JP2000088667A - Fiber-reinforced thermocouple - Google Patents
Fiber-reinforced thermocoupleInfo
- Publication number
- JP2000088667A JP2000088667A JP10261646A JP26164698A JP2000088667A JP 2000088667 A JP2000088667 A JP 2000088667A JP 10261646 A JP10261646 A JP 10261646A JP 26164698 A JP26164698 A JP 26164698A JP 2000088667 A JP2000088667 A JP 2000088667A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- filler
- heat
- thermocouple
- reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000000945 filler Substances 0.000 claims abstract description 33
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000003779 heat-resistant material Substances 0.000 claims abstract description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 4
- 230000001681 protective effect Effects 0.000 claims description 22
- 239000000919 ceramic Substances 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 11
- 239000004917 carbon fiber Substances 0.000 claims description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 239000011195 cermet Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910018967 Pt—Rh Inorganic materials 0.000 claims description 5
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229920001558 organosilicon polymer Polymers 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000009529 body temperature measurement Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910000691 Re alloy Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920003257 polycarbosilane Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は,鉄等の金属溶湯
を測温するための繊維補強型熱電対に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermocouple for measuring a temperature of a molten metal such as iron.
【0002】[0002]
【従来の技術】従来,約1700℃の製鋼溶湯を測温す
るための熱電対は,材料として比較的に融点が高く,大
気中で安定であるPt−Rhを素線とし,該Pt−Rh
素線をアルミナシリカファイバー製のパイプに固定した
構造のものが使用されている。このような熱電対は,製
鋼溶湯の測温を1回行った後に,正確な温度の測定が不
能となり,廃棄しているのが現状であり,熱電対を多数
回にわたって反復利用できずに,熱電対そのものが極め
て高価なものになっている。2. Description of the Related Art Conventionally, a thermocouple for measuring the temperature of a molten steel at about 1700 ° C. has a relatively high melting point as a material and is made of Pt-Rh, which is stable in the air, as a strand.
A structure in which an element wire is fixed to a pipe made of alumina silica fiber is used. Such thermocouples cannot be accurately measured after once measuring the temperature of the molten steel, and are discarded. The thermocouple cannot be used repeatedly many times. Thermocouples themselves are extremely expensive.
【0003】また,熱電対として,保護管をサーメット
等の材料で作製し,該保護管の内部にPt線とPt−R
h線,或いはW−Re合金線を内包した構造のものが知
られている。Further, as a thermocouple, a protective tube is made of a material such as cermet, and a Pt wire and a Pt-R are formed inside the protective tube.
A structure having a h-line or a W-Re alloy line is known.
【0004】また,特開平6−160200号公報に
は,気密端子付シース型熱電対が開示されている。該熱
電対は,過渡的な温度変化等により,端子部に温度勾配
が生じても測定誤差が生じないものであり,アルメル線
とクロメル線の異種金属線からなる素線をステンレス製
シース内に無機絶縁材と共に,相互に絶縁して収納し,
シースの基端側を気密端子部により気密に封止する。気
密端子部のセラミック端板に取り付けられた2本のコパ
ール製の貫通パイプの内部に絶縁スリーブが挿入され,
各金属素線はその内部を通って貫通パイプと直接接触せ
ずに外部に引き出されている。Japanese Patent Application Laid-Open No. Hei 6-160200 discloses a sheath-type thermocouple with an airtight terminal. The thermocouple does not cause a measurement error even if a temperature gradient occurs in the terminal due to a transient temperature change or the like, and a wire made of a dissimilar metal wire of an alumel wire and a chromel wire is placed in a stainless steel sheath. Insulated from each other and stored together with inorganic insulating material.
The base end side of the sheath is hermetically sealed by the hermetic terminal portion. An insulating sleeve is inserted inside two Kopearl through pipes attached to the ceramic end plate of the airtight terminal,
Each of the metal wires is drawn out through the inside thereof without making direct contact with the through pipe.
【0005】[0005]
【発明が解決しようとする課題】しかしながら,サーメ
ット保護管の耐熱衝撃性は,Si3 N4 保護管の1.5
倍の強度であり,また,Si3 N4 保護管の熱電対を1
700℃を越える鉄溶湯に直接浸した場合には,比較的
に短時間のうちに保護管に亀裂等が発生し,破損に至
る。また,Pt−Rh熱電対は,不活性ガス雰囲気での
使用はできず,大気中での使用可能温度は1500℃が
限界温度であり,例えば,鉄溶湯の測温では,保証温度
の上限を越えており,正確な温度測定ができない上,融
点近傍の温度であり寿命が短いという問題がある。Pt
−Rh素線を用いたPR熱電対の熱起電力は,CA熱電
対の約1/15であり,W−Re熱電対の約1/7と小
さいため,それらの熱電対に比較して測温の精度が劣
り,応答性が悪いという問題を有している。そのため,
現場においては,溶鉱炉の溶湯を測温するため,作業者
は溶解炉の近傍で温度が安定するまでの約8秒間,その
測定場所に居ることを余儀なくされる。However, the thermal shock resistance of the cermet protection tube is 1.5 times that of the Si 3 N 4 protection tube.
Twice the strength of the thermocouple of the Si 3 N 4 protection tube.
When the protective tube is directly immersed in a molten iron at a temperature exceeding 700 ° C., a crack or the like is generated in the protective tube within a relatively short time, which leads to breakage. In addition, the Pt-Rh thermocouple cannot be used in an inert gas atmosphere, and its usable temperature in the atmosphere is 1500 ° C. The limit temperature is, for example, the upper limit of the guaranteed temperature in measuring the temperature of molten iron. The temperature exceeds the melting point, and the temperature is close to the melting point and the life is short. Pt
-The thermoelectromotive force of the PR thermocouple using the Rh wire is about 1/15 that of the CA thermocouple and about 1/7 that of the W-Re thermocouple, and is smaller than those thermocouples. There is a problem that the accuracy of the temperature is poor and the response is poor. for that reason,
At the site, in order to measure the temperature of the molten metal in the blast furnace, the operator is forced to stay at the measurement place for about 8 seconds until the temperature stabilizes near the blast furnace.
【0006】また,熱電対の保護管を積層構造に構成し
た場合には,保護管における熱の伝わりが悪く,応答性
が遅いという問題がある。ところで,W−Re熱電対
は,大気中及び不活性ガス雰囲気中での使用が可能であ
り,大気中での使用可能温度は400℃が限界温度であ
り,不活性ガス雰囲気中での使用可能温度は2300℃
が限界温度である。Further, when the protection tube of the thermocouple is formed in a laminated structure, there is a problem that heat transfer in the protection tube is poor and response is slow. By the way, the W-Re thermocouple can be used in the air and in an inert gas atmosphere, and the usable temperature in the air is 400 ° C., which is the limit temperature. Temperature is 2300 ° C
Is the limit temperature.
【0007】[0007]
【課題を解決するための手段】この発明の目的は,上記
の課題を解決するため,素線として,例えば,融点が2
300℃以上のW−Re線を使用し,特に,保護管の外
周面の保護層として,金属溶湯に対して抵抗力を高めた
炭素無機系繊維を配置することによって,熱衝撃を緩和
し,保護管の寿命を改善し,700回という反復測温を
可能にした繊維補強型熱電対を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems by using a wire having a melting point of, for example, 2 mm.
By using a W-Re wire at a temperature of 300 ° C. or higher, and by arranging carbon-inorganic fibers having increased resistance to the molten metal as a protective layer on the outer peripheral surface of the protective tube, thermal shock is reduced, It is an object of the present invention to provide a fiber-reinforced thermocouple that can improve the life of a protective tube and enable repeated temperature measurement of 700 times.
【0008】この発明は,先端に外部の露出した受熱部
を備えた内管と該内管の外側の金属溶湯に接する部分に
多重に巻き付けられ且つ表面に被覆された被膜を有する
被膜繊維から構成された繊維集合体とから構成された保
護管,前記内管内に充填された耐熱性材料から成る充填
材,及び前記充填材中に配置され且つ端部が結線された
測温部を構成する異なる組成の一対の金属線,から成る
繊維補強型熱電対に関する。[0008] The present invention comprises an inner tube having a heat receiving portion exposed to the outside at an end thereof, and a coated fiber having a coating which is multiply wound around a portion of the inner tube which is in contact with the molten metal on the outer surface thereof. And a filler made of a heat-resistant material filled in the inner tube, and a different temperature measuring part disposed in the filler and connected at an end. The present invention relates to a fiber-reinforced thermocouple composed of a pair of metal wires having a composition.
【0009】前記繊維の表面に被覆された前記被膜は,
アルミナ,炭化ケイ素,窒化ケイ素,酸化ケイ素で形成
されている。また,前記繊維集合体を構成する前記被膜
繊維の繊維体から成るコア部は,炭素繊維,炭化ケイ素
繊維,窒化ケイ素繊維,アルミナ繊維のいずれか1種,
或いはそれらの集合体から構成されている。[0009] The film coated on the surface of the fiber,
It is made of alumina, silicon carbide, silicon nitride, and silicon oxide. Further, the core portion made of the fiber body of the coated fiber constituting the fiber assembly may be any one of carbon fiber, silicon carbide fiber, silicon nitride fiber, and alumina fiber.
Alternatively, it is composed of an aggregate thereof.
【0010】前記内管は,セラミックス,サーメット,
耐熱金属のいずれかの材料で形成されている。The inner tube is made of ceramic, cermet,
It is formed of any of heat-resistant metals.
【0011】前記金属線は,W−5Re合金とW−26
Re合金,或いはPtとPt−Rh合金から形成されて
いる。The metal wire is made of W-5Re alloy and W-26.
It is made of a Re alloy or a Pt and Pt-Rh alloy.
【0012】前記充填材は,チタン添加の反応焼結窒化
ケイ素から成る耐熱セラミックスである。或いは,前記
充填材は,窒化ケイ素粉末フィラーとする有機ケイ素ポ
リマーから転化した無機物と耐熱セラミック粉末の混合
物から構成されている。又は,前記充填材は,窒化ケイ
素,炭化ケイ素,窒化アルミ,アルミナの少なくとも一
種以上を含む粉末をフィラ−として脱水縮合型のガラス
で結合した材料から構成されている。更に,前記充填材
は,O,Al,Mg,Pを含んでいる材料である。The filler is a heat-resistant ceramic made of reaction-sintered silicon nitride containing titanium. Alternatively, the filler is composed of a mixture of an inorganic substance converted from an organosilicon polymer as a silicon nitride powder filler and a heat-resistant ceramic powder. Alternatively, the filler is made of a material in which a powder containing at least one of silicon nitride, silicon carbide, aluminum nitride, and alumina is used as a filler and bonded with a dehydration condensation type glass. Further, the filler is a material containing O, Al, Mg, and P.
【0013】この繊維補強型熱電対は,上記のように,
保護管が内管とその外周面に設けた保護層の繊維集合体
から構成されているので,保護管自体が外側の繊維で補
強された構造となり,保護管が熱衝撃を受けても亀裂が
内部まで進展することがなく,保護管の寿命が改善さ
れ,熱電対の耐久性を向上させ,熱電対そのものを,例
えば,700回の反復使用を可能にする。This fiber-reinforced thermocouple is, as described above,
Since the protective tube is composed of the inner tube and the fiber assembly of the protective layer provided on the outer peripheral surface, the protective tube itself has a structure reinforced with outer fibers, and even if the protective tube is subjected to thermal shock, cracks will occur. Without extending to the inside, the life of the protection tube is improved, the durability of the thermocouple is improved, and the thermocouple itself can be used, for example, 700 times.
【0014】[0014]
【発明の実施の形態】以下,図面を参照して,この発明
による繊維補強型熱電対の実施例を説明する。図1はこ
の発明による繊維補強型熱電対の一実施例を示す断面
図,図2は図1の繊維補強型熱電対の符号A−Aにおけ
る拡大断面図,及び図3は繊維集合体を構成する被膜で
被覆された炭素繊維の拡大断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fiber-reinforced thermocouple according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of a fiber-reinforced thermocouple according to the present invention, FIG. 2 is an enlarged cross-sectional view of the fiber-reinforced thermocouple of FIG. 1 taken along line AA, and FIG. FIG. 2 is an enlarged cross-sectional view of a carbon fiber covered with a coating film.
【0015】この発明による繊維補強型熱電対は,先端
に外側に露出した受熱部4を備えた内管2,内管2内に
充填された耐熱性材料から成る充填材8,充填材8中に
配置され且つ端部が結線された測温部9を構成する温度
検知体3を構成する異なる組成の一対の金属線6,7,
及び内管2の外側で被測温溶湯である金属溶湯に接する
部分に多重に巻き付けられ且つ表面に被覆された被膜を
有する繊維から構成された繊維集合体5から構成されて
いる。保護管1は,内管2と繊維集合体5から構成さ
れ,繊維集合体5が内管2に対する保護層を形成してい
る。内管2の受熱部4は,保護管1の最先端で外部に露
出した部分であり,製鋼溶湯等の金属溶湯に接する温度
を測定する領域であり,保護管2の先端部が外側の繊維
集合体5を突き抜けて繊維集合体5から外側に露出して
いる部分である。The fiber-reinforced thermocouple according to the present invention comprises an inner tube 2 having a heat receiving portion 4 exposed to the outside at its tip, a filler 8 made of a heat-resistant material filled in the inner tube 2, and a filler 8 in the filler 8. And a pair of metal wires 6, 7, 7.
And a fiber assembly 5 composed of a fiber having a coating which is wound multiple times around a portion of the inner tube 2 which is in contact with the molten metal to be measured and which has a coating on the surface. The protective tube 1 includes an inner tube 2 and a fiber assembly 5, and the fiber assembly 5 forms a protective layer for the inner tube 2. The heat receiving portion 4 of the inner tube 2 is a portion exposed to the outside at the forefront of the protective tube 1 and is a region for measuring a temperature in contact with a molten metal such as a steelmaking molten metal. It is a portion that penetrates the aggregate 5 and is exposed to the outside from the fiber aggregate 5.
【0016】図3に示すように,繊維集合体5は,個々
の被覆繊維11が内管2に巻き付けられて内管2の保護
層を構成している。個々の被覆繊維11は,繊維体から
成るコア部15の外周面に炭化ケイ素,アルミナ,窒化
ケイ素或いは酸化ケイ素から構成された被膜12が被覆
されている。また,被覆繊維11の繊維体から成るコア
部15は,炭素繊維,炭化ケイ素繊維,窒化ケイ素繊
維,アルミナ繊維のいずれか1種,或いはそれらの集合
体から構成されている。従って,繊維体から成るコア部
15は,セラミックス等の被膜12で被覆されているの
で,外部に露出することがなく空気即ち酸素と直接触れ
ることがないので,極めて高温に耐えることができる。As shown in FIG. 3, in the fiber assembly 5, individual covering fibers 11 are wound around the inner tube 2 to form a protective layer of the inner tube 2. In each of the coated fibers 11, a coating 12 made of silicon carbide, alumina, silicon nitride, or silicon oxide is coated on an outer peripheral surface of a core portion 15 made of a fibrous body. The core 15 made of the fiber body of the covering fiber 11 is made of any one of carbon fiber, silicon carbide fiber, silicon nitride fiber, and alumina fiber, or an aggregate thereof. Therefore, since the core portion 15 made of a fibrous body is covered with the coating 12 of ceramics or the like, it is not exposed to the outside and does not come into direct contact with air, that is, oxygen.
【0017】また,受熱部4を備えた内管2は,セラミ
ックス,サーメット,耐熱金属のいずれかの材料で形成
されている。内管2は,例えば,熱膨張係数が小さく且
つ鉄と反応し難いMoをベースとするサーメット層,例
えば,Mo/ZrO2 ,Mo/ZrN,Mo/Zr
B2 ,Mo−ZrCのうちのいずれか一種或いはそれら
の複合物から作製されている。従って,内管2の受熱部
4の外面に鉄溶湯が付着することがないので,測温応答
性を劣化させることがない。The inner tube 2 provided with the heat receiving portion 4 is formed of any one of ceramics, cermet, and heat-resistant metal. The inner tube 2 is made of, for example, a cermet layer based on Mo having a small thermal expansion coefficient and hardly reacting with iron, for example, Mo / ZrO 2 , Mo / ZrN, Mo / Zr.
It is made from any one of B 2 and Mo-ZrC or a composite thereof. Therefore, since the molten iron does not adhere to the outer surface of the heat receiving section 4 of the inner tube 2, the responsiveness to temperature measurement does not deteriorate.
【0018】金属線6,7は,W−5Re合金とW−2
6Re合金,或いはPtとPt−Rh合金で構成されて
いる。この実施例では,温度検知体3としての一対の金
属線6,7は,タングステン−レニウム合金線で形成さ
れている。一方の金属線6の組成はW−5Reであり,
また,他方の金属線7の組成はW−26Reである。W
−5Re素線の金属線6とW−26Re素線の金属線7
は,保護管1の内管2内の充填材8に埋設された状態で
隔置して延びるように配置されている。また,金属線
6,7の各端部は,結線されて測温部9を形成してお
り,測温部9は内管2の受熱部4の内面10に密着して
いる。W−5Re素線の金属線6とW−26Re素線の
金属線7の他端部は,保護管1の端部の開口部14に設
けた封止部材13から延び出し,例えば,保護管1の端
部にコレットチャックで固定されたステンレス製の支持
棒を通って測定機器に接続されている。The metal wires 6 and 7 are made of W-5Re alloy and W-2
6Re alloy or Pt and Pt-Rh alloy. In this embodiment, the pair of metal wires 6 and 7 as the temperature detector 3 are formed of a tungsten-rhenium alloy wire. The composition of one metal wire 6 is W-5Re,
The composition of the other metal wire 7 is W-26Re. W
-5Re wire metal wire 6 and W-26Re wire metal wire 7
Are arranged so as to extend while being buried in the filler 8 in the inner tube 2 of the protective tube 1. The ends of the metal wires 6 and 7 are connected to form a temperature measuring section 9, and the temperature measuring section 9 is in close contact with the inner surface 10 of the heat receiving section 4 of the inner tube 2. The other end of the metal wire 6 of the W-5Re element wire and the other end of the metal wire 7 of the W-26Re element wire extend from the sealing member 13 provided in the opening 14 at the end of the protection tube 1. One end is connected to a measuring instrument through a stainless steel support rod fixed by a collet chuck.
【0019】充填材8は,チタン添加の反応焼結窒化ケ
イ素から成り,耐熱多孔質の構造を持つ耐熱セラミック
スで構成されている。更に,充填材8には,O,Al,
Mg,Pが含まれている。充填材8は,耐熱多孔質の構
造を有し,その熱伝導率が小さく構成され,測温領域以
外への熱の伝達を遮断するので,言い換えれば,測温領
域の熱容量を小さく形成でき,測温応答性を向上させる
ことができる。例えば,充填材8は,空隙が多い構造に
構成することによって熱伝導率を小さく構成することが
できる。The filler 8 is made of reaction-sintered silicon nitride to which titanium is added, and is made of a heat-resistant ceramic having a heat-resistant porous structure. Further, O, Al,
Mg and P are contained. The filler 8 has a heat-resistant porous structure, is configured to have a small thermal conductivity, and blocks the transfer of heat to regions other than the temperature measurement region. In other words, the heat capacity of the temperature measurement region can be reduced. The temperature measurement responsiveness can be improved. For example, the filler 8 can be configured to have a low thermal conductivity by being configured to have a structure having many voids.
【0020】或いは,充填材8は,窒化ケイ素粉末フィ
ラーとする有機ケイ素ポリマーから転化した無機物と耐
熱セラミック粉末の混合物から構成されている。充填材
8が無機物と耐熱セラミック粉末との混合物から成る場
合には,混合物中にカーボンやBNを含有させることに
より,充填材8中に含まれる空気中の酸素を吸収するの
で,温度検知体の金属線6,7への酸化等の悪影響を断
ち,金属線6,7の断線を防止し,耐久性を向上させる
ことができる。Alternatively, the filler 8 is composed of a mixture of an inorganic substance converted from an organosilicon polymer as a silicon nitride powder filler and a heat-resistant ceramic powder. When the filler 8 is composed of a mixture of an inorganic substance and a heat-resistant ceramic powder, carbon or BN is contained in the mixture to absorb oxygen contained in the air contained in the filler 8, so that the temperature detector can be used. The adverse effects such as oxidation of the metal wires 6 and 7 can be cut off, the disconnection of the metal wires 6 and 7 can be prevented, and the durability can be improved.
【0021】又は,充填材8は,窒化ケイ素,炭化ケイ
素,窒化アルミ,アルミナの少なくとも一種以上を含む
粉末をフィラ−として脱水縮合型のガラスで結合した材
料から構成されている。Alternatively, the filler 8 is made of a material in which a powder containing at least one of silicon nitride, silicon carbide, aluminum nitride, and alumina is used as a filler and bonded with a dehydration condensation type glass.
【0022】また,繊維集合体5は,耐熱性で耐溶損性
に優れ,しかも,繊維の多重構造であるので,熱衝撃で
最外殻層に亀裂が発生しても内部層へは緩やかに破壊す
るので,例えば,従来のセラミックスから成る外殻のよ
うな壊滅的な破壊に至ることがない。更に,繊維集合体
5の内部の内管2には,充填材8を充填して製造する時
にN2 やArの不活性ガスを封入することもでき,その
状態で保護管1の端部に封止部材13が嵌合して密閉状
態に構成されている。Further, since the fiber assembly 5 has heat resistance and excellent erosion resistance, and has a multi-layer structure of fibers, even if cracks occur in the outermost shell layer due to thermal shock, the fiber is gradually applied to the inner layer. Because it breaks, it does not lead to catastrophic breakage, for example, like a conventional ceramic shell. Further, the inner tube 2 inside the fiber assembly 5 can be filled with an inert gas such as N 2 or Ar when the filler 8 is filled and manufactured. The sealing member 13 is fitted to form a sealed state.
【0023】−実施例1− 炭素繊維の表面にアルミナを主成分とするスラリーを塗
布した後,フィラメントワイデフィング装置により,一
端が閉端で他端が開放したMo−ZrO2 製の内管2の
表面に巻き付け,内管2の外周に繊維集合体5を形成し
た。グラス管の内部に入れ,HIP(ホットアイソスタ
ティックプレス)法により焼結し,内管2の外周面に炭
素繊維層の繊維集合体5が形成された保護管1を作製し
た。保護管1における内管2内に,窒化ケイ素,リン酸
アルミニウム〔Al(PO4 )〕,マグネシア(Mg
O)から成るスラリー溶液を充填する。その後,内管2
内に線径が0.2mm,長さ200mmで先端が溶接さ
れたW−5Re線の金属線6とW−26Re線の金属線
7を挿入し,これを熱処理によって脱水縮合反応により
硬化させた。保護管1における内管2の開口端部14
は,B2 O3 とZnOから成る緻密質ガラスから成る封
止部材13で封止した。次いで,図示していないが,保
護管1をコレットチャックを介してステンレス製の支持
棒に固定した。-Example 1-An inner tube made of Mo-ZrO 2 having one end closed and the other end open by applying a slurry containing alumina as a main component to the surface of a carbon fiber, and then using a filament winding device. 2 to form a fiber assembly 5 on the outer periphery of the inner tube 2. The protective tube 1 was placed in a glass tube and sintered by a hot isostatic press (HIP) method to form a carbon fiber layer fiber assembly 5 on the outer peripheral surface of the inner tube 2. Silicon nitride, aluminum phosphate [Al (PO 4 )], magnesia (Mg)
Fill with a slurry solution consisting of O). Then, the inner tube 2
A metal wire 6 of a W-5Re wire and a metal wire 7 of a W-26Re wire having a wire diameter of 0.2 mm, a length of 200 mm, and a welded tip were inserted therein, and were cured by a heat treatment by a dehydration condensation reaction. . Open end 14 of inner tube 2 in protective tube 1
Was sealed with a sealing member 13 made of dense glass made of B 2 O 3 and ZnO. Next, though not shown, the protection tube 1 was fixed to a stainless steel support rod via a collet chuck.
【0024】−実施例2− 保護管1に,炭素繊維とシリカ繊維及びアルミナ繊維を
捩じりながら巻き付けた。繊維を巻き付けた保護管1を
鉄溶湯に浸した際に,シリカ繊維のみが溶融し,炭素繊
維の表面に被膜が形成していることが分かった。Example 2 A carbon fiber, a silica fiber and an alumina fiber were wound around the protective tube 1 while twisting. When the protective tube 1 around which the fiber was wound was immersed in the molten iron, it was found that only the silica fiber was melted and a coating was formed on the surface of the carbon fiber.
【0025】−実施例3− 炭素繊維をポリカルボシラン溶液に浸した後,保護管1
に巻き付け,これを窒素雰囲気中で熱処理を行なった。
ポリカルボシランは,炭化ケイ素となって炭素繊維の表
面に被膜を形成した。Example 3 After immersing carbon fibers in a polycarbosilane solution, the protective tube 1
And heat-treated in a nitrogen atmosphere.
Polycarbosilane turned into silicon carbide and formed a coating on the surface of the carbon fiber.
【0026】−実施例4− 実施例1,実施例2及び実施例3で作製した熱電対を用
いて,約1750℃の製鋼溶湯の測温を行なったとこ
ろ,安定化するまでの時間は,約10秒となった。これ
らの熱電対を,700回以上にわたって製鋼溶湯の測温
を行なったが,耐久性を有しており,反復使用が可能で
あることが分かった。Example 4 Using the thermocouples prepared in Examples 1, 2 and 3, the temperature of a steel melt at about 1750 ° C. was measured. It was about 10 seconds. The temperature of the molten steel was measured with these thermocouples more than 700 times, and it was found that the thermocouples had durability and could be used repeatedly.
【0027】比較のため,比較例として,保護管を,本
発明のような繊維集合体5を用いることなく,モノリシ
ック材製の保護管で熱電対を作製した。比較例の熱電対
を,同様に,約1750℃の製鋼溶湯に入れて測温を行
い,その応答性をテストした。比較例の熱電対は,熱衝
撃により10数回の繰り返しの測温によって,亀裂が内
部まで進展し,使用不能となった。For comparison, as a comparative example, a thermocouple was manufactured using a protective tube made of a monolithic material without using the fiber assembly 5 as in the present invention. Similarly, the thermocouple of the comparative example was placed in a molten steel at about 1750 ° C. to measure the temperature, and its responsiveness was tested. The thermocouple of the comparative example was unusable due to the cracks extending to the inside of the thermocouple due to thermal shock by repeated temperature measurement several ten times or more.
【0028】[0028]
【発明の効果】この発明による繊維補強型熱電対は,上
記のように,保護管が高熱伝導率の内管を繊維集合体で
巻き付けた構造を有するので,耐熱性で耐久性に富むと
共に,測温応答性を大幅に向上させることができる。ま
た,外側の繊維集合体によって保護管の亀裂の進展が内
部まで進展せず,製鋼溶湯の700回以上の繰り返しの
測温が高精度に且つ迅速に測温でき,耐久性を向上で
き,長寿命の熱電対を提供できる。As described above, the fiber-reinforced thermocouple according to the present invention has a structure in which the protective tube has a structure in which the inner tube having a high thermal conductivity is wound with a fiber assembly, and thus has high heat resistance and high durability. The temperature measurement responsiveness can be greatly improved. In addition, the outer fiber assembly does not allow the cracks in the protective tube to propagate to the inside, and the temperature of the molten steel can be measured accurately and quickly over 700 times, and the durability can be improved. Can provide a long life thermocouple.
【図1】この発明による繊維補強型熱電対の一実施例を
示す断面図である。FIG. 1 is a sectional view showing an embodiment of a fiber-reinforced thermocouple according to the present invention.
【図2】図1の繊維補強型熱電対の符号A−Aにおける
拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the fiber-reinforced thermocouple of FIG.
【図3】繊維集合体を構成する被膜で被覆された炭素繊
維の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a carbon fiber covered with a film constituting a fiber assembly.
1 保護管 2 内管 3 温度検知体 4 受熱部 5 繊維集合体 6,7 W−Re素線 8 充填材 9 測温部 10 内管の内面 11 被膜繊維 12 被膜 13 封止部材(耐熱部材とガラス) 14 開口端部 15 繊維体から成るコア部 DESCRIPTION OF SYMBOLS 1 Protective tube 2 Inner tube 3 Temperature detector 4 Heat receiving part 5 Fiber assembly 6,7 W-Re strand 8 Filler 9 Temperature measuring part 10 Inner surface of inner tube 11 Coated fiber 12 Coated 13 Sealing member (with heat-resistant member and (Glass) 14 open end 15 core made of fibrous body
Claims (9)
管と該内管の外側の金属溶湯に接する部分に多重に巻き
付けられ且つ表面に被覆された被膜を有する被膜繊維か
ら構成された繊維集合体とから構成された保護管,前記
内管内に充填された耐熱性材料から成る充填材,及び前
記充填材中に配置され且つ端部が結線された測温部を構
成する異なる組成の一対の金属線,から成る繊維補強型
熱電対。1. An inner tube provided with an externally exposed heat receiving portion at the tip and a coated fiber having a coating coated on the surface and wrapped around a portion of the inner tube in contact with the molten metal outside. A protective tube composed of a fiber assembly, a filler made of a heat-resistant material filled in the inner tube, and a different composition constituting a temperature measuring part disposed in the filler and having an end connected. Fiber-reinforced thermocouple consisting of a pair of metal wires.
は,アルミナ,炭化ケイ素,窒化ケイ素,酸化ケイ素で
形成されていることから成る請求項1に記載の繊維補強
型熱電対。2. The fiber-reinforced thermocouple according to claim 1, wherein said coating covering the surface of said fiber is formed of alumina, silicon carbide, silicon nitride, and silicon oxide.
の繊維体から成るコア部は,炭素繊維,炭化ケイ素繊
維,窒化ケイ素繊維,アルミナ繊維のいずれか1種,或
いはそれらの集合体から構成されていることから成る請
求項1に記載の繊維補強型熱電対。3. The core portion made of the fiber body of the coated fiber constituting the fiber aggregate is made of any one of carbon fiber, silicon carbide fiber, silicon nitride fiber, and alumina fiber, or an aggregate thereof. The fiber-reinforced thermocouple according to claim 1, wherein the thermocouple is formed.
ト,耐熱金属のいずれかの材料で形成されていることか
ら成る請求項1〜3のいずれか1項に記載の繊維補強型
熱電対。4. The fiber-reinforced thermocouple according to claim 1, wherein the inner tube is formed of any one of ceramics, cermet, and heat-resistant metal.
6Re合金,或いはPtとPt−Rh合金で形成されて
いることから成る請求項1〜4のいずれか1項に記載の
繊維補強型熱電対。5. The metal wire comprises a W-5Re alloy and a W-2 alloy.
The fiber-reinforced thermocouple according to any one of claims 1 to 4, comprising a 6Re alloy or a Pt and Pt-Rh alloy.
化ケイ素から成る耐熱セラミックスで構成されているこ
とから成る請求項1〜5のいずれか1項に記載の繊維補
強型熱電対。6. The fiber-reinforced thermocouple according to claim 1, wherein the filler is made of a heat-resistant ceramic made of reaction-sintered silicon nitride to which titanium is added.
とする有機ケイ素ポリマーから転化した無機物と耐熱セ
ラミック粉末の混合物から構成されていることから成る
請求項1〜5のいずれか1項に記載の繊維補強型熱電
対。7. The method according to claim 1, wherein said filler is composed of a mixture of an inorganic substance converted from an organosilicon polymer as a silicon nitride powder filler and a heat-resistant ceramic powder. Fiber reinforced thermocouple.
素,窒化アルミ,アルミナの少なくとも一種以上を含む
粉末をフィラ−として脱水縮合型のガラスで結合した材
料から構成されていることから成る請求項1〜5のいず
れか1項に記載の繊維補強型熱電対。8. The method according to claim 1, wherein the filler is made of a material in which a powder containing at least one of silicon nitride, silicon carbide, aluminum nitride, and alumina is combined as a filler with a dehydration condensation type glass. The fiber-reinforced thermocouple according to any one of claims 1 to 5.
んでいることから成る請求項1〜8のいずれか1項に記
載の繊維補強型熱電対。9. The fiber reinforced thermocouple according to claim 1, wherein the filler contains O, Al, Mg, and P.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10261646A JP2000088667A (en) | 1998-09-16 | 1998-09-16 | Fiber-reinforced thermocouple |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10261646A JP2000088667A (en) | 1998-09-16 | 1998-09-16 | Fiber-reinforced thermocouple |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000088667A true JP2000088667A (en) | 2000-03-31 |
Family
ID=17364802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10261646A Pending JP2000088667A (en) | 1998-09-16 | 1998-09-16 | Fiber-reinforced thermocouple |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000088667A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002082524A1 (en) * | 2001-03-30 | 2002-10-17 | Tokyo Electron Limited | Heat treating device |
US20140127635A1 (en) * | 2011-06-28 | 2014-05-08 | Lg Innotek Co., Ltd. | Vacuum heat treatment apparatus |
WO2015021096A1 (en) * | 2013-08-07 | 2015-02-12 | Ametek, Inc. | High temperature probe |
US9429481B2 (en) | 2012-08-31 | 2016-08-30 | Ametek, Inc. | Apparatus and method for measuring total air temperature within an airflow |
EA037107B1 (en) * | 2014-03-11 | 2021-02-08 | Эметек, Инк. | High temperature probe |
-
1998
- 1998-09-16 JP JP10261646A patent/JP2000088667A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002082524A1 (en) * | 2001-03-30 | 2002-10-17 | Tokyo Electron Limited | Heat treating device |
US20140127635A1 (en) * | 2011-06-28 | 2014-05-08 | Lg Innotek Co., Ltd. | Vacuum heat treatment apparatus |
US9846084B2 (en) * | 2011-06-28 | 2017-12-19 | Lg Innotek Co., Ltd. | Vacuum heat treatment apparatus |
US9429481B2 (en) | 2012-08-31 | 2016-08-30 | Ametek, Inc. | Apparatus and method for measuring total air temperature within an airflow |
WO2015021096A1 (en) * | 2013-08-07 | 2015-02-12 | Ametek, Inc. | High temperature probe |
CN105556265A (en) * | 2013-08-07 | 2016-05-04 | 阿米特克公司 | High temperature probe |
US10408683B2 (en) | 2013-08-07 | 2019-09-10 | Ametek, Inc. | High temperature probe |
EA033593B1 (en) * | 2013-08-07 | 2019-11-07 | Ametek Inc | High temperature probe |
CN105556265B (en) * | 2013-08-07 | 2020-04-10 | 阿米特克公司 | High temperature detector |
EA037107B1 (en) * | 2014-03-11 | 2021-02-08 | Эметек, Инк. | High temperature probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6190038B1 (en) | Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath | |
US6102565A (en) | Ceramic sheath type thermocouple | |
EP0887632A1 (en) | A ceramic thermocouple for measuring temperature of molten metal | |
TWI426250B (en) | Device for measuring temperature in molten metals | |
JP4437592B2 (en) | Fast response thermocouple | |
JP3306427B2 (en) | Sheath structure | |
JP2000088667A (en) | Fiber-reinforced thermocouple | |
JP3603614B2 (en) | thermocouple | |
JP2002013984A (en) | Thermocouple | |
JP3572312B2 (en) | Ceramic sheath type thermocouple | |
JPH11201831A (en) | Metal fusion temperature measuring thermocouple | |
JP3306426B2 (en) | Thermocouple for measuring molten metal temperature | |
JP3603557B2 (en) | Ceramic thermocouple for measuring molten metal temperature | |
JP4484129B2 (en) | thermocouple | |
JP3355166B2 (en) | Thermocouple for measuring molten metal temperature | |
JP2000055740A (en) | Thermocouple protection pipe for measuring temp. of molten metal | |
JP3550915B2 (en) | Ceramic thermocouple for high temperature measurement | |
JP3952132B2 (en) | Thermocouple for molten metal | |
JP3603582B2 (en) | Thermocouple for measuring molten metal temperature | |
JP4416146B2 (en) | thermocouple | |
JP3533944B2 (en) | Structure of thermocouple protection tube with destruction detection function | |
JP3627317B2 (en) | Thermocouple structure | |
JP2000019025A (en) | Thermocouple for molten metal | |
JPH1114467A (en) | Ceramics thermocouple for high-temperature measurement | |
JP2003004546A (en) | Thermocouple for molten metal |