JP2000091142A - Magnetic component with leads and noise reducing circuit using the same - Google Patents
Magnetic component with leads and noise reducing circuit using the sameInfo
- Publication number
- JP2000091142A JP2000091142A JP10256213A JP25621398A JP2000091142A JP 2000091142 A JP2000091142 A JP 2000091142A JP 10256213 A JP10256213 A JP 10256213A JP 25621398 A JP25621398 A JP 25621398A JP 2000091142 A JP2000091142 A JP 2000091142A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- insulating case
- magnetic component
- conductors
- leads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 45
- 239000000696 magnetic material Substances 0.000 claims abstract description 26
- 230000009467 reduction Effects 0.000 claims description 23
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 18
- 239000011347 resin Substances 0.000 abstract description 6
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011229 interlayer Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 239000000956 alloy Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- -1 polybutylene terephthalate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Coils Of Transformers For General Uses (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リード付き磁性部
品及びそれを用いたノイズ低減回路に関するものであ
り、特にDC−DCコンバータの半導体素子などのスイ
ッチング電源のノイズ低減に有効な磁性部品であり、詳
しくはリード又は絶縁ケース形状を改良することにより
表面実装性を向上させ、リードの接続方法を改良するこ
とにより各種用途の使い分けを可能とするノイズ低減回
路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic component having leads and a noise reduction circuit using the same, and more particularly to a magnetic component effective for reducing noise of a switching power supply such as a semiconductor element of a DC-DC converter. More specifically, the present invention relates to a noise reduction circuit that improves surface mountability by improving the shape of a lead or an insulating case, and improves the connection method of a lead, thereby enabling various uses to be properly used.
【0002】[0002]
【従来の技術】スイッチング電源などの電子回路におけ
るノイズ発生源として、ダイオードやトランジスタなど
の半導体素子が挙げられるが、これらの半導体素子に対
するノイズ対策方法として磁気ノイズ低減素子(以下、
ノイズ低減素子と称す)を用いる方法がある。ノイズ低
減素子は非晶質合金などの各種磁性材料からなる筒状体
(トロイダル状磁心)および該筒状体の例えば周囲に配
した絶縁部材により形成したもので半導体素子のリード
を挿通して使用される。2. Description of the Related Art A semiconductor device such as a diode or a transistor can be cited as a noise source in an electronic circuit such as a switching power supply.
(Referred to as a noise reduction element). The noise reduction element is formed by a cylindrical body (a toroidal magnetic core) made of various magnetic materials such as an amorphous alloy and an insulating member disposed around the cylindrical body, for example, and is used by inserting leads of a semiconductor element. Is done.
【0003】この方法は通常のノイズフィルタなどによ
りノイズを低減する方法に比べ組み上がってしまった電
源ユニットに対してもノイズ対策ができるため近年良く
用いられている。また、磁性材料として、従来のフェラ
イトから非晶質合金などの損失の小さい磁性材料に変え
ているためノイズ低減素子の発熱の問題や割損といった
問題も改良されている。[0003] This method has been widely used in recent years because noise measures can be taken for a power supply unit that has been assembled as compared with a method of reducing noise using a normal noise filter or the like. Further, since the conventional ferrite is changed from a ferrite to a magnetic material having a small loss such as an amorphous alloy, problems such as heat generation and cracking of the noise reduction element are also improved.
【0004】[0004]
【発明が解決しようと課題】しかし、例えば特開平1−
71164号や特開平5−234760号などの従来の
ノイズ低減素子は筒状磁心を、主に半導体素子のリード
1本に1つ貫通させて使用しているため、巻線効果は半
導体素子のリード1本分=1ターン分しか得られなかっ
た。また、インダクタンス値を上げるためには巻線数を
上げなければならないが、仮に巻線2ターン以上の巻線
効果を得るためには筒状磁心に別途巻線を施すことが必
要であった。However, for example, Japanese Unexamined Patent Publication No.
Conventional noise reduction elements such as 71164 and Japanese Patent Application Laid-Open No. 5-234760 use a cylindrical magnetic core that is mainly passed through one lead of a semiconductor element. You could only get one turn for one turn. In order to increase the inductance value, the number of windings must be increased. However, in order to obtain a winding effect of two or more turns, it is necessary to separately wind the cylindrical magnetic core.
【0005】さらに近年、半導体回路は小型化の要求が
強く、ノイズ低減素子などの部品も小型化、しいては表
面実装化が望まれるようになっていた。そこで前述の巻
線型筒状磁心を用いたノイズ低減素子を表面実装する場
合、そのままでは表面実装できないことから専用の台座
などの取付け部材を半田付けするといった特別な措置が
必要となりノイズ低減素子の大型化、作業行程の複雑
化、コストアップの要因となっていた。In recent years, there has been a strong demand for miniaturization of semiconductor circuits, and there has been a demand for miniaturization of components such as noise reduction elements and surface mounting. Therefore, when the above-mentioned noise reducing element using a wound-type cylindrical magnetic core is surface-mounted, special measures such as soldering a mounting member such as a special pedestal are required because the surface mounting cannot be performed as it is, and the noise reducing element is large-sized. It has been a factor of increasing complexity, complicating work processes, and increasing costs.
【0006】また、従来の筒状磁心からなるノイズ低減
素子では、その用途としてノーマルモードチョークコイ
ルと言ったノイズ低減素子としてしか使用できず、他の
部品、例えばコモンモードチョークコイルとしての転用
はできずにいた。In addition, the conventional noise reduction element comprising a cylindrical magnetic core can be used only as a noise reduction element such as a normal mode choke coil, and can be diverted as another component, for example, a common mode choke coil. I was without.
【0007】[0007]
【課題を解決するための手段】本発明は以上の目的を達
成するため請求項1のリード付き磁性部品は、トロイダ
ル形状の軟磁性体を絶縁ケースに収納した磁性部品にお
いて、該軟磁性体及び絶縁ケースにはリードを挿通する
ための中空部が設けられ、該中空部に2以上の複数の導
電体からなるリードが挿通されていることを特徴とする
リード付き磁性部品。According to the present invention, there is provided a magnetic component with a lead according to the first aspect of the present invention, wherein the magnetic component includes a toroidal soft magnetic material housed in an insulating case. A magnetic component with a lead, wherein a hollow portion for inserting a lead is provided in an insulating case, and a lead made of two or more conductors is inserted into the hollow portion.
【0008】請求項2として、リードの各導電体の層間
を絶縁し一体化したことを特徴とする請求項1記載のリ
ード付き磁性部品。請求項3として、リードの断面が角
形であることを特徴とする請求項1ないし2記載のリー
ド付き磁性部品。According to a second aspect of the present invention, there is provided the magnetic component with a lead according to the first aspect, wherein the layers of the respective conductors of the lead are insulated and integrated. According to a third aspect of the present invention, there is provided the magnetic component with a lead according to the first or second aspect, wherein a cross section of the lead is square.
【0009】請求項4として、絶縁ケースの中空部がリ
ード断面と同一形状であることを特徴とする請求項1な
いし3いずれかに記載のリード付き磁性部品。請求項5
として、絶縁ケースの形状が直方体であることを特徴と
する請求項1ないし4のいずれかに記載のリード付き磁
性部品。According to a fourth aspect of the present invention, there is provided the magnetic component with a lead according to any one of the first to third aspects, wherein the hollow portion of the insulating case has the same shape as the cross section of the lead. Claim 5
The magnetic component with leads according to any one of claims 1 to 4, wherein the shape of the insulating case is a rectangular parallelepiped.
【0010】請求項6として、絶縁ケースの高さ方向の
長さが、縦方向及び横方向の長さより小さいことを特徴
とする請求項1ないし5いずれかに記載のリード付き磁
性部品。According to a sixth aspect of the present invention, there is provided the magnetic component with a lead according to any one of the first to fifth aspects, wherein a length in a height direction of the insulating case is smaller than a length in a vertical direction and a horizontal direction.
【0011】請求項7として、軟磁性体が、非晶質合金
薄帯であることを特徴とする請求項1ないし6のいずれ
かに記載のリード付き磁性部品。請求項8として、トロ
イダル形状の軟磁性体を絶縁ケースに収納した磁性部品
に関し、該軟磁性体及び絶縁ケースにはリードを挿通す
るための中空部が設けられ、該中空部に2以上の複数の
導電体からなるリードが挿通されているリード付き磁性
部品を回路基板に取付けたノイズ低減回路において、各
導電体どうしを接続しないことを特徴とするノイズ低減
回路。According to a seventh aspect, the magnetic component with leads according to any one of the first to sixth aspects, wherein the soft magnetic material is an amorphous alloy ribbon. Claim 8 relates to a magnetic component in which a toroidal soft magnetic material is housed in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion for inserting a lead, and the hollow portion has two or more hollow portions. A noise reduction circuit comprising: mounting a magnetic component with a lead through which a lead made of a conductor is inserted on a circuit board, wherein the conductors are not connected to each other.
【0012】請求項9として、トロイダル形状の軟磁性
体を絶縁ケースに収納した磁性部品に関し、該軟磁性体
及び絶縁ケースにはリードを挿通するための中空部が設
けられ、該中空部に2以上の複数の導電体からなるリー
ドが挿通されているリード付き磁性部品を回路基板に取
付けたノイズ低減回路において、一方の導電体の端部を
隣の導電体の反対の端部と接続したことを特徴とするノ
イズ低減回路。According to a ninth aspect of the present invention, there is provided a magnetic component in which a toroidal soft magnetic material is accommodated in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion for inserting a lead, and the hollow portion has a hollow portion. In a noise reduction circuit in which a magnetic component with leads through which leads made of a plurality of conductors are inserted is attached to a circuit board, an end of one conductor is connected to an opposite end of an adjacent conductor. A noise reduction circuit characterized by the following.
【0013】請求項10として、軟磁性体が、非晶質合
金薄帯であることを特徴とする請求項8ないし9のいず
れかに記載のノイズ低減回路、としている。本発明にお
いては、中空部を有するトロイダル形状の軟磁性体を絶
縁ケースに収納した磁性部品に関し、該中空部に複数の
導電体からなるリードを挿通することにより、複数の巻
線効果を得ることを特徴としている。According to a tenth aspect, the noise reduction circuit according to any one of the eighth to ninth aspects, wherein the soft magnetic material is an amorphous alloy ribbon. In the present invention, a toroidal soft magnetic material having a hollow portion is housed in an insulating case, and a plurality of winding effects are obtained by inserting leads made of a plurality of conductors into the hollow portion. It is characterized by.
【0014】また、表面実装時にリードの接続方法を制
御することにより、ノーマルモードチョークコイルやコ
モンモードチョークコイルなどさまざまな使い分けを可
能とするリード付き磁性部品を提供することを可能とし
ている。Further, by controlling the connection method of the leads during surface mounting, it is possible to provide magnetic components with leads, such as a normal mode choke coil and a common mode choke coil, which can be used in various ways.
【0015】[0015]
【発明の実施の形態】本発明を実施するための形態につ
いて説明する。本発明のリード付き磁性部品は、トロイ
ダル形状の軟磁性体を絶縁ケースに収納した磁性部品に
おいて、該軟磁性体及び絶縁ケースにはリードを挿通す
るための中空部が設けられ、該中空部に2以上の複数の
導電体からなるリードが挿通されていることを特徴とし
ている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment for carrying out the present invention will be described. The magnetic component with a lead of the present invention is a magnetic component in which a toroidal soft magnetic material is housed in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion for inserting a lead, and the hollow portion is provided in the hollow portion. A lead made of two or more conductors is inserted.
【0016】まず、2以上の複数の導電体からなるリー
ドとは、図1に示すように導電体と層間絶縁をとるため
の絶縁層を交互に並べた構成となっている。導電体とし
ては、CuやAlなどの安価な導電材料が好ましく、絶
縁材料としては、絶縁性が得られれば特に問題は無い
が、絶縁性や強度の点から有機樹脂、特にポリエステル
が好ましい。First, a lead made of two or more conductors has a structure in which conductors and insulating layers for interlayer insulation are alternately arranged as shown in FIG. As the conductor, an inexpensive conductive material such as Cu or Al is preferable. As the insulating material, there is no particular problem as long as the insulating property can be obtained. However, an organic resin, particularly polyester is preferable from the viewpoint of insulating property and strength.
【0017】リード形状としては、特に限定されるもの
ではないが断面が角形が好ましく、導電体と絶縁樹脂を
交互に並べたものをさらに絶縁樹脂で覆い、一体化させ
る。この場合、各導電体を平行に置いた状態で一体化さ
せることが好ましい。また、各導電体が層間絶縁されて
いれば良いため絶縁被覆した導電体を一体化させても良
い。このように一体化させておくと後述の絶縁ケースの
中空部に挿通し易くなる。The lead shape is not particularly limited, but preferably has a rectangular cross section, and a structure in which conductors and insulating resins are alternately arranged is further covered with an insulating resin to be integrated. In this case, it is preferable to integrate the conductors in a state where they are placed in parallel. Further, since it is sufficient that each conductor is interlayer-insulated, conductors coated with insulation may be integrated. When integrated as described above, it becomes easy to insert into a hollow portion of an insulating case described later.
【0018】導電体の本数については、2以上であれば
問題は無く、目的のノイズ低減効果を得るために本数を
増やしていけばよい。このように作製したリードを図2
のようにトロイダル形状の軟磁性体を収めた絶縁ケース
の中空部へ挿通するこことなる。この挿通の際、リード
断面と絶縁ケース中空部の断面が同じ形状であると挿通
し易く、接着工程などの工程を省略でき、かつ基板への
取付けの際にリードが抜け落ちることが無くなるため、
リード断面と絶縁ケース中空部の断面が同じ、例えば角
形であることが好ましい。There is no problem if the number of conductors is two or more, and the number of conductors may be increased in order to obtain a desired noise reduction effect. The lead manufactured in this manner is shown in FIG.
As described above, it is inserted into the hollow portion of the insulating case containing the toroidal soft magnetic material. At the time of this insertion, if the cross section of the lead and the cross section of the insulating case hollow portion have the same shape, it is easy to insert, the steps such as the bonding step can be omitted, and the lead does not fall off when mounting to the board,
It is preferable that the cross section of the lead and the cross section of the hollow portion of the insulating case are the same, for example, square.
【0019】絶縁ケースについても、材質としては絶縁
性が得られれば特に問題は無いが、エポキシ系、シリコ
ーン系、ポリブチレンテレフタレート(PBT)、液晶
ポリマーなどが好ましい。近年は表面実装時にリフロー
工程などの熱処理によってリードを実装基板に接合する
ことから耐熱性の優れた絶縁樹脂、例えば液晶ポリマー
が望ましい。There is no particular problem with the insulating case as long as the material can provide insulation, but epoxy, silicone, polybutylene terephthalate (PBT), liquid crystal polymer and the like are preferable. In recent years, since the leads are joined to the mounting substrate by heat treatment such as a reflow process during surface mounting, an insulating resin having excellent heat resistance, for example, a liquid crystal polymer is desirable.
【0020】ケース形状については、角形、特に直方体
が望ましく、直方体のように表面が平らであれば、基板
への実装時に取付け装置による吸着搬送が行い易くな
る。また、絶縁ケースのサイズについても特に限定され
るものではないが、図3に示すようにケースの高さ方向
の長さが、縦方向及び横方向の長さより小さいものが好
ましい。前述の通り、近年の磁性部品の実装については
機械化が進んでおり、吸着搬送装置によって取り付けら
れることが多くなっている。この実装時に、高さ方向が
あまり高い磁性部品は基板上に置いた際に転倒などのト
ラブルが発生し易くなる。この問題に対処するために、
高さ方向の低い絶縁ケースを用いると基板上設置した際
に安定し転倒などのトラブルが減少する。The shape of the case is desirably a rectangular shape, particularly a rectangular parallelepiped. If the surface is flat like a rectangular parallelepiped, it is easy to carry out suction and conveyance by a mounting device when mounting on a substrate. Also, the size of the insulating case is not particularly limited, but it is preferable that the length of the case in the height direction is smaller than the length in the vertical direction and the horizontal direction as shown in FIG. As described above, the mounting of magnetic components in recent years has been advanced by mechanization, and the mounting of the magnetic components has often been performed by a suction conveyance device. At the time of this mounting, a magnetic component having a height that is too high tends to cause troubles such as falling when placed on a substrate. To address this issue,
If an insulating case with a low height is used, it is stable when installed on a substrate and troubles such as falling down are reduced.
【0021】絶縁ケースの本体部と蓋部については図3
に示すような形状であると好ましい。特に蓋部の突起部
が磁心中空部に入り込む形状であるとリードを固定し易
くなると共に、磁心をケース内で固定できるため振動に
よるケース内での磁心の破損が無くなり歩留まりが向上
する。また、リード挿通時に蓋部の方から挿通すると、
ケース本体部と蓋部が分解しなくてすむ。通常、ケース
本体部と蓋部は単にはめ込み式であったり、超音波溶着
などの溶着や接着剤によって固定されているが、リード
挿通時にあまり大きな力を加えると、ケース本体と蓋部
が分解して離れ易くなるため蓋部にリードを挿通し固定
するための突起部を設ける。FIG. 3 shows the body and lid of the insulating case.
It is preferable that the shape is as shown in FIG. In particular, if the protrusion of the lid is formed into the hollow portion of the magnetic core, the lead can be easily fixed, and the magnetic core can be fixed in the case, so that the magnetic core is not damaged in the case due to vibration and the yield is improved. Also, when the lead is inserted from the lid when inserting the lead,
The case body and the lid do not need to be disassembled. Normally, the case body and the lid are simply fitted and fixed by welding such as ultrasonic welding or an adhesive, but if too much force is applied when inserting the lead, the case body and the lid may be disassembled. A protrusion is provided for inserting and fixing the lead to the lid for easy separation.
【0022】ケース蓋部の中空部の形状はリードの断面
に合わせておけば問題は無いが、リードの断面の±5%
以内であると装着性が良好かつ十分な固定強度が得られ
接着剤によるリードとケースとの固定が必要なくなる。
リードの断面形状より5%以上小さいと中空部の形状が
小さくなりすぎ装着性が悪くなり、装着時に余分な力が
加わりリードや磁心の破損につながる。一方、5%より
大きいと中空部の大きさが大きくなりすぎ十分な固定強
度が得られないことから接着工程が必要になり好ましく
ない。There is no problem if the shape of the hollow portion of the case lid is adjusted to the cross section of the lead.
Within this range, the mountability is good and sufficient fixing strength is obtained, and it is not necessary to fix the lead and the case with an adhesive.
If it is smaller than the cross-sectional shape of the lead by 5% or more, the shape of the hollow portion becomes too small and the mounting property is deteriorated, and an extra force is applied at the time of mounting, leading to breakage of the lead and the magnetic core. On the other hand, if it is more than 5%, the size of the hollow portion becomes too large and sufficient fixing strength cannot be obtained, so that an adhesive step is required, which is not preferable.
【0023】また、図4に示すように中空部の入口形状
をリード断面と同じにし、中空部の内面を円形状に凸形
にすることにより、リードの挿通性を容易にし、かつ十
分な固定強度を得ることが可能となる。この凸形の最大
高さの合計値もリードの高さ方向の5%以内であること
が好ましい。Further, as shown in FIG. 4, the entrance shape of the hollow portion is made the same as the cross section of the lead, and the inner surface of the hollow portion is made convex in a circular shape, thereby facilitating the insertion of the lead and sufficiently fixing the lead. It is possible to obtain strength. It is preferable that the total value of the maximum heights of the protrusions is also within 5% of the height direction of the lead.
【0024】本発明の表面実装されたリード付き磁性部
品は、基板上でのリードの導電体の接続の仕方によっ
て、同一製品でありながら通常のノーマルモードチョー
クコイル又はコモンモードチョークコイルどちらとして
でも使用できるようになる。The magnetic component with a lead mounted on the surface of the present invention can be used as a normal normal mode choke coil or a common mode choke coil even though it is the same product, depending on how the conductors of the leads are connected on the substrate. become able to.
【0025】例えば、2本の導電体を一体化したリード
を用いた場合、1本目のリードの導電体両端をA、A’
とし、2本目の導電体の両端をB、B’とする。通常の
ノーマルモードチョークコイルとしては、図5(a)に
示すように基板上でBとA’を接続すると回路として図
5(b)に示すようなノーマルモードになる。For example, when a lead in which two conductors are integrated is used, both ends of the conductor of the first lead are A and A '.
And both ends of the second conductor are B and B ′. As a normal normal mode choke coil, when B and A 'are connected on a substrate as shown in FIG. 5A, the circuit is in a normal mode as shown in FIG. 5B.
【0026】また、3本の導電体を一体化したリードを
用いる場合、3本目のリードの導電体の両端をC、C’
とした場合、BとA’、CとB’をそれぞれ接続するこ
とにより、巻線3本分=3ターン分の効果が得られる。When a lead having three conductors integrated is used, both ends of the conductor of the third lead are C and C '.
In this case, by connecting B and A 'and C and B', respectively, an effect of three turns = 3 turns can be obtained.
【0027】一方、図6(a)に示すようにA、A’、
B、B’を接続せずに用いれば、図6(b)に示すよう
なコモンモードチョークコイルとして使用できる。な
お、コモンモードチョークコイルとして使用する場合に
は、導電体の本数は偶数でなければならない。On the other hand, as shown in FIG.
If B and B 'are used without being connected, they can be used as a common mode choke coil as shown in FIG. When used as a common mode choke coil, the number of conductors must be even.
【0028】本発明のリード付き磁性部品を形成する軟
磁性材料は、特に限定されるものではないが次に上げる
非晶質合金又は微細結晶構造を有するFe基磁性合金で
あることが好ましい。The soft magnetic material forming the leaded magnetic component of the present invention is not particularly limited, but is preferably an amorphous alloy or an Fe-based magnetic alloy having a fine crystal structure described below.
【0029】非晶質合金としては、Fe系非晶質合金、
Co系非晶質合金、Fe−Ni系非晶質合金が好まし
い。Fe系、Co系の非晶質合金としては、次の一般式
1を満たすものが好ましい。As the amorphous alloy, an Fe-based amorphous alloy,
Co-based amorphous alloys and Fe-Ni-based amorphous alloys are preferred. As the Fe-based and Co-based amorphous alloys, those satisfying the following general formula 1 are preferable.
【0030】一般式1:(M1-a M’a )100-b Xb 式中、MはFe、Coから選ばれる少なくとも1種の元
素を、M’はTi、V、Cr、Mn、Ni、Cu、Z
r、Nb、Mo、Ta、Wから選ばれる少なくとも1種
の元素を、XはB、Si、C、Pから選ばれる少なくと
も1種の元素を示し、0≦a≦0.5、10≦b≦35
(各数字はat%)となる。Formula 1: (M 1 -a M ′ a ) 100-b Xb In the formula, M is at least one element selected from Fe and Co, and M ′ is Ti, V, Cr, Mn, Ni, Cu, Z
X represents at least one element selected from r, Nb, Mo, Ta and W, and X represents at least one element selected from B, Si, C and P, and 0 ≦ a ≦ 0.5 and 10 ≦ b ≤35
(Each number is at%).
【0031】ここでM元素はCo又はFeとなり磁束密
度や鉄損、微小電流に対する感度等要求される磁気特性
に応じて組成比を調整していく、M’元素は熱安定性、
耐食性、結晶化温度の制御のために必要な元素であり、
好ましくはCr、Mn、Nb、Moであり、X元素は非
晶質合金を得るのに必要な元素であり、特にBは非晶質
化するのに有効な元素であり、Siは非晶質を助成する
こと及び結晶化温度の上昇に有効な元素である。Here, the M element becomes Co or Fe, and the composition ratio is adjusted according to required magnetic properties such as magnetic flux density, iron loss, sensitivity to minute current, etc.
It is an element necessary for controlling corrosion resistance and crystallization temperature,
Preferably, they are Cr, Mn, Nb, and Mo. The X element is an element necessary for obtaining an amorphous alloy. In particular, B is an element effective for amorphization, and Si is an amorphous element. Is an element that is effective for assisting in increasing the crystallization temperature.
【0032】Fe−Ni系非晶質合金としては次の一般
式2を満たすものが好ましい。 一般式2:(Ni1-a Fea )100-x-y-z Mx Siy B
z 式中、MはV、Cr、Mn、Co、Nb、Ta、W、Z
rから選ばれる少なくとも1種の元素を示し、0.2≦
a≦0.5、0.05≦x≦10、4≦y≦12、5≦
z≦20(各数字はat%)となる。このFe−Ni系
非晶質合金はNiリッチなFe−Ni系をベースとする
ことにより前述のCo系よりは安価に製造することがで
き、磁気特性も良好である。ここでM元素は、熱安定
性、耐食性、結晶化温度の制御のために必要な元素であ
り、好ましくはCr、Mn、Co、Nbである。As the Fe—Ni-based amorphous alloy, those satisfying the following general formula 2 are preferable. General formula 2: (Ni 1-a Fe a ) 100-xyz M x Si y B
In the formula, M is V, Cr, Mn, Co, Nb, Ta, W, Z
represents at least one element selected from r, and 0.2 ≦
a ≦ 0.5, 0.05 ≦ x ≦ 10, 4 ≦ y ≦ 12, 5 ≦
z ≦ 20 (each figure is at%). The Fe-Ni-based amorphous alloy can be manufactured at a lower cost than the above-mentioned Co-based material by using the Ni-rich Fe-Ni-based as a base, and has good magnetic properties. Here, the M element is an element necessary for controlling thermal stability, corrosion resistance, and crystallization temperature, and is preferably Cr, Mn, Co, or Nb.
【0033】非晶質合金の製造方法としては、液体急冷
法が好ましく、例えば所定の組成比に調整した合金素材
を溶融状態から105 ℃/秒以上の冷却速度で急冷する
ことによって得られる。このような液体急冷法は通常、
単ロール法又は双ロール法と呼ばれる方法であり、得ら
れる非晶質合金は薄帯として得られる。薄帯の厚みとし
ては30μm以下、好ましくは20μm以下、さらに好
ましくは8〜15μmであり、薄帯の厚さを制御するこ
とにより低損失のリアクトルを得ることが可能となる。As a method for producing an amorphous alloy, a liquid quenching method is preferable. For example, it can be obtained by quenching an alloy material adjusted to a predetermined composition ratio from a molten state at a cooling rate of 10 5 ° C / sec or more. Such liquid quenching methods are usually
This is a method called a single roll method or a twin roll method, and the obtained amorphous alloy is obtained as a ribbon. The thickness of the ribbon is 30 μm or less, preferably 20 μm or less, and more preferably 8 to 15 μm. By controlling the thickness of the ribbon, a reactor with low loss can be obtained.
【0034】微細結晶構造を有するFe基磁性合金につ
いては、次ぎの一般式3を満たすものが好ましい。 一般式3:Fea Cub Mc Sid Be 式中、Mは周期律表4a、5a、6a族元素又はMn、
Ni、Co、Alから選ばれる少なくとも1種以上の元
素を示し、a+b+c+d+e=100at%、0.0
1≦b≦4、0.01≦c≦10、10≦d≦25、3
≦e≦12となる。ここでCuは耐食性を高め、結晶粒
の粗大化を防ぐと共に、鉄損や透磁率等の軟磁気特性を
改善するのに有効な元素であり、M元素は結晶径の均一
化に有効であると共に、磁歪及び磁気異方性の低減、温
度変化に対する磁気特性の改善に有効な元素である。微
細結晶構造としては、50〜300オングストロームの
結晶粒を合金中に面積比50%以上、好ましくは90%
以上存在している状態である。The Fe-based magnetic alloy having a fine crystal structure preferably satisfies the following general formula 3. Formula 3: Fe a Cu b M c Si d B e wherein, M is the Periodic Table 4a, 5a, 6a group element or Mn,
At least one or more elements selected from Ni, Co, and Al; a + b + c + d + e = 100 at%, 0.0
1 ≦ b ≦ 4, 0.01 ≦ c ≦ 10, 10 ≦ d ≦ 25, 3
≦ e ≦ 12. Here, Cu is an element effective in improving corrosion resistance, preventing coarsening of crystal grains, and improving soft magnetic properties such as iron loss and magnetic permeability, and the M element is effective in making the crystal diameter uniform. In addition, it is an element effective for reducing magnetostriction and magnetic anisotropy and improving magnetic properties with respect to temperature change. As the fine crystal structure, 50 to 300 Å of crystal grains are contained in the alloy in an area ratio of 50% or more, preferably 90% or more.
This is the state that exists.
【0035】微細結晶構造を有するFe基磁性合金の製
造方法としては、液体急冷法により非晶質合金薄帯を得
た後、該非晶質合金の結晶化温度に対し−50〜+12
0℃、1分〜5時間の熱処理を行い、微細結晶を析出さ
せる方法、又は液体急冷法の急冷速度を制御して微細結
晶を直接析出させる方法により得ることが可能となる。As a method for producing an Fe-based magnetic alloy having a fine crystal structure, an amorphous alloy ribbon is obtained by a liquid quenching method, and then the crystallization temperature of the amorphous alloy is -50 to +12.
Heat treatment at 0 ° C. for 1 minute to 5 hours can be performed to precipitate fine crystals, or a method of directly depositing fine crystals by controlling the quenching rate of the liquid quenching method.
【0036】このような非晶質合金薄帯又は微細結晶構
造を有するFe基磁性合金薄帯等の磁性薄帯を得た後、
これらの薄帯を巻回又は積層することにより磁心を形成
し、その後絶縁外装処理を施しリアクトルを形成する。After obtaining such a magnetic ribbon such as an amorphous alloy ribbon or an Fe-based magnetic alloy ribbon having a fine crystal structure,
A magnetic core is formed by winding or laminating these ribbons, and then an insulating sheathing process is performed to form a reactor.
【0037】絶縁外装処理の前後どちらかに、前述の磁
心の磁路長方向に垂直(磁心の幅方向)又は平行に磁場
を印加しながら熱処理を施す磁場中熱処理を行うことが
好ましい。磁場中熱処理条件としては、垂直方向又は平
行に有効に磁場が印加されるのであれば多少の傾きは許
容される。また、この磁場中熱処理は磁心を形成した後
の歪取り熱処理の次の処理として連続して行ってもよい
し、歪取り熱処理後一旦冷却した後、改めて磁場中熱処
理を行ってもよい。磁場の印加も、磁場中熱処理時に始
めて印加してもよいし、歪取り熱処理時から印加しても
よい。It is preferable to perform a heat treatment in a magnetic field in which a heat treatment is performed while applying a magnetic field perpendicularly (in the width direction of the magnetic core) or parallel to the magnetic path length direction of the above-mentioned magnetic core before or after the insulating sheathing treatment. As a heat treatment condition in a magnetic field, a slight inclination is allowed as long as a magnetic field is effectively applied in a vertical direction or a parallel direction. The heat treatment in a magnetic field may be performed continuously as a treatment subsequent to the heat treatment for removing the strain after the magnetic core is formed, or may be once cooled after the heat treatment for removing the strain and then heat-treated in the magnetic field again. The magnetic field may be applied for the first time during the heat treatment in the magnetic field, or may be applied during the strain relief heat treatment.
【0038】磁場中熱処理温度は、キュリー温度以下で
あればよく、100℃以上が実用的であり、180℃以
上であるとより効果的である。雰囲気については、窒
素、アルゴン等の不活性雰囲気中、真空中や水素ガス等
の還元雰囲気中、大気中等のいずれでもよい。熱処理時
間は10分〜3時間程度が好ましく、特に好ましくは1
5〜60分である。The heat treatment temperature in a magnetic field may be lower than the Curie temperature, and is practically 100 ° C. or higher, and more effective at 180 ° C. or higher. The atmosphere may be any of an inert atmosphere such as nitrogen and argon, a vacuum, a reducing atmosphere such as hydrogen gas, and the atmosphere. The heat treatment time is preferably about 10 minutes to 3 hours, particularly preferably 1 hour.
5 to 60 minutes.
【0039】前述の絶縁外装としては、磁性薄帯間の層
間絶縁と磁心外装の絶縁の2種類ある。リアクトルを形
成する磁性薄帯には絶縁性を得るために層間絶縁処理を
施している。絶縁処理については、層間絶縁を得るため
にマグネシア、アルミナ、シリカ、ジルコニアといった
金属酸化物の絶縁被覆を薄帯表面に設ける。その後、前
述の絶縁ケースに収納する。As the above-mentioned insulating sheath, there are two types of interlayer insulating between magnetic ribbons and insulating core sheath. The magnetic ribbon forming the reactor is subjected to interlayer insulation treatment to obtain insulation. Regarding the insulation treatment, an insulating coating of a metal oxide such as magnesia, alumina, silica, zirconia is provided on the surface of the ribbon in order to obtain interlayer insulation. Then, it is stored in the above-mentioned insulating case.
【0040】[0040]
【実施例】(実施例1)ノイズ低減用インダクタンス素
子(ノーマルモードチョークコイル)として使用する場
合の実施例について説明する。(Embodiment 1) An embodiment in the case of using as a noise reducing inductance element (normal mode choke coil) will be described.
【0041】軟磁性体として、Co系非晶質合金薄帯
(厚さ17μm)をトロイダル状に形成し、外形4m
m、内径2mm、高さ6mmの磁心を作製し、熱処理を
行った。絶縁ケースとして、液晶ポリマー製の直方体
(横6mm×縦8mm×高さ5mm)のものを用い、リ
ード挿入用中空部の形状を横1.5mm×高さ0.2m
mとした。As a soft magnetic material, a Co-based amorphous alloy ribbon (thickness: 17 μm) was formed in a toroidal shape,
m, an inner diameter of 2 mm, and a height of 6 mm were prepared and heat-treated. A rectangular parallelepiped (6 mm wide x 8 mm long x 5 mm high) made of a liquid crystal polymer was used as the insulating case, and the shape of the hollow portion for lead insertion was 1.5 mm wide x 0.2 m high.
m.
【0042】リードとして、錫メッキ平角軟銅線(日立
電線社製CUジョイナーCUJ)を2本平行に置き、ポ
リエステル絶縁体で仕切り及び被覆を行い一体化した。
これらの軟磁性体、絶縁ケース、リードを組立てノイズ
低減素子とした。本素子を図5(a)の回路パターンの
ように接続し、回路的に2ターンあるように構成した。Two tin-plated rectangular soft copper wires (CU Joiner CUJ manufactured by Hitachi Cable, Ltd.) were placed in parallel as leads, partitioned and covered with a polyester insulator, and integrated.
These soft magnetic material, insulating case, and lead were assembled into a noise reduction element. This element was connected as shown in the circuit pattern of FIG. 5 (a), and the circuit was configured to have two turns.
【0043】本素子と本パターンを、図6にあるような
DC/DCコンバータ(200kHz)入力24V、出
力5V−1Aの回路の2次側整流ダイオードにシリーズ
投入した。The present element and this pattern were introduced in series into a secondary rectifier diode of a DC / DC converter (200 kHz) input 24 V, output 5 V-1 A circuit as shown in FIG.
【0044】(実施例2)リードの導電体を3本とし、
実施例1と同様の条件で測定した。(比較例1)ノイズ
低減素子を用いない場合(ノイズ対策なし)の出力ノイ
ズを測定した。(Embodiment 2) The lead has three conductors.
The measurement was performed under the same conditions as in Example 1. (Comparative Example 1) Output noise was measured when no noise reduction element was used (no noise measures were taken).
【0045】(比較例2)比較のために、ビーズ状の東
芝製アモビーズ(r) (サイズ4×2×6W;実施例1と
同サイズ)をダイオードのリードに挿通させて使用し、
実施例1と同条件で出力ノイズの比較を行った。Comparative Example 2 For comparison, a bead-shaped Amobead (r) (size 4 × 2 × 6 W; the same size as in Example 1) manufactured by Toshiba was used by inserting it into a diode lead.
The output noise was compared under the same conditions as in the first embodiment.
【0046】[0046]
【表1】 [Table 1]
【0047】比較例と比べて、リードの導電体を2本と
したものは約2倍のノイズ抑制効果を確認することが
で、3本としたものは約3倍の効果が確認できた。この
結果から、リードの導電体の本数を増やすことにより、
目的のノイズ抑制効果が得ることが分かる。Compared with the comparative example, the lead having two conductors was confirmed to have about twice the noise suppression effect, and the lead having three conductors was confirmed to have about three times the effect. From this result, by increasing the number of lead conductors,
It can be seen that the desired noise suppression effect is obtained.
【0048】(実施例3)また、本素子の応用として、
回路接続パターンを図6(a)のように接続すればコモ
ンモードチョークコイルとして使用することができた。(Embodiment 3) As an application of the present element,
If the circuit connection pattern was connected as shown in FIG. 6A, it could be used as a common mode choke coil.
【0049】[0049]
【発明の効果】以上説明したように本発明のノイズ低減
素子は、複数の導電体を一体化したリードを用いること
により、複数の巻線効果をもつことが可能となり、絶縁
ケース形状を直方体とすることにより表面実装性を向上
することを可能とする。また、基板上で導電体の接続方
法を選択することにより、ノーマルモード、コモンモー
ドどちらのチョークコイルとしても使用できる。As described above, the noise reduction element of the present invention can have a plurality of winding effects by using a lead in which a plurality of conductors are integrated, and the shape of the insulating case can be changed to a rectangular parallelepiped. By doing so, it is possible to improve the surface mountability. In addition, by selecting the method of connecting the conductor on the substrate, it can be used as a choke coil in either a normal mode or a common mode.
【図1】本発明のリード形状を表わす図である。FIG. 1 is a diagram showing a lead shape according to the present invention.
【図2】本発明のリード付き磁性部品を表わす図であ
る。FIG. 2 is a view showing a magnetic component with leads of the present invention.
【図3】本発明の絶縁ケースの構成の一例を表わす図で
ある。FIG. 3 is a diagram illustrating an example of a configuration of an insulating case of the present invention.
【図4】本発明の絶縁ケースの中空部の形状の一例を表
わす図である。FIG. 4 is a diagram illustrating an example of a shape of a hollow portion of the insulating case of the present invention.
【図5】(a)本発明のノーマル・ノイズ低減素子を表
わす回路パターン接続方法である。 (b)(a)の接続方法を行った場合の回路図。FIG. 5 (a) is a circuit pattern connection method representing a normal noise reduction element of the present invention. (B) A circuit diagram when the connection method of (a) is performed.
【図6】(a)本発明のコモンモード・ノイズ低減素子
を表わす回路パターン接続方法である。 (b)(a)の接続方法を行った場合の回路図。FIG. 6A is a circuit pattern connection method representing a common mode noise reduction element of the present invention. (B) A circuit diagram when the connection method of (a) is performed.
【図7】本発明の実施例1に用いた回路図である。FIG. 7 is a circuit diagram used in Embodiment 1 of the present invention.
1、1’…リードを構成する導電体 2…リードを構成する絶縁体 3…絶縁ケース 4…中空部 5…絶縁ケースの本体部 6…磁心 7…絶縁ケースの蓋部 8…実装基板 9…突起部 10…中空部内の凸形 DESCRIPTION OF SYMBOLS 1, 1 '... Conductor which comprises a lead 2 ... Insulator which comprises a lead 3 ... Insulating case 4 ... Hollow part 5 ... Body part of an insulating case 6 ... Magnetic core 7 ... Cover part of an insulating case 8 ... Mounting board 9 ... Projection part 10: convex shape in hollow part
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 17/06 H01F 17/06 D 27/28 27/28 A H01G 4/252 H01G 1/14 V 4/228 W ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 17/06 H01F 17/06 D 27/28 27/28 A H01G 4/252 H01G 1/14 V 4 / 228 W
Claims (10)
に収納した磁性部品において、該軟磁性体及び絶縁ケー
スにはリードを挿通するための中空部が設けられ、該中
空部に2以上の複数の導電体からなるリードが挿通され
ていることを特徴とするリード付き磁性部品。1. A magnetic component in which a toroidal soft magnetic material is housed in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion through which leads are inserted. A lead made of the above conductor is inserted therethrough.
したことを特徴とする請求項1記載のリード付き磁性部
品。2. The magnetic component with a lead according to claim 1, wherein the layers between the conductors of the lead are insulated and integrated.
する請求項1ないし2記載のリード付き磁性部品。3. The magnetic component with a lead according to claim 1, wherein the cross section of the lead is square.
形状であることを特徴とする請求項1ないし3いずれか
に記載のリード付き磁性部品。4. The magnetic component with a lead according to claim 1, wherein the hollow portion of the insulating case has the same shape as the cross section of the lead.
特徴とする請求項1ないし4のいずれかに記載のリード
付き磁性部品。5. The magnetic component with leads according to claim 1, wherein the shape of the insulating case is a rectangular parallelepiped.
及び横方向の長さより小さいことを特徴とする請求項1
ないし5いずれかに記載のリード付き磁性部品。6. The insulating case according to claim 1, wherein the length in the height direction is smaller than the length in the vertical direction and the horizontal direction.
6. The magnetic component with a lead according to any one of items 5 to 5.
を特徴とする請求項1ないし6のいずれかに記載のリー
ド付き磁性部品。7. The leaded magnetic component according to claim 1, wherein the soft magnetic material is an amorphous alloy ribbon.
に収納した磁性部品に関し、該軟磁性体及び絶縁ケース
にはリードを挿通するための中空部が設けられ、該中空
部に2以上の複数の導電体からなるリードが挿通されて
いるリード付き磁性部品を回路基板に取付けたノイズ低
減回路において、各導電体どうしを接続しないことを特
徴とするノイズ低減回路。8. A magnetic component in which a toroidal soft magnetic material is housed in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion through which leads are inserted. A noise reduction circuit comprising: mounting a magnetic component with a lead through which a lead made of a conductor is inserted on a circuit board, wherein the conductors are not connected to each other.
に収納した磁性部品に関し、該軟磁性体及び絶縁ケース
にはリードを挿通するための中空部が設けられ、該中空
部に2以上の複数の導電体からなるリードが挿通されて
いるリード付き磁性部品を回路基板に取付けたノイズ低
減回路において、一方の導電体の端部を隣の導電体の反
対の端部と接続したことを特徴とするノイズ低減回路。9. A magnetic component in which a toroidal soft magnetic material is housed in an insulating case, wherein the soft magnetic material and the insulating case are provided with a hollow portion for inserting a lead, and the hollow portion has two or more pluralities. In a noise reduction circuit in which a magnetic component with a lead through which a lead made of a conductor is inserted is attached to a circuit board, one end of one conductor is connected to the opposite end of an adjacent conductor. Noise reduction circuit.
とを特徴とする請求項8ないし9のいずれかに記載のノ
イズ低減回路。10. The noise reduction circuit according to claim 8, wherein the soft magnetic material is an amorphous alloy ribbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10256213A JP2000091142A (en) | 1998-09-10 | 1998-09-10 | Magnetic component with leads and noise reducing circuit using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10256213A JP2000091142A (en) | 1998-09-10 | 1998-09-10 | Magnetic component with leads and noise reducing circuit using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000091142A true JP2000091142A (en) | 2000-03-31 |
Family
ID=17289508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10256213A Pending JP2000091142A (en) | 1998-09-10 | 1998-09-10 | Magnetic component with leads and noise reducing circuit using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000091142A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005116666A (en) * | 2003-10-06 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Magnetic element |
JP2012023311A (en) * | 2010-07-16 | 2012-02-02 | Okaya Electric Ind Co Ltd | Insulation case and coil holder for noise filter, and noise filter |
WO2023047758A1 (en) * | 2021-09-27 | 2023-03-30 | 株式会社東芝 | Magnetic component |
-
1998
- 1998-09-10 JP JP10256213A patent/JP2000091142A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005116666A (en) * | 2003-10-06 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Magnetic element |
JP2012023311A (en) * | 2010-07-16 | 2012-02-02 | Okaya Electric Ind Co Ltd | Insulation case and coil holder for noise filter, and noise filter |
WO2023047758A1 (en) * | 2021-09-27 | 2023-03-30 | 株式会社東芝 | Magnetic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0655754B1 (en) | Inductance element | |
US5738931A (en) | Electronic device and magnetic device | |
JP5175843B2 (en) | Inductance element, manufacturing method thereof, and switching power supply using the same | |
JPH0734207A (en) | Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production | |
US20080143469A1 (en) | Magnetic device | |
JP2008294085A (en) | Planar magnetic element, and electronic apparatus employing the same | |
JP2013225689A (en) | Inductance element and switching power supply using the same | |
JP2000091142A (en) | Magnetic component with leads and noise reducing circuit using the same | |
JP2909392B2 (en) | Wound core, pulse transformer using the same, and PC card for interface | |
JPH11176653A (en) | Magnetic core and magnetic parts using magnetic core | |
JP4495792B2 (en) | Noise reduction element and semiconductor circuit element using the same | |
JPH10172841A (en) | Choke coil and noise filter using the coil | |
KR19990029592A (en) | Circuit Boards and Thin Power Supplies | |
JP2001257120A (en) | Multiple tubular choke coil. | |
CN113035533A (en) | Inductance element and manufacturing method thereof | |
JPH09121016A (en) | Noise reducing element | |
JP2866793B2 (en) | Pulse transformer for ISDN | |
JP3544758B2 (en) | Electronic and magnetic components | |
JP2602843B2 (en) | Noise reduction element | |
JP2866795B2 (en) | Pulse transformer for ISDN | |
JP2009071237A (en) | Inductance element, manufacturing method therefor, and electronic apparatus | |
JP2005019511A (en) | Micro inductor and its manufacturing method | |
JP2001076934A (en) | Inductance element, manufacture thereof and snubber circuit using the same | |
JP2001284123A (en) | Magnetic thin film, magnetic component using the same, manufacturing method thereof, and power conversion device | |
CA2136684C (en) | Inductance element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050428 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050620 |