JP4178486B2 (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112415051B (en) | High-temperature heat pipe heat transfer performance and failure test experimental device | |
CN107315068B (en) | Liquid metal purification experiment loop system and application method thereof | |
Chi | Cooldown temperatures and cooldown time during mist flow | |
CN113030155B (en) | Experimental system for researching flow solidification behavior of lead and bismuth | |
CN107228879B (en) | Carbon dioxide flow heat transfer characteristic measuring device and method | |
Powell | Heat transfer to fluids in the region of the critical temperature | |
Tatsumoto et al. | Forced convection heat transfer of saturated liquid hydrogen in vertically-mounted heated pipes | |
JP2000003811A (en) | Helium recovering equipment for superconducting coil | |
CN101852703B (en) | Ultra-low temperature constant temperature grabbing bar device | |
CN111272219A (en) | Liquid metal lithium physical property parameter testing system and testing method thereof | |
Maehata et al. | Operational performance of spiral-fin current leads | |
Hamada et al. | Thermal and hydraulic measurement in the ITER QUELL experiments | |
CN104457358B (en) | High-temperature heat pipe cavity pressure real-time measurement system based on U-tube | |
Kim et al. | Temperature measurement with radiation correction for very high temperature gas | |
Nicollet et al. | Thermohydraulic analysis of Tore Supra/WEST TF coil quench: Associated smooth quench occurrence in tokamak | |
Barni et al. | Cooldown symulations for TESLA Test Facility (TTF) cryostats | |
Yoshiki et al. | Three metre long horizontal cryostat producing ultracold neutrons using superfluid liquid helium at 0.5 K (Mark 3000) | |
Leupold et al. | Subcooled superfluid helium cryostat for a hybrid magnet system | |
CN115524362B (en) | High-temperature heat pipe heat transfer capacity testing device | |
Sonoda et al. | Effect of SHe temperature on cool-down speed in JT-60SA CS module | |
Chan et al. | Mixed convection from upward flow of hot air to a cooled vertical pipe | |
Lee et al. | Effect of flow imbalance on the operational performance of the KSTAR PF superconducting magnets system | |
Nagel et al. | Thermohydraulic behavior of the WENDELSTEIN 7-X magnet system | |
Kim et al. | Reduced Radiation Error for Temperature Measurement in Internal Gas Flow | |
Lee et al. | Effect of flow imbalance on the operational performance of the KSTAR PF1UL magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080801 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |