[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000003718A - Method for activating high molecular electrolyte fuel cell - Google Patents

Method for activating high molecular electrolyte fuel cell

Info

Publication number
JP2000003718A
JP2000003718A JP10166637A JP16663798A JP2000003718A JP 2000003718 A JP2000003718 A JP 2000003718A JP 10166637 A JP10166637 A JP 10166637A JP 16663798 A JP16663798 A JP 16663798A JP 2000003718 A JP2000003718 A JP 2000003718A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
electrolyte fuel
plate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10166637A
Other languages
Japanese (ja)
Other versions
JP3469091B2 (en
Inventor
Kazuhito Hado
一仁 羽藤
Eiichi Yasumoto
栄一 安本
Kazufumi Nishida
和史 西田
Hisaaki Gyoten
久朗 行天
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16663798A priority Critical patent/JP3469091B2/en
Priority to US09/322,948 priority patent/US6187464B1/en
Priority to EP99109371A priority patent/EP0961334A3/en
Priority to CN99107155A priority patent/CN1113420C/en
Priority to EP08011420A priority patent/EP1981112A3/en
Priority to CNB021473897A priority patent/CN1238922C/en
Publication of JP2000003718A publication Critical patent/JP2000003718A/en
Application granted granted Critical
Publication of JP3469091B2 publication Critical patent/JP3469091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To instantaneously provide the battery output of high performance when operating a high molecular electrolyte fuel cell, immediately after assembling it or operating the fuel cell again after it has been left standing unused for a long time. SOLUTION: A high molecular electrolyte fuel cell is boiled in the deionized water, or the hot water is led into a gas supplying passage, or alcohol is led into the gas supplying passage of the high molecular electrolyte fuel cell, and thereafter the fuel cell is washed by the deionized water. Power is generated at a high oxygen utilizing factor in the high molecular electrolyte fuel cell, and held at a low electric potential so as to easily lead out the battery output of high performance natural to the battery itself in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池の活性化方法に関する。
The present invention relates to a method for activating a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】従来の高分子電解質型燃料電池は、プロ
トン導伝性の高分子電解質薄膜と、正極および負極の電
極、それぞれの電極周縁部に位置するガスケット、さら
にカ−ボンあるいは金属製のバイポ−ラ板や冷却板によ
り構成した。電池反応に寄与する電極触媒層は、貴金属
触媒を担持したカ−ボン粉末と電解質と同等の材料の混
合物を構成材料とし、これに必要によりフルオロカ−ボ
ン化合物系の撥水材などを添加した混合物が一般的な構
成材料である。電極は、前記電極触媒層とガス拡散層と
を接合して構成する。このようにして構成した電極は電
解質である高分子膜と組み合わせて電池を構成する。ア
ノ−ドおよびカソ−ドの構成材料は、純水素を燃料とし
て用いる場合、同一のものを使用することが可能であ
る。炭化水素系燃料を改質した水素リッチなガスを燃料
とする場合、改質ガス中に含まれる一酸化炭素による貴
金属触媒の被毒を抑制するため、アノ−ド側のみにルテ
ニウムなどの耐CO被毒材料を添加して構成することも
考えられてきた。また、電極のCO被毒特性は、温度が
高いほど緩和されるため、改質ガスを燃料に用いる場合
には70℃から90℃程度の比較的高温で電池を運転す
ることが一般的である。
2. Description of the Related Art A conventional polymer electrolyte fuel cell comprises a proton conductive polymer electrolyte thin film, positive and negative electrodes, a gasket located at the periphery of each electrode, and a carbon or metal material. It consisted of a bipolar plate and a cooling plate. The electrode catalyst layer contributing to the battery reaction is composed of a mixture of a carbon powder supporting a noble metal catalyst and a material equivalent to an electrolyte, and a mixture to which a fluorocarbon compound-based water repellent is added as necessary. Are common constituent materials. The electrode is formed by joining the electrode catalyst layer and the gas diffusion layer. The electrode constituted in this way is combined with a polymer film as an electrolyte to constitute a battery. When pure hydrogen is used as fuel, the same material can be used for the anode and the cathode. When a hydrogen-rich gas obtained by reforming a hydrocarbon-based fuel is used as a fuel, the poisoning of the noble metal catalyst by carbon monoxide contained in the reformed gas is suppressed. It has also been considered to add poisoning materials to the composition. In addition, since the CO poisoning characteristics of the electrode are alleviated as the temperature becomes higher, it is general to operate the battery at a relatively high temperature of about 70 ° C. to 90 ° C. when the reformed gas is used as fuel. .

【0003】一方、高分子電解質は−CF2−を主鎖と
し、これにスルホン基(−SO3H)を末端官能基とす
る側鎖をペンダントしたものが一般的に使用されてお
り、水分を含んだ状態でプロトン伝導性の電解質として
機能する。そのため電池の作動状態では、電解質は常に
水分を含んだ状態である必要があるが、水分を含んだ状
態の電解質は、強酸性を呈する。そのため、電解質と直
接接する部分の材料には耐酸性が要求される。
On the other hand, a polymer electrolyte having a main chain of —CF 2 — and a pendant side chain having a sulfone group (—SO 3 H) as a terminal functional group is generally used. Functions as a proton-conducting electrolyte in a state containing. Therefore, in the operating state of the battery, the electrolyte must always contain water, but the electrolyte containing water exhibits strong acidity. Therefore, the material of the portion in direct contact with the electrolyte is required to have acid resistance.

【0004】電解質が水分を含んだ状態で電解質として
機能するため、高分子電解質型燃料電池を動作させる場
合には、電池運転温度と同程度の温度の露点まで加湿し
た燃料や空気を電池に供給する必要がある。特に電池運
転温度が高温になるほど、供給ガスの加湿制御が重要に
なってくる。
[0004] Since the electrolyte functions as an electrolyte in a state of containing water, when operating a polymer electrolyte fuel cell, fuel or air humidified to a dew point at a temperature substantially equal to the operating temperature of the cell is supplied to the cell. There is a need to. In particular, as the battery operating temperature becomes higher, the humidification control of the supplied gas becomes more important.

【0005】[0005]

【発明が解決しようとする課題】高分子電解質型燃料電
池を組み立て直後に作動させる場合や、または長時間未
使用のまま放置した電池を再作動させる場合、電池を所
定の温度に保持し、供給ガスを所定の温度や加湿量に制
御したものを供給しても、瞬時に高性能の電池出力を得
ることは一般に困難である。この原因は、高分子電解質
型燃料電池の電極拡散層は撥水処理を施してあるため、
全く濡れていないバ−ジンな電極拡散層を水和させるに
は長時間を要することによる。
When a polymer electrolyte fuel cell is operated immediately after assembly, or when a battery that has been left unused for a long time is restarted, the battery is maintained at a predetermined temperature and supplied. It is generally difficult to obtain a high-performance battery output instantaneously even when supplying gas whose gas is controlled to a predetermined temperature or humidification amount. This is because the electrode diffusion layer of the polymer electrolyte fuel cell has been treated for water repellency,
It takes a long time to hydrate a virgin electrode diffusion layer that is not wet at all.

【0006】また、電極触媒中に含まれる高分子電解質
と同等の材料が十分に吸湿するのにも長時間を要するか
らである。しかも、電池を所定の温度に保持し、供給ガ
スを所定の温度や加湿量に制御したものを供給し長時間
保持しても、無負荷状態のままでは電極拡散層は簡単に
は水和しない。さらに、電極触媒中に含まれる高分子電
解質と同等の材料は吸湿し難く、高電流密度で発電を続
けて、ようやく数日後に本来電池が有している高性能の
電池出力を引き出すことが可能となる。
Also, it takes a long time for a material equivalent to the polymer electrolyte contained in the electrode catalyst to sufficiently absorb moisture. Moreover, even if the battery is maintained at a predetermined temperature and the supply gas is controlled at a predetermined temperature and humidification amount and is maintained for a long time, the electrode diffusion layer does not easily hydrate under no load condition. . Furthermore, materials equivalent to the polymer electrolyte contained in the electrode catalyst are unlikely to absorb moisture, continue to generate power at a high current density, and finally draw out the high-performance battery output inherent in the battery several days later Becomes

【0007】そのため、従来は電池の高性能出力を早期
に引き出すために、純酸素中でより高電流密度で発電し
たり、充分に大流量の供給ガスを供給した状態で電位規
制を行い電池電圧を0V付近に維持するなどの活性化処
理を行ってきた。このような手法によっても、本来電池
が有している高性能の電池出力を引き出すには数時間以
上を要することが一般的であった。
[0007] Therefore, in order to extract the high-performance output of the battery at an early stage, power generation is performed at a higher current density in pure oxygen, or the potential is regulated while supplying a sufficiently large flow rate of the supply gas. Has been performed, for example, by maintaining the voltage around 0V. Even with such a method, it generally took several hours or more to extract the high-performance battery output that the battery originally has.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
め、本発明の高分子電解質型燃料電池の活性化方法は、
高分子電解質膜を正極と負極とで挟持し、さらに前記正
極と前記負極とをガス供給路を有するバイポ−ラ板で挟
持したものを単位電池とし、少なくとも前記単位電池
と、集電板と、絶縁板と、エンドプレ−トとを積層した
高分子電解質型燃料電池モジュールにおいて、前記高分
子電解質型燃料電池モジュールを脱イオン水または弱酸
性水中で煮沸することを特徴とする。
In order to solve the above problems, a method for activating a polymer electrolyte fuel cell according to the present invention comprises:
A polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and a unit battery further sandwiching the positive electrode and the negative electrode with a bipolar plate having a gas supply path, at least the unit battery, a current collector, In a polymer electrolyte fuel cell module in which an insulating plate and an end plate are laminated, the polymer electrolyte fuel cell module is boiled in deionized water or weakly acidic water.

【0009】また、高分子電解質膜を正極と負極とで挟
持し、さらに前記正極と前記負極とをガス供給路を有す
るバイポ−ラ板で挟持したものを単位電池とし、少なく
とも前記単位電池と、集電板と、絶縁板と、エンドプレ
−トとを積層した高分子電解質型燃料電池モジュールに
おいて、前記ガス供給路に、前記高分子電解質型燃料電
池の動作温度より高温の、脱イオン水もしくは弱酸性水
を導入することを特徴とする。
Also, a unit battery in which a polymer electrolyte membrane is sandwiched between a positive electrode and a negative electrode, and the positive electrode and the negative electrode are sandwiched between bipolar plates having a gas supply path, and at least the unit battery, In a polymer electrolyte fuel cell module in which a current collector plate, an insulating plate, and an end plate are laminated, deionized water or weak deionized water having a temperature higher than the operating temperature of the polymer electrolyte fuel cell is provided in the gas supply path. It is characterized by introducing acidic water.

【0010】このとき、ガス供給路に導入する、脱イオ
ン水もしくは弱酸性水の圧力を0.1kgf/cm2
上とすることが有効である。
At this time, it is effective that the pressure of deionized water or weakly acidic water introduced into the gas supply passage is set to 0.1 kgf / cm 2 or more.

【0011】また、高分子電解質膜を正極と負極とで挟
持し、さらに前記正極と前記負極とをガス供給路を有す
るバイポ−ラ板で挟持したものを単位電池とし、少なく
とも前記単位電池と、集電板と、絶縁板と、エンドプレ
−トとを積層した高分子電解質型燃料電池モジュールに
おいて、前記ガス供給路にアルコ−ルを導入した後、水
蒸気,脱イオン水,もしくは弱酸性水で前記ガス供給路を
洗浄することを特徴とする。
[0011] Further, a unit battery comprising a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and further comprising the positive electrode and the negative electrode sandwiched by a bipolar plate having a gas supply path, wherein at least the unit battery comprises: In a polymer electrolyte fuel cell module in which a current collector plate, an insulating plate, and an end plate are laminated, after introducing alcohol into the gas supply passage, the alcohol is introduced with steam, deionized water, or weakly acidic water. The gas supply path is cleaned.

【0012】以上で、弱酸性水が、過酸化水素水である
ことが有効である。さらに、高分子電解質膜のイオン交
換基はSO3Hであり、かつ弱酸性水が希硫酸の水溶液
であることが有効である。
As described above, it is effective that the weakly acidic water is a hydrogen peroxide solution. Further, it is effective that the ion exchange group of the polymer electrolyte membrane is SO 3 H and the weakly acidic water is an aqueous solution of dilute sulfuric acid.

【0013】また、高分子電解質膜を正極と負極とで挟
持し、さらに前記正極と前記負極とをバイポ−ラ板で挟
持したものを単位電池とし、少なくとも前記単位電池
と、集電板と、絶縁板と、エンドプレ−トとを積層した
高分子電解質型燃料電池モジュールにおいて、50%以
上の酸素利用率で前記高分子電解質型燃料電池モジュー
ルの発電を行い、さらに、前記単位電池あたりの平均電
圧が0.3V以下となる電圧を所定時間、前記高分子電
解質型燃料電池モジュールに印加することを特徴とす
る。
[0013] Further, the polymer electrolyte membrane is sandwiched between a positive electrode and a negative electrode, and the positive electrode and the negative electrode are sandwiched between bipolar plates to form a unit battery. At least the unit battery, a current collector plate, In a polymer electrolyte fuel cell module in which an insulating plate and an end plate are laminated, power generation of the polymer electrolyte fuel cell module is performed at an oxygen utilization rate of 50% or more, and further, an average voltage per unit cell is obtained. Is applied to the polymer electrolyte fuel cell module for a predetermined time.

【0014】[0014]

【発明の実施の形態】本発明は、高分子電解質型燃料電
池を脱イオン水または弱酸性水中で煮沸することによっ
て簡単に、かつ短時間で本来電池が有している高性能の
電池出力を引き出すことを可能とする。この時、弱酸性
水中で煮沸することによって、電解質膜や電極触媒層中
に含まれる高分子電解質と同等の材料に含まれる不純物
イオンをプロトンと交換し、より高性能を引き出すこと
が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a high-performance battery output which is inherently provided in a polymer electrolyte fuel cell simply and in a short time by boiling it in deionized water or weakly acidic water. It is possible to withdraw. At this time, by boiling in weakly acidic water, impurity ions contained in the same material as the polymer electrolyte contained in the electrolyte membrane and the electrode catalyst layer can be exchanged for protons, and higher performance can be obtained. .

【0015】しかしながら、大面積や高積層の燃料電池
スタックを水中で煮沸することは、容器の容量や取り扱
い性の観点で困難であることが想定される。そこで、高
分子電解質型燃料電池のガス供給路に所定の電池動作温
度より高温の脱イオン水または弱酸性水を導入すること
によって、簡単かつ短時間で本来電池が有している高性
能の電池出力を引き出すことが可能となる。さらに好ま
しくは、このとき水圧を0.1kgf/cm2以上に加
圧することによって、より早く高性能の電池出力を引き
出すことが可能となる。
However, it is assumed that it is difficult to boil a large-area or highly-stacked fuel cell stack in water from the viewpoint of container capacity and handleability. Therefore, by introducing deionized water or weakly acidic water having a temperature higher than a predetermined cell operating temperature into a gas supply path of a polymer electrolyte fuel cell, a high-performance It is possible to extract the output. More preferably, at this time, by increasing the water pressure to 0.1 kgf / cm 2 or more, it becomes possible to quickly obtain a high-performance battery output.

【0016】また、高分子電解質型燃料電池のガス供給
路にアルコ−ルを導入することによって、電極の拡散層
は即座にアルコ−ルとなじませることが可能である。そ
の後、水蒸気または脱イオン水または弱酸性水で洗浄す
ることによって簡単に、かつ短時間で電極拡散層を水和
させ、本来電池が有している高性能の電池出力を引き出
すことが可能となる。
Further, by introducing alcohol into the gas supply path of the polymer electrolyte fuel cell, the diffusion layer of the electrode can be immediately adapted to the alcohol. Thereafter, the electrode diffusion layer can be hydrated easily and in a short time by washing with steam, deionized water, or weakly acidic water, and the high-performance battery output originally possessed by the battery can be obtained. .

【0017】この時、燃料極側に残存アルコ−ルが存在
すると、電極触媒によってアルコ−ルが酸化され電極被
毒物質を生成する。本来電池が有している高性能の電池
出力を引き出すには、燃料極側よりも正極側の電極拡散
層を水和させることが肝要である。そこで、空気側のみ
にアルコ−ルを供給しても十分な効果が得られる。ま
た、活性化処理後しばらくは燃料極側にも酸化性ガスを
供給し、電極被毒物質を更に酸化除去した後、燃料ガス
を供給することがより望ましい。
At this time, if residual alcohol is present on the fuel electrode side, the alcohol is oxidized by the electrode catalyst to generate an electrode poisoning substance. It is important to hydrate the electrode diffusion layer on the positive electrode side rather than on the fuel electrode side in order to draw out the high performance battery output that the battery originally has. Therefore, a sufficient effect can be obtained even if the alcohol is supplied only to the air side. Further, it is more desirable to supply the oxidizing gas to the fuel electrode side for a while after the activation treatment, to further oxidize and remove the electrode poisoning substance, and then supply the fuel gas.

【0018】また、高分子電解質として、たとえば−C
2−を主鎖とし、これにスルホン基(−SO3H)を末
端官能基とする側鎖をペンダントしたものを用いたと
き、これを活性化するには、弱酸性水として、希硫酸の
水溶液が望ましい。その理由は、高分子電解質のイオン
交換基が−SO3Hであるので、これに希硫酸を導入し
ても、硫酸イオンが残存しないことによる。
As the polymer electrolyte, for example, -C
When a side chain having a main chain of F 2 — and a sulfonic group (—SO 3 H) as a terminal functional group pendant thereto is used, a weak acidic water may be used as a weak acidic water to activate the dilute sulfuric acid. Is preferred. The reason is because the ion exchange groups of the polymer electrolyte is -SO 3 H, even when introduced into a dilute sulfuric acid, due to the fact that no residual sulfate ions.

【0019】また、活性化工程で導入する脱イオン水ま
たは弱酸性水には、金属イオンを除去する必要がある。
この理由は、金属イオンがあると、高分子電解質のイオ
ン交換基であるたとえば−SO3 -が、金属イオンと結合
して、−SO3Me(Meは金属元素)となり、イオン
交換能力を失うことによる。この現象を防ぐためには、
導入する弱酸性水としては、純粋と水素イオンだけで構
成される過酸化水素水が特に有用である。
Further, it is necessary to remove metal ions from the deionized water or the weakly acidic water introduced in the activation step.
The reason for this is that if there is a metal ion, an ion-exchange group of the polymer electrolyte e.g. -SO 3 - is bonded to the metal ion, -SO 3 Me (Me is a metal element) loses, and the ion exchange capacity It depends. To prevent this phenomenon,
As the weakly acidic water to be introduced, a hydrogen peroxide solution composed only of pure and hydrogen ions is particularly useful.

【0020】さらに、高分子電解質型燃料電池を50%
以上の酸素利用率で発電し、電池の正極側を半窒息状態
にし、平均電池電圧を0.3V以下の電位で保持するこ
とで電池から発生した水蒸気によって簡単に、かつ短時
間で本来電池が有している高性能の電池出力を引き出す
ことが可能となる。
Further, the polymer electrolyte fuel cell is 50%
Power is generated at the above oxygen utilization rate, the positive electrode side of the battery is placed in a semi-asphyxial state, and the average battery voltage is maintained at a potential of 0.3 V or less. It is possible to draw out the high-performance battery output that it has.

【0021】[0021]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0022】(実施例1)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30 の白金粒子を25重量%担
持したものを反応電極の触媒とした。この触媒粉末をイ
ソプロパノ−ルに分散させた溶液に、(化1)で示した
パーフルオロカーボンスルホン酸の粉末をエチルアルコ
ールに分散したディスパージョン溶液を混合し、ペース
ト状にした。このペーストを原料としスクリ−ン印刷法
をもちいて、厚み250μmのカ−ボン不織布の一方の
面に電極触媒層を形成した。形成後の反応電極中に含ま
れる白金量は0.5mg/cm2、パーフルオロカーボ
ンスルホン酸の量は1.2mg/cm2となるよう調整
した。
Example 1 An acetylene black-based carbon powder carrying 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for a reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 1 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0023】[0023]

【化1】 Embedded image

【0024】これらの電極は、正極・負極共に同一構成
とし、電極より一回り大きい面積を有するプロトン伝導
性高分子電解質膜の中心部の両面に、印刷した触媒層が
電解質膜側に接するようにホットプレスによって接合し
て、電極/電解質接合体(MEA)を作成した。ここで
は、プロトン伝導性高分子電解質として、(化2)に示
したパーフルオロカーボンスルホン酸を25μmの厚み
に薄膜化したものを用いた。
These electrodes have the same configuration for both the positive electrode and the negative electrode, and the catalyst layers printed on both sides of the central portion of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes so that the catalyst layers contact the electrolyte membrane side. The electrode / electrolyte assembly (MEA) was formed by joining by hot pressing. Here, as the proton conductive polymer electrolyte, a thin film of the perfluorocarbon sulfonic acid shown in Chemical Formula 2 with a thickness of 25 μm was used.

【0025】[0025]

【化2】 Embedded image

【0026】前記MEAが非多孔質カ−ボンからなるバ
イポ−ラ板2枚のガス流路と向かい合う形で、2枚のバ
イポ−ラ板の間にMEAを挟んで、高分子電解質型燃料
電池を構成した。この高分子電解質型燃料電池の両外側
に、それぞれ必要なガスマニホ−ルド用孔を設けたヒ−
タ−板・集電板・絶縁板・エンドプレ−トを取り付け、
最外側の両エンドプレ−ト間を、ボルトとバネとナット
を用いて、電極面積に対して20kg/cm2の圧力で
締め付け、高分子電解質型燃料電池の単電池を構成し
た。この単電池を、イオン交換を行った蒸留水中で、1
時間煮沸した。
A polymer electrolyte fuel cell is formed by sandwiching the MEA between two bipolar plates in such a manner that the MEA is opposed to two gas flow paths made of a non-porous carbon bipolar plate. did. Heaters provided with necessary gas manifold holes on both outer sides of the polymer electrolyte fuel cell.
Attach tar plate, current collector plate, insulating plate, end plate,
Using a bolt, a spring, and a nut, the outermost end plates were tightened at a pressure of 20 kg / cm 2 with respect to the electrode area, thereby forming a unit cell of a polymer electrolyte fuel cell. This cell is placed in distilled water subjected to ion exchange for 1 hour.
Boil for an hour.

【0027】その後、この高分子電解質型燃料電池を7
5℃に保持し、一方の電極側に73℃の露点となるよう
加湿・加温した水素ガスを、もう一方の電極側に68℃
の露点となるように加湿・加温した空気を供給した。こ
のとき、無負荷時には、0.98Vの電池電圧を得た。
また、この電池を燃料利用率80%、酸素利用率40
%、電流密度0.3A/cm2の条件で連続発電試験を
行ったところ、発電直後から0.7V以上の電池電圧を
得た。更に、5000時間以上にわたって0.7V以上
の電池電圧を保ったまま、電池電圧の劣化なく発電が可
能であった。
After that, the polymer electrolyte fuel cell was
A hydrogen gas kept at 5 ° C. and humidified and heated to a dew point of 73 ° C. on one electrode side and 68 ° C. on the other electrode side
Humidified and heated air was supplied so as to have a dew point. At this time, when no load was applied, a battery voltage of 0.98 V was obtained.
Further, this battery was used with a fuel utilization of 80% and an oxygen utilization of
% And a current density of 0.3 A / cm 2 , a continuous power generation test yielded a battery voltage of 0.7 V or more immediately after power generation. Furthermore, power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 5000 hours or more.

【0028】比較のために全く同じ構成で、イオン交換
した蒸留水中で煮沸しない、つまり活性化処理なしの高
分子電解質型燃料電池を作成し、同条件で発電試験を行
った。その結果、無負荷時には0.93Vの電池電圧し
か得られなかった。また、この電池は燃料利用率80
%、酸素利用率40%、電流密度0.3A/cm2の条
件では、初期には運転不可能であり、強制的に負荷をと
ると起電圧は0V以下に低下した。そこで、燃料利用率
70%、酸素利用率20%、電流密度0.1A/cm2
の条件で発電試験を行い、徐々に性能が向上したのを確
認して、段階的に0.7A/cm2まで負荷を増大させ
ていった。前記操作を3回繰り返し、その後ガス利用率
などを当初の条件に戻し、0.3A/cm2の負荷で
0.7V以上の電池電圧を得るのに約3日間必要であっ
た。
For comparison, a polymer electrolyte fuel cell having exactly the same configuration and not boiling in ion-exchanged distilled water, that is, without an activation treatment, was prepared, and a power generation test was performed under the same conditions. As a result, at no load, only a battery voltage of 0.93 V was obtained. This battery has a fuel utilization of 80
%, Oxygen utilization of 40%, and current density of 0.3 A / cm 2 , the operation was not possible at the beginning, and when the load was forcibly taken, the electromotive voltage dropped to 0 V or less. Therefore, fuel utilization rate 70%, oxygen utilization rate 20%, current density 0.1 A / cm 2
A power generation test was performed under the conditions described above, and it was confirmed that the performance was gradually improved, and the load was gradually increased to 0.7 A / cm 2 . The above operation was repeated three times, and thereafter, the gas utilization rate and the like were returned to the initial conditions, and it took about three days to obtain a battery voltage of 0.7 V or more at a load of 0.3 A / cm 2 .

【0029】本実施例では、電池をイオン交換を行った
蒸留水中で煮沸した例を示したが、ph=5とした過酸
化水素水中で、2時間保存したものも同様の効果を示し
た。
In this embodiment, an example was shown in which the battery was boiled in distilled water subjected to ion exchange. However, the same effect was obtained when the battery was stored in a hydrogen peroxide solution with ph = 5 for 2 hours.

【0030】(実施例2)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30 の白金粒子を25重量%担
持したものを反応電極の触媒とした。この触媒粉末をイ
ソプロパノ−ルに分散させた溶液に、(化1)で示した
パーフルオロカーボンスルホン酸の粉末をエチルアルコ
ールに分散したディスパージョン溶液を混合し、ペース
ト状にした。このペーストを原料としスクリ−ン印刷法
をもちいて、厚み250μmのカ−ボン不織布の一方の
面に電極触媒層を形成した。形成後の反応電極中に含ま
れる白金量は0.5mg/cm2、パーフルオロカーボ
ンスルホン酸の量は1.2mg/cm2となるよう調整
した。
Example 2 A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black-based carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 1 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0031】これらの電極は、正極・負極共に同一構成
とし、電極より一回り大きい面積を有するプロトン伝導
性高分子電解質膜の中心部の両面に、印刷した触媒層が
電解質膜側に接するようにホットプレスによって接合し
て、電極/電解質接合体(MEA)を作成した。ここで
は、プロトン伝導性高分子電解質として、(化2)に示
したパーフルオロカーボンスルホン酸を25μmの厚み
に薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. The catalyst layers printed on both sides of the center of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes so that the printed catalyst layers are in contact with the electrolyte membrane side. The electrode / electrolyte assembly (MEA) was formed by joining by hot pressing. Here, as the proton conductive polymer electrolyte, a thin film of the perfluorocarbon sulfonic acid shown in Chemical Formula 2 with a thickness of 25 μm was used.

【0032】前記MEAが非多孔質カ−ボンからなるバ
イポ−ラ板2枚のガス流路と向かい合う形で、2枚のバ
イポ−ラ板の間にMEAを挟んで、高分子電解質型燃料
電池を構成した。この高分子電解質型燃料電池の両外側
に、それぞれ必要なガスマニホ−ルド用孔を設けたヒ−
タ−板・集電板・絶縁板・エンドプレ−トを取り付け、
最外側の両エンドプレ−ト間を、ボルトとバネとナット
を用いて、電極面積に対して20kg/cm2の圧力で
締め付け、高分子電解質型燃料電池の単電池を構成し
た。
The MEA is opposed to the gas flow paths of two bipolar plates made of non-porous carbon, and the MEA is sandwiched between the two bipolar plates to constitute a polymer electrolyte fuel cell. did. Heaters provided with necessary gas manifold holes on both outer sides of the polymer electrolyte fuel cell.
Attach tar plate, current collector plate, insulating plate, end plate,
Using a bolt, a spring, and a nut, the outermost end plates were tightened at a pressure of 20 kg / cm 2 with respect to the electrode area, thereby forming a unit cell of a polymer electrolyte fuel cell.

【0033】これを単位電池として、連続的に100段
積層した。この積層電池の両外側に、それぞれ必要なガ
スマニホ−ルド・冷却水マニホ−ルド用穴を設けた集電
板・絶縁板・エンドプレ−トを取り付け、最外側の両エ
ンドプレ−ト間を、ボルトとバネとナットを用いて、電
極面積に対して20kg/cm2の圧力で締め付け、高
分子電解質型燃料電池スタックを構成した。
Using this as a unit battery, 100 layers were continuously stacked. A current collector plate, an insulating plate, and an end plate provided with necessary gas manifold / cooling water manifold holes are attached to both outer sides of the laminated battery, and a bolt is connected between the outermost end plates. Using a spring and a nut, the stack was fastened at a pressure of 20 kg / cm 2 with respect to the electrode area to form a polymer electrolyte fuel cell stack.

【0034】この単電池の正極側・負極側両ガス導入口
から95℃の0.01Nの硫酸水溶液を30分間導入し
た。この時、出口側の排出口を絞り導入した水溶液に
0.1kgf/cm2の圧力がかかるよう調節した。
A 0.01 N sulfuric acid aqueous solution at 95 ° C. was introduced for 30 minutes from both the gas inlets on the positive electrode side and the negative electrode side of this single cell. At this time, the pressure was adjusted so that a pressure of 0.1 kgf / cm 2 was applied to the aqueous solution introduced by restricting the outlet on the outlet side.

【0035】その後、この高分子電解質型燃料電池スタ
ックを冷却水を循環することで75℃に保持し、一方の
電極側に73℃の露点となるよう加湿・加温した水素ガ
スを、もう一方の電極側に68℃の露点となるように加
湿・加温した空気を供給したところ、無負荷時に0.9
8Vの電池電圧を得た。また、この電池を燃料利用率8
0%、酸素利用率40%、電流密度0.3A/cm2
条件で連続発電試験を行ったところ、発電直後から0.
7V以上の電池電圧を得た。更に、5000時間以上に
わたって0.7V以上の電池電圧を保ったまま、電池電
圧の劣化なく発電が可能であった。
Thereafter, the polymer electrolyte fuel cell stack was maintained at 75 ° C. by circulating cooling water, and hydrogen gas humidified and heated so as to have a dew point of 73 ° C. on one electrode side, and hydrogen gas was supplied to the other electrode side. When humidified and warmed air was supplied to the electrode side of 68 ° C. so as to have a dew point of 68 ° C., no load was applied.
A battery voltage of 8 V was obtained. In addition, this battery was used at a fuel utilization rate of 8
A continuous power generation test was performed under the conditions of 0%, an oxygen utilization rate of 40%, and a current density of 0.3 A / cm 2 .
A battery voltage of 7 V or more was obtained. Furthermore, power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 5000 hours or more.

【0036】本実施例では、単電池の正極側・負極側両
ガス導入口から95℃の0.01Nの硫酸水溶液を30
分間導入することで活性化した例を示したが、90℃で
ph=5とした過酸化水素水を1時間導入することで活
性化したものも同様の効果を示した。また同様に、95
℃の脱イオン水を3時間導入したものも同様の効果を得
た。
In this embodiment, a 30% aqueous solution of 0.01 N sulfuric acid at 95 ° C. was supplied through both gas inlets on the positive electrode side and the negative electrode side of the cell.
Although an example of activation by introducing for one minute was shown, one activated by introducing a hydrogen peroxide solution at 90 ° C. and ph = 5 also exhibited the same effect. Similarly, 95
The same effect was obtained by introducing deionized water at 3 ° C. for 3 hours.

【0037】(実施例3)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30 の白金粒子を25重量%担
持したものを反応電極の触媒とした。この触媒粉末をイ
ソプロパノ−ルに分散させた溶液に、(化1)で示した
パーフルオロカーボンスルホン酸の粉末をエチルアルコ
ールに分散したディスパージョン溶液を混合し、ペース
ト状にした。このペーストを原料としスクリ−ン印刷法
をもちいて、厚み250μmのカ−ボン不織布の一方の
面に電極触媒層を形成した。形成後の反応電極中に含ま
れる白金量は0.5mg/cm2、パーフルオロカーボ
ンスルホン酸の量は1.2mg/cm2となるよう調整
した。
Example 3 An acetylene black-based carbon powder carrying 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for a reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 1 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0038】これらの電極は、正極・負極共に同一構成
とし、電極より一回り大きい面積を有するプロトン伝導
性高分子電解質膜の中心部の両面に、印刷した触媒層が
電解質膜側に接するようにホットプレスによって接合し
て、電極/電解質接合体(MEA)を作成した。ここで
は、プロトン伝導性高分子電解質として、(化2)に示
したパーフルオロカーボンスルホン酸を25μmの厚み
に薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode, and the catalyst layers printed on both sides of the center of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes so that the catalyst layers are in contact with the electrolyte membrane side. The electrode / electrolyte assembly (MEA) was formed by joining by hot pressing. Here, as the proton conductive polymer electrolyte, a perfluorocarbon sulfonic acid shown in (Chemical Formula 2) thinned to a thickness of 25 μm was used.

【0039】前記MEAが非多孔質カ−ボンからなるバ
イポ−ラ板2枚のガス流路と向かい合う形で、2枚のバ
イポ−ラ板の間にMEAを挟んで、高分子電解質型燃料
電池を構成した。この高分子電解質型燃料電池の両外側
に、それぞれ必要なガスマニホ−ルド用孔を設けたヒ−
タ−板・集電板・絶縁板・エンドプレ−トを取り付け、
最外側の両エンドプレ−ト間を、ボルトとバネとナット
を用いて、電極面積に対して20kg/cm2の圧力で
締め付け、高分子電解質型燃料電池の単電池を構成し
た。
A polymer electrolyte fuel cell is formed by sandwiching the MEA between the two bipolar plates in such a manner that the MEA faces two gas flow passages made of a non-porous carbon bipolar plate. did. Heaters provided with necessary gas manifold holes on both outer sides of the polymer electrolyte fuel cell.
Attach tar plate, current collector plate, insulating plate, end plate,
Using a bolt, a spring, and a nut, the outermost end plates were tightened at a pressure of 20 kg / cm 2 with respect to the electrode area, thereby forming a unit cell of a polymer electrolyte fuel cell.

【0040】この単電池のガス供給口から、約100c
cのメタノ−ルを供給した後、イオン交換蒸留水を供給
して洗浄した。その後、この高分子電解質型燃料電池を
75℃に保持し、両方の電極側に70℃の露点となるよ
う加湿・加温した空気を1時間供給した後、燃料極側を
窒素ガスで置換した。その後、燃料極側に73℃の露点
となるよう加湿・加温した水素ガスを、空気極側に68
℃の露点となるように加湿・加温した空気を供給したと
ころ、無負荷時に0.98Vの電池電圧を得た。また、
この電池を燃料利用率80%、酸素利用率40%、電流
密度0.3A/cm2の条件で連続発電試験を行ったと
ころ、発電直後から0.7V以上の電池電圧を得た。更
に、5000時間以上にわたって0.7V以上の電池電
圧を保ったまま、電池電圧の劣化なく発電が可能であっ
た。
About 100 c from the gas supply port of this cell
After supplying methanol of (c), washing was performed by supplying ion-exchange distilled water. Thereafter, the polymer electrolyte fuel cell was maintained at 75 ° C., and humidified and heated air was supplied to both electrode sides so as to have a dew point of 70 ° C. for 1 hour, and then the fuel electrode side was replaced with nitrogen gas. . Thereafter, hydrogen gas humidified and heated to a dew point of 73 ° C. on the fuel electrode side was added to the air electrode side for 68 hours.
When humidified and heated air was supplied so as to have a dew point of ° C., a battery voltage of 0.98 V was obtained at no load. Also,
When a continuous power generation test was performed on this battery under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.3 A / cm 2 , a battery voltage of 0.7 V or more was obtained immediately after power generation. Furthermore, power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 5000 hours or more.

【0041】本実施例では、メタノ−ルを供給した後、
イオン交換蒸留水を供給することで活性化したが、ph
=5とした過酸化水素水を1時間導入することで活性化
したものも同様の効果を示した。
In this embodiment, after methanol is supplied,
It was activated by supplying ion exchange distilled water,
Activated by introducing a hydrogen peroxide solution having a pH of 5 for 1 hour also exhibited the same effect.

【0042】また、ph=5とした希硫酸の水溶液を用
いても同様の効果を得た。 (実施例4)アセチレンブラック系カ−ボン粉末に、平
均粒径約30 の白金粒子を25重量%担持したものを
反応電極の触媒とした。この触媒粉末をイソプロパノ−
ルに分散させた溶液に、(化1)で示したパーフルオロ
カーボンスルホン酸の粉末をエチルアルコールに分散し
たディスパージョン溶液を混合し、ペースト状にした。
このペーストを原料としスクリ−ン印刷法をもちいて、
厚み250μmのカ−ボン不織布の一方の面に電極触媒
層を形成した。形成後の反応電極中に含まれる白金量は
0.5mg/cm2、パーフルオロカーボンスルホン酸
の量は1.2mg/cm2となるよう調整した。
The same effect was obtained by using an aqueous solution of dilute sulfuric acid with ph = 5. (Example 4) A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black-based carbon powder. This catalyst powder is treated with isopropano-
A dispersion solution in which the powder of perfluorocarbon sulfonic acid shown in Chemical Formula 1 was dispersed in ethyl alcohol was mixed with the solution dispersed in water, to form a paste.
Using this paste as a raw material and a screen printing method,
An electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0043】これらの電極は、正極・負極共に同一構成
とし、電極より一回り大きい面積を有するプロトン伝導
性高分子電解質膜の中心部の両面に、印刷した触媒層が
電解質膜側に接するようにホットプレスによって接合し
て、電極/電解質接合体(MEA)を作成した。ここで
は、プロトン伝導性高分子電解質として、(化2)に示
したパーフルオロカーボンスルホン酸を25μmの厚み
に薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. The catalyst layers printed on both sides of the center portion of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes so that the printed catalyst layers are in contact with the electrolyte membrane side. The electrode / electrolyte assembly (MEA) was formed by joining by hot pressing. Here, as the proton conductive polymer electrolyte, a thin film of the perfluorocarbon sulfonic acid shown in Chemical Formula 2 with a thickness of 25 μm was used.

【0044】前記MEAを、2枚のガスケットで挟み、
さらに非多孔質カ−ボン板からなるバイポ−ラ板2枚の
ガス流路が向かい合う形で、2枚のバイポ−ラ板の間に
MEAとガスケットを挟んで、高分子電解質型燃料電池
を構成した。この高分子電解質型燃料電池の両外側に、
それぞれ必要なガスマニホ−ルド用孔を設けたヒ−タ−
板・集電板・絶縁板・エンドプレ−トを取り付け、最外
側の両エンドプレ−ト間を、ボルトとバネとナットを用
いて、電極面積に対して20kg/cm2の圧力で締め
付け、高分子電解質型燃料電池の単電池を構成した。
The MEA is sandwiched between two gaskets,
Further, a MEA and a gasket were sandwiched between the two bipolar plates in such a manner that the gas flow paths of the two bipolar plates made of a non-porous carbon plate faced each other, thereby constituting a polymer electrolyte fuel cell. On both sides of this polymer electrolyte fuel cell,
Heaters provided with necessary gas manifold holes
Attach the plate, current collector plate, insulating plate and end plate and tighten the outermost end plate between the outermost end plates with bolts, springs and nuts at a pressure of 20 kg / cm 2 against the electrode area. A unit cell of the electrolyte fuel cell was constructed.

【0045】この単電池に活性化処理を施さず、そのま
ま75℃まで昇温し、燃料極側に73℃の露点となるよ
う加湿・加温した水素ガスを、空気極側に68℃の露点
となるように加湿・加温した空気を供給したところ、無
負荷時に0.93Vの電池電圧を得た。次に、この電池
を燃料利用率90%、酸素利用率60%となるようガス
流量を調整しながら、電池電圧が0.1となるよう低電
位で発電を行い1時間保持した。
Without subjecting the single cell to activation treatment, the temperature was raised to 75 ° C., and hydrogen gas humidified and heated to a dew point of 73 ° C. on the fuel electrode side and a dew point of 68 ° C. on the air electrode side When humidified and heated air was supplied to the battery, a battery voltage of 0.93 V was obtained at no load. Next, while adjusting the gas flow rate so as to obtain a fuel utilization rate of 90% and an oxygen utilization rate of 60%, the battery was generated at a low potential so that the battery voltage became 0.1, and held for 1 hour.

【0046】その後、燃料利用率90%、酸素利用率6
0%となるようガス流量を調整し、0.3A/cm2
定電流密度で連続発電試験を行ったところ、発電直後か
ら0.7V以上の電池電圧を得た。更に、5000時間
以上にわたって0.7V以上の電池電圧を保ったまま、
電池電圧の劣化なく発電が可能であった。
Thereafter, a fuel utilization rate of 90% and an oxygen utilization rate of 6
The gas flow rate was adjusted to 0%, and a continuous power generation test was performed at a constant current density of 0.3 A / cm 2. As a result, a battery voltage of 0.7 V or more was obtained immediately after power generation. Furthermore, while maintaining the battery voltage of 0.7 V or more for 5000 hours or more,
Power generation was possible without deterioration of the battery voltage.

【0047】本実施例では、活性化する印加電圧を単電
池あたり0.1Vとしたが、0.3Vより高い電圧で
は、効果が著しく低下した。
In the present embodiment, the applied voltage for activation was set to 0.1 V per cell, but the effect was significantly reduced at a voltage higher than 0.3 V.

【0048】また、印加電圧を単電池あたり0Vより低
くし、これを長時間印可すると、電池の出力特性が劣化
した。これは印加電圧を単電池あたり0Vより低くする
と、電池のいわゆる転極現象が起こり、電池反応部分が
一部破壊されたことによるものと考えられる。
Further, when the applied voltage was made lower than 0 V per cell and applied for a long time, the output characteristics of the cell deteriorated. It is considered that this is because when the applied voltage is lower than 0 V per cell, a so-called reversal phenomenon of the battery occurs, and the reaction part of the battery is partially destroyed.

【0049】[0049]

【発明の効果】以上のように本発明は、高分子電解質型
燃料電池を脱イオン水または弱酸性水中で煮沸すること
によって簡単に、かつ短時間で本来電池が有している高
性能の電池出力を引き出すことが可能となる。また、高
分子電解質型燃料電池のガス供給路に所定の電池動作温
度より高温の脱イオン水または弱酸性水を導入すること
によって簡単に、かつ短時間で本来電池が有している高
性能の電池出力を引き出すことが可能となる。さらに好
ましくは、このとき水圧を0.1kgf/cm2以上に
加圧することによって、より早く高性能の電池出力を引
き出すことが可能となる。
As described above, the present invention provides a high-performance battery originally provided by a polymer electrolyte fuel cell simply and in a short time by boiling it in deionized water or weakly acidic water. It is possible to extract the output. In addition, by introducing deionized water or weakly acidic water having a temperature higher than a predetermined cell operating temperature into a gas supply path of a polymer electrolyte fuel cell, the high performance of the cell originally provided in a simple and short time can be achieved. Battery output can be drawn. More preferably, at this time, by applying the water pressure to 0.1 kgf / cm 2 or more, it becomes possible to quickly obtain a high-performance battery output.

【0050】また、高分子電解質型燃料電池のガス供給
路にアルコ−ルを導入した後水蒸気または脱イオン水ま
たは弱酸性水で洗浄することによって簡単に、かつ短時
間で本来電池が有している高性能の電池出力を引き出す
ことが可能となる。
Also, by introducing alcohol into the gas supply passage of the polymer electrolyte fuel cell and then washing it with water vapor, deionized water or weakly acidic water, the cell can be easily and quickly provided. A high-performance battery output.

【0051】また、高分子電解質型燃料電池を50%以
上の酸素利用率で発電し、平均電池電圧を0.3V以下
の電位で10秒以上保持することによって簡単に、かつ
短時間で本来電池が有している高性能の電池出力を引き
出すことが可能となる。
Further, the polymer electrolyte fuel cell generates electricity at an oxygen utilization rate of 50% or more, and the average cell voltage is maintained at a potential of 0.3 V or less for 10 seconds or more, so that the fuel cell can be easily and quickly prepared. It is possible to draw out the high-performance battery output that the device has.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年6月15日(1999.6.1
5)
[Submission date] June 15, 1999 (1999.6.1
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】[0023]

【化1】 Embedded image

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】[0025]

【化2】 Embedded image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 和史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 BB00 CX05 EE18 HH06 HH08 HH09 5H027 AA06 KK01 KK46 KK54  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazufumi Nishida, 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhisa Kamihara 1006 Kadoma, Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd.F-term (reference)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜を正極と負極とで挟持
し、さらに前記正極と前記負極とをガス供給路を有する
バイポ−ラ板で挟持したものを単位電池とし、少なくと
も前記単位電池と、集電板と、絶縁板と、エンドプレ−
トとを積層した高分子電解質型燃料電池モジュールにお
いて、前記高分子電解質型燃料電池モジュールを脱イオ
ン水または弱酸性水中で煮沸することを特徴とする高分
子電解質型燃料電池の活性化方法。
1. A unit battery comprising a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and further comprising the positive electrode and the negative electrode sandwiched by a bipolar plate having a gas supply path, and at least the unit battery; Current collector plate, insulating plate, end plate
A method for activating a polymer electrolyte fuel cell, comprising boiling the polymer electrolyte fuel cell module in deionized water or weakly acidic water.
【請求項2】 高分子電解質膜を正極と負極とで挟持
し、さらに前記正極と前記負極とをガス供給路を有する
バイポ−ラ板で挟持したものを単位電池とし、少なくと
も前記単位電池と、集電板と、絶縁板と、エンドプレ−
トとを積層した高分子電解質型燃料電池モジュールにお
いて、前記ガス供給路に、前記高分子電解質型燃料電池
の動作温度より高温の、脱イオン水もしくは弱酸性水を
導入することを特徴とする高分子電解質型燃料電池の活
性化方法。
2. A unit battery having a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and further sandwiching the positive electrode and the negative electrode with a bipolar plate having a gas supply path, wherein at least the unit battery comprises: Current collector plate, insulating plate, end plate
And a deionized water or a weakly acidic water having a temperature higher than the operating temperature of the polymer electrolyte fuel cell is introduced into the gas supply path. A method for activating a molecular electrolyte fuel cell.
【請求項3】 ガス供給路に導入する、脱イオン水もし
くは弱酸性水の圧力を0.1kgf/cm2以上とする
ことを特徴とする請求項2に記載の高分子電解質型燃料
電池の活性化方法。
3. The activity of the polymer electrolyte fuel cell according to claim 2, wherein the pressure of deionized water or weakly acidic water introduced into the gas supply path is 0.1 kgf / cm 2 or more. Method.
【請求項4】 高分子電解質膜を正極と負極とで挟持
し、さらに前記正極と前記負極とをガス供給路を有する
バイポ−ラ板で挟持したものを単位電池とし、少なくと
も前記単位電池と、集電板と、絶縁板と、エンドプレ−
トとを積層した高分子電解質型燃料電池モジュールにお
いて、前記ガス供給路にアルコ−ルを導入した後、水蒸
気,脱イオン水,もしくは弱酸性水で前記ガス供給路を洗
浄することを特徴とする高分子電解質型燃料電池の活性
化方法。
4. A unit battery having a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and further sandwiching the positive electrode and the negative electrode with a bipolar plate having a gas supply path, and at least the unit battery; Current collector plate, insulating plate, end plate
In the polymer electrolyte fuel cell module having the above structure, after introducing alcohol into the gas supply path, the gas supply path is washed with steam, deionized water, or weakly acidic water. A method for activating a polymer electrolyte fuel cell.
【請求項5】 弱酸性水が、過酸化水素水であることを
特徴とする請求項1、2、3または4記載の高分子電解
質型燃料電池の活性化方法。
5. The method for activating a polymer electrolyte fuel cell according to claim 1, wherein the weakly acidic water is hydrogen peroxide.
【請求項6】 高分子電解質膜のイオン交換基はSO3
Hであり、かつ弱酸性水が希硫酸の水溶液であることを
特徴とする請求項1、2、3または4記載の高分子電解
質型燃料電池の活性化方法。
6. The ion exchange group of the polymer electrolyte membrane is SO 3
5. The method for activating a polymer electrolyte fuel cell according to claim 1, wherein H is H and the weakly acidic water is an aqueous solution of dilute sulfuric acid.
【請求項7】 高分子電解質膜を正極と負極とで挟持
し、さらに前記正極と前記負極とをバイポ−ラ板で挟持
したものを単位電池とし、少なくとも前記単位電池と、
集電板と、絶縁板と、エンドプレ−トとを積層した高分
子電解質型燃料電池モジュールにおいて、50%以上の
酸素利用率で前記高分子電解質型燃料電池モジュールの
発電を行い、さらに、前記単位電池あたりの平均電圧が
0.3V以下となる電圧を所定時間、前記高分子電解質
型燃料電池モジュールに印加することを特徴とする高分
子電解質型燃料電池の活性化方法。
7. A unit battery comprising a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode, and further comprising the positive electrode and the negative electrode sandwiched by a bipolar plate, wherein at least the unit battery comprises:
In a polymer electrolyte fuel cell module in which a current collector plate, an insulating plate, and an end plate are laminated, power generation of the polymer electrolyte fuel cell module is performed at an oxygen utilization rate of 50% or more. A method for activating a polymer electrolyte fuel cell, comprising applying a voltage having an average voltage per cell of 0.3 V or less to the polymer electrolyte fuel cell module for a predetermined time.
JP16663798A 1998-06-01 1998-06-15 Activation method of polymer electrolyte fuel cell Expired - Fee Related JP3469091B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16663798A JP3469091B2 (en) 1998-06-15 1998-06-15 Activation method of polymer electrolyte fuel cell
US09/322,948 US6187464B1 (en) 1998-06-01 1999-05-28 Method for activating fuel cell
EP99109371A EP0961334A3 (en) 1998-06-01 1999-06-01 Method for activating fuel cell
CN99107155A CN1113420C (en) 1998-06-01 1999-06-01 Activation method for fuel battery
EP08011420A EP1981112A3 (en) 1998-06-01 1999-06-01 Method for activating a fuel cell
CNB021473897A CN1238922C (en) 1998-06-01 1999-06-01 Fuel cell activating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16663798A JP3469091B2 (en) 1998-06-15 1998-06-15 Activation method of polymer electrolyte fuel cell

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003156491A Division JP2003317777A (en) 2003-06-02 2003-06-02 Method of activating high polymer electrolyte fuel cell
JP2003288468A Division JP2004006416A (en) 2003-08-07 2003-08-07 Method of activation of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000003718A true JP2000003718A (en) 2000-01-07
JP3469091B2 JP3469091B2 (en) 2003-11-25

Family

ID=15834981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16663798A Expired - Fee Related JP3469091B2 (en) 1998-06-01 1998-06-15 Activation method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3469091B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022517A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof
JP2005158734A (en) * 2003-11-27 2005-06-16 Hyundai Motor Co Ltd Method for initial activation of polymer electrolyte fuel cell
JP2006080005A (en) * 2004-09-10 2006-03-23 Fuji Electric Holdings Co Ltd Gas supply method of fuel cell and fuel cell power generation system
WO2006055124A1 (en) * 2004-11-15 2006-05-26 3M Innovative Properties Company Preconditioning fuel cell membrane electrode assemblies
JP2007273460A (en) * 2006-03-10 2007-10-18 Sanyo Electric Co Ltd Activation method of fuel cell, fuel battery cell or membrane electrode assembly for fuel cell activated, cell stack or fuel cell having them, and fuel cell activation device
JP2008153175A (en) * 2006-12-20 2008-07-03 Kuraray Co Ltd Manufacturing method of membrane-electrode assembly for polymer electrolyte fuel cell
WO2009137229A1 (en) * 2008-05-09 2009-11-12 3M Innovative Properties Company Activation method for membrane electrode assembly, membrane electrode assembly, and solid polymer-type fuel cell using same
JP2010027431A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Aging method for solid polymer type fuel cell
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
US8785062B2 (en) 2008-11-14 2014-07-22 Panasonic Corporation Fuel cell system comprising fuel cell stack, and method for producing fuel cell stack
KR101922329B1 (en) * 2017-03-02 2018-11-26 한국에너지기술연구원 Method for activating and long-term storaging of air-breathing polymer electrolyte membrane fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881510B1 (en) 1999-09-17 2005-04-19 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell
WO2001022517A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
JP2005158734A (en) * 2003-11-27 2005-06-16 Hyundai Motor Co Ltd Method for initial activation of polymer electrolyte fuel cell
JP2006080005A (en) * 2004-09-10 2006-03-23 Fuji Electric Holdings Co Ltd Gas supply method of fuel cell and fuel cell power generation system
US7608118B2 (en) 2004-11-15 2009-10-27 3M Innovative Properties Company Preconditioning fuel cell membrane electrode assemblies
WO2006055124A1 (en) * 2004-11-15 2006-05-26 3M Innovative Properties Company Preconditioning fuel cell membrane electrode assemblies
JP2007273460A (en) * 2006-03-10 2007-10-18 Sanyo Electric Co Ltd Activation method of fuel cell, fuel battery cell or membrane electrode assembly for fuel cell activated, cell stack or fuel cell having them, and fuel cell activation device
JP2008153175A (en) * 2006-12-20 2008-07-03 Kuraray Co Ltd Manufacturing method of membrane-electrode assembly for polymer electrolyte fuel cell
WO2009137229A1 (en) * 2008-05-09 2009-11-12 3M Innovative Properties Company Activation method for membrane electrode assembly, membrane electrode assembly, and solid polymer-type fuel cell using same
JP2011520237A (en) * 2008-05-09 2011-07-14 スリーエム イノベイティブ プロパティズ カンパニー Method for activating membrane electrode assembly, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2010027431A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Aging method for solid polymer type fuel cell
US8785062B2 (en) 2008-11-14 2014-07-22 Panasonic Corporation Fuel cell system comprising fuel cell stack, and method for producing fuel cell stack
KR101922329B1 (en) * 2017-03-02 2018-11-26 한국에너지기술연구원 Method for activating and long-term storaging of air-breathing polymer electrolyte membrane fuel cell

Also Published As

Publication number Publication date
JP3469091B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP3271801B2 (en) Polymer solid electrolyte fuel cell, humidifying method of the fuel cell, and manufacturing method
US6187464B1 (en) Method for activating fuel cell
JP2004185863A (en) Electrode for fuel cell, and fuel cell using it
JP3469091B2 (en) Activation method of polymer electrolyte fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP2007273460A (en) Activation method of fuel cell, fuel battery cell or membrane electrode assembly for fuel cell activated, cell stack or fuel cell having them, and fuel cell activation device
JP3577402B2 (en) Polymer electrolyte fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JP2000003720A (en) High polymer electrolyte fuel cell
JP2004185901A (en) Electrode for fuel cell and fuel cell
JP3360485B2 (en) Fuel cell
JP2001357869A (en) Solid high-polymer type fuel cell stack
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP4407308B2 (en) Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell
JP2793523B2 (en) Polymer electrolyte fuel cell and method of operating the same
JP5406968B2 (en) Fuel cell activation method and fuel cell activation device
JP2005149859A (en) Fuel cell and its manufacturing method
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP2003317777A (en) Method of activating high polymer electrolyte fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2003031254A (en) Solid polymer electrolyte type fuel cell power generation device and its operating method
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2002319421A (en) Starting method and manufacturing method of solid polymer fuel cell
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees