JP2000096350A - Sheath-core type conjugate fiber having frictional melting-resistant performance and woven or knitted fabric using the fiber - Google Patents
Sheath-core type conjugate fiber having frictional melting-resistant performance and woven or knitted fabric using the fiberInfo
- Publication number
- JP2000096350A JP2000096350A JP11201303A JP20130399A JP2000096350A JP 2000096350 A JP2000096350 A JP 2000096350A JP 11201303 A JP11201303 A JP 11201303A JP 20130399 A JP20130399 A JP 20130399A JP 2000096350 A JP2000096350 A JP 2000096350A
- Authority
- JP
- Japan
- Prior art keywords
- core
- sheath
- polymer
- melting
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Knitting Of Fabric (AREA)
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えばスポーツ用
衣料に好適に使用される耐摩擦溶融性能を有する芯鞘型
複合繊維及び同繊維を使用した織編物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core-in-sheath type composite fiber having friction-melting resistance, which is suitably used for, for example, sports clothing, and a woven / knitted fabric using the fiber.
【0002】[0002]
【従来の技術】ポリエステル繊維やナイロン繊維などの
合成繊維のみから織編成された織編物は、特にスポーツ
用衣料などの被服として使用されたとき、その使用状
態、例えばスライディングや転倒などで被服表面に過度
の擦過を受けた場合、その摩擦熱により織編物が溶融
し、穴があいてしまうといった不都合がある。更には、
ときとして使用者に擦過傷或いは火傷を負わせるという
問題を有する。このような問題は、近年の木の床面をも
つ屋内運動場や人工芝の球技場などの増加により特に増
大している。2. Description of the Related Art Woven and knitted fabrics knitted only from synthetic fibers such as polyester fibers and nylon fibers, especially when used as clothing such as sports clothing, are used on the surface of the clothing in a state of use such as sliding or falling. If the woven or knitted fabric is subjected to excessive abrasion, the woven or knitted fabric is melted due to the frictional heat, and there is a disadvantage that a hole is formed. Furthermore,
There is a problem that the user is sometimes abraded or burned. Such a problem has been particularly increased due to an increase in indoor sports grounds and artificial turf ball stadiums having a wooden floor in recent years.
【0003】そのため従来から、合成繊維製の織編物に
対し各種の耐摩擦溶融加工が施されている。その一般的
な一例としては、シリコーンを主成分とする仕上剤を合
成繊維製の織編物に付与して同織編物表面の平滑性を高
め、摩擦抵抗を低減させる表面処理を施している。しか
しながら、この方法ではスナッギングなどの発生により
織編物としての物性が低下し、更に、繰り返し洗濯する
ことにより平滑性が低下するといった不都合がある。[0003] Conventionally, various types of friction-melting processing have been applied to woven or knitted fabrics made of synthetic fibers. As a general example, a finishing agent containing silicone as a main component is applied to a woven or knitted fabric made of synthetic fibers to perform a surface treatment for improving the smoothness of the surface of the woven or knitted fabric and reducing frictional resistance. However, in this method, physical properties as a woven or knitted material are reduced due to occurrence of snagging or the like, and further, there is a disadvantage that smoothness is reduced due to repeated washing.
【0004】また合成繊維に木綿を交撚、交織又は交編
等により混合して織編物の穴アキを防止する方法もあ
る。この方法では、繊維に摩擦熱が生じても木綿が溶融
せずに残るため穴アキは防止されるが、依然として合成
繊維の溶融は否めず、織編物表面には合成繊維の溶融跡
が生じる。更に、合成繊維と木綿とは染色性が異なるた
め繊維を均一に染色することが困難となり、また、合成
繊維と木綿との混合工程が必要であるため工程数が増加
し、それらに基づくコスト高を招くこととなる。[0004] There is also a method in which cotton is mixed with synthetic fibers by twisting, weaving or knitting to prevent pits in a woven or knitted fabric. In this method, even if frictional heat is generated in the fibers, the cotton remains without melting, thereby preventing perforation. However, melting of the synthetic fibers is still undeniable, and melting marks of the synthetic fibers are generated on the surface of the woven or knitted fabric. Furthermore, it is difficult to dye the fibers uniformly because the synthetic fibers and cotton have different dyeing properties, and the number of steps is increased due to the necessity of a mixing step of the synthetic fibers and cotton, resulting in high costs. Will be invited.
【0005】そこで、本出願人は織編物の原糸そのもの
に耐摩擦溶融性能を付与することを試みた。その結果、
本出願人は芯部に鞘部の重合体より融点の低い重合体を
配した芯鞘型複合繊維が優れた耐摩擦溶融性能を備えて
いることを見出し、特開平4−11006号公報におい
て開示している。具体的には、前記芯鞘型複合繊維の鞘
部の重合体としてはポリエチレンテレフタレート、ナイ
ロン66やナイロン6などが挙げられており、芯部の重
合体にはポリエチレン、ポリプロピレン、又はナイロン
12などが例示されている。前記芯鞘型複合繊維をスポ
ーツ用衣料に使用する場合には、前記芯部と前記鞘部と
の融点差は40℃以上であることが好ましい。ここで、
芯部に融点が130℃前後の通常のポリエチレン重合体
を使用した前記芯鞘型複合繊維を使用した布帛は、ロー
ター型摩擦溶融試験により6kgの荷重にて3秒間の接
圧摩擦を加えた場合、溶融跡がほとんどみられない耐摩
擦溶融性に優れた布帛であった。[0005] Therefore, the present applicant has attempted to impart friction-fusing resistance to the raw yarn itself of a woven or knitted fabric. as a result,
The present applicant has found that a core-in-sheath type conjugate fiber having a polymer having a lower melting point than the polymer of the sheath portion in the core portion has excellent friction-melting resistance and disclosed in Japanese Patent Application Laid-Open No. 4-11006. are doing. Specifically, examples of the polymer of the sheath portion of the core-sheath type composite fiber include polyethylene terephthalate, nylon 66, nylon 6, and the like, and the polymer of the core portion includes polyethylene, polypropylene, nylon 12, and the like. Is illustrated. When the core-sheath type composite fiber is used for sports clothing, the difference in melting point between the core and the sheath is preferably 40 ° C. or more. here,
The fabric using the core-sheath type composite fiber using the ordinary polyethylene polymer having a melting point of about 130 ° C. in the core is subjected to a contact pressure friction for 3 seconds under a load of 6 kg by a rotor type friction melting test. And a cloth excellent in friction-melting resistance with almost no trace of melting.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、床面で
のスライディングが予想されるスポーツ用衣料に使用す
るためには、更なる耐摩擦溶融性能の向上が望まれてい
る。また、前記芯鞘型複合繊維に捲縮を施すことによ
り、繊維の嵩高性に基づき摩擦が軽減され、耐摩擦溶融
性能を向上させることができる。しかし、仮撚加工等で
捲縮を発現させる場合に、芯部に用いられている融点が
130℃前後の通常のポリエチレン重合体が仮撚工程で
噴出し、多量の白粉が発生して生産性を低下させるとい
った問題がある。そのため、仮撚工程の通過性が良い耐
摩擦溶融性能に優れた芯鞘型複合繊維が望まれている。However, for use in sports clothing expected to slide on the floor, it is desired to further improve the friction melting resistance. In addition, by crimping the core-sheath type composite fiber, friction is reduced based on the bulkiness of the fiber, and the friction melting performance can be improved. However, when a crimp is developed by false twisting or the like, a normal polyethylene polymer having a melting point of about 130 ° C. used in the core is jetted out in the false twisting step, and a large amount of white powder is generated to increase productivity. There is a problem that it decreases. Therefore, there is a demand for a core-sheath composite fiber having good frictional melting performance and good passability in the false twisting step.
【0007】本発明はかかる要求に対応すべくなされた
ものであり、芯鞘型複合繊維の耐摩擦溶融性能を更に向
上させ、接圧摩擦させても溶融跡がほとんど生じること
がなく、仮撚工程における芯部のポリエチレンの噴出に
よる白粉の発生も少なく工程通過性が良い繊維を提供す
ることを目的としている。The present invention has been made to meet such a demand, and further improves the friction-melting performance of the core-in-sheath type composite fiber. It is an object of the present invention to provide a fiber which is less likely to generate white powder due to ejection of polyethylene at the core in the process and has good processability.
【0008】[0008]
【課題を解決するための手段】かかる目的を達成するた
め、本件請求項1に係る発明は、芯部の重合体が鞘部の
重合体よりも融点が低い芯鞘型複合繊維であって、前記
芯部の重合体はメタロセン系触媒を用いて重合された共
重合ポリエチレンを含み、前記鞘部の重合体は融点が2
00℃以上の熱可塑性重合体であることを特徴とする耐
摩擦溶融性能を有する芯鞘型複合繊維を主要な構成とし
ている。なお、ここで融点とは、DSC測定における融
解ピーク温度のことをいう。Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 is a core-sheath type conjugate fiber in which the core polymer has a lower melting point than the sheath polymer. The core polymer contains a copolymerized polyethylene polymerized using a metallocene catalyst, and the sheath polymer has a melting point of 2%.
The core structure is a core-sheath type composite fiber having a friction-melting performance characterized by being a thermoplastic polymer of at least 00 ° C. Here, the melting point refers to a melting peak temperature in DSC measurement.
【0009】芯部と鞘部との融点差を大きくし、芯部の
溶融時の粘度を高くすることにより、芯鞘型複合繊維の
耐摩擦溶融性能が最も効果的に発揮される。このため、
芯部には可能な限り融点の低い重合体を使用することが
望ましく、現在使用されている溶融紡糸に適した樹脂の
中ではポリエチレンが融点の低い重合体として挙げられ
る。By increasing the melting point difference between the core and the sheath and increasing the viscosity of the core when the core is melted, the friction-melting performance of the core-sheath type composite fiber is exhibited most effectively. For this reason,
It is desirable to use a polymer having a low melting point as much as possible for the core portion. Among resins suitable for melt spinning currently used, polyethylene is mentioned as a polymer having a low melting point.
【0010】本発明にあっては、芯部の重合体がメタロ
セン系触媒を用いて共重合されたポリエチレンを含んで
いる。このメタロセン系触媒を用いて共重合されたポリ
エチレンが以下のような効果を奏する理由は定かではな
いが、メタロセン系触媒を用いて共重合されたポリエチ
レンは分子量の分布が狭く、均一な分子量のポリエチレ
ンを得ることが可能であり、且つ低分子量成分が少ない
ことから、仮撚工程での白粉の発生を低減させることが
できるものと考えられる。またメタロセン系触媒を用い
ることにより、低融点で且つMFRが17g/10分以
下の共重合ポリエチレンを得られることから、摩擦溶融
の発現を抑制すると共に仮撚工程での白粉の発生を低減
するといった、作用効果が得られるものと考えられる。In the present invention, the core polymer contains polyethylene copolymerized with a metallocene catalyst. It is not clear why polyethylene copolymerized using this metallocene catalyst exhibits the following effects, but polyethylene copolymerized using a metallocene catalyst has a narrow molecular weight distribution and polyethylene having a uniform molecular weight. It is considered that the generation of white powder in the false twisting step can be reduced because the low-molecular weight component can be obtained and the low molecular weight component is small. In addition, by using a metallocene catalyst, a copolymerized polyethylene having a low melting point and an MFR of 17 g / 10 minutes or less can be obtained, so that the occurrence of friction melting can be suppressed and the generation of white powder in the false twisting step can be reduced. It is considered that an effect can be obtained.
【0011】なお、前記芯部の共重合ポリエチレンとし
ては、メタロセン系触媒を用いて重合された共重合ポリ
エチレンの単一の組成であってもよく、或いは、メタロ
セン系触媒以外の触媒を用いたポリエチレンをも含んだ
2種以上の混合品であっても良い。[0011] The copolymerized polyethylene of the core may be a single composition of copolymerized polyethylene polymerized using a metallocene-based catalyst, or may be a polyethylene using a catalyst other than the metallocene-based catalyst. Or a mixture of two or more of them.
【0012】また、上記芯鞘型複合繊維は優れた耐摩擦
溶融性能を備えており、同繊維を織編物として接圧摩擦
させても溶融跡がほとんど生じることがない。本発明の
複合繊維が優れた耐摩擦溶融性を発揮する理由は明確で
はないが、特開平4−11006号公報でも開示されて
いるように、摩擦熱により芯部はその融点付近まで温度
が上昇して溶融しようとし、この際に生じる融解吸熱作
用により鞘部の温度上昇が遅延されるためと考えられ
る。これは芯部として融点の高いポリプロピレンよりも
融点の低いポリエチレンを使用したほうが、その耐摩擦
溶融性がより効果的に発揮され、更には本発明に示す低
融点化された共重合ポリエチレンを使用した場合に、更
に優れた耐摩擦溶融性を発揮することからも十分理解で
きる。即ち、本発明の芯鞘型複合繊維は、複合繊維を構
成する芯部のポリエチレン成分の融点を低くすること
で、摩擦により発生する発熱を低温から素早く吸収し鞘
部の溶融破断を軽減する効果が得られるものである。The above-mentioned core-sheath type conjugate fiber has excellent friction-melting resistance. Even when the fiber is brought into contact and rubbing as a woven or knitted material, almost no trace of melting is produced. The reason why the composite fiber of the present invention exhibits excellent friction melting resistance is not clear, but as disclosed in Japanese Patent Application Laid-Open No. 4-11006, the temperature of the core rises to near its melting point due to frictional heat. It is considered that the temperature rise of the sheath portion is delayed by the melting endothermic effect generated at this time. It is better to use polyethylene having a lower melting point than polypropylene having a higher melting point as the core, the friction-melting resistance is more effectively exhibited, and further, the copolymerized polyethylene having a reduced melting point shown in the present invention was used. In this case, it can be sufficiently understood from the fact that even more excellent friction melting resistance is exhibited. In other words, the core-sheath type conjugate fiber of the present invention has an effect of reducing the melting point of the polyethylene component of the core part constituting the conjugate fiber, thereby quickly absorbing the heat generated by friction from a low temperature and reducing the melt fracture of the sheath part. Is obtained.
【0013】本件請求項2に係る発明では、前記芯部の
前記共重合ポリエチレンは密度が0.94g/cm3 以
下で融点が130℃以下である。前記融点が130℃以
下であれば、前記鞘部の樹脂との融点差が十分となり、
優れた耐摩擦溶融性能が得られる。In the invention according to claim 2, the copolymer polyethylene of the core has a density of 0.94 g / cm 3 or less and a melting point of 130 ° C. or less. If the melting point is 130 ° C. or less, the difference between the melting point of the resin of the sheath portion is sufficient,
Excellent friction melting resistance is obtained.
【0014】或いは、本件請求項3に係る発明では、前
記芯部の前記共重合ポリエチレンはメルトフローレート
(MFR)が17.0g/10分以下である。ここで、
本発明にあっては、メルトフローレートとはJIS K
7210熱可塑性プラスチックの流れ試験方法の条件4
(試験温度190℃、試験荷重21.12N)による測
定値をいう。Alternatively, in the invention according to claim 3, the copolymer polyethylene of the core has a melt flow rate (MFR) of 17.0 g / 10 minutes or less. here,
In the present invention, the melt flow rate is defined as JIS K
Condition 4 of flow test method for 7210 thermoplastics
(Test temperature: 190 ° C., test load: 21.12 N)
【0015】前記MFRが17.0g/10分を超える
と、芯部のポリエチレン成分が低粘度であるため仮撚工
程や撚糸工程などにおいて芯鞘構造が破壊され、芯部の
ポリエチレンが噴出して白粉となって後加工通過性が不
良となりやすい。なお、前記芯部の前記共重合ポリエチ
レンのメルトフローレート(MFR)は5.0g/10
分以下であることがより好ましい。When the MFR exceeds 17.0 g / 10 min, the core-sheath structure is destroyed in the false twisting step, the twisting step, etc. due to the low viscosity of the polyethylene component in the core, and the polyethylene in the core is ejected. It becomes white powder and the post-processability tends to be poor. In addition, the melt flow rate (MFR) of the copolymerized polyethylene of the core is 5.0 g / 10
It is more preferable that the time is not more than minutes.
【0016】本件請求項4に係る発明は、前記鞘部の前
記熱可塑性重合体がエチレンテレフタレートを主たる繰
り返し単位とするポリエステルである。The invention according to claim 4 of the present invention is a polyester in which the thermoplastic polymer in the sheath has ethylene terephthalate as a main repeating unit.
【0017】更に、本件請求項5に係る発明では、前記
芯部と前記鞘部の複合比(容積比)は芯部/鞘部が1/
1〜1/15である。前記芯部と鞘部との複合比は、繊
維物性を確保する目的から、芯成分の複合比を大きくす
ることは好ましくなく、容積比で芯部/鞘部が1/1〜
1/15、特に1/4〜1/10であることが好まし
い。また、かかる芯鞘型複合繊維は公知の芯鞘複合紡糸
ノズルにより溶融紡糸され、延伸、好ましくは2段延伸
することにより得られる。Further, in the invention according to claim 5, the composite ratio (volume ratio) of the core and the sheath is 1 / core / sheath.
1 to 1/15. For the purpose of securing the physical properties of the fiber, it is not preferable to increase the composite ratio of the core component.
It is preferably 1/15, particularly preferably 1/4 to 1/10. The core-sheath type composite fiber is obtained by melt-spinning using a known core-sheath composite spinning nozzle, and drawing, preferably two-stage drawing.
【0018】また、前記芯鞘型複合繊維の繊度に限定は
なく任意の繊度とし得る。また、繊維断面も円形断面、
三角断面など各種の異形断面としてもよく、複合成分の
少なくとも一方に着色用顔料を含有させて原着繊維とし
てもよい。The fineness of the core-sheath type composite fiber is not limited, and may be any fineness. In addition, the fiber cross section is also circular,
Various modified cross-sections such as a triangular cross-section may be used, and a coloring pigment may be contained in at least one of the composite components to obtain a raw fiber.
【0019】前記鞘部の前記熱可塑性重合体としては、
ポリエチレンテレフタレート(融点=256℃)、ナイ
ロン66(融点=265℃)又はナイロン6(融点=2
24℃)などを用いることができるが、エチレンテレフ
タレートを主たる繰り返し単位とするポリエステルが好
ましく用いられる。As the thermoplastic polymer of the sheath,
Polyethylene terephthalate (melting point = 256 ° C.), nylon 66 (melting point = 265 ° C.) or nylon 6 (melting point = 2
24 ° C.) can be used, but polyesters having ethylene terephthalate as a main repeating unit are preferably used.
【0020】エチレンテレフタレートを主たる繰り返し
単位とするポリエステルとしては、テレフタル酸又はそ
のエステル形成誘導体をジカルボン酸性成分とし、エチ
レングリコール又はそのエステル形成誘導体をジオール
成分として得られるポリエチレンテレフタレートが代表
的に挙げられる。Typical examples of the polyester having ethylene terephthalate as a main repeating unit include polyethylene terephthalate obtained by using terephthalic acid or an ester-forming derivative thereof as a dicarboxylic acid component and ethylene glycol or an ester-forming derivative thereof as a diol component.
【0021】またこのジカルボン酸性成分又はジオール
成分の一部が他のジカルボン酸性成分又はジオール成分
で置き換えられたポリエステルを使用することもでき
る。A polyester in which a part of the dicarboxylic acid component or diol component is replaced by another dicarboxylic acid component or diol component can also be used.
【0022】他のジカルボン酸性成分としては、イソフ
タル酸、5−スルホイソフタル酸金属塩、ナフタレンジ
カルボン酸、ジフェニルジカルボン酸、アジピン酸、セ
バシン酸、1,4−シクロヘキサンジカルボン酸、p−
オキシ安息香酸などが挙げられる。また他のジオール成
分としては、1,4−ブタンジオール、炭素数2〜10
のアルキレングリコール、1,4−シクロヘキサンジメ
タノール、ポリアルキレングリコールなどが挙げられ
る。Other dicarboxylic acid components include isophthalic acid, 5-sulfoisophthalic acid metal salt, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, p-
Oxybenzoic acid and the like. Other diol components include 1,4-butanediol and C 2-10
Alkylene glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol and the like.
【0023】さらに、ポリエステルが実質的に線状であ
る範囲で、トリメリット酸、ピロメリット酸などのポリ
カルボン酸、ペンタエリスリトール、トリメチロールプ
ロパンなどのポリオール、モノハイドリックポリアルキ
レンオキサイド、フェニル酢酸などを用いたものであっ
てもよい。Further, as long as the polyester is substantially linear, polycarboxylic acids such as trimellitic acid and pyromellitic acid, polyols such as pentaerythritol and trimethylolpropane, monohydric polyalkylene oxide, phenylacetic acid, etc. May be used.
【0024】かかるポリエステルは、公知の任意の方法
で合成することができ、例えば、ポリエチレンテレフタ
レートについて説明すると、テレフタル酸とエチレング
リコールとをエステル化反応させたり、或いはテレフタ
ル酸ジメチルとエチレングリコールとをエステル交換反
応させてグリコールエステル又はその低縮合物を生成
し、次いで重縮合させる方法により得られる。Such a polyester can be synthesized by any known method. For example, in the case of polyethylene terephthalate, an esterification reaction between terephthalic acid and ethylene glycol or a reaction between dimethyl terephthalate and ethylene glycol is carried out. It is obtained by a method in which an exchange reaction is carried out to produce a glycol ester or a low condensate thereof, followed by polycondensation.
【0025】なお、ポリエステルの合成にあたっては、
公知の触媒、抗酸化剤、着色防止剤、エーテル結合副生
防止剤、難燃剤などを用いることができ、且つこれらの
添加物がポリエステルに含まれていてもよい。In the synthesis of polyester,
Known catalysts, antioxidants, coloring inhibitors, ether bond byproduct inhibitors, flame retardants and the like can be used, and these additives may be contained in the polyester.
【0026】更に本件請求項6に係る発明によれば、捲
縮率15%以上の捲縮が付与されている。かかる捲縮を
施すことにより、繊維の嵩高性に基づき摩擦が軽減さ
れ、耐摩擦溶融性能を向上させることができる。Further, according to the invention of claim 6, a crimp having a crimp rate of 15% or more is provided. By performing such crimping, the friction is reduced based on the bulkiness of the fiber, and the friction melting resistance can be improved.
【0027】また、本件請求項7に係る発明によれば、
上述したいずれかの芯鞘型複合繊維から織編成され、ロ
ーター型摩擦溶融試験による荷重10kg、3秒間の接
圧で溶融跡を実質上生じないことを特徴とする織編物を
更に他の主要な構成としている。なお、前記ローター型
摩擦溶融試験とはJIS L1056(B法)に準拠す
る試験である。According to the invention of claim 7 of the present application,
A woven or knitted fabric woven or knitted from any of the above-described core-sheath type conjugate fibers, which is characterized in that a load of 10 kg in a rotor-type friction melting test and a contact pressure of 3 seconds substantially do not substantially cause a melting mark. It has a configuration. Note that the rotor-type friction melting test is a test based on JIS L1056 (Method B).
【0028】[0028]
【発明の実施の形態】以下、本発明の実施の形態につい
て、好適な実施例及び比較例を参照して具体的に説明す
る。なお、以下の実施例及び比較例において芯部に使用
されているポリエチレンの物性及び得られた繊維の耐摩
擦溶融性能について表1に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to preferred examples and comparative examples. Table 1 shows the physical properties of polyethylene used for the core in the following Examples and Comparative Examples, and the friction-melting resistance of the obtained fibers.
【0029】<実施例1>鞘部の重合体として、相対粘
度1.6、密度1.38g/cm3 、融点256℃のポ
リエチレンテレフタレート(PET)を用いた。また芯
部の重合体としては、メタロセン系触媒を用いて重合さ
れた共重合ポリエチレン(PE)である日本ポリケム
(株)製のカーネル(KF260)を使用した。Example 1 Polyethylene terephthalate (PET) having a relative viscosity of 1.6, a density of 1.38 g / cm 3 and a melting point of 256 ° C. was used as a polymer for the sheath. As the polymer of the core, a kernel (KF260) manufactured by Nippon Polychem Co., Ltd., which is a copolymerized polyethylene (PE) polymerized using a metallocene catalyst, was used.
【0030】かかる鞘部成分及び芯部成分を使用して、
芯鞘複合比(容積比)をPE/PET=1/8として、
芯鞘複合紡糸ノズルにより溶融複合紡糸し、未延伸糸を
得た。次いでこの未延伸糸を2段延伸して109dte
x/24フィラメントの芯鞘型複合繊維を得た。この芯
鞘型複合繊維を製造する際の製糸安定性は良好であっ
た。Using such a sheath component and a core component,
Assuming that the core / sheath composite ratio (volume ratio) is PE / PET = 1/8,
Melt composite spinning was performed by a core-sheath composite spinning nozzle to obtain an undrawn yarn. Next, this undrawn yarn is stretched in two steps to obtain 109 dte
An x / 24 filament core-sheath composite fiber was obtained. The yarn production stability at the time of producing this core-sheath type composite fiber was good.
【0031】得られた芯鞘型複合繊維を原糸とし、Z撚
3043T/M、オーバーフィード率3.1%、加撚張
力15〜16g、ヒーター温度(仮撚温度)160℃の
条件で仮撚加工を施した。160℃の仮撚温度で得られ
た仮撚加工糸は、捲縮率が27.1%で、優れた嵩高性
を有するものであった。この仮撚加工糸を用い、20ゲ
ージ丸編機にてスポ−ツ用衣料として代表的な編組織で
あるモックロディに編成し、通常のポリエステル繊維と
同様の染色工程で染色仕上げを行ったところ、ストレッ
チ性、嵩高性によるボリューム感に優れ、また良好な鮮
明性を有する編物が得られた。The obtained core-sheath type conjugate fiber is used as a raw yarn, and is subjected to temporary twisting under the conditions of Z twist 3043 T / M, overfeed rate 3.1%, twisting tension 15 to 16 g, and heater temperature (false twist temperature) 160 ° C. Twist processing was performed. The false twisted yarn obtained at a false twist temperature of 160 ° C. had a crimp rate of 27.1% and had excellent bulkiness. Using this false twisted yarn, it was knitted into a mock rody, which is a typical knitting structure, as a clothing for sports using a 20 gauge circular knitting machine, and dyed in the same dyeing process as ordinary polyester fibers. A knitted fabric excellent in volume feeling due to stretchability and bulkiness and having good sharpness was obtained.
【0032】更に、得られた染色編物に、JIS L1
056(B法)に準拠する試験であるロ−ター型摩擦溶
融試験(荷重10kg、3秒間)を行ったが、穴あき現
象は全く見られず溶融跡もなかった。Further, JIS L1 was added to the obtained dyed knitted fabric.
A rotor-type friction melting test (load: 10 kg, 3 seconds), which is a test based on 056 (Method B), was performed, but no piercing phenomenon was observed and there was no melting trace.
【0033】<実施例2、3>メタロセン系触媒を用い
て重合された共重合ポリエチレン(PE)であって、そ
の物性が実施例1とは異なる共重合ポリエチレンを使用
している以外は、実施例1と同一として繊維を製造し
た。得られた染色編物に、ロ−ター型摩擦溶融試験(荷
重10kg、3秒間)を行ったが、穴あき現象は全く見
られず溶融跡もなかった。<Examples 2 and 3> Copolymerized polyethylene (PE) polymerized using a metallocene-based catalyst was used except that the copolymerized polyethylene was different in physical properties from Example 1. Fibers were produced as in Example 1. The obtained dyed knitted fabric was subjected to a rotor-type friction melting test (load: 10 kg, 3 seconds), but no perforation phenomenon was observed and there was no melting trace.
【0034】<比較例1>芯部として、MFR(Melt Fl
ow Ratio) が9g/10分、密度が0.96g/c
m3 、融点が130℃である、チグラー触媒を用いて重
合されたポリエチレンに変更した以外は、全て上述の実
施例と同一とし、溶融複合紡糸及び延伸処理を施して、
109dtex/24フィラメントの芯鞘型複合繊維を
得た。得られた芯鞘型複合繊維を原糸とし、実施例と同
様に160℃の仮撚温度で仮撚加工が施された仮撚加工
糸は、捲縮率が28.0%であった。<Comparative Example 1> As a core, MFR (Melt Fl
ow Ratio) 9g / 10min, density 0.96g / c
m 3 , having a melting point of 130 ° C., except that it was changed to polyethylene polymerized using a Ziegler catalyst, and all were the same as in the above example, and subjected to melt composite spinning and stretching treatment.
A 109 dtex / 24 filament core-sheath composite fiber was obtained. The false-twisted yarn obtained by using the obtained core-sheath type composite fiber as a raw yarn and performing a false twisting treatment at a false twisting temperature of 160 ° C. in the same manner as the example had a crimp rate of 28.0%.
【0035】この仮撚加工糸を用い、実施例1と同様に
編成し、得られた編物に染色仕上げを行った。この染色
編物にローター型摩擦溶融試験を行ったところ、荷重6
kg、3秒間では穴あき現象は全く見られず溶融跡もな
かったが、荷重10kg、3秒間では溶融跡や切断が見
られた。Using this false twisted yarn, knitting was performed in the same manner as in Example 1, and the obtained knit was dyed and finished. When the dyed knitted fabric was subjected to a rotor-type friction melting test, a load of 6
At 3 kg for 3 seconds, no perforation phenomenon was observed and no trace of melting was found, but at 10 kg of load for 3 seconds, traces of melting and cutting were observed.
【0036】<比較例2>芯部として、MFR(Melt Fl
ow Ratio) が22g/10分、密度が0.919g/c
m3 、融点が84℃である、チグラー触媒を用いて重合
されたポリエチレンに変更した以外は、全て上述の実施
例と同一とし、溶融複合紡糸及び延伸処理を施して、1
09dtex/24フィラメントの芯鞘型複合繊維を得
た。得られた芯鞘型複合繊維を原糸とし、実施例と同様
に160℃の仮撚温度で仮撚加工が施された仮撚加工糸
は、捲縮率が13.1%であった。<Comparative Example 2> As a core, MFR (Melt Fl
ow Ratio) is 22g / 10min and density is 0.919g / c
m 3 and a melting point of 84 ° C., except that the polyethylene was polymerized using a Ziegler catalyst, and the same as in the above example was performed.
A core-sheath composite fiber of 09 dtex / 24 filaments was obtained. The false-twisted yarn obtained by using the obtained core-sheath type composite fiber as a raw yarn and performing a false twisting treatment at a false twisting temperature of 160 ° C. in the same manner as in the example had a crimp rate of 13.1%.
【0037】この仮撚加工糸を用い、実施例1と同様に
編成し、得られた編物に染色仕上げを行った。この染色
編物にローター型摩擦溶融試験を行ったところ、荷重6
kg、3秒間では穴あき現象は全く見られず溶融跡もな
かったが、荷重10kg、3秒間では溶融跡や切断が見
られた。Using the false twisted yarn, knitting was performed in the same manner as in Example 1, and the resulting knit was dyed and finished. When the dyed knitted fabric was subjected to a rotor-type friction melting test, a load of 6
At 3 kg for 3 seconds, no perforation phenomenon was observed and no trace of melting was found, but at 10 kg of load for 3 seconds, traces of melting and cutting were observed.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【発明の効果】以上、説明したように、本発明の芯鞘型
複合繊維は優れた耐摩擦溶融性能を備えているため、同
繊維からなる織編物は例えばスポーツ用衣料として使用
した場合にも、木の床面や人工芝にスライディングし或
いは転倒して、過度の摩擦が生じたときに発生する摩擦
熱によっても溶融せず、穴アキや溶融跡が生じず、ま
た、使用者が火傷などの傷を負うことがなく、使用者に
対する安全性をも兼ね備えている。As described above, the core-in-sheath conjugate fiber of the present invention has excellent friction-melting resistance, so that the woven or knitted fabric made of the fiber can be used, for example, even when used as sports clothing. Sliding or falling on wooden floors or artificial turf, it does not melt due to the frictional heat generated when excessive friction occurs, no holes or melting marks are generated, and the user may get burned. It does not injure the user and also has safety for the user.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂倉 秀夫 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 (72)発明者 川島 能則 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideo Sakakura 4-1-2 Ushikawa-dori, Toyohashi-shi, Aichi Prefecture Inside the Toyohashi Works of Mitsubishi Rayon Co., Ltd. 1 No. 2 in the Mitsubishi Rayon Co., Ltd. Toyohashi Plant
Claims (7)
が低い芯鞘型複合繊維であって、前記芯部の重合体はメ
タロセン系触媒を用いて重合された共重合ポリエチレン
を含み、前記鞘部の重合体は融点が200℃以上の熱可
塑性重合体であることを特徴とする耐摩擦溶融性能を有
する芯鞘型複合繊維。The core polymer is a core-sheath type composite fiber having a lower melting point than the polymer of the sheath, and the polymer of the core is a copolymerized polyethylene polymerized using a metallocene catalyst. A core-sheath type conjugate fiber having friction-melting resistance, wherein the sheath polymer is a thermoplastic polymer having a melting point of 200 ° C. or more.
度が0.94g/cm3 以下で融点が130℃以下である請
求項1記載の芯鞘型複合繊維。2. The core-sheath type composite fiber according to claim 1, wherein the copolymer polyethylene of the core has a density of 0.94 g / cm 3 or less and a melting point of 130 ° C. or less.
ルトフローレート(MFR)が17.0g/10分以下
である請求項1記載の芯鞘型複合繊維。3. The core-sheath type composite fiber according to claim 1, wherein the copolymerized polyethylene of the core has a melt flow rate (MFR) of 17.0 g / 10 minutes or less.
ンテレフタレートを主たる繰り返し単位とするポリエス
テルである請求項1〜3のいずれかに記載の芯鞘型複合
繊維。4. The core-sheath composite fiber according to claim 1, wherein the thermoplastic polymer in the sheath is a polyester having ethylene terephthalate as a main repeating unit.
は芯部/鞘部が1/1〜1/15である請求項1〜4の
いずれかに記載の芯鞘型複合繊維。5. A composite ratio (volume ratio) of the core portion and the sheath portion.
The core / sheath type composite fiber according to any one of claims 1 to 4, wherein the core / sheath ratio is 1/1 to 1/15.
求項1〜5のいずれかに記載の芯鞘型複合繊維。6. The core-sheath type composite fiber according to claim 1, wherein a crimp having a crimp rate of 15% or more is provided.
複合繊維から織編成され、ローター型摩擦溶融試験によ
る荷重10kg、3秒間の接圧で溶融跡を実質上生じな
いことを特徴とする織編物。7. A woven and knitted fabric of the core-sheath type composite fiber according to any one of claims 1 to 6, wherein a load of 10 kg according to a rotor-type friction melting test does not substantially cause a melting mark by a contact pressure of 3 seconds. Woven and knitted fabrics.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-201801 | 1998-07-16 | ||
JP20180198 | 1998-07-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000096350A true JP2000096350A (en) | 2000-04-04 |
JP3840001B2 JP3840001B2 (en) | 2006-11-01 |
Family
ID=26512714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20130399A Expired - Lifetime JP3840001B2 (en) | 1998-07-16 | 1999-07-15 | Core-sheath type composite fiber having friction melting resistance and woven / knitted fabric using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3840001B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277750A (en) * | 2006-04-05 | 2007-10-25 | Daiwabo Co Ltd | Conjugated fiber, method for producing the same and fiber structure using the same |
JP2009097118A (en) * | 2007-10-17 | 2009-05-07 | Daiwabo Co Ltd | Conjugate fiber, method for producing the same and fibrous structural material by using the same |
JP2010018928A (en) * | 2008-07-14 | 2010-01-28 | Unitika Ltd | Nonwoven fabric for heat molding and heat molding method using the same |
JP2015175066A (en) * | 2014-03-13 | 2015-10-05 | 株式会社クラレ | Core sheath conjugate fiber having friction melt resistance, and woven or knitted fabric using the fiber |
JP2019178443A (en) * | 2018-03-30 | 2019-10-17 | Kbセーレン株式会社 | Friction anti-melting composite fiber, fabric and clothing |
-
1999
- 1999-07-15 JP JP20130399A patent/JP3840001B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277750A (en) * | 2006-04-05 | 2007-10-25 | Daiwabo Co Ltd | Conjugated fiber, method for producing the same and fiber structure using the same |
JP2009097118A (en) * | 2007-10-17 | 2009-05-07 | Daiwabo Co Ltd | Conjugate fiber, method for producing the same and fibrous structural material by using the same |
JP2010018928A (en) * | 2008-07-14 | 2010-01-28 | Unitika Ltd | Nonwoven fabric for heat molding and heat molding method using the same |
JP2015175066A (en) * | 2014-03-13 | 2015-10-05 | 株式会社クラレ | Core sheath conjugate fiber having friction melt resistance, and woven or knitted fabric using the fiber |
JP2019178443A (en) * | 2018-03-30 | 2019-10-17 | Kbセーレン株式会社 | Friction anti-melting composite fiber, fabric and clothing |
JP7014662B2 (en) | 2018-03-30 | 2022-02-01 | Kbセーレン株式会社 | Friction-proof composite fibers, fabrics and clothing |
Also Published As
Publication number | Publication date |
---|---|
JP3840001B2 (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003515000A (en) | Polyethylene glycol-modified polyester fiber and method for producing the same | |
KR101059594B1 (en) | Poly (trimethylene dicarboxylate) fiber, its manufacture and use | |
JP2001512509A (en) | Low pill polyester | |
JP2008106410A (en) | Crimped yarn and fiber structure using the same | |
JP2000096350A (en) | Sheath-core type conjugate fiber having frictional melting-resistant performance and woven or knitted fabric using the fiber | |
JPS5921776A (en) | Production of water absorbable knitted fabric | |
JP2001303370A (en) | Sheath-core conjugate yarn having abrasion melt- resistant performance, method for producing the same and woven and knitted fabric using the yarn | |
JPH0649712A (en) | Core-sheath type conjugate fiber having friction melting-resistant performance | |
JP3452291B2 (en) | Core-sheath type composite fiber having friction melting resistance and woven / knitted material thereof | |
JP3293704B2 (en) | Polyester fiber and method for producing the same | |
JPH03241024A (en) | Production of cation-dyeable superfine false twist yarn | |
JP4370629B2 (en) | Polyester blend yarn and knitted fabric | |
JP7406697B2 (en) | Core-sheath type polymer alloy fiber, fiber aggregate containing the same, and manufacturing method thereof | |
JP3307383B2 (en) | Polyester hollow short fiber | |
JP2000226727A (en) | Aliphatic polyester fiber having denier unevenness | |
JPH0749623B2 (en) | Roughened, antistatic polyester fiber and method for producing the same | |
JP2921842B2 (en) | Modified polyester fiber | |
JP4708851B2 (en) | Polylactic acid fiber knitted fabric and production method thereof | |
JPS6175815A (en) | Three-component composite fiber having surface groove and its manufacture | |
JP3281767B2 (en) | Random crimped yarn | |
JP2652877B2 (en) | Method for producing spun-like fabric | |
JPH10266029A (en) | Combined yarn of polyester filaments with different shrinkage | |
JPH0881831A (en) | Sheath-core type conjugate fiber excellent in hygroscopicity | |
JP3029682B2 (en) | Composite fiber aggregate having excellent retardation crimp | |
JPH01272862A (en) | Cation dyeable polyester fiber excellent in feeling and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060804 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3840001 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130811 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |