[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000097677A - Image recognizing method - Google Patents

Image recognizing method

Info

Publication number
JP2000097677A
JP2000097677A JP10266181A JP26618198A JP2000097677A JP 2000097677 A JP2000097677 A JP 2000097677A JP 10266181 A JP10266181 A JP 10266181A JP 26618198 A JP26618198 A JP 26618198A JP 2000097677 A JP2000097677 A JP 2000097677A
Authority
JP
Japan
Prior art keywords
data
inclination
image
electronic component
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10266181A
Other languages
Japanese (ja)
Other versions
JP3632461B2 (en
Inventor
Koji Konishi
孝司 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26618198A priority Critical patent/JP3632461B2/en
Publication of JP2000097677A publication Critical patent/JP2000097677A/en
Application granted granted Critical
Publication of JP3632461B2 publication Critical patent/JP3632461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image recognizing method in which recognition can be made stably while enhancing recognition accuracy. SOLUTION: In the method for recognizing the inclining direction and positional shift of a rectangular electronic component through image recognition thereof, image of the electronic component is picked up by means of a camera and inclination data of a vector set on the extracted outline thereof is determined (ST3). The inclination data is divided into data groups for respective sides of a polygon constituting the outline and the inclination data is corrected by an amount of included angle for the data groups of a plurality of sides in specified relationship having known included angles thus obtaining identical data groups (ST4). Subsequently, an angle histogram indicative of the inclination distribution of vector is made (ST5) and the direction of an object to be recognized is detected based on the inclination distribution (ST6). According to the method, number of data can be increased even for a small object to be recognized having small number of data of significant fluctuation and good recognition results can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品を撮像し
て画像認識することにより電子部品の形状や方向を認識
する画像認識方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image recognition method for recognizing a shape and a direction of an electronic component by taking an image of the electronic component and recognizing the image.

【0002】[0002]

【従来の技術】電子部品の基板への実装に際して、搭載
ヘッドに保持された電子部品を画像認識して位置ずれを
検出し、この位置ずれを補正した上で基板に搭載するこ
とが一般的に行われている。この位置ずれ検出において
は、電子部品を撮像した画像データを画像処理すること
により電子部品の輪郭線を抽出し、この輪郭線に基づい
て電子部品の形状や水平面内での傾きの方向などを求め
る演算処理が行われる。このような画像認識による電子
部品の形状や方向の検出方法として特開平6−1132
6号公報に開示されている方法が知られている。この方
法は、2値化処理した画像から得られた輪郭線上に設定
されたベクトルの傾きの分布を求めることにより、電子
部品の画面上での方向を検出するものである。
2. Description of the Related Art In mounting electronic components on a substrate, it is general to mount the electronic components held on a mounting head on an image by recognizing the image and detecting a positional deviation, correcting the positional deviation, and mounting the electronic component on the substrate. Is being done. In this position shift detection, a contour line of the electronic component is extracted by performing image processing on image data obtained by imaging the electronic component, and a shape of the electronic component, a direction of inclination in a horizontal plane, and the like are determined based on the contour line. Operation processing is performed. Japanese Patent Application Laid-Open No. 6-1132 discloses a method for detecting the shape and direction of an electronic component by image recognition.
The method disclosed in Japanese Patent Publication No. 6 is known. This method detects the direction of the electronic component on the screen by obtaining the distribution of the inclination of the vector set on the contour obtained from the binarized image.

【0003】[0003]

【発明が解決しようとする課題】ところで近年の電子部
品の小型化に伴い、画像認識の対象となる電子部品も小
型化しており、画像認識に際しては小型の電子部品であ
っても精度よく認識できることが求められる。ところが
前述の2値化処理や2値化処理によって求められた輪郭
線上でのベクトルの設定は、画像を構成する画素を最小
単位として行われる。したがって、ベクトルの傾き分布
を求める際の傾き角度の分解能は、画素サイズと認識対
象物の相対的な大きさの関係に依存する。すなわち、認
識対象物としての電子部品が小さい場合には画素サイズ
が認識対象物に対して相対的に大きいため、前記の傾き
角度を検出する分解能が低下する。このように、小型の
電子部品の場合には画像認識の分解能が低く、傾き角度
検出などの認識結果が安定しないという問題点があっ
た。
However, with the recent miniaturization of electronic components, the size of electronic components to be image-recognized has also been reduced. For image recognition, even small-sized electronic components can be accurately recognized. Is required. However, the above-described binarization processing and the setting of the vector on the contour line obtained by the binarization processing are performed using a pixel constituting an image as a minimum unit. Therefore, the resolution of the tilt angle when obtaining the tilt distribution of the vector depends on the relationship between the pixel size and the relative size of the recognition target. That is, when the electronic component as the recognition target is small, the pixel size is relatively large with respect to the recognition target, and the resolution for detecting the tilt angle is reduced. As described above, in the case of a small electronic component, there is a problem that the resolution of image recognition is low, and the recognition result such as the detection of an inclination angle is not stable.

【0004】そこで本発明は、認識精度を向上させ安定
した認識を行うことができる画像認識方法を提供するこ
とを目的とする。
Accordingly, an object of the present invention is to provide an image recognition method capable of improving recognition accuracy and performing stable recognition.

【0005】[0005]

【課題を解決するための手段】本発明の画像認識方法
は、多角形状の認識対象物の像をカメラに取り込み、こ
の像の輪郭線を抽出するステップと、この輪郭線上のあ
る2つの点に支点および終点を有するベクトルを設定
し、前記2点を前記輪郭線に沿って所定の距離づつシフ
トさせることにより、前記輪郭線についての前記ベクト
ルの傾きデータを求めるステップと、前記傾きデータを
前記輪郭線を構成する多角形の各辺ごとのデータ群に分
け、相互の挟角が予め判っている所定の関係にある複数
辺のデータ群については前記挟角分だけ傾きデータを修
正して同一データ群とした上で、前記ベクトルの傾き分
布を求めるステップと、この傾き分布に基づいて認識対
象物の方向を検出するステップとを含む。
According to the image recognition method of the present invention, an image of a polygonal object to be recognized is taken into a camera, and a contour of the image is extracted. Setting a vector having a fulcrum and an end point, and shifting the two points by a predetermined distance along the contour line to obtain inclination data of the vector with respect to the contour line; The data is divided into data groups for each side of the polygon constituting the line, and for a data group of a plurality of sides having a predetermined relationship whose mutual included angles are known in advance, the inclination data is corrected by the included angle and the same data is corrected. The method further includes a step of obtaining a gradient distribution of the vectors, and a step of detecting a direction of the recognition target based on the gradient distribution.

【0006】本発明によれば、全輪郭線についての傾き
データを各辺ごとのデータ群に分け、所定の関係にある
複数辺のデータ群については傾きデータを修正して同一
データ群とした上でベクトルの傾き分布を求めることに
より、データ数が少なくかつデータのばらつきが大きい
小型の認識対象物についてもデータ数を増加させること
ができ、したがって良好な認識結果を得ることができ
る。
According to the present invention, the inclination data of all the contour lines is divided into data groups for each side, and the data groups of a plurality of sides having a predetermined relationship are corrected to obtain the same data group. By obtaining the inclination distribution of the vector by using, the number of data can be increased even for a small recognition target having a small number of data and a large variation in the data, and thus a good recognition result can be obtained.

【0007】[0007]

【発明の実施の形態】次に本発明の実施の形態を図面を
参照して説明する。図1は本発明の一実施の形態の電子
部品の実装装置の斜視図、図2は同画像認識方法のフロ
ー図、図3は同電子部品の画像図、図4は同電子部品の
拡大画像図、図5(a)は同輪郭線の角度ヒストグラム
を示すグラフ、図5(b)は同電子部品の画像図、図6
(a),(b)は同輪郭線の角度ヒストグラムを示すグ
ラフ、図7は同電子部品の画像図である。
Embodiments of the present invention will now be described with reference to the drawings. 1 is a perspective view of an electronic component mounting apparatus according to an embodiment of the present invention, FIG. 2 is a flowchart of the image recognition method, FIG. 3 is an image diagram of the electronic component, and FIG. 4 is an enlarged image of the electronic component. FIG. 5A is a graph showing an angle histogram of the contour, FIG. 5B is an image diagram of the electronic component, and FIG.
7A and 7B are graphs showing an angle histogram of the contour, and FIG. 7 is an image diagram of the electronic component.

【0008】まず図1を参照して、本発明の画像認識装
置が組み込まれた電子部品の実装装置について説明す
る。図1において、移載ヘッド3は移載ヘッド移動制御
手段14によって水平方向及び垂直方向に移動するよう
になっている。移載ヘッド3の下端部には吸着ノズルN
が装着されており、図示しない吸引手段によって吸着ノ
ズルNから真空吸引することにより、認識対象物である
多角形状(矩形)の電子部品4を吸着して保持する。吸
着ノズルNは移載ヘッド3に内蔵されたモータMにより
吸着ノズルNの中心軸線を中心にθ方向に回転する。ま
た吸着ノズルNには円板状の反射板3aが同軸的に設け
られており、下方の光源2からの照明光を反射する。移
載ヘッド3の下方にはカメラ1が配設されており、反射
板3aの下方に位置する電子部品4を透過照明光により
撮像する。
Referring first to FIG. 1, an electronic component mounting apparatus in which an image recognition apparatus of the present invention is incorporated will be described. In FIG. 1, the transfer head 3 is moved in the horizontal and vertical directions by a transfer head movement control means 14. A suction nozzle N is provided at the lower end of the transfer head 3.
Is mounted, and a polygonal (rectangular) electronic component 4 as a recognition target is sucked and held by vacuum suction from a suction nozzle N by a suction unit (not shown). The suction nozzle N is rotated in the θ direction about the central axis of the suction nozzle N by a motor M built in the transfer head 3. The suction nozzle N is provided with a disc-shaped reflecting plate 3a coaxially, and reflects illumination light from the light source 2 below. The camera 1 is disposed below the transfer head 3, and captures an image of the electronic component 4 located below the reflection plate 3 a using transmitted illumination light.

【0009】カメラ1の側方にはパーツフィーダ12が
配設されている。パーツフィーダ12は電子部品4を供
給する。パーツフィーダ12の反対側には基板保持テー
ブル11が配設されており、基板保持テーブル11上に
は表面に回路パターンLが形成された基板10が保持さ
れている。電子部品4は、パーツフィーダ12から移載
ヘッド3によってピックアップされ、基板10に実装さ
れる。
A parts feeder 12 is provided on the side of the camera 1. The parts feeder 12 supplies the electronic components 4. On the opposite side of the parts feeder 12, a substrate holding table 11 is provided. On the substrate holding table 11, a substrate 10 having a surface on which a circuit pattern L is formed is held. The electronic component 4 is picked up from the parts feeder 12 by the transfer head 3 and mounted on the substrate 10.

【0010】A/D変換器5はカメラ1の画像信号をデ
ジタル信号に変換する。フレームメモリ6は、変換され
たデジタル画像信号を記憶する。ROM8は、各種処理
を行うためのプログラムを記憶する。CPU7はROM
8に記憶されたプログラムに従って画像処理などの各種
の演算や処理を行う。RAM9には演算結果が記憶さ
れ、後述するベクトルの傾き角度分布を格納する傾き分
布格納領域9aが設けられている。傾き分布格納領域9
aには、−90度から+90度の範囲で各角度毎に頻度
メモリSUM(−90)〜SUM(90)が設定されて
おり、頻度メモリには各ベクトルの傾き角度データが角
度毎に累積格納される。
An A / D converter 5 converts an image signal of the camera 1 into a digital signal. The frame memory 6 stores the converted digital image signal. The ROM 8 stores programs for performing various processes. CPU7 is ROM
Various calculations and processes such as image processing are performed in accordance with the program stored in the memory 8. The RAM 9 is provided with a tilt distribution storage area 9a for storing calculation results and storing a later-described tilt angle distribution of a vector. Slope distribution storage area 9
In a, frequency memories SUM (-90) to SUM (90) are set for each angle in the range of -90 degrees to +90 degrees, and the inclination memory of each vector is accumulated in the frequency memory for each angle. Is stored.

【0011】駆動回路13は吸着ノズルNを回転させる
モータMを駆動する。マシンコントローラ15は駆動回
路13および移載ヘッド移動制御手段14を制御し、C
PU7によって制御される。カメラ1によって電子部品
4を撮像してその位置をCPU7によって認識し、この
位置認識結果に基づいて、駆動回路13および移載ヘッ
ド移動制御手段14を制御することにより、電子部品4
の位置ずれを補正して基板10に実装することができ
る。
The drive circuit 13 drives a motor M for rotating the suction nozzle N. The machine controller 15 controls the driving circuit 13 and the transfer head movement control means 14,
Controlled by PU7. The electronic component 4 is imaged by the camera 1 and its position is recognized by the CPU 7, and the drive circuit 13 and the transfer head movement control means 14 are controlled based on the position recognition result.
Can be mounted on the substrate 10 after correcting the positional deviation.

【0012】次に電子部品4の画像認識について図2の
フローを参照して説明する。まず図1において、カメラ
1の視野に検査対象物の電子部品4の像を取り込み、A
/D変換器5により画像データをデジタル化してフレー
ムメモリ6に格納する(ST1)。これにより、図3に
示すように、電子部品4の画像が取り込まれる。電子部
品4は多角形状であり、画像上では点A、B、C、Dを
頂点とする矩形状の暗像として表れており、長辺AB、
CDの方向はX軸に対して角度αだけ傾いている。
Next, image recognition of the electronic component 4 will be described with reference to the flow chart of FIG. First, in FIG. 1, an image of the electronic component 4 of the inspection object is captured in the field of view of the camera 1, and A
The image data is digitized by the / D converter 5 and stored in the frame memory 6 (ST1). Thereby, as shown in FIG. 3, an image of the electronic component 4 is captured. The electronic component 4 has a polygonal shape, and appears on the image as a rectangular dark image having vertices at points A, B, C, and D, and a long side AB,
The direction of the CD is inclined by an angle α with respect to the X axis.

【0013】次に、この画像データに基づいて、電子部
品4の輪郭線を抽出する(ST2)。この輪郭線抽出は
画像処理技術分野における周知技術である。次いで、こ
れらの輪郭線のデータから輪郭線上の2点に始点および
終点を有するベクトルを設定し、これらの各ベクトルの
傾きデータを求める(ST3)。このベクトルの傾きに
ついて図4を参照して説明する。
Next, the outline of the electronic component 4 is extracted based on the image data (ST2). This contour extraction is a well-known technique in the image processing technical field. Next, a vector having a start point and an end point at two points on the contour line is set from the data of these contour lines, and inclination data of each of these vectors is obtained (ST3). The inclination of this vector will be described with reference to FIG.

【0014】図4において、画像内の格子で囲まれた正
方形は画素を示しており、ハッチングが施された画素
は、ST2にて求められた輪郭線に相当する。まず輪郭
線上のある画素Piに着目して、この画素Piを始点と
し、この始点から輪郭線に沿って右方向又は上方向に定
数n画素分(例えばn=5)だけ移動した位置にある画
素Pi+nを終点とするベクトルSiを設定する。そし
てこのベクトルSiの傾きθiをX軸に対して反時計方
向を正の方向とする角度として求める。
In FIG. 4, squares surrounded by a lattice in the image indicate pixels, and the hatched pixels correspond to the contour lines obtained in ST2. First, paying attention to a certain pixel Pi on the contour, the pixel Pi is set as a starting point, and a pixel located at a position shifted by a constant n pixels (for example, n = 5) from the starting point rightward or upward along the contour. A vector Si ending at Pi + n is set. Then, the inclination θi of the vector Si is obtained as an angle with the counterclockwise direction being a positive direction with respect to the X axis.

【0015】次に輪郭線に沿ってベクトルSiの始点・
終点の位置をそれぞれ所定距離、すなわち所定画素数
(ここでは1画素)だけシフトさせたものをベクトルS
i+1とする。そしてベクトルSi+1とX軸との角度
θi+1を求める。以下同様にして順次輪郭線に沿って
ベクトルSの始点・終点をシフトさせることにより、ほ
ぼ同一の絶対値を有するベクトルSが輪郭線上に設定さ
れ、各ベクトルSの傾きθが求められる。図4から判る
ように、同一辺を示す輪郭線上のベクトルであっても、
画素を最小要素として求められた傾きθは必ずしも同一
角度とはならない。
Next, along the contour, the starting point of the vector Si
The vector S is obtained by shifting the position of the end point by a predetermined distance, that is, by a predetermined number of pixels (here, one pixel).
Let it be i + 1. Then, an angle θi + 1 between the vector Si + 1 and the X axis is obtained. Similarly, by sequentially shifting the start point and the end point of the vector S along the contour line in the same manner, the vector S having substantially the same absolute value is set on the contour line, and the inclination θ of each vector S is obtained. As can be seen from FIG. 4, even if the vectors are on the contour line indicating the same side,
The inclination θ obtained with the pixel as the minimum element is not always the same angle.

【0016】そしてこのようにして求められたベクトル
の傾きθに対応する頻度メモリの値を加算していく事に
より、輪郭線上で確定される全てのベクトルの傾きの分
布を示す角度ヒストグラムを求めることができる。図5
(a)はこのようにして求められた角度ヒストグラムを
示すものである。図5(a)のヒストグラムには、2つ
のピーク21,22が現れている。ピーク21は、図5
(b)に示す線分CD上に設定された多数のベクトルに
よって、角度αを中心とする位置に現れており、同様に
ピーク22は線分BC上に設定されたベクトル群を示す
ものであり、角度−(90−α)を中心とする位置に表
れている。
Then, by adding the value of the frequency memory corresponding to the vector inclination θ obtained in this manner, an angle histogram showing the distribution of the inclination of all the vectors determined on the contour line is obtained. Can be. FIG.
(A) shows the angle histogram obtained in this way. In the histogram of FIG. 5A, two peaks 21 and 22 appear. Peak 21 is shown in FIG.
A large number of vectors set on the line segment CD shown in (b) appear at a position centered on the angle α, and similarly, the peak 22 indicates a group of vectors set on the line segment BC. , And an angle − (90−α).

【0017】図5から判るように、画像上の線分が長い
程、ヒストグラム上に現れるピークは高くなり、また電
子部品4が矩形状であることと対応して、各ピークはそ
れぞれ90度づつずれた位置に現れている。すなわちヒ
ストグラム上でピーク位置に対応する角度位置を、頻度
メモリの数値データをCPU7で解析して求めることに
より、電子部品4の傾き、すなわち長手方向の角度を求
めることができる。
As can be seen from FIG. 5, the longer the line segment on the image is, the higher the peak appearing on the histogram is, and each peak is 90 degrees corresponding to the rectangular shape of the electronic component 4. Appears in a shifted position. That is, the inclination of the electronic component 4, ie, the angle in the longitudinal direction, can be obtained by analyzing the numerical data in the frequency memory by the CPU 7 to obtain the angular position corresponding to the peak position on the histogram.

【0018】ここで、検査対象の電子部品4のサイズが
小さい場合の角度ヒストグラムの形状について図6を参
照して説明する。図6(a)に示すように、電子部品4
が小さい場合には、ヒストグラム上の各ピークは、図5
に示す例と比べてより低くなだらかな形状となって表れ
る。これは、電子部品4のサイズが小さいため各辺上に
設定されるベクトル数が少なく、したがってデータ数そ
のものが少ないことに加えて、電子部品の大きさと画素
サイズとの相対比が小さくなって角度分解能が低下する
ことから、輪郭線上に設定されるベクトルの傾き角度の
ばらつきがより大きく表れることによるものである。こ
の結果、図6(a)の角度ヒストグラムに基づいて傾き
角度αを求めると、ピーク位置に対応する角度を特定す
る際の誤差が大きく、したがって求められた傾き角度α
は大きな誤差を含んだものとなる。
Here, the shape of the angle histogram when the size of the electronic component 4 to be inspected is small will be described with reference to FIG. As shown in FIG.
Is smaller, each peak on the histogram is
The lower and gentler shapes appear as compared with the example shown in FIG. This is because the number of vectors set on each side is small because the size of the electronic component 4 is small, and thus the number of data itself is also small, and the relative ratio between the size of the electronic component and the pixel size is small and the angle is small. This is because the variation in the inclination angle of the vector set on the contour becomes larger because the resolution is reduced. As a result, when the inclination angle α is obtained based on the angle histogram of FIG. 6A, an error in specifying the angle corresponding to the peak position is large, and therefore, the obtained inclination angle α
Contains a large error.

【0019】そこで、図2のST4以降において、この
誤差を減少させて傾き角度αの検出精度を向上させるた
め、次の処理を行う。すなわち、角度ヒストグラム上で
傾きデータを全輪郭線を構成する多角形の各辺ごとのデ
ータ群に分け、相互の挟角が予め判っている所定の関係
にある複数辺のデータ群については、挟角分だけ傾きデ
ータを修正して同一データ群とする(ST4)。そして
修正され同一データ群とされた傾きデータに基づいて新
たな傾き分布を示す角度ヒストグラムを作成する(ST
5)。
Therefore, the following processing is performed after ST4 in FIG. 2 in order to reduce this error and improve the detection accuracy of the inclination angle α. That is, on the angle histogram, the inclination data is divided into data groups for each side of the polygon constituting the entire contour line, and a data group of a plurality of sides having a predetermined relationship whose mutual included angle is known in advance is defined as a data group. The inclination data is corrected by the angle to make the same data group (ST4). Then, an angle histogram showing a new inclination distribution is created based on the inclination data corrected and regarded as the same data group (ST).
5).

【0020】以下、この処理について、具体例に則して
説明する。図6(a)において、ピーク31,32は電
子部品4の輪郭線を構成する2辺(図5(b)に示す線
分CD,BCに相当する)のそれぞれのデータ群であ
り、電子部品4は矩形状であることから2辺の挟角は9
0度であることが予め判っている。したがって、2つの
ピークを重ね合わせて同一データ群とするためには、1
つのピークを示すデータ群の傾きデータを90度だけ修
正した上で、重ね合わせればよい。
Hereinafter, this process will be described with reference to a specific example. In FIG. 6A, peaks 31 and 32 are data groups of two sides (corresponding to the line segments CD and BC shown in FIG. 5B) constituting the contour of the electronic component 4, respectively. Since 4 is rectangular, the included angle between the two sides is 9
It is known in advance that it is 0 degrees. Therefore, in order to superimpose two peaks into the same data group, 1
The inclination data of the data group showing two peaks may be corrected by 90 degrees and then superimposed.

【0021】すなわち、図6(a)の角度ヒストグラム
から1つのピークを含む90度の幅に相当する範囲を取
り出し、残りの90度の幅に相当する部分と重ね合わせ
る。言い換えれば、全体で180度の範囲で得られた傾
きデータを、90度の範囲でのデータに圧縮する処理を
行う。ここでは、90度の幅に相当する範囲として、−
45度〜45度の範囲を用いた例について説明する。な
お、この90度の幅はこの−45度〜45度の範囲の例
に限らず、角度ヒストグラム上の2つのピークがそれぞ
れの範囲に明瞭に区分されるような分け方であればよ
く、例えば−90度〜0度の範囲を取り出して0度〜9
0度の範囲に重ね合わせるようにしてもよい。
That is, a range corresponding to a 90-degree width including one peak is extracted from the angle histogram of FIG. 6A, and is overlapped with a portion corresponding to the remaining 90-degree width. In other words, a process of compressing the inclination data obtained in the entire range of 180 degrees into data in the range of 90 degrees is performed. Here, as the range corresponding to the width of 90 degrees,-
An example using a range of 45 degrees to 45 degrees will be described. Note that the 90-degree width is not limited to the example of the range of -45 to 45 degrees, and any method may be used as long as the two peaks on the angle histogram are clearly divided into the respective ranges. Take out the range from -90 degrees to 0 degrees and go from 0 degrees to 9
You may make it overlap in the range of 0 degree.

【0022】この処理を行うため、前述のST3におい
て傾き角度θを演算する際に、θ≧45度であればθ−
90度を、またθ<−45度であればθ+90度を、頻
度メモリ9aに格納すべき傾きデータとするデータの置
き換えを行う。このような処理を行うことにより、図6
(a)に示す範囲(イ)(θ<−45度に相当する範
囲)の傾きデータは、+90度方向に移動して範囲
(ハ)に重ね合わされ、また、範囲(ニ)(θ≧45度
に相当する範囲)の傾きデータは、−90度方向に移動
して範囲(ロ)に示す傾きデータに重ね合わされる。
In order to perform this processing, when the inclination angle θ is calculated in ST3 described above, if θ ≧ 45 degrees, θ−
90 °, or θ + 90 degrees if θ <−45 degrees, is replaced with data as inclination data to be stored in the frequency memory 9a. By performing such processing, FIG.
The inclination data in the range (a) (the range corresponding to θ <−45 degrees) shown in (a) is moved in the +90 degree direction and superimposed on the range (c), and the range (d) (θ ≧ 45) The inclination data of the range (equivalent to degrees) is moved in the −90 degree direction and is superimposed on the inclination data shown in the range (b).

【0023】図6(b)は、このようにして作製された
新たな角度ヒストグラムを示しており、図6(a)の角
度ヒストグラムと比較してより明瞭にピークが表れてい
る。そしてこの新たな角度ヒストグラムに基づき、輪郭
線の辺の方向を示す角度αを特定する(ST6)。この
とき、前述のようにピーク位置がより明瞭に表れるの
で、ピーク位置に対応する角度を特定する際の誤差を減
少させることができる。なお、ここでは、各辺の傾きデ
ータを合算しているため、長辺・短辺の区別をすること
ができず、以下のステップにて長辺方向の特定を行う。
FIG. 6B shows a new angle histogram produced in this way, and the peaks appear more clearly than the angle histogram of FIG. 6A. Then, based on the new angle histogram, the angle α indicating the direction of the side of the contour is specified (ST6). At this time, since the peak position appears more clearly as described above, an error in specifying the angle corresponding to the peak position can be reduced. Here, since the inclination data of each side is summed up, it is not possible to distinguish between the long side and the short side, and the long side direction is specified in the following steps.

【0024】すなわち、このようにして求められた傾き
角度αに基づき、図7に示すように、θ1=αおよびθ
2=α±90度の方向に画像上でエッジサーチを行う
(ST7)。これにより、電子部品4の長手方向、およ
び形状を特定して電子部品4の位置を検出し(ST
8)、位置ずれ量を算出する。そしてマシンコントロー
ラ15によりこの位置ずれ量を補正しながら電子部品4
を基板10に搭載する。
That is, based on the inclination angle α thus obtained, as shown in FIG.
An edge search is performed on the image in the direction of 2 = α ± 90 degrees (ST7). Thereby, the position of the electronic component 4 is detected by specifying the longitudinal direction and the shape of the electronic component 4 (ST).
8) Calculate the displacement amount. Then, the electronic component 4 is corrected while correcting the position shift amount by the machine controller 15.
Is mounted on the substrate 10.

【0025】以上説明したように、本発明は電子部品の
画像認識において、予め相対角度が判っている複数辺の
輪郭線の傾きデータを合算することによってデータ数を
増加させ、これにより電子部品の小型化に伴って発生す
る電子部品の傾き角度検出精度の低下を補うようにした
ものである。
As described above, according to the present invention, in image recognition of an electronic component, the number of data is increased by adding together the inclination data of the contour lines of a plurality of sides whose relative angles are known in advance, thereby increasing the number of data. This is intended to compensate for a decrease in the accuracy of detecting the inclination angle of the electronic component caused by the miniaturization.

【0026】[0026]

【発明の効果】本発明によれば、全輪郭線についての傾
きデータを各辺ごとのデータ群に分け、所定の関係にあ
る複数辺のデータ群については傾きデータを修正して同
一データ群とした上でベクトルの傾き分布を求めるよう
にしたので、データ数が少なくかつデータのばらつきが
大きい小型の認識対象物についてもデータ数を増加させ
ることができ、したがって良好な認識結果を得ることが
できる。
According to the present invention, the inclination data for all the contour lines is divided into data groups for each side, and the inclination data is corrected for the data group for a plurality of sides having a predetermined relationship to be the same data group. Then, since the inclination distribution of the vector is obtained, the number of data can be increased even for a small recognition target having a small number of data and a large variation in the data, and thus a good recognition result can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の電子部品の実装装置の
斜視図
FIG. 1 is a perspective view of an electronic component mounting apparatus according to an embodiment of the present invention.

【図2】本発明の一実施の形態の画像認識方法のフロー
FIG. 2 is a flowchart of an image recognition method according to an embodiment of the present invention.

【図3】本発明の一実施の形態の電子部品の画像図FIG. 3 is an image diagram of an electronic component according to an embodiment of the present invention.

【図4】本発明の一実施の形態の電子部品の拡大画像図FIG. 4 is an enlarged image view of the electronic component according to the embodiment of the present invention;

【図5】(a)本発明の一実施の形態の輪郭線の角度ヒ
ストグラムを示すグラフ (b)本発明の一実施の形態の電子部品の画像図
5A is a graph showing an angle histogram of a contour line according to an embodiment of the present invention. FIG. 5B is an image diagram of an electronic component according to an embodiment of the present invention.

【図6】(a)本発明の一実施の形態の輪郭線の角度ヒ
ストグラムを示すグラフ (b)本発明の一実施の形態の輪郭線の角度ヒストグラ
ムを示すグラフ
6A is a graph showing an angle histogram of a contour according to an embodiment of the present invention; FIG. 6B is a graph showing an angle histogram of a contour according to an embodiment of the present invention;

【図7】本発明の一実施の形態の電子部品の画像図FIG. 7 is an image diagram of an electronic component according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 カメラ 3 移載ヘッド 4 電子部品 7 CPU 9 RAM 9a 傾き分布格納領域 DESCRIPTION OF SYMBOLS 1 Camera 3 Transfer head 4 Electronic component 7 CPU 9 RAM 9a Tilt distribution storage area

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA01 AA12 AA20 AA35 AA37 AA51 CC25 DD03 FF01 FF04 JJ03 JJ19 JJ26 NN20 PP11 QQ03 QQ23 QQ24 QQ27 QQ29 QQ31 QQ43 5B057 AA01 AA04 DA06 DB02 DC08 DC16 DC19 5L096 CA02 FA05 FA06 FA35 FA67 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA01 AA12 AA20 AA35 AA37 AA51 CC25 DD03 FF01 FF04 JJ03 JJ19 JJ26 NN20 PP11 QQ03 QQ23 QQ24 QQ27 QQ29 QQ31 QQ43 5B057 AA01 AA04 DA06 DB02 FA09 DC06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多角形状の認識対象物の像をカメラに取り
込み、この像の輪郭線を抽出するステップと、この輪郭
線上のある2つの点に支点および終点を有するベクトル
を設定し、前記2点を前記輪郭線に沿って所定の距離づ
つシフトさせることにより、前記輪郭線についての前記
ベクトルの傾きデータを求めるステップと、前記傾きデ
ータを前記輪郭線を構成する多角形の各辺ごとのデータ
群に分け、相互の挟角が予め判っている所定の関係にあ
る複数辺のデータ群については前記挟角分だけ傾きデー
タを修正して同一データ群とした上で、前記ベクトルの
傾き分布を求めるステップと、この傾き分布に基づいて
認識対象物の方向を検出するステップとを含むことを特
徴とする画像認識方法。
A step of taking an image of a polygonal object to be recognized into a camera and extracting an outline of the image; setting a vector having a fulcrum and an end point at two points on the outline; Shifting the points by a predetermined distance along the contour line to obtain inclination data of the vector with respect to the contour line; and converting the inclination data into data for each side of a polygon constituting the contour line. Divided into groups, for a data group of a plurality of sides having a predetermined relationship whose mutual included angles are known in advance, after correcting the inclination data by the included angle to be the same data group, the inclination distribution of the vector is calculated. An image recognition method, comprising a step of obtaining and a step of detecting a direction of a recognition target based on the inclination distribution.
JP26618198A 1998-09-21 1998-09-21 Image recognition method Expired - Fee Related JP3632461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26618198A JP3632461B2 (en) 1998-09-21 1998-09-21 Image recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26618198A JP3632461B2 (en) 1998-09-21 1998-09-21 Image recognition method

Publications (2)

Publication Number Publication Date
JP2000097677A true JP2000097677A (en) 2000-04-07
JP3632461B2 JP3632461B2 (en) 2005-03-23

Family

ID=17427394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26618198A Expired - Fee Related JP3632461B2 (en) 1998-09-21 1998-09-21 Image recognition method

Country Status (1)

Country Link
JP (1) JP3632461B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301491C (en) * 2001-03-13 2007-02-21 伊强德斯股份有限公司 Visual device, interlocking counter, and image sensor
CN100385460C (en) * 2001-03-13 2008-04-30 伊强德斯股份有限公司 Visual device, interlocking counter, and image sensor
JP2008151606A (en) * 2006-12-15 2008-07-03 Juki Corp Image processing method and image processing apparatus
KR101032058B1 (en) 2008-09-02 2011-05-02 가시오게산키 가부시키가이샤 Image processing apparatus and computer readable medium
CN107886526A (en) * 2017-11-13 2018-04-06 中国人民解放军国防科技大学 Sequence image weak and small target detection method based on time domain filtering
CN110113899A (en) * 2019-06-11 2019-08-09 博敏电子股份有限公司 A kind of multi-layer coreboard target production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301491C (en) * 2001-03-13 2007-02-21 伊强德斯股份有限公司 Visual device, interlocking counter, and image sensor
CN100385460C (en) * 2001-03-13 2008-04-30 伊强德斯股份有限公司 Visual device, interlocking counter, and image sensor
JP2008151606A (en) * 2006-12-15 2008-07-03 Juki Corp Image processing method and image processing apparatus
KR101032058B1 (en) 2008-09-02 2011-05-02 가시오게산키 가부시키가이샤 Image processing apparatus and computer readable medium
CN107886526A (en) * 2017-11-13 2018-04-06 中国人民解放军国防科技大学 Sequence image weak and small target detection method based on time domain filtering
CN110113899A (en) * 2019-06-11 2019-08-09 博敏电子股份有限公司 A kind of multi-layer coreboard target production method

Also Published As

Publication number Publication date
JP3632461B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US5541834A (en) Control system for component mounting apparatus
KR101924191B1 (en) Image processing device and method of image processing device
WO2012053521A1 (en) Optical information processing device, optical information processing method, optical information processing system, and optical information processing program
JP2007114071A (en) Three-dimensional shape measuring apparatus, program, computer-readable storage medium, and three-dimensional shape measuring method
KR20110126669A (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and three-dimessional shape measuring program
JP2007292619A (en) Image distortion correction method, and three-dimensional shape measuring instrument
JP2007128374A (en) Object recognition method, program for object recognition and storage medium therefor, and object recognition device
JP2000097677A (en) Image recognizing method
JP3545542B2 (en) Wafer rotation direction detection method
JP5160366B2 (en) Pattern matching method for electronic parts
JP2008294065A (en) Mounting method and mounting device for electronic component
JP3993044B2 (en) Appearance inspection method, appearance inspection device
JP3680578B2 (en) Image recognition method and inspection method
JP4097255B2 (en) Pattern matching apparatus, pattern matching method and program
JP4201321B2 (en) Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus
JP4566686B2 (en) Method and apparatus for determining shape of object
JP2008124336A (en) Shape recognition method and position correction method for semiconductor chip
JP3577969B2 (en) Image recognition method
JP3763229B2 (en) Position detection method by image recognition
JP3725314B2 (en) Method for correcting object point coordinates on wafer and method for determining object point coordinates
JP2006048626A (en) Photography device, image processing method of photographed image and program
KR100287319B1 (en) Rotation direction detection method, measurement position determination method and apparatus therefor
JPH11167640A (en) Measuring method due to image recognition and recording medium
JPH06224295A (en) Method and apparatus for detecting cutting line position of semiconductor wafer
JP2004062784A (en) Method for identifying body to be inspected and method for detecting position of body to be inspected

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees