[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000084379A - Porous separation membrane and composite reverse osmosis membrane using the same - Google Patents

Porous separation membrane and composite reverse osmosis membrane using the same

Info

Publication number
JP2000084379A
JP2000084379A JP10276602A JP27660298A JP2000084379A JP 2000084379 A JP2000084379 A JP 2000084379A JP 10276602 A JP10276602 A JP 10276602A JP 27660298 A JP27660298 A JP 27660298A JP 2000084379 A JP2000084379 A JP 2000084379A
Authority
JP
Japan
Prior art keywords
membrane
reverse osmosis
porous separation
separation membrane
kgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276602A
Other languages
Japanese (ja)
Inventor
Hisao Hachisuga
久雄 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP10276602A priority Critical patent/JP2000084379A/en
Publication of JP2000084379A publication Critical patent/JP2000084379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a porous separation membrane having high PEG stop-off performance and high water permeating rate, and an excellent composite reverse osmosis membrane using the same as a supporting membrane. SOLUTION: The porous separation membrane has 10-90% polyethylene glycol stop-off ratio in a prescribed measuring condition of the polyethylene glycol stop-off ratio and >=5 m3/m2/D pure water permeating rate at 1 kgf/cm2 evaluating pressure and 25 deg.C. The composite reverse osmosis membrane is obtained by using the porous separation membrane as the supporting membrane and forming a skin layer composed of a synthetic polymer thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、緻密な多孔質分離膜及
びこれを基質として用いた複合逆浸透膜に関する。本発
明の複合逆浸透膜は、塩阻止率、透水性及び耐圧性に優
れる。かかる複合逆浸透膜は高圧条件下で運転を行って
も圧密化することなく、長期間安定して操業することが
できる。
The present invention relates to a dense porous separation membrane and a composite reverse osmosis membrane using the same as a substrate. The composite reverse osmosis membrane of the present invention is excellent in salt rejection, water permeability and pressure resistance. Such a composite reverse osmosis membrane can be stably operated for a long period of time without consolidation even when operated under high pressure conditions.

【0002】[0002]

【従来の技術】現在、工業的に広く用いられている逆浸
透膜としては、酢酸セルロースの非対称膜があり、例え
ば米国特許第3133132号や米国特許第3133137号に記載の
ロブ型膜が知られている。また、これとは構造の異なる
逆浸透膜として、実質的に選択分離性を有する活性な薄
膜を微孔性支持膜上に形成した複合逆浸透膜も知られて
いる。
2. Description of the Related Art At present, as a reverse osmosis membrane widely used industrially, there is an asymmetric membrane of cellulose acetate. For example, a lob type membrane described in US Pat. No. 3,133,132 or US Pat. No. 3,133,137 is known. ing. Further, as a reverse osmosis membrane having a different structure from the above, a composite reverse osmosis membrane in which an active thin film having substantially selective separation properties is formed on a microporous support membrane is also known.

【0003】このような複合逆浸透膜としては、具体的
には多官能芳香族アミンと多官能芳香族酸ハロゲン化物
との界面重合によって得られるポリアミド薄膜を支持膜
上に形成したもの(例えば、特開昭55-l47l06号、特開昭
62-12l603号、特開昭63-2l8208号、特開平2-l87l35号
等)、あるいは多官能芳香族アミンと多官能脂環式酸ハ
ロゲン化物との界面重合によって得られるポリアミドか
らなる薄膜を支持膜上に形成したもの(例えば、特開昭6
l-42308号等)が知られている。通常、これらの逆浸透膜
はスパイラル状などの形態にエレメント化され各種用途
で使用されている。
[0003] As such a composite reverse osmosis membrane, specifically, a polyamide thin film obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide formed on a support membrane (for example, JP-A-55-l47l06, JP-A-Showa
62-12l603, JP-A-63-2l8208, JP-A-2-l87l35, etc.) or a thin film made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide. What was formed on the film (for example,
No. l-42308) is known. Usually, these reverse osmosis membranes are formed into a spiral shape or the like and used for various purposes.

【0004】しかしながら、このような多孔質支持膜
(例えば、ポリスルホンからなる分離膜)と合成高分子ス
キン層(例えば、芳香族架橋ポリアミド)から形成された
従来の複合逆浸透膜は、高圧で使用すると多孔質支持膜
層の圧密化を生じ、透過水量が低下するという問題があ
る。このような課題を解決するための提案もなされてい
る(特開平8−168658号)が、なお充分な耐圧性は
得られていない。
However, such porous support membranes
Conventional composite reverse osmosis membranes formed from (e.g., a separation membrane made of polysulfone) and a synthetic polymer skin layer (e.g., an aromatic cross-linked polyamide) cause the consolidation of the porous support membrane layer when used at high pressure, There is a problem that the amount of permeated water is reduced. Although a proposal for solving such a problem has been made (Japanese Patent Laid-Open No. 8-168658), sufficient pressure resistance has not yet been obtained.

【0005】このような従来の複合逆浸透膜において、
表面の合成高分子スキン層を安定かつ均一に形成し高い
阻止性能を得るには、多孔性支持膜の表面構造を比較的
密に設計する必要がある。多孔質支持膜の製造には通常
湿式法が用いられ、その孔径は膜表面から反対面に向け
連続的に大きくなる。したがって、膜の表面構造を比較
的緻密に、すなわち表面層の孔径を小さく設定すると、
支持膜全体が緻密になり透過水量は低下する。このよう
な支持膜が圧密化されると、孔が閉塞しやすく、これを
基材とする複合逆浸透膜の透過水量は顕著に低下する。
In such a conventional composite reverse osmosis membrane,
In order to form a synthetic polymer skin layer on the surface stably and uniformly and to obtain high blocking performance, it is necessary to design the surface structure of the porous support membrane relatively densely. Usually, a wet method is used for producing a porous support membrane, and the pore size increases continuously from the membrane surface to the opposite surface. Therefore, if the surface structure of the film is relatively dense, that is, if the pore size of the surface layer is set small,
The whole supporting membrane becomes dense, and the amount of permeated water decreases. When such a support membrane is compacted, pores are likely to be clogged, and the amount of permeated water of the composite reverse osmosis membrane using this as a base material is significantly reduced.

【0006】一方、多孔質支持膜の表面層の孔径を大き
く設定した場合は、支持膜全体にわたって疎な構造を呈
し、孔の閉塞が抑制され透過水量の低下は小さくなる
が、表面層の孔径が大きいため合成高分子スキン層を安
定且つ均一に形成させることができず、結果として複合
逆浸透膜の阻止性能の低下をもたらす。
On the other hand, when the pore size of the surface layer of the porous support membrane is set to be large, a sparse structure is exhibited over the entire support membrane, the pores are blocked and the decrease in the amount of permeated water is reduced, but the pore size of the surface layer is reduced. Is large, the synthetic polymer skin layer cannot be formed stably and uniformly, and as a result, the blocking performance of the composite reverse osmosis membrane is lowered.

【0007】[0007]

【発明の目的及び概要】本発明の目的は、ポリエチレン
グリコールを指標とした場合、高いPEG阻止性能と透
過水量を有する多孔質分離膜を提供すること、及びこれ
を基材とする複合逆浸透膜を提供することにある。本発
明の多孔性分離膜では、合成高分子スキン層を形成した
最表層のみが緻密で、その他の部分は疎な構造を有し、
耐圧性に優れ高阻止性能を示す複合逆浸透膜が得られ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous separation membrane having a high PEG inhibition performance and a high water permeation rate when polyethylene glycol is used as an index, and a composite reverse osmosis membrane using the same as a base material. Is to provide. In the porous separation membrane of the present invention, only the outermost layer on which the synthetic polymer skin layer is formed is dense, and the other portions have a sparse structure,
A composite reverse osmosis membrane having excellent pressure resistance and exhibiting high rejection performance can be obtained.

【0008】本発明は、後記所定のポリエチレングリコ
ール阻止率測定条件におけるポリエチレングリコール阻
止率が10〜90%であり、かつ評価圧力1kgf/cm2
温度25℃における純水透過水量が5m3/m2/日以上
である多孔質分離膜を提供するものである。純水透過水
量は8m3/m2/日以上であるのがより好ましい。ま
た、120kgf/cm2の高圧下において多孔質分離膜を圧
密化したときの、評価圧力1kgf/cm2における純水透過
水量が1.0m3/m2/日以上であるのが好ましい。さ
らに前記多孔質分離膜を基質、支持体として用い、この
上に合成高分子からなるスキン膜を形成させてなる複合
逆浸透膜をも提供するものである。
According to the present invention, the polyethylene glycol rejection under predetermined polyethylene glycol rejection measurement conditions is 10 to 90%, the evaluation pressure is 1 kgf / cm 2 ,
An object of the present invention is to provide a porous separation membrane having a pure water permeated water amount of 5 m 3 / m 2 / day or more at a temperature of 25 ° C. More preferably, the amount of permeated pure water is 8 m 3 / m 2 / day or more. Further, when the compaction of the porous separation membrane under high pressure of 120 kgf / cm 2, preferably pure water permeate flow rate at rated pressure 1 kgf / cm 2 is 1.0m 3 / m 2 / day or more. Further, the present invention also provides a composite reverse osmosis membrane obtained by using the porous separation membrane as a substrate and a support, and forming a skin membrane made of a synthetic polymer thereon.

【0009】[0009]

【発明の詳細な開示】つぎに本発明を詳細に説明する。
本発明の多孔質分離膜は、ポリエチレングリコール阻止
率測定条件 平均分子量:20,000、ポリエチレングリコール濃度:
0.5重量%、評価圧力:1kgf/cm2、温度;25℃、
循環流量:1L/分 におけるポリエチレングリコール阻止率が10〜90%
であり、かつ評価圧力1kgf/cm2、温度25℃における
純水透過水量が5m3/m2/日以上である。かかる多孔
質膜は下記の様にして製膜することができる。
Next, the present invention will be described in detail.
The porous separation membrane of the present invention has a polyethylene glycol rejection measurement condition average molecular weight: 20,000, polyethylene glycol concentration:
0.5% by weight, evaluation pressure: 1 kgf / cm 2 , temperature: 25 ° C.
Recirculation flow rate: 10-90% polyethylene glycol rejection at 1 L / min
And the amount of pure water permeated at an evaluation pressure of 1 kgf / cm 2 and a temperature of 25 ° C. is 5 m 3 / m 2 / day or more. Such a porous membrane can be formed as follows.

【0010】多孔質分離膜の膜素材は特に限定されない
が、セルロース系有機重合体、ポリアミド系、ポリイミ
ド系、ポリスルホン系、ポリアクリロニトリル系、ポリ
ビニルアルコール系、エチレン−ビニルアルコール共重
合体系等が挙げられる。
[0010] The material of the porous separation membrane is not particularly limited, but examples thereof include cellulose organic polymers, polyamides, polyimides, polysulfones, polyacrylonitriles, polyvinyl alcohols, and ethylene-vinyl alcohol copolymers. .

【0011】これらの製膜溶液を調製するには、これら
を溶解させることができる溶媒、例えば、N−メチル−
2−ピロリドン、N,N−ジメチルアセトアミド、N,N
−ジメチルホルムアミド、ジメチルスルホキシド、ピリ
ジン等の含窒素化合物、ジエチレングリコール、ジエチ
レングリコールジメチルエーテル、ジエチレングリコー
ルジエチルエーテル、ジエチレングリコールジブチルエ
ーテル等の多価アルコール及びその誘導体、1,4−ジ
オキサン、テトラヒドロフラン、エチル-ブチルエーテ
ル等のエーテル・アセタール類などを用いることができ
る。これらの溶媒は単独で用いてもよく、また2種以上
を混合して用いてもよい。更に、貧溶媒である水やメタ
ノール、エタノール、イソプロパノール等のアルコール
類を10重量%を越えない範囲で添加してもよい。
To prepare these film-forming solutions, a solvent capable of dissolving them, for example, N-methyl-
2-pyrrolidone, N, N-dimethylacetamide, N, N
-Nitrogen-containing compounds such as dimethylformamide, dimethylsulfoxide and pyridine; polyhydric alcohols such as diethylene glycol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol dibutyl ether and derivatives thereof; ethers such as 1,4-dioxane, tetrahydrofuran and ethyl-butyl ether; Acetals and the like can be used. These solvents may be used alone or as a mixture of two or more. Further, water, which is a poor solvent, or alcohols such as methanol, ethanol and isopropanol may be added in a range not exceeding 10% by weight.

【0012】これらの溶媒を用い、溶液濃度5〜20重
量%、好ましくは10〜18重量%、より好ましくは1
0〜16重量%に調製する。溶液濃度がこれらの範囲よ
り低いと粘度が低く均質に製膜することができない。ま
た、この範囲より濃度が高いと逆に粘度が高すぎ製膜が
困難になると共に、膜が緻密になり目的とする膜構造が
得られず、透過水量が低下する。
Using these solvents, the solution concentration is 5 to 20% by weight, preferably 10 to 18% by weight, more preferably 1 to 18% by weight.
It is adjusted to 0 to 16% by weight. If the solution concentration is lower than these ranges, the viscosity is low and a uniform film cannot be formed. On the other hand, if the concentration is higher than this range, the viscosity is too high to make film formation difficult, and the film becomes dense, the desired film structure cannot be obtained, and the amount of permeated water decreases.

【0013】本発明で用いられる製膜溶液は−20〜6
0℃、好ましくは、0〜40℃の温度範囲に調製され
る。この溶液を用いた本発明で用いられる湿式相転換製
膜法を以下に示す。
The film forming solution used in the present invention is -20 to 6
It is prepared in a temperature range of 0 ° C, preferably 0 to 40 ° C. The wet phase inversion film forming method used in the present invention using this solution is shown below.

【0014】本発明の複合逆浸透膜の膜形状としては、
平膜状、中空糸状、チューブ状の形態をとることがで
き、特に限定されない。平膜状の場合は例えば、織布、
不織布等の基材に上記溶液をキャスティングやディッピ
ングにより塗布した後、凝固液中に浸漬する。基材への
溶液の塗布厚は25〜400μm、好ましくは30〜2
50μm、さらに好ましくは90〜200μmである。
塗布厚が前記の範囲より薄いと多孔質分離膜に欠陥が生
じ、一方、厚すぎると透過水量の低下を招く。
[0014] The membrane shape of the composite reverse osmosis membrane of the present invention includes:
It can be in the form of a flat membrane, a hollow fiber, or a tube, and is not particularly limited. In the case of a flat membrane, for example, woven fabric,
After the above solution is applied to a substrate such as a nonwoven fabric by casting or dipping, it is immersed in a coagulation liquid. The coating thickness of the solution on the substrate is 25 to 400 μm, preferably 30 to 2 μm.
It is 50 μm, more preferably 90 to 200 μm.
If the coating thickness is smaller than the above range, defects occur in the porous separation membrane, while if it is too thick, the amount of permeated water decreases.

【0015】凝固液としては、水やメタノール、エタノ
ール、イソプロピルアルコール等のアルコール類及びこ
れらの少なくとも2種からなる混合溶液が用いられるが
これらに限定されるものではない。
As the coagulating liquid, water, alcohols such as methanol, ethanol, isopropyl alcohol and the like and a mixed solution comprising at least two kinds thereof are used, but not limited thereto.

【0016】凝固液の温度は0〜80℃、好ましくは5
〜50℃、さらに好ましくは10〜30℃である。凝固
液の温度が80℃を越えるとゲル化が急激に生じ、得ら
れる膜が疎な構造になり充分なPEG阻止率が得られ
ず、一方0℃より低いと凝固液が凍る場合が生じ製膜が
できない。また、凝固温度が前記範囲より低いと膜が緻
密化し透過水量の低下を招き、一方、これより高いと膜
が疎になりすぎ膜表面に安定した性能を有する合成高分
子スキン層を形成させることができない。
The temperature of the coagulating liquid is 0 to 80 ° C., preferably 5 to 80 ° C.
To 50 ° C, more preferably 10 to 30 ° C. If the temperature of the coagulating liquid exceeds 80 ° C., gelation occurs rapidly, and the resulting film has a sparse structure, and a sufficient PEG rejection cannot be obtained. No film. Further, if the solidification temperature is lower than the above range, the membrane becomes dense and the amount of permeated water decreases, while if it is higher than this, the membrane becomes too sparse to form a synthetic polymer skin layer having stable performance on the membrane surface. Can not.

【0017】本発明において、多孔質支持膜の性能評価
法としては、ポリエチレングリコール(PEG;平均分
子量:20,000)溶液を用いた。評価セルは評価溶液の循環
が可能なものを用い、PEG濃度:0.5重量%、評価
圧力:1kgf/cm2、温度:25℃、循環流量:1L/分
にて評価した。前記の製膜条件により得られた本発明の
多孔質分離膜は、このような条件下でのPEGの阻止率
が10〜90%、好ましくは10〜50%である。PE
G阻止率がこの範囲より低いと膜面が疎であり、高阻止
性能を有する合成高分子スキン層を形成できない。ま
た、前記の範囲より阻止率が高いと膜面が密になりす
ぎ、圧密化を生じた場合に表面孔の閉塞を助長する。
In the present invention, a polyethylene glycol (PEG; average molecular weight: 20,000) solution was used as a method for evaluating the performance of the porous support membrane. An evaluation cell capable of circulating the evaluation solution was used, and the PEG concentration was 0.5% by weight, the evaluation pressure was 1 kgf / cm 2 , the temperature was 25 ° C., and the circulation flow rate was 1 L / min. The porous separation membrane of the present invention obtained under the above-mentioned membrane-forming conditions has a PEG rejection under such conditions of 10 to 90%, preferably 10 to 50%. PE
If the G rejection is lower than this range, the film surface is sparse, and a synthetic polymer skin layer having high rejection cannot be formed. On the other hand, if the rejection is higher than the above range, the film surface becomes too dense, and when the consolidation occurs, the clogging of the surface holes is promoted.

【0018】多孔質分離膜の純水透過水量は、5m3
2/日以上(評価圧力;1kgf/cm2、温度:25℃)で
あり、好ましくは8m3/m2/日以上である。透過水量
がこれより低いと、圧密化により表面孔が閉塞し透過水
量が著しく低くなる。
The amount of pure water permeated by the porous separation membrane is 5 m 3 /
m 2 / day or more (evaluation pressure; 1 kgf / cm 2 , temperature: 25 ° C.), preferably 8 m 3 / m 2 / day or more. If the amount of permeated water is lower than this, the surface pores are closed due to consolidation, and the amount of permeated water is significantly reduced.

【0019】製膜溶液を塗布した基材は、凝固過程にお
いて常に膜面に新しい凝固液が供給される必要がある。
膜面への新しい凝固液の供給が充分でないと、膜面の凝
固液中に多孔質膜を溶解する溶媒が存在し、固化が阻害
され膜面が疎な構造となる。かかる、固化過程にある膜
面に常に新しい凝固液を供給する方法は特に限定されな
いが、例えば、製膜溶液を塗布した織布、不織布等の基
材を連続的に凝固液中で移動させるか、あるいは凝固液
自体を循環させる方法などが採用し得る。製膜溶液を塗
布した織布、不織布等の基材を連続的移動させる場合、
その速度は3〜100m/分、好ましくは5〜50m/分
である。このような条件により常に新しい凝固液が膜面
に供給され膜表面の構造をを密にすることができる。前
記範囲より製膜速度が遅いと膜面が疎になり目的とする
密な膜表面構造を形成させることができない。また、1
00m/分より早いと、製膜の際膜面に不均一部分が生
ずる。
The substrate coated with the film-forming solution needs to be constantly supplied with a new coagulating liquid on the film surface during the coagulation process.
If the supply of the new coagulating liquid to the film surface is not sufficient, a solvent for dissolving the porous film is present in the coagulating liquid on the film surface, solidification is inhibited, and the film surface has a sparse structure. Such a method of constantly supplying a new coagulating liquid to the film surface in the solidification process is not particularly limited. For example, a method in which a substrate such as a woven fabric or a nonwoven fabric coated with a film forming solution is continuously moved in the coagulating solution. Alternatively, a method of circulating the coagulating liquid itself may be employed. When continuously moving a substrate such as a woven or non-woven fabric coated with a film forming solution,
Its speed is 3-100 m / min, preferably 5-50 m / min. Under these conditions, a new coagulating liquid is constantly supplied to the film surface, and the structure of the film surface can be made dense. If the film forming speed is lower than the above range, the film surface becomes sparse, and a desired dense film surface structure cannot be formed. Also, 1
If the speed is higher than 00 m / min, a non-uniform portion occurs on the film surface during film formation.

【0020】さらに、多孔質分離膜の表面を緻密化させ
るため、30〜200℃、好ましくは50〜150℃に
て乾燥してもよい。この場合、後記逆浸透膜の形成に際
し、支持膜を湿潤化させることを目的に、水とアルコー
ル(例えば、メタノール、エタノール、イソプロピルア
ルコール)の混合溶媒(溶液濃度5〜70重量%)に浸漬
し、再度、水に置換する方法が用いられる。
Further, in order to densify the surface of the porous separation membrane, it may be dried at 30 to 200 ° C., preferably 50 to 150 ° C. In this case, when forming a reverse osmosis membrane, which will be described later, the support membrane is immersed in a mixed solvent (solution concentration: 5 to 70% by weight) of water and alcohol (eg, methanol, ethanol, isopropyl alcohol) for the purpose of moistening the support membrane. Again, a method of replacing with water is used.

【0021】また、前記のPEGの阻止率を発現する分
離層は最表層にあることが好ましく、その層の厚さは多
孔質分離膜(不織布等の基材を含まない)の厚みの20%
以下、好ましくは15%以下である。かかる層がこれよ
り厚いと抵抗が大きくなり、充分な透過水量が確保でき
ず、圧密化した場合に表面孔の閉塞が生じやすくなる。
Further, the separation layer exhibiting the rejection of PEG is preferably the outermost layer, and the thickness of the layer is 20% of the thickness of the porous separation membrane (not including the base material such as nonwoven fabric).
Or less, preferably 15% or less. If such a layer is thicker than this, the resistance is increased, a sufficient amount of permeated water cannot be secured, and the surface pores are liable to be clogged when compacted.

【0022】また、このようにして得られた多孔質分離
膜は優れた耐圧性、即ち、圧密化時に充分な純水透過水
量を有する。例えば、多孔質分離膜面に不透フィルムを
置き、120kgf/cm2の水圧を1時間かけた場合、その
透過水量は1.0m3/m2/日以上(評価圧力1kgf/c
m2、温度:25℃)であり、好ましくは3.0m3/m2
日以上である。圧密化時の透過水量がこれより低いと、
このような多孔質分離膜を用いて複合逆浸透膜を製膜し
た場合、高圧運転に際し透過水量の大きな低下をもたら
し好ましくない。
Further, the porous separation membrane thus obtained has excellent pressure resistance, that is, has a sufficient amount of pure water permeated during compaction. For example, when an impervious film is placed on the surface of a porous separation membrane and a water pressure of 120 kgf / cm 2 is applied for 1 hour, the amount of permeated water is 1.0 m 3 / m 2 / day or more (evaluation pressure 1 kgf / c 2
m 2 , temperature: 25 ° C.), and preferably 3.0 m 3 / m 2 /
More than a day. If the amount of permeated water during consolidation is lower than this,
When a composite reverse osmosis membrane is formed using such a porous separation membrane, the amount of permeated water is greatly reduced during high-pressure operation, which is not preferable.

【0023】これら多孔質分離膜を用いて複合逆浸透膜
を製造する方法は特に限定されない。多孔質分離膜上に
形成する皮膜(スキン層)は、ポリアミド系、ポリウレア
系等の界面重合法により製膜することができ、従来の公
知の方法により容易に製造することができる。例えば、
多孔性ポリスルホン支持膜など、前記多孔質分離膜を支
持膜として用い、その少なくとも片面にメタフェニレン
ジアミン、ピペラジン、ポリエチレンイミン等の反応性
アミノ基を有するモノマー及び/又はポリマーの水溶液
を塗布する。ついで、トリメシン酸クロライド、イソフ
タル酸クロライド等の多官能酸クロライドまたはトリレ
ンジイソシアネート等の多官能イソシアネート、又はこ
れらの混合物のへキサン等の溶媒を接触させ、多孔質分
離膜上において界面重合を行い脱塩性能を有する皮膜を
形成して複合逆浸透膜を得る。
The method for producing a composite reverse osmosis membrane using these porous separation membranes is not particularly limited. The coating (skin layer) formed on the porous separation membrane can be formed by an interfacial polymerization method such as polyamide or polyurea, and can be easily manufactured by a conventionally known method. For example,
Using the porous separation membrane such as a porous polysulfone support membrane as a support membrane, an aqueous solution of a monomer and / or polymer having a reactive amino group such as metaphenylenediamine, piperazine or polyethyleneimine is applied on at least one surface thereof. Then, a solvent such as a polyfunctional acid chloride such as trimesic acid chloride and isophthalic acid chloride or a polyfunctional isocyanate such as tolylene diisocyanate, or a solvent such as hexane of a mixture thereof is contacted, and interfacial polymerization is performed on the porous separation membrane to remove the polymer. A composite reverse osmosis membrane is obtained by forming a film having salt performance.

【0024】このような複合逆浸透膜面上に、有機物、
及び/又は有機重合体、好適には、非イオン系の親水性
基を有する有機物、及び/又は有機重合体の溶液を塗布
し、その後に乾燥させて複合逆浸透膜を得ることも、耐
汚染性等の改善に際し有効である。
On such a composite reverse osmosis membrane surface, an organic substance,
And / or an organic polymer, preferably an organic material having a nonionic hydrophilic group, and / or a solution of the organic polymer is applied and then dried to obtain a composite reverse osmosis membrane. It is effective in improving the properties.

【0025】かかる有機物及び/又は有機重合体の溶媒
としては、活性皮膜層にダメージを与えることの少ない
溶媒、例えば水、低級アルコール、ハロゲン化炭化水
素、脂肪族炭化水素、アセトン、アセトニトリル、ある
いは、これらの混合溶媒などが挙げられる。これらのう
ち、特にメタノール、エタノール、プロパノール、ブタ
ノールなどの脂肪族アルコール、エチレンクロルヒドリ
ン等のハロゲン化脂肪族アルコール、メトキシメタノー
ル、メトキシエタノール及びこれら低級アルコールの少
なくとも1種と水との混合溶媒などを用いてよい。混合
溶媒の場合、水に対する低級アルコールの比率は特に限
定されないが、水の比率が0〜90%のであることが好
ましい。また、水を溶媒として用いる場合は膜との濡れ
性をよくすることを目的に界面活性剤を添加してもよ
い。
As the solvent for the organic substance and / or the organic polymer, a solvent which does not damage the active film layer, for example, water, lower alcohol, halogenated hydrocarbon, aliphatic hydrocarbon, acetone, acetonitrile, or These include mixed solvents. Among them, in particular, aliphatic alcohols such as methanol, ethanol, propanol and butanol, halogenated aliphatic alcohols such as ethylene chlorohydrin, methoxymethanol, methoxyethanol and a mixed solvent of at least one of these lower alcohols with water, etc. May be used. In the case of a mixed solvent, the ratio of the lower alcohol to water is not particularly limited, but the ratio of water is preferably 0 to 90%. When water is used as the solvent, a surfactant may be added for the purpose of improving the wettability with the film.

【0026】このような有機物、及び/又は有機重合体
としては、シリコンゴム、ポリエチレンテレフタレート
等のフッ素系重合体、スルホン化ポリスルホン、スルホ
ン化ポリエーテルスルホン等のスルホン酸基含有有機重
合体、ポリエチレンイミン等のアミノ基含有有機重合
体、ポリイミド等が挙げられるが、コーティング後の透
水性を高く保持し、親水基を有する有機物、及び/又は
有機重合体、特に荷電的な吸着を抑制することを目的に
非イオン系の親水性基を有する有機物、及び/又は有機
重合体が好ましい。
Examples of such organic substances and / or organic polymers include fluorine-containing polymers such as silicone rubber and polyethylene terephthalate, sulfonic acid group-containing organic polymers such as sulfonated polysulfone and sulfonated polyether sulfone, and polyethyleneimine. Such as amino group-containing organic polymers, polyimides, etc., for the purpose of maintaining high water permeability after coating and suppressing organic substances having hydrophilic groups, and / or organic polymers, particularly, charged adsorption. An organic material having a nonionic hydrophilic group and / or an organic polymer are preferred.

【0027】かかる非イオン系親水性基を有する有機
物、及び/又は有機重合体としては、ポリビニルアルコ
ール、ケン化ポリエチレン−酢酸ビニル共重合体、ポリ
ビニルピロリドン、ヒドロキシプロピルセルロース、ポ
リエチレングリコール等の非イオン系の親水性基を持つ
ビニル系重合体、縮合系重合体、付加系重合体等が用い
られる。
Examples of the organic material having a nonionic hydrophilic group and / or the organic polymer include nonionic surfactants such as polyvinyl alcohol, saponified polyethylene-vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropylcellulose and polyethylene glycol. Vinyl polymers having a hydrophilic group, condensation polymers, addition polymers, etc. are used.

【0028】[0028]

【実施例】つぎに本発明を実施例、比較例によりさらに
具体的に説明するが、これらは何ら本発明を限定するも
のではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples and comparative examples, but these do not limit the present invention at all.

【0029】[実施例1]ポリスルホン(P-3500、アモ
コ社製)をジメチルホルムアミド(DMF)に溶解し、製
膜溶液(15重量%)を調製した(溶液温度:25℃)。こ
の溶液をロール状の不織布上に厚さ130μmで連続塗
布した。つぎにこの不織布を20℃の水に連続的に浸漬
し(面速8m/分)、凝固を行い、巻き取ってポリスルホ
ン多孔質支持膜を調製した。
Example 1 Polysulfone (P-3500, manufactured by Amoco) was dissolved in dimethylformamide (DMF) to prepare a film-forming solution (15% by weight) (solution temperature: 25 ° C.). This solution was continuously applied to a roll-shaped nonwoven fabric at a thickness of 130 μm. Next, this nonwoven fabric was continuously immersed in water at 20 ° C. (surface velocity: 8 m / min), coagulated, and wound to prepare a polysulfone porous support membrane.

【0030】得られた多孔質分離膜を供給液の循環が可
能なセルにセットし、ポリエチレングリコ−ル(平均分
子量:20,000)溶液を用いて評価した。評価条件は、P
EG濃度:0.5重量%、評価圧力:1kgf/cm2、測定
温度:25℃、循環流量:1L/分である。この膜のP
EG阻止率は23%であった。また、この膜の純水透過
水量は15m3/m2/日(評価圧力:1kgf/cm2、温
度:25℃)であった。
The obtained porous separation membrane was set in a cell capable of circulating the feed liquid, and evaluated using a polyethylene glycol (average molecular weight: 20,000) solution. Evaluation condition is P
EG concentration: 0.5% by weight, evaluation pressure: 1 kgf / cm 2 , measurement temperature: 25 ° C., circulation flow rate: 1 L / min. P of this film
The EG rejection was 23%. The pure water permeated water amount of this membrane was 15 m 3 / m 2 / day (evaluation pressure: 1 kgf / cm 2 , temperature: 25 ° C.).

【0031】この多孔質分離膜(微多孔性ポリスルホン
支持膜)上に、m−フェニレンジアミン3.0重量%、ラ
ウリル硫酸ナトリウム0.15重量%、並びにトリエチ
ルアミンを2.0重量%、カンファースルホン酸4.0重
量%を含有する水溶液を数秒間接触させた後、余分の水
溶液を除去して支持膜上に上記水溶液の層を形成した。
On this porous separation membrane (microporous polysulfone support membrane), 3.0% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.0% by weight of triethylamine, 2.0% by weight of camphorsulfonic acid After contacting with an aqueous solution containing 4.0% by weight for several seconds, excess aqueous solution was removed to form a layer of the aqueous solution on the support membrane.

【0032】つぎに得られた膜表面にトリメシン酸クロ
ライドを0.25重量%を含むIP1016(出光化学(株)製
イソパラフィン系炭化水素油)溶液を接触させた。その
後、120℃の熱風乾燥機の中で5分保持して支持体上
にスキン層を形成させ複合逆浸透膜を得た。得られた膜
を3.5重量%の塩化ナトリウム水溶液を用い、圧力5
6kgf/cm2で評価した結果、阻止性能は99.8%、透
過水量は0.80m3/m2/日であった。得られた膜を
前記塩化ナトリウム水溶液で120kgf/cm2の高圧下に
て1時間加圧した後、再度、圧力56kgf/cm2で評価し
た結果、阻止性能は99.8%、透過水量は0.77m3
/m2/日であり、高圧条件にさらした後も性能の変化
は見られなかった。
Next, an IP1016 (isoparaffinic hydrocarbon oil manufactured by Idemitsu Chemical Co., Ltd.) solution containing 0.25% by weight of trimesic acid chloride was brought into contact with the surface of the obtained film. Then, it was kept in a hot air dryer at 120 ° C. for 5 minutes to form a skin layer on the support to obtain a composite reverse osmosis membrane. The obtained membrane was treated with a 3.5% by weight aqueous sodium chloride solution at a pressure of 5%.
As a result of evaluation at 6 kgf / cm 2 , the inhibition performance was 99.8%, and the amount of permeated water was 0.80 m 3 / m 2 / day. After the obtained membrane was pressurized with the aqueous sodium chloride solution under a high pressure of 120 kgf / cm 2 for 1 hour, it was evaluated again at a pressure of 56 kgf / cm 2. As a result, the blocking performance was 99.8% and the permeated water amount was 0. .77m 3
/ M 2 / day and no change in performance was observed after exposure to high pressure conditions.

【0033】更に、該逆浸透膜のスキン層部分を次亜塩
素酸ナトリウム水溶液(1%)を用いて除去し、多孔質支
持膜の純水透過水量を1.0kgf/cm2、温度:25℃に
て評価したところ5m3/m2/日であり、支持膜の圧密
化に起因する透過水量の低下が抑制されていることが確
認された。
Further, the skin layer portion of the reverse osmosis membrane was removed using an aqueous solution of sodium hypochlorite (1%), and the amount of permeated pure water of the porous support membrane was 1.0 kgf / cm 2 , temperature: 25 When evaluated at ℃, it was 5 m 3 / m 2 / day, and it was confirmed that the decrease in the amount of permeated water due to the compaction of the support membrane was suppressed.

【0034】[比較例1]凝固時の面速を2.5m/分
とした以外は、実施例1と同様にして、ポリスルホン多
孔質支持膜を調製した。得られた分離膜のPEG阻止率
は2%であった。この膜の純水透過水量は、27m3
2/日(評価圧力:1kgf/cm2、温度:25℃)であっ
た。得られた膜を実施例1と同様に処理して逆浸透膜を
製膜し評価した結果、阻止性能は98.80%、透過水
量は1.2m3/m2/日であり満足する阻止性能は得ら
れなかった。
Comparative Example 1 A polysulfone porous support membrane was prepared in the same manner as in Example 1 except that the surface speed during solidification was 2.5 m / min. The PEG rejection of the obtained separation membrane was 2%. The amount of pure water permeated by this membrane is 27 m 3 /
m 2 / day (evaluation pressure: 1 kgf / cm 2 , temperature: 25 ° C.). The obtained membrane was treated in the same manner as in Example 1 to form a reverse osmosis membrane. As a result, the inhibition performance was 98.80% and the amount of permeated water was 1.2 m 3 / m 2 / day. No performance was obtained.

【0035】[比較例2]ポリスルホンのDMF溶液濃
度を24重量%とした以外は実施例1と同様にして多孔
質分離膜を調製した。得られた多孔質膜のPEG阻止率
は95%であった。また、この膜の純水透過水量は1.
3m3/m2/日(評価圧力:1kgf/cm2、温度:25℃)
であつた。得られた分離膜を支持膜として実施例1と同
様にして逆浸透膜を製膜し評価した結果、阻止性能は9
9.80%、透過水量は0.8m3/m2/日であった。得
られた膜を前記塩化ナトリウム水溶液(3.5重量%)で
120kgf/cm2にて1時間加圧した後、再度、圧力56
kgf/cm2で評価した結果、阻止性能99.82%、透過
水量0.6m3/m2/日であった。更に、該逆浸透膜のス
キン層部分を次亜塩素酸ナトリウム水溶液(1%)を用い
て除去し、多孔質支持膜の純水透過水量を1.0kgf/cm
2、温度:25℃にて評価したところ0.13m3/m2
日であり、支持膜の圧密化に起因する透過水量の低下が
大きいことが確認できた。
Comparative Example 2 A porous separation membrane was prepared in the same manner as in Example 1 except that the polysulfone DMF solution concentration was changed to 24% by weight. The PEG rejection of the obtained porous membrane was 95%. The pure water permeation amount of this membrane is 1.
3m 3 / m 2 / day (evaluation pressure: 1kgf / cm 2 , temperature: 25 ° C)
It was. Using the obtained separation membrane as a support membrane, a reverse osmosis membrane was formed in the same manner as in Example 1 and evaluated.
9.80%, and the permeated water amount was 0.8 m 3 / m 2 / day. The obtained membrane was pressurized with the aqueous sodium chloride solution (3.5% by weight) at 120 kgf / cm 2 for 1 hour, and then again pressurized to 56 kg / cm 2 .
As a result of evaluation in kgf / cm 2 , the blocking performance was 99.82% and the permeated water amount was 0.6 m 3 / m 2 / day. Further, the skin layer portion of the reverse osmosis membrane was removed using an aqueous sodium hypochlorite solution (1%), and the amount of pure water permeated through the porous support membrane was adjusted to 1.0 kgf / cm.
2. When evaluated at a temperature of 25 ° C., 0.13 m 3 / m 2 /
It was confirmed that the decrease in the amount of permeated water due to the compaction of the support membrane was large.

【0036】[0036]

【発明の効果】本発明はポリエチレングリコールを指標
とした高いPEG阻止性能と、高い透過水量を有する多
孔質分離膜及びこれを支持膜とする優れた複合逆浸透膜
を提供する。本発明の多孔性分離膜では、合成高分子ス
キン層を形成した最表層のみが緻密で、その他の部分は
疎な構造を有し、耐圧性に優れ高阻止性能を示す複合逆
浸透膜が得られる。本発明の多孔質分離膜及びこれを支
持膜とする複合逆浸透膜は高圧下(例えば90kgf/cm2
以上)で圧縮化した場合も優れた耐圧性(複合逆浸透膜の
透過水量の低下の抑制)を有し安定した透過水量が得ら
れる。かかる複合逆浸透膜は、高濃度のかん水、海水、
濃縮海水の処理に有用である。
Industrial Applicability The present invention provides a porous separation membrane having high PEG inhibition performance using polyethylene glycol as an index and a high amount of permeated water, and an excellent composite reverse osmosis membrane using the same as a support membrane. In the porous separation membrane of the present invention, only the outermost layer on which the synthetic polymer skin layer is formed is dense, and the other portions have a sparse structure, and a composite reverse osmosis membrane having excellent pressure resistance and high blocking performance is obtained. Can be The porous separation membrane of the present invention and the composite reverse osmosis membrane using the same as a support membrane are subjected to high pressure (for example, 90 kgf / cm 2).
Even when compressed as described above, excellent pressure resistance (suppression of a decrease in the amount of permeated water of the composite reverse osmosis membrane) and a stable amount of permeated water can be obtained. Such a composite reverse osmosis membrane can be used for high-concentration brine, seawater,
Useful for treating concentrated seawater.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 MA03 MA09 MA31 MB02 MB06 MB09 MB18 MC11 MC33 MC34 MC39 MC54 MC58 MC62X NA05 NA10 NA18 NA41 NA46 NA64 PA01 PB03 PB04 PB05 4F074 AA87 CE02 CE16 CE25 CE98 DA20 DA43  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 MA03 MA09 MA31 MB02 MB06 MB09 MB18 MC11 MC33 MC34 MC39 MC54 MC58 MC62X NA05 NA10 NA18 NA41 NA46 NA64 PA01 PB03 PB04 PB05 4F074 AA87 CE02 CE16 CE25 CE98 DA20 DA43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記測定条件によるポリエチレングリコ
ール阻止率が10〜90%であり、かつ評価圧力1kgf
/cm2、温度25℃における純水透過水量が5m3/m2
/日以上である多孔質分離膜。 [測定条件]平均分子量:20,000、ポリエチレングリコ
ール濃度:0.5重量%、評価圧力:1kgf/cm2、温
度;25℃、循環流量:1L/分
1. A polyethylene glycol rejection rate of 10 to 90% under the following measurement conditions, and an evaluation pressure of 1 kgf.
/ Cm 2 , the amount of pure water permeated at a temperature of 25 ° C. is 5 m 3 / m 2
/ Day or more. [Measurement conditions] Average molecular weight: 20,000, polyethylene glycol concentration: 0.5% by weight, evaluation pressure: 1 kgf / cm 2 , temperature: 25 ° C, circulation flow rate: 1 L / min
【請求項2】 前記純水透過水量が8m3/m2/日以上
である請求項1の多孔質分離膜。
2. The porous separation membrane according to claim 1, wherein the pure water permeated water amount is 8 m 3 / m 2 / day or more.
【請求項3】 120kgf/cm2の高圧下において多孔質
分離膜を圧密化したときの評価圧力1kgf/cm2における
純水透過水量が1.0m3/m2/日以上である請求項1
の多孔質分離膜。
3. A process according to claim pure water permeate flow rate at rated pressure 1 kgf / cm 2 when the porous separation membrane was compacted under high pressure of 120 kgf / cm 2 is 1.0 m 3 / m 2 / day or more 1
Porous separation membrane.
【請求項4】 請求項1〜3のいずれかの多孔質分離膜
を基質として用いてなる複合逆浸透膜。
4. A composite reverse osmosis membrane using the porous separation membrane according to claim 1 as a substrate.
JP10276602A 1998-09-10 1998-09-10 Porous separation membrane and composite reverse osmosis membrane using the same Pending JP2000084379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276602A JP2000084379A (en) 1998-09-10 1998-09-10 Porous separation membrane and composite reverse osmosis membrane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276602A JP2000084379A (en) 1998-09-10 1998-09-10 Porous separation membrane and composite reverse osmosis membrane using the same

Publications (1)

Publication Number Publication Date
JP2000084379A true JP2000084379A (en) 2000-03-28

Family

ID=17571738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276602A Pending JP2000084379A (en) 1998-09-10 1998-09-10 Porous separation membrane and composite reverse osmosis membrane using the same

Country Status (1)

Country Link
JP (1) JP2000084379A (en)

Similar Documents

Publication Publication Date Title
JP4656502B2 (en) Composite semipermeable membrane and method for producing the same
KR101716007B1 (en) Polyamide watertreatment membranes of drying type having properies of high performance and manufacturing method thereof
CN115942988A (en) Polyamide reverse osmosis membrane having excellent durability and stain resistance, and method for producing same
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JP2001286741A (en) Reverse osmosis composite membrane and manufacturing method therefor
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
JP4656503B2 (en) Composite semipermeable membrane and method for producing the same
US20080277334A1 (en) Process for Producing Semipermeable Composite Membrane
KR102302236B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
JP3681219B2 (en) Polysulfone porous separation membrane
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JP2000153137A (en) Composite reverse osmosis membrane
JP2000084379A (en) Porous separation membrane and composite reverse osmosis membrane using the same
KR20180107605A (en) Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
JP2000288368A (en) Composite reverse osmosis membrane
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
KR20170064425A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
JP2002095941A (en) Composite reverse osmosis membrane
JPS62160109A (en) Manufacture of microporous filter membrane
JP3536501B2 (en) Method and apparatus for producing composite semipermeable membrane
KR20160055341A (en) Method for preparing reverse osmosis membrane
KR20000051528A (en) Method for the perparation of the high flux reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415