[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000078475A - Image pickup device and image pickup system using the same - Google Patents

Image pickup device and image pickup system using the same

Info

Publication number
JP2000078475A
JP2000078475A JP10248730A JP24873098A JP2000078475A JP 2000078475 A JP2000078475 A JP 2000078475A JP 10248730 A JP10248730 A JP 10248730A JP 24873098 A JP24873098 A JP 24873098A JP 2000078475 A JP2000078475 A JP 2000078475A
Authority
JP
Japan
Prior art keywords
signal
photoelectric conversion
unit
imaging device
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10248730A
Other languages
Japanese (ja)
Other versions
JP3854729B2 (en
Inventor
Seiji Hashimoto
誠二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24873098A priority Critical patent/JP3854729B2/en
Priority to US09/386,345 priority patent/US6734906B1/en
Publication of JP2000078475A publication Critical patent/JP2000078475A/en
Application granted granted Critical
Publication of JP3854729B2 publication Critical patent/JP3854729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the numbers of temporary storage capacitors, stages of shift registers, common circuits, AGCs, and A/C converters by connecting a holding means shared by each photoelectric conversion part in a unit cell with a vertical output line and reading signals from the photoelectric conversion part to a signal holding means via the common circuit. SOLUTION: A signal storage structuring part 100 is provided with a capacitor Cs for storing the signal and a capacitor Cn for storing the noise, etc. The capacitor Cs for storing the signal and the capacitor Cn for storing the noise are provided to one vertical output line in parallel via transistors M1, M2. The signal stored in the capacitor Cs and the noise stored in the capacitor Cn are read on each horizontal output line by simultaneously turning transistors M3, M4 on by a horizontal shift register 13, and the signal is converted into a digital signal by removing the noise from it by a subtraction amplifier 10. Two kinds of capacitor Cn, Cs are provided per one vertical output line, two trains of photoelectric conversion signals are outputted by one vertical output line by a common amplifier and one capacitor is arranged per one train of photoelectric conversion parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は撮像装置およびそれ
を用いた撮像システムに係わり、特に、少なくとも行方
向に配列された複数の光電変換部と該複数の光電変換部
からの信号が入力される共通回路とを配置した単位セル
が複数列配列された撮像装置又は行方向及び列方向に複
数の光電変換画素を配列した撮像装置、およびそれを用
いた撮像システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus and an image pickup system using the same, and more particularly, to at least a plurality of photoelectric conversion units arranged in a row direction and signals from the plurality of photoelectric conversion units being input. The present invention relates to an imaging device in which unit cells each including a common circuit are arranged in a plurality of columns or an imaging device in which a plurality of photoelectric conversion pixels are arranged in a row direction and a column direction, and an imaging system using the same.

【0002】[0002]

【従来の技術】増幅型センサーの一つにCMOS回路か
らなる増幅アンプを一つの画素内に設けたCMOSエリ
アセンサーがある。
2. Description of the Related Art As one of amplification type sensors, there is a CMOS area sensor in which an amplification amplifier composed of a CMOS circuit is provided in one pixel.

【0003】CMOSエリアセンサーはCCD型エリア
センサーに対し、ランダムアクセスが可能で、多機能性
と低消費電力性の点で優位である。
The CMOS area sensor is capable of random access to the CCD area sensor, and is superior in multifunctionality and low power consumption.

【0004】すなわち、CCD型エリアセンサーは光電
変換された信号を順次転送しながら、外部へ出力するた
めに、ランダムアクセスが困難であり、消費電力が大き
いが、CMOSエリアセンサーは任意の画素を選択して
出力することができるので、低消費電力であって、実装
上低ノイズであり、実装も簡単である。
That is, since the CCD area sensor sequentially outputs photoelectrically converted signals and outputs the signals to the outside, random access is difficult and power consumption is large. However, the CMOS area sensor selects an arbitrary pixel. Therefore, the power consumption is low, the noise is low in mounting, and the mounting is easy.

【0005】[0005]

【発明が解決しようとする課題】上記CMOSエリアセ
ンサーにおいて、画素アンプの特性にバラツキを生じる
場合、そのバラツキを補正するためにメモリを付加する
ことが求められる。しかし、メモリを画素ごとに設ける
とメモリの実装面積が大きくなり、コスト高となる課題
がある。以下、バラツキを補正するためにメモリを有す
る撮像装置の一例について説明する。画素アンプの特性
のバラツキは画素からノイズ信号を読み出し画素信号か
ら差分することで抑制することができる。
In the CMOS area sensor described above, when the characteristics of the pixel amplifier vary, it is required to add a memory to correct the variation. However, if a memory is provided for each pixel, there is a problem that the mounting area of the memory increases and the cost increases. Hereinafter, an example of an imaging device having a memory for correcting variations will be described. Variations in the characteristics of the pixel amplifier can be suppressed by reading a noise signal from the pixel and making a difference from the pixel signal.

【0006】図17〜図19はそれぞれ従来例の撮像装
置のバラツキ補正回路の一例を示す概略的回路構成図で
ある。なお図18に示す構成は、特開平1−24576
9号公報に開示されており、図19に示す構成は特開平
9−247546号公報に開示されている。
FIGS. 17 to 19 are schematic circuit diagrams showing one example of a variation correction circuit of a conventional imaging apparatus. The configuration shown in FIG.
9 is disclosed, and the configuration shown in FIG. 19 is disclosed in JP-A-9-247546.

【0007】図17において、R1画素、G1画素、G2
画素、B2画素に対応した信号、ノイズはそれぞれ画素
ごとに設けられた容量CSと容量CNに読み出される。す
なわち、信号、ノイズを一時蓄積するための容量は8個
分設けられる。R1画素、G2画素(G1画素、B2画素)
に対応した信号、ノイズ信号、は同時に読み出されて差
分処理され、AGCを経てA/D変換器でアナログ−デ
ジタル変換されて、デジタル信号となる。
In FIG. 17, R1 pixel, G1 pixel, G2
The signal corresponding to the pixel, the signal corresponding to the B2 pixel, and the noise are read out to the capacitors C S and C N provided for each pixel. That is, eight capacitors for temporarily storing signals and noise are provided. R1 pixel, G2 pixel (G1 pixel, B2 pixel)
, And a noise signal are simultaneously read out and subjected to difference processing, and are subjected to AGC and analog-to-digital conversion by an A / D converter to become digital signals.

【0008】図18においては、容量Cpと容量Cpの電
極に接続されたリセット手段とで、ノイズと信号とを差
分処理し、容量C1にはノイズが除去された信号R
(G)が、容量C2にはノイズが除去された信号G
(B)が一時蓄積される。ノイズを差分するには、ノイ
ズを容量Cpの出力電極側を一定電位とした状態で容量
pの入力電極側に出力し、容量Cpの出力電極側を浮遊
状態とした後に、容量Cpの入力電極側に信号を入力す
る。こうすると容量Cpの入力電極側は(信号−ノイ
ズ)分電位が変動し、容量Cpの出力電極側も同様に
(信号−ノイズ)分電位が変動するので、ノイズ除去さ
れた信号が出力されることになる。水平出力線には水平
走査毎にR,Gの点順次信号とG、Bの点順次信号が出
力される。その信号は減算アンプ、AGCを経てA/D
変換器でアナログ−デジタル変換されて、デジタル信号
となる。このデジタル信号は複数ラインメモリあるいは
フレームメモリ内で原色信号毎にメモリされ、画像処理
が行われる。メモリ方法はシステムにより種々ある。
In FIG. 18, the difference between the noise and the signal is processed by the capacitance C p and the reset means connected to the electrode of the capacitance C p , and the signal R from which the noise has been removed is supplied to the capacitance C 1.
(G), the signal G from which noise has been removed
(B) is temporarily stored. To difference noise, and outputs the input electrode of the capacitor C p in a state where the output electrode of the capacitor C p noise and constant potential, an output electrode of the capacitor C p after a floating state, capacitance C Input a signal to the input electrode side of p . This way an input electrode of the capacitor C p (signal - noise) component voltage is varied, also the output electrode of the capacitor C p (signal - noise) because partial potential varies, noise canceled signal output Will be done. The R and G dot sequential signals and the G and B dot sequential signals are output to the horizontal output line every horizontal scanning. The signal is passed through a subtraction amplifier and AGC to A / D
The analog-to-digital conversion is performed by the converter to produce a digital signal. This digital signal is stored for each primary color signal in a plurality of line memories or frame memories, and image processing is performed. The memory method varies depending on the system.

【0009】図19においては、それぞれの垂直出力線
から読み出されたノイズおよび信号について、信号から
ノイズを除去して一時蓄積容量CSに蓄積する。ノイズ
を除去するには、トランジスタMt、Mrをオンしリセ
ットした後、ノイズ出力期間に容量CPに負パルスを印
加してトランジスタMSのチャネル電位φnを超えた電
荷を容量CSに転送し、この電荷をトランジスタMtを
オンして排出する。信号出力期間に再度、容量CPに負
パルスを印加してトランジスタMSのチャネル電位φs
を超えた電荷を容量CSに転送する。ここで容量CSに転
送された電荷はCP×(φs−φn)となりノイズが除
去された信号となる。
[0009] In FIG. 19, the noise and the signal read out from each of the vertical output lines, for storing in the temporary storage capacitor C S to remove noise from the signal. To remove the noise, after on-reset transistor Mt, the Mr, transfers the charge exceeding the channel potential φn of the transistor M S by applying a negative pulse to the capacitor C P noise output period to the capacitor C S This charge is discharged by turning on the transistor Mt. Signal output period again, the channel potential of the transistor M S by applying a negative pulse to the capacitor C P .phi.s
Is transferred to the capacitor C S. Here, the charge transferred to the capacitor C S becomes C P × (φs−φn), and becomes a signal from which noise has been removed.

【0010】これらの撮像装置では、1列の画素列(1
本の垂直出力線)に対して容量を最低2個設けている。
付加する容量の値は誘電層の厚みと電極面積で決まる
が、通常チップ面積の数十%を占めている。
In these imaging apparatuses, one pixel row (1
(At least two vertical output lines).
The value of the capacitance to be added is determined by the thickness of the dielectric layer and the area of the electrodes, but usually occupies several tens of percent of the chip area.

【0011】特に、図17の構成例ではノイズと信号を
差分処理するアンプが画素ごとに必要となり消費電力が
大きくなる。さらに、読出し速度を下げるために複数水
平ラインの信号読出しを同時に行うと、一時蓄積容量は
さらに多くなり、チップ面積の増大を招くことになる。
In particular, in the configuration example of FIG. 17, an amplifier for performing a difference process between noise and a signal is required for each pixel, and power consumption is increased. Further, if signals are read from a plurality of horizontal lines simultaneously to reduce the reading speed, the temporary storage capacity further increases, which leads to an increase in chip area.

【0012】近年デジタルスチルカメラが数百万画素に
なったことにより消費電力が増え、撮影枚数が減り、ユ
ーザは高い電池代を負担することになっている。
In recent years, the power consumption has increased due to the increase in the number of pixels of a digital still camera to several million pixels, the number of shots has decreased, and the user has to bear a high battery cost.

【0013】さらに、西暦2000年過ぎには、高速デ
ータ通信が可能なIMT−2000のインフラが準備さ
れ、画像通信が本格化する。そして、このようなモバイ
ル画像通信を普及させるには低消費電力のセンサーと周
辺ICおよびコストダウンが求められる。
[0013] Further, after the year 2000, the IMT-2000 infrastructure capable of high-speed data communication is prepared, and image communication becomes full-scale. In order to spread such mobile image communication, low power consumption sensors, peripheral ICs, and cost reduction are required.

【0014】[0014]

【課題を解決するための手段】本発明の撮像装置は、少
なくとも行方向に配列された複数の光電変換部と該複数
の光電変換部からの信号が入力される共通回路とを配置
した単位セルが複数列配列された撮像装置において、前
記単位セル内の各光電変換部について共有される信号保
持手段を垂直出力線に接続し、前記光電変換部から前記
共通回路を介して前記信号保持手段へ信号を読み出すこ
とを特徴とするものである。
According to the present invention, there is provided an imaging apparatus comprising: a unit cell having at least a plurality of photoelectric conversion units arranged in a row direction and a common circuit to which signals from the plurality of photoelectric conversion units are input; In an imaging device in which a plurality of columns are arranged, a signal holding unit shared for each photoelectric conversion unit in the unit cell is connected to a vertical output line, and from the photoelectric conversion unit to the signal holding unit via the common circuit. It is characterized by reading a signal.

【0015】また本発明の撮像装置は、行方向及び列方
向に複数の光電変換画素を配列し、少なくとも二列の光
電変換画素列について共有する信号保持手段を垂直出力
線に接続し、前記信号保持手段は、画像信号を蓄積する
画像信号保持手段と、該画像信号のノイズ成分を蓄積す
るノイズ保持手段とからなり、各光電変換画素から前記
信号保持手段へ信号を読み出し、前記信号保持手段から
信号出力を行う動作を、前記少なくとも二列の光電変換
画素列の列方向と行方向について各光電変換画素ごとに
順次行ってなるものである。
Further, in the image pickup apparatus of the present invention, a plurality of photoelectric conversion pixels are arranged in a row direction and a column direction, and signal holding means shared for at least two photoelectric conversion pixel columns is connected to a vertical output line. The holding unit includes an image signal holding unit that stores an image signal, and a noise holding unit that stores a noise component of the image signal, and reads a signal from each photoelectric conversion pixel to the signal holding unit, and reads the signal from the signal holding unit. The signal output operation is sequentially performed for each photoelectric conversion pixel in the column direction and the row direction of the at least two photoelectric conversion pixel columns.

【0016】本発明の撮像システムは、上記本発明の撮
像装置と、前記撮像装置へ光を結像するレンズと、前記
撮像装置からの出力信号を処理する信号処理回路とを有
することを特徴とするものである。
An image pickup system according to the present invention includes the above image pickup apparatus according to the present invention, a lens for forming an image on the image pickup apparatus, and a signal processing circuit for processing an output signal from the image pickup apparatus. Is what you do.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を用いて
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1は4つの光電変換部からの信号を1つ
の共通アンプ(共通回路を構成する)を経て読み出す撮
像装置に本発明を適用した場合の実施例を示す概略的構
成図である。
FIG. 1 is a schematic block diagram showing an embodiment in which the present invention is applied to an image pickup apparatus which reads out signals from four photoelectric conversion units via one common amplifier (constituting a common circuit).

【0019】本実施例の光電変換セル(単位セル)S
は、4つの光電変換部と1つの共通アンプから構成さ
れ、例えば図1の光電変換部a11、a12、a21、a22に
はカラーフィルタR1(赤)、G1(緑)、G2(緑)、
B2(青)が設けられ、各光電変換部からR1信号、G1
信号、B2信号、G2信号が共通アンプA1から垂直出力
線を介して出力される。また共通アンプA1からはリセ
ット後のノイズも垂直出力線を介して出力される。
The photoelectric conversion cell (unit cell) S of this embodiment
Is composed of four photoelectric conversion units and one common amplifier. For example, the photoelectric conversion units a11, a12, a21, and a22 in FIG. 1 include color filters R1 (red), G1 (green), G2 (green),
B2 (blue) is provided, and the R1 signal, G1
The signal, the B2 signal, and the G2 signal are output from the common amplifier A1 via the vertical output line. The noise after reset is also output from the common amplifier A1 via the vertical output line.

【0020】100は信号蓄積用の容量CS、ノイズ蓄
積用の容量CN、容量切替え用のトランジスタM1,M
2、および信号出力用のトランジスタM3,M4で構成さ
れる信号蓄積構成部である。1つの垂直出力線にはトラ
ンジスタM1、M2を介して信号蓄積用の容量CSとノイ
ズ蓄積用の容量CNが並列に設けられている。容量CS
蓄積された信号と容量CNに蓄積されたノイズとは水平
シフトレジスタ(H・SR)13によって制御されるト
ランジスタM3、M4が同時にオンして各水平出力線に読
み出されて、減算アンプ10で信号からノイズが除去さ
れ、AGC(オートゲインコントロール)11、A/D
コンバータ12を経てデジタル信号に変換される。水平
出力線はφHCで制御されるトランジスタM6によりリセ
ットされる。
Reference numeral 100 denotes a capacitor C S for storing a signal, a capacitor C N for storing a noise, and transistors M 1 and M M for switching a capacity.
2, and a signal storage component composed of signal output transistors M3 and M4. One vertical output line is provided with a signal storage capacitor CS and a noise storage capacitor CN in parallel via transistors M1 and M2. The signals stored in the capacitor C S and the noise stored in the capacitor C N are read out to the respective horizontal output lines by simultaneously turning on the transistors M 3 and M 4 controlled by the horizontal shift register (H · SR) 13. , The noise is removed from the signal by the subtraction amplifier 10, the AGC (auto gain control) 11, the A / D
The signal is converted into a digital signal via the converter 12. The horizontal output line is reset by a transistor M6 controlled by φHC.

【0021】本実施例では1本の垂直出力線あたり2個
の容量を設けているが、共通アンプにより2列の光電変
換部列の信号が1本の垂直出力線で出力されるので、1
列の光電変換部列あたり1個の容量を配置すればよい。
In this embodiment, two capacitors are provided for one vertical output line. However, since signals of two columns of photoelectric conversion units are output by one vertical output line by a common amplifier, one capacitor is provided.
One capacitor may be arranged for each row of photoelectric conversion units.

【0022】図2は光電変換セルSの構成を示す図であ
る。図2に示すように、光電変換セルSは、共通アンプ
1つに光電変換部4つ(ここでは、a11,a12,a21
22)を配置して構成されている。その他の光電変換セ
ルについても同様な構成となっている。なお、ここでは
共通アンプは増幅手段MSF、リセット手段MRES、セレ
クト手段MSEL、および転送手段MTX1〜MTX4から構成
されている。転送手段MTX1〜MTX4は制御信号φGT1〜
φGT4で順次オン状態となり、光電変換部a11,a12
21,a22から信号が順次、増幅手段MSFの入力部(ゲ
ート)に転送される。セレクト信号φSOによりセレクト
手段MSELがオン状態となると、増幅手段MSFのゲート
に転送された信号電荷に対応する信号が垂直出力線に読
み出される。なお、光電変換部から信号が増幅手段MSF
の入力部(ゲート)に転送される前にリセット信号φGC
Lによりリセット手段MRESがオン状態となり増幅手段M
SFの入力部がリセットされ、ノイズとしてセレクト手段
MSELを介して垂直出力線に送られる。
FIG. 2 is a diagram showing the structure of the photoelectric conversion cell S. As shown in FIG. 2, the photoelectric conversion cell S includes four photoelectric conversion units (here, a 11 , a 12 , a 21 ,
a 22 ). Other photoelectric conversion cells have the same configuration. In this case, the common amplifier includes an amplifying unit MSF, a reset unit MRES, a selecting unit MSEL, and transfer units MTX1 to MTX4. The transfer means MTX1 to MTX4 control signals φGT1 to
φGT4 sequentially turns on, the photoelectric conversion units a 11 , a 12 ,
Signals are sequentially transferred from a 21 and a 22 to the input section (gate) of the amplification means MSF. When the selection means MSEL is turned on by the selection signal φSO, a signal corresponding to the signal charge transferred to the gate of the amplification means MSF is read out to the vertical output line. The signal from the photoelectric conversion unit is amplified by the amplification means MSF.
Reset signal φGC before being transferred to the input section (gate) of
The reset means MRES is turned on by L and the amplifying means M
The input section of SF is reset and sent as noise to the vertical output line via the selection means MSEL.

【0023】図3に上記撮像装置の動作を説明するため
のタイミングチャートを示す。一水平走査期間に時分割
で各色信号の読み出しが順次行われ(R1読出し(期間
φR)→G1読出し(期間φG)→B2読出し(期間φB)
→G2読出し(期間φG′))、色信号の読み出し後に、
一時蓄積容量CS、CNから信号とノイズが出力される。
減算アンプ10で信号からノイズが除去され、AGC1
1、A/Dコンバータ12を経てデジタル信号に変換さ
れ、R1信号、G1信号、B1信号、G2信号が出力(信号
出力out1)される。
FIG. 3 is a timing chart for explaining the operation of the imaging apparatus. The reading of each color signal is sequentially performed in a time-division manner during one horizontal scanning period (R1 reading (period φR) → G1 reading (period φG) → B2 reading (period φB).
→ G2 reading (period φG ')), after reading the color signal,
Signals and noise are output from the temporary storage capacitors C S and C N.
The noise is removed from the signal by the subtraction amplifier 10 and the AGC 1
1. The signal is converted into a digital signal via the A / D converter 12, and the R1, G1, B1, and G2 signals are output (signal output out1).

【0024】この実施例では、出力信号は各色ライン順
次信号である。A/D変換後のデジタル信号は後段のメ
モリで一時蓄積され画像処理がなされる。ノイズ除去方
式は本実施例に限らず、図18に示すクランプ型、図1
9に示すスライス型など各種方式のものが適用できる。
In this embodiment, the output signal is a color line sequential signal. The digital signal after the A / D conversion is temporarily stored in a memory at a subsequent stage and image processing is performed. The noise removal method is not limited to the present embodiment, but may be a clamp type shown in FIG.
Various types such as the slice type shown in FIG. 9 can be applied.

【0025】図4は各色信号読み出し期間内のタイミン
グを示すタイミングチャートである。
FIG. 4 is a timing chart showing the timing within each color signal readout period.

【0026】図4に示すR1読出し期間において、期間
T1では、信号φTS、φTN、φVLをハイレベルとしトラ
ンジスタM1、M2、M5をオン状態として、垂直出力線
及び一時蓄積容量CS、CN上の残留電荷の除去を行う。
In the R1 read period shown in FIG. 4, in the period T1, the signals .phi.TS, .phi.TN, and .phi.VL are set to the high level, the transistors M1, M2, and M5 are turned on, and the residual on the vertical output lines and the temporary storage capacitors CS and CN The charge is removed.

【0027】次に、期間T2では、信号φGCL、φSO、φ
TNをハイレベルとして、リセット手段MRESをオン状態
として共通アンプのリセットを行い、セレクト手段MSE
L、トランジスタM2をオン状態として、共通アンプのノ
イズの読み出し、一時蓄積容量CNへのノイズ蓄積を行
う。
Next, in a period T2, the signals φGCL, φSO, φ
TN is set to a high level, the reset means MRES is turned on, and the common amplifier is reset.
L, the transistor M2 is turned on to read out the noise of the common amplifier and store the noise in the temporary storage capacitor CN.

【0028】次に、期間T3では、信号φGT、φSO、φT
Sをハイレベルとして、転送手段MTX1をオン状態として
光電変換部から共通アンプの入力部(ゲート)へ信号を
転送し、セレクト手段MSEL、トランジスタM1をオン状
態として、光電変換信号の読み出し、一時蓄積容量CS
への光電変換信号蓄積を行う。なお、G1、B2、G2読
出し期間においても同様な処理がなされる。
Next, in the period T3, the signals φGT, φSO, φT
S is set to a high level, the transfer means MTX1 is turned on, a signal is transferred from the photoelectric conversion unit to the input unit (gate) of the common amplifier, the selection means MSEL and the transistor M1 are turned on, and the photoelectric conversion signal is read and temporarily stored. Capacity CS
The photoelectric conversion signal accumulation is performed. The same processing is performed in the G1, B2, and G2 read periods.

【0029】図5に上記撮像装置の全体構成図を示す。FIG. 5 shows an overall configuration diagram of the above-mentioned imaging apparatus.

【0030】各光電変換セルのリセット、ノイズ・信号
読み出し、光電変換の制御は垂直シフトレジスタ(V・
SR)15によって行われ、信号蓄積構成部100から
なるノイズ除去・メモリ部14の制御は水平シフトレジ
スタ(H・SR)13によって行われ、減算アンプ10
で信号からノイズが除去され、AGC11、A/Dコン
バータ12を経てデジタル信号に変換される。タイミン
グジェネレータ16は垂直シフトレジスタ(V・SR)
15、水平シフトレジスタ(H・SR)13、差動アン
プ10、AGC11、A/Dコンバータ12の動作を制
御する。17は行列状に光電変換セルが配置された撮像
素子部である。
Reset of each photoelectric conversion cell, readout of noise / signal, and control of photoelectric conversion are performed by vertical shift registers (V.
SR) 15 and control of the noise elimination / memory unit 14 composed of the signal accumulation / configuration unit 100 is performed by the horizontal shift register (H / SR) 13 and the subtraction amplifier 10
Then, the noise is removed from the signal, and the signal is converted into a digital signal via the AGC 11 and the A / D converter 12. The timing generator 16 is a vertical shift register (V / SR)
15, the operation of the horizontal shift register (H-SR) 13, the differential amplifier 10, the AGC 11, and the A / D converter 12 is controlled. Reference numeral 17 denotes an image sensor unit in which photoelectric conversion cells are arranged in a matrix.

【0031】なお、図1の実施例は2行4画素の単位セ
ルの分割読み出しと信号出力方法であったが、これをさ
らに増した複数行、複数画素でもよいことは勿論であ
る。
Although the embodiment shown in FIG. 1 employs a method of dividing and reading out a unit cell of two rows and four pixels and outputting a signal, it is needless to say that a plurality of rows and a plurality of pixels may be further increased.

【0032】また、以上の実施例では共通回路部分A
1,A2,・・・をアンプとして説明したが、例えばA/
D変換回路や圧縮回路等の他の信号処理回路であっても
よい。
In the above embodiment, the common circuit portion A
1, A2,... Have been described as amplifiers.
Other signal processing circuits such as a D conversion circuit and a compression circuit may be used.

【0033】図6は1つの光電変換部と1つのアンプで
単一セルが構成された場合の撮像装置の実施例を示す概
略的構成図である。図7はセル構成を示す図である。
FIG. 6 is a schematic configuration diagram showing an embodiment of an image pickup apparatus when a single cell is constituted by one photoelectric conversion unit and one amplifier. FIG. 7 is a diagram showing a cell configuration.

【0034】本実施例の場合は、転送スイッチ手段MTX
の制御線を奇数列と偶数列毎に設けて、信号φGT1、φG
T2で制御する。画素R1から読み出したノイズはトラン
ジスタM7、M2をオンして容量CNに蓄積され、画素R1
から読み出した画像信号はトランジスタM7、M1をオン
して容量CSに蓄積される。そして、容量CN,CSから
水平出力線に出力される。その後、同様に他の画素(G
1,G2,B2)から読み出したノイズと画像信号は容量
CN,CSに蓄積され、水平出力線に出力される。
In the case of this embodiment, the transfer switch means MTX
Are provided for each of the odd-numbered columns and the even-numbered columns, and the signals φGT1, φG
Control with T2. The noise read from the pixel R1 turns on the transistors M7 and M2 and is stored in the capacitor CN.
The image signal read out from is turned on and the transistors M7 and M1 are turned on and stored in the capacitor CS. Then, the signals are output from the capacitors CN and CS to the horizontal output line. Thereafter, the other pixels (G
1, G2, B2) and the image signal read out from the capacitors CN and CS are output to horizontal output lines.

【0035】アンプのノイズが無視できる用途、あるい
はプロセス技術の改善されればノイズメモリは不要とな
る。この場合は、転送スイッチMTXの制御線は奇数列と
偶数列で別々に設けず、共通配線としてもよい。φGTで
画素信号を垂直出力線に読出し、一時蓄積する。信号用
メモリとなる容量CSへの転送はφVT1,φVT2で制御す
る。
The noise memory becomes unnecessary if the application where the noise of the amplifier can be ignored or the process technology is improved. In this case, the control line of the transfer switch MTX may not be provided separately for the odd columns and the even columns, and may be a common line. The pixel signal is read out to the vertical output line by φGT and temporarily stored. The transfer to the capacitor CS serving as the signal memory is controlled by φVT1 and φVT2.

【0036】図8に撮像システム概略図を示す。同図に
示すように、光学系71、絞り80を通って入射した画
像光はCMOSセンサー72上に結像する。CMOSセ
ンサー72上に配置されている画素アレーによって光情
報は電気信号へと変換され、ノイズ除去されて出力され
る。その出力信号は信号処理回路73によって予め決め
られた方法によって信号変換処理され、出力される。信
号処理された信号は、記録系、通信系74により情報記
録装置により記録、あるいは情報転送される。記録、あ
るいは転送された信号は再生系77により再生される。
絞り80、CMOSセンサー72、信号処理回路73は
タイミング制御回路75により制御され、光学系71、
タイミング制御回路75、記録系・通信系74、再生系
77はシステムコントロール回路76により制御され
る。
FIG. 8 shows a schematic diagram of an imaging system. As shown in the figure, the image light incident through the optical system 71 and the stop 80 forms an image on the CMOS sensor 72. The optical information is converted into an electric signal by a pixel array arranged on the CMOS sensor 72, and is output after noise removal. The output signal is subjected to signal conversion processing by a signal processing circuit 73 by a predetermined method and output. The signal that has been subjected to the signal processing is recorded by a recording system and a communication system 74 by an information recording device, or information is transferred. The recorded or transferred signal is reproduced by the reproduction system 77.
The aperture 80, the CMOS sensor 72, and the signal processing circuit 73 are controlled by a timing control circuit 75, and the optical system 71,
The timing control circuit 75, the recording / communication system 74, and the reproduction system 77 are controlled by a system control circuit 76.

【0037】次に本発明の撮像装置に好適に用いること
ができる単位セルの具体的な構成について説明する。
Next, a specific configuration of a unit cell which can be suitably used in the image pickup apparatus of the present invention will be described.

【0038】図16に示す配置は、光電変換部173の
配列が等ピッチとはならないために(a1≠a2)、それ
ぞれの画素内の光を関知する領域(受光部)の間隔が等
しくならず、次のような問題が生じる。すなわち、同色
の等ピッチでない配列は、部分的に空間周波数、解像度
が等しくないために、解像度の低下、モアレ縞等の不良
を発生させる。また、モアレ縞の発生は非常に重大な問
題であり、そのような撮像装置は、事実上製品として成
り立ち得ない。これは前記単位セルを構成する画素数が
4以外の場合にも同様に成り立つ。
In the arrangement shown in FIG. 16, since the arrangement of the photoelectric conversion units 173 does not have the same pitch (a 1 ≠ a 2 ), the intervals of the light-related regions (light receiving units) in each pixel are equal. Instead, the following problem arises. That is, the non-equidistant arrangement of the same color partially causes the spatial frequency and the resolution to be unequal, thereby causing a decrease in resolution and defects such as moire fringes. In addition, the occurrence of moiré fringes is a very serious problem, and such an imaging device cannot be practically used as a product. This is also true when the number of pixels constituting the unit cell is other than four.

【0039】本発明者らは、複数画素中に分散された増
幅手段を有するCMOSセンサーにおいても、光電変換
部のピッチを一定とすることによってそれぞれの受光部
の間隔は等しくなり、解像度の低下とモアレ縞の発生を
防止し、開口率等を向上させ、良好な性能を得ることが
できる撮像装置を見出した。このような撮像装置は本発
明において好適に用いることができる。
The present inventors have found that even in a CMOS sensor having amplifying means dispersed in a plurality of pixels, by keeping the pitch of the photoelectric conversion parts constant, the intervals between the respective light receiving parts become equal, and the resolution is reduced. We have found an imaging device that can prevent the occurrence of moiré fringes, improve the aperture ratio, and obtain good performance. Such an imaging device can be suitably used in the present invention.

【0040】図9は2行2列の画素が共通アンプ部22
を共有する例を示す図である。図9では、共有する共通
アンプ部22が4つの画素の中心に配置され、4つの光
電変換部(a11,a12,a21,a22)が共通アンプ部2
2を取囲むように配置されている。ここで共通アンプ部
22には図2の増幅手段MSF、リセット手段MSEL、選
択手段MSELの他、転送手段MTX1〜MTX4を含んでい
る。
FIG. 9 shows that the pixels in two rows and two columns are connected to the common amplifier 22.
It is a figure showing the example which shares. In FIG. 9, the shared common amplifier unit 22 is arranged at the center of the four pixels, and the four photoelectric conversion units (a 11 , a 12 , a 21 , a 22 ) are connected to the common amplifier unit 2.
2 are arranged. Here, the common amplifier section 22 includes transfer means MTX1 to MTX4 in addition to the amplification means MSF, reset means MSEL, and selection means MSEL of FIG.

【0041】しかも、共通アンプ部22の占める各画素
における領域と中心対称な位置に遮光部25が存在して
いる。従って、各画素における光電変換部21の重心は
前記各画素の中心に存在する。これにより前記4つの光
電変換部(a11〜a22)は縦方向、横方向に等間隔aで
配置できている。
Further, the light shielding portion 25 exists at a position symmetrical with the center of each pixel occupied by the common amplifier portion 22. Therefore, the center of gravity of the photoelectric conversion unit 21 in each pixel exists at the center of each pixel. Whereby said four photoelectric conversion unit (a 11 ~a 22) is longitudinally and can be placed at equal intervals a laterally.

【0042】また図10では、共有する共通アンプ部3
2が4つの画素の横方向の中心部に配置され、4つの光
電変換部31(a11,a12,a21,a22)が共通アンプ
部32をはさむように配置されている。
In FIG. 10, the shared common amplifier unit 3
2 is arranged at the center of the four pixels in the horizontal direction, and the four photoelectric conversion units 31 (a 11 , a 12 , a 21 , a 22 ) are arranged so as to sandwich the common amplifier unit 32.

【0043】しかも、共通アンプ部32の占める各画素
における領域と中心対称な位置に遮光部35が存在して
いる。従って各画素における前記光電変換部31の重心
は各画素の中心に存在する。これにより4つの光電変換
部(a11〜a22)は縦方向、横方向に等間隔aで配置で
きている。
Further, the light-shielding portion 35 exists at a position symmetrical with the center of each pixel occupied by the common amplifier portion 32. Therefore, the center of gravity of the photoelectric conversion unit 31 in each pixel exists at the center of each pixel. Thus four photoelectric conversion unit (a 11 ~a 22) is longitudinally and can be placed at equal intervals a laterally.

【0044】上述した図10の実施形態は、横方向と縦
方向を入れ換えても全く同様に成立する。
The above-described embodiment shown in FIG. 10 is exactly the same even if the horizontal and vertical directions are exchanged.

【0045】図11にCMOSセンサーの画素アレー部
の第1の構成例の具体的なパターンレイアウト図を示
す。
FIG. 11 shows a specific pattern layout diagram of the first configuration example of the pixel array section of the CMOS sensor.

【0046】図11に示すCMOSセンサーは単結晶基
板上にレイアウトルール0.4μmによって形成されて
おり、画素の大きさは8μm角であり、増幅手段である
ソースフォロワアンプは2行2列の4画素で共有されて
いる。従って、図中点線領域で示した繰返し単位セル8
1の大きさは16μm×16μm角であり、2次元アレ
ーが形成されている。
The CMOS sensor shown in FIG. 11 is formed on a single crystal substrate according to a layout rule of 0.4 μm, the size of a pixel is 8 μm square, and a source follower amplifier as amplifying means is a 4 × 2 matrix. Shared by pixel. Therefore, the repetition unit cell 8 shown by the dotted line area in FIG.
The size of 1 is 16 μm × 16 μm square, and a two-dimensional array is formed.

【0047】光電変換部であるホトダイオード82a,
82b,82c,82dは各画素の中央に斜めに形成さ
れており、その形状は上下左右でほぼ回転対称、鏡像対
称である。またこれらのホトダイオード82a,82
b,82c,82dの重心gは各画素に対して同一にな
るように設計されている。また95は遮光部である。
The photodiodes 82a, which are photoelectric conversion units,
Reference numerals 82b, 82c, and 82d are formed obliquely at the center of each pixel, and their shapes are substantially rotationally symmetric and mirror image symmetrical in up, down, left, and right directions. Further, these photodiodes 82a, 82
The centers of gravity g of b, 82c and 82d are designed to be the same for each pixel. Reference numeral 95 denotes a light shielding unit.

【0048】88−aは左上の転送ゲート83−aを制
御する走査線、90は行選択線、92はMOSゲート9
3を制御するリセット線である。
Reference numeral 88-a denotes a scanning line for controlling the upper left transfer gate 83-a, reference numeral 90 denotes a row selection line, and reference numeral 92 denotes a MOS gate 9.
3 is a reset line for controlling the reset line 3.

【0049】ホトダイオード82a〜82d中に蓄積さ
れた信号電荷は転送ゲート83a〜83dを通ってFD
85に導かれる。ゲート83a〜83dのMOSサイズ
はL=0.4μm,W=1.0μm(Lはチャネル長、
Wはチャネル巾を示す。)である。
The signal charges stored in the photodiodes 82a to 82d pass through the transfer gates 83a to 83d and are transferred to the FDs.
It is led to 85. The MOS size of the gates 83a to 83d is L = 0.4 μm, W = 1.0 μm (L is a channel length,
W indicates the channel width. ).

【0050】FD85は巾0.4μmのAl配線によっ
てソースフォロワの入力ゲート86に接続されており、
FD85に転送された信号電荷は入力ゲート86の電圧
を変調させる。入力ゲート86のMOSの大きさはL=
0.8μm,W=1.0μmであり、FD85と入力ゲ
ート86の容量の和は5fF程度である。Q=CVであ
るから、105 個の電子の蓄積によって入力ゲート86
の電圧は、3.2V変化することになる。
The FD 85 is connected to an input gate 86 of a source follower by an Al wiring having a width of 0.4 μm.
The signal charge transferred to the FD 85 modulates the voltage of the input gate 86. The size of the MOS of the input gate 86 is L =
0.8 μm, W = 1.0 μm, and the sum of the capacitances of the FD 85 and the input gate 86 is about 5 fF. Q = because it is CV, input by the accumulation of 10 5 electrons gates 86
Will change by 3.2V.

【0051】VDD端子91から流れ込む電流は入力ゲー
ト86によって変調され、垂直出力線87に流出する。
垂直出力線87に流出する電流は図示しない信号処理回
路によって信号処理され、最終的には画像情報となる。
The current flowing from the V DD terminal 91 is modulated by the input gate 86 and flows out to the vertical output line 87.
The current flowing out to the vertical output line 87 is signal-processed by a signal processing circuit (not shown), and finally becomes image information.

【0052】その後、ホトダイオード82a〜82d,
FD85,入力ゲート86の電位を所定の値のVDDとす
るために、リセット線92に接続されたMOSゲート9
3を開くことで(このとき転送ゲート83a〜83dも
開く)、ホトダイオード82a〜82d,FD85,入
力ゲート86はVDD端子とショートされる。
Thereafter, the photodiodes 82a to 82d,
FD85, the potential of input gate 86 to the V DD predetermined value, MOS gate 9 is connected to a reset line 92
By opening 3 (the transfer gates 83a to 83d are also opened at this time), the photodiodes 82a to 82d, the FD 85, and the input gate 86 are short-circuited to the VDD terminal.

【0053】その後、転送ゲート83a〜83dを閉じ
ることでホトダイオード82a〜82dの電荷蓄積が再
び始まる。
Thereafter, by closing the transfer gates 83a to 83d, charge accumulation of the photodiodes 82a to 82d starts again.

【0054】ここで注目すべきは、水平方向に貫通する
配線88a〜88d,90,92の全ては透明な導体で
ある厚さ1500ÅのITO(Indium Tin Oxide)で形
成されているために、前記配線部分のうち、ホトダイオ
ード82a〜82d上では光が透過するため、前記ホト
ダイオードの重心gは光を感知する領域(受光部)の重
心と一致することである。
It should be noted here that all of the wirings 88a to 88d, 90, and 92 penetrating in the horizontal direction are formed of a transparent conductor of ITO (Indium Tin Oxide) having a thickness of 1500 mm. Since light passes through the photodiodes 82a to 82d in the wiring portion, the center of gravity g of the photodiode coincides with the center of gravity of the light sensing area (light receiving portion).

【0055】本構成例によれば画素ピッチが等しい比較
的高面積率、高開口率なCMOSセンサーを提供するこ
とができる。
According to this configuration example, it is possible to provide a CMOS sensor having a relatively high area ratio and a high aperture ratio in which the pixel pitch is equal.

【0056】本発明のCMOSセンサーの画素アレー部
の第2の構成例の具体的なパターンレイアウト図を図1
2に示す。
FIG. 1 shows a specific pattern layout of the second example of the configuration of the pixel array section of the CMOS sensor of the present invention.
It is shown in FIG.

【0057】図12において、102a〜102dはホ
トダイオード、103a〜103dは転送ゲート、10
5はFD、106はソースフォロワの入力ゲート、10
7は垂直出力線、108a〜108dは走査線、110
は行選択線、112はMOSゲート113を制御するリ
セット線である。
In FIG. 12, 102a to 102d are photodiodes, 103a to 103d are transfer gates,
5 is the FD, 106 is the input gate of the source follower, 10
7 is a vertical output line, 108a to 108d are scanning lines, 110
Is a row selection line, and 112 is a reset line for controlling the MOS gate 113.

【0058】本構成例においては水平方向に走る配線1
08a〜108d,110,112が3本づつ各画素の
中心を横切るように走っているために、ホトダイオード
102a〜102dに入射する光を妨げるような金属配
線であっても、光を感知する領域の重心gの移動は生じ
ず、従って前記画素の中心と一致する。
In this configuration example, the wiring 1 running in the horizontal direction
Since 08a to 108d, 110, and 112 run three by three across the center of each pixel, even if the wiring is a metal wiring that blocks light incident on the photodiodes 102a to 102d, the light sensing area No shift of the center of gravity g occurs, and thus coincides with the center of the pixel.

【0059】本構成例によれば電気抵抗が小さな通常の
(不透明な)金属を使用できるため、前記横方向の配線
の時定数が改善され、更に高速な撮像装置を提供するこ
とができる。
According to this configuration example, since a normal (opaque) metal having a small electric resistance can be used, the time constant of the horizontal wiring is improved, and a higher-speed imaging device can be provided.

【0060】以上の構成例では、遮光膜の下の部分が有
効利用されているため、図13に示すように遮光膜の下
の部分にまで光電変換部であるホトダイオードを形成
し、電荷蓄積部として機能させることも可能である。
In the above configuration example, since the portion below the light shielding film is effectively used, a photodiode as a photoelectric conversion unit is formed up to the portion below the light shielding film as shown in FIG. It is also possible to function as.

【0061】上述の第2構成例においては、最も光集光
効率が良い画素の中心を横切るために、撮像装置の感度
の低下が懸念される。そこで更に改善された第3構成例
を図14に示す。
In the above-described second configuration example, since the light crosses the center of the pixel having the highest light collection efficiency, there is a concern that the sensitivity of the image pickup apparatus may be reduced. A further improved third configuration example is shown in FIG.

【0062】本構成例においては転送ゲート123a〜
123d、FD125、ソースフォロワの入力ゲート1
26、リセット用のMOSゲート133全てが横方向を
走る配線(走査線128a〜128d,行選択線13
0,リセット線132)下に形成されているため、ホト
ダイオード122a〜122d,及びその開口を最大と
することができる。しかも、その開口部は各画素の中心
に連続して存在する。また遮光部は水平、垂直配線部分
に形成されている。
In this configuration example, the transfer gates 123a to 123a
123d, FD125, source follower input gate 1
26, a wiring in which all the reset MOS gates 133 run in the horizontal direction (scanning lines 128a to 128d, row selection line 13
0, the reset line 132), the photodiodes 122a to 122d and the openings thereof can be maximized. In addition, the opening exists continuously at the center of each pixel. The light-shielding portions are formed in horizontal and vertical wiring portions.

【0063】また本構成例においては前記増幅手段であ
るソースフォロワとリセット用のMOSトランジスタを
各画素の周辺の水平方向に分割して配置したためにコン
パクトに前記水平方向の配線下に配置可能となってい
る。
In this embodiment, since the source follower and the reset MOS transistor, which are the amplifying means, are divided and arranged in the horizontal direction around each pixel, they can be compactly arranged below the horizontal wiring. ing.

【0064】また右上の画素の配線下には未使用のスペ
ースが未だ存在するため、例えばスマートセンサー等、
新規の構成を追加することも可能である。
Since an unused space still exists below the upper right pixel wiring, for example, a smart sensor
It is also possible to add new configurations.

【0065】本構成例によれば、ホトダイオードの面
積、及び開口率が大きく取れることから、広ダイナミッ
クレンジ、高感度な撮像装置を提供することができる。
また、将来微細化が進み、前記ホトダイオードの開口部
分の寸法が光の波長程度になっても光が入射しなくなる
といった恐れは生じにくく、永らくその性能を発揮する
ことができる。
According to this configuration example, since the photodiode area and the aperture ratio can be made large, it is possible to provide an imaging device with a wide dynamic range and high sensitivity.
Further, in the future, even if the size of the opening portion of the photodiode becomes about the wavelength of light, there is little possibility that light will not enter even if the size of the opening portion of the photodiode becomes about the wavelength of light, and the performance can be exhibited for a long time.

【0066】また、以上の構成例では、増幅手段は単位
セルの中心部に配置し、光を感知する領域の重心と、画
素の中心は一致したものであるが、これらに限られず、
図15に示したような開口部が並進対称となっている構
成のものでもよい。
Further, in the above configuration example, the amplifying means is disposed at the center of the unit cell, and the center of gravity of the light sensing area coincides with the center of the pixel. However, the present invention is not limited to this.
A configuration in which the openings are translationally symmetric as shown in FIG. 15 may be used.

【0067】つまり、開口部が並進対称となっているこ
とにより、光を感知する領域は、等ピッチとなるためで
ある。
That is, since the openings are translationally symmetric, the light sensing regions have the same pitch.

【0068】[0068]

【発明の効果】以上詳細に説明したように、本発明によ
れば、一時蓄積容量の数を減らすことができ、さらにシ
フトレジスタの段数、共通回路、AGC、A/Dコンバ
ータの数を減らすことにより、チップサイズの縮小によ
りコストを低減することができる。
As described above in detail, according to the present invention, the number of temporary storage capacitors can be reduced, and the number of shift registers, the number of common circuits, the AGC, and the number of A / D converters can be reduced. Accordingly, the cost can be reduced by reducing the chip size.

【0069】また相乗的に低消費電力であり、その結
果、実装ノイズを減らすことの効果がある。さらに分割
駆動により一時蓄積手段が減る。このため、水平出力線
に接続される転送スイッチも減らすことができ、その結
果、水平出力線の寄生容量が小さくなる。従って、一時
蓄積手段から水平出力線への読み出しゲインを大きくす
ることができる。あるいは、また逆に一時蓄積容量を小
さくすることもできる。
Further, the power consumption is synergistically low, and as a result, there is an effect that mounting noise is reduced. Furthermore, the temporary storage means is reduced by the division drive. Therefore, the number of transfer switches connected to the horizontal output line can be reduced, and as a result, the parasitic capacitance of the horizontal output line decreases. Therefore, the readout gain from the temporary storage means to the horizontal output line can be increased. Alternatively, conversely, the temporary storage capacity can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】4つの光電変換部からの信号を1つの共通アン
プを経て読み出す撮像装置に本発明を適用した場合の実
施例を示す概略的構成図である。
FIG. 1 is a schematic configuration diagram illustrating an example in which the present invention is applied to an imaging apparatus that reads out signals from four photoelectric conversion units via one common amplifier.

【図2】光電変換セルSの構成を示す図である。FIG. 2 is a diagram showing a configuration of a photoelectric conversion cell S.

【図3】上記撮像装置の動作を説明するためのタイミン
グチャートである。
FIG. 3 is a timing chart for explaining the operation of the imaging apparatus.

【図4】各色信号読み出し期間内のタイミングを示すタ
イミングチャートである。
FIG. 4 is a timing chart showing timings in each color signal readout period.

【図5】上記撮像装置の全体構成図である。FIG. 5 is an overall configuration diagram of the imaging device.

【図6】1つの光電変換部と1つのアンプで単一セルが
構成された場合の撮像装置の実施例を示す概略的構成図
である。
FIG. 6 is a schematic configuration diagram illustrating an embodiment of an imaging apparatus when a single cell is configured by one photoelectric conversion unit and one amplifier.

【図7】セル構成を示す図である。FIG. 7 is a diagram showing a cell configuration.

【図8】本発明によるシステム概略図である。FIG. 8 is a schematic diagram of a system according to the present invention.

【図9】本発明の単位セルのレイアウトを示す図であ
る。
FIG. 9 is a diagram showing a layout of a unit cell according to the present invention.

【図10】本発明の単位セルのレイアウトを示す図であ
る。
FIG. 10 is a diagram showing a layout of a unit cell of the present invention.

【図11】本発明の一構成例のパターンレイアウト図で
ある。
FIG. 11 is a pattern layout diagram of one configuration example of the present invention.

【図12】本発明の一構成例のパターンレイアウト図で
ある。
FIG. 12 is a pattern layout diagram of one configuration example of the present invention.

【図13】本発明の一構成例を表す図である。FIG. 13 is a diagram illustrating a configuration example of the present invention.

【図14】本発明の一構成例のパターンレイアウト図で
ある。
FIG. 14 is a pattern layout diagram of one configuration example of the present invention.

【図15】本発明の一構成例を表す図である。FIG. 15 is a diagram illustrating a configuration example of the present invention.

【図16】撮像装置の一例の単位セルのレイアウト図で
ある。
FIG. 16 is a layout diagram of a unit cell of an example of an imaging device.

【図17】従来例の撮像装置のノイズ除去回路の一例を
示す概略的回路構成図である。
FIG. 17 is a schematic circuit diagram illustrating an example of a noise removal circuit of a conventional imaging apparatus.

【図18】従来例の撮像装置のノイズ除去回路の一例を
示す概略的回路構成図である。
FIG. 18 is a schematic circuit diagram illustrating an example of a noise removal circuit of a conventional imaging apparatus.

【図19】従来例の撮像装置のノイズ除去回路の一例を
示す概略的回路構成図である。
FIG. 19 is a schematic circuit configuration diagram illustrating an example of a noise removal circuit of a conventional imaging device.

【符号の説明】[Explanation of symbols]

S 光電変換セル(単位セル) a11、a12、a21、a22 光電変換部 A1 共通アンプ CS 信号蓄積用の容量 CN ノイズ蓄積用の容量 M1〜M8 トランジスタ 10 減算アンプ 11 AGC(オートゲインコントロール) 12 A/Dコンバータ 13 水平シフトレジスタ(H・SR) 100 信号蓄積構成部S photoelectric conversion cell (unit cell) a11, a12, a21, a22 photoelectric conversion section A1 common amplifier C S signal storage capacity C N noise storage capacity M1 to M8 transistor 10 subtraction amplifier 11 AGC (auto gain control) 12 A / D converter 13 Horizontal shift register (H / SR) 100 Signal storage component

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも行方向に配列された複数の光
電変換部と該複数の光電変換部からの信号が入力される
共通回路とを配置した単位セルが複数列配列された撮像
装置において、 前記単位セル内の各光電変換部について共有される信号
保持手段を垂直出力線に接続し、前記光電変換部から前
記共通回路を介して前記信号保持手段へ信号を読み出す
ことを特徴とする撮像装置。
1. An imaging apparatus in which unit cells each having at least a plurality of photoelectric conversion units arranged in a row direction and a common circuit to which signals from the plurality of photoelectric conversion units are input are arranged in a plurality of columns. An imaging apparatus, wherein a signal holding unit shared for each photoelectric conversion unit in a unit cell is connected to a vertical output line, and a signal is read from the photoelectric conversion unit to the signal holding unit via the common circuit.
【請求項2】 前記信号保持手段から信号出力を行う動
作を、各光電変換部ごとに順次行ってなる請求項1に記
載の撮像装置。
2. The imaging apparatus according to claim 1, wherein an operation of outputting a signal from the signal holding unit is sequentially performed for each photoelectric conversion unit.
【請求項3】 行方向及び列方向に複数の光電変換画素
を配列し、少なくとも二列の光電変換画素列について共
有する信号保持手段を垂直出力線に接続し、前記信号保
持手段は、画像信号を蓄積する画像信号保持手段と、該
画像信号のノイズ成分を蓄積するノイズ保持手段とから
なり、 各光電変換画素から前記信号保持手段へ信号を読み出
し、前記信号保持手段から信号出力を行う動作を、前記
少なくとも二列の光電変換画素列の列方向と行方向につ
いて各光電変換画素ごとに順次行ってなる撮像装置。
3. A plurality of photoelectric conversion pixels are arranged in a row direction and a column direction, and a signal holding means shared for at least two photoelectric conversion pixel columns is connected to a vertical output line. And a noise holding unit that stores a noise component of the image signal. The operation of reading a signal from each photoelectric conversion pixel to the signal holding unit and outputting a signal from the signal holding unit is performed. An imaging apparatus configured to sequentially perform the operation for each of the photoelectric conversion pixels in the column direction and the row direction of the at least two columns of the photoelectric conversion pixel columns.
【請求項4】 前記信号保持手段は、画像信号を蓄積す
る画像信号保持手段と、該画像信号のノイズ成分を蓄積
するノイズ保持手段とからなり、該画像信号から該ノイ
ズ成分を差分する手段を有することを特徴とする請求項
2又は請求項3に記載の撮像装置。
4. The signal holding means comprises: an image signal holding means for storing an image signal; and a noise holding means for storing a noise component of the image signal, and a means for differentiating the noise component from the image signal. The imaging device according to claim 2, wherein the imaging device has:
【請求項5】 前記光電変換部に色フィルタを配置した
ことを特徴とする請求項1に記載の撮像装置。
5. The imaging device according to claim 1, wherein a color filter is arranged in the photoelectric conversion unit.
【請求項6】 前記光電変換画素に色フィルタを配置し
たことを特徴とする請求項3に記載の撮像装置。
6. The imaging device according to claim 3, wherein a color filter is arranged in the photoelectric conversion pixel.
【請求項7】 前記光電変換画素は、光電変換部と該光
電変換部からの信号が入力されるアンプとを有する請求
項3に記載の撮像装置。
7. The imaging device according to claim 3, wherein the photoelectric conversion pixel includes a photoelectric conversion unit and an amplifier to which a signal from the photoelectric conversion unit is input.
【請求項8】 前記共通回路は、前記光電変換部からの
信号を増幅する増幅手段と前記単位セルをリセットする
リセット手段とを有することを特徴とする請求項1に記
載の撮像装置。
8. The imaging apparatus according to claim 1, wherein the common circuit includes an amplifying unit that amplifies a signal from the photoelectric conversion unit and a reset unit that resets the unit cell.
【請求項9】 前記アンプは、前記光電変換部からの信
号を増幅する増幅手段と前記単位セルをリセットするリ
セット手段とを有することを特徴とする請求項7に記載
の撮像装置。
9. The imaging apparatus according to claim 7, wherein the amplifier has an amplifying unit that amplifies a signal from the photoelectric conversion unit and a reset unit that resets the unit cell.
【請求項10】 請求項1、2、4、5、7、8のいず
れかの請求項に記載の撮像装置において、少なくとも前
記光電変換部間のピッチを少なくとも垂直方向又は水平
方向の一方向で等ピッチに調整するための調整手段を設
けたことを特徴とする撮像装置。
10. The imaging device according to claim 1, wherein at least a pitch between the photoelectric conversion units is at least one direction in a vertical direction or a horizontal direction. An imaging apparatus, comprising: an adjusting unit for adjusting the pitch at a constant pitch.
【請求項11】 請求項10に記載の撮像装置におい
て、前記調整手段は遮光膜であることを特徴とする撮像
装置。
11. An imaging apparatus according to claim 10, wherein said adjusting means is a light shielding film.
【請求項12】 請求項1、2、4、5、8、10、1
1のいずれかの請求項に記載の撮像装置において、前記
共通回路は単位セルの中心部に配置したことを特徴とす
る撮像装置。
12. The method of claim 1, 2, 4, 5, 8, 10, 1.
The imaging device according to claim 1, wherein the common circuit is arranged at a center of a unit cell.
【請求項13】 請求項11に記載の撮像装置におい
て、前記遮光膜は隣り合う単位セル間に配置したことを
特徴とする撮像装置。
13. The imaging device according to claim 11, wherein the light shielding film is arranged between adjacent unit cells.
【請求項14】 請求項13に記載の撮像装置におい
て、前記遮光膜は少なくとも前記単位セルの水平方向又
は垂直方向の中心線に対して線対称となる位置に配置し
たことを特徴とする撮像装置。
14. The imaging device according to claim 13, wherein the light-shielding film is arranged at least at a position which is line-symmetric with respect to a horizontal or vertical center line of the unit cell. .
【請求項15】 請求項1〜14のいずれかの請求項に
記載の撮像装置と、前記撮像装置へ光を結像するレンズ
と、前記撮像装置からの出力信号を処理する信号処理回
路とを有することを特徴とする撮像システム。
15. The imaging device according to claim 1, a lens that forms an image on the imaging device, and a signal processing circuit that processes an output signal from the imaging device. An imaging system comprising:
JP24873098A 1998-09-02 1998-09-02 Imaging apparatus and imaging system using the same Expired - Fee Related JP3854729B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24873098A JP3854729B2 (en) 1998-09-02 1998-09-02 Imaging apparatus and imaging system using the same
US09/386,345 US6734906B1 (en) 1998-09-02 1999-08-31 Image pickup apparatus with photoelectric conversion portions arranged two dimensionally

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24873098A JP3854729B2 (en) 1998-09-02 1998-09-02 Imaging apparatus and imaging system using the same

Publications (2)

Publication Number Publication Date
JP2000078475A true JP2000078475A (en) 2000-03-14
JP3854729B2 JP3854729B2 (en) 2006-12-06

Family

ID=17182507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24873098A Expired - Fee Related JP3854729B2 (en) 1998-09-02 1998-09-02 Imaging apparatus and imaging system using the same

Country Status (1)

Country Link
JP (1) JP3854729B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298177A (en) * 2000-04-14 2001-10-26 Canon Inc Solid-state image pickup device and image pickup system
JP2002044527A (en) * 2000-06-22 2002-02-08 Pixim Inc Improved design for digital pixel sensor
EP1185089A2 (en) * 2000-08-28 2002-03-06 Canon Kabushiki Kaisha Image pickup apparatus
JP2003018465A (en) * 2001-07-03 2003-01-17 Canon Inc Imaging apparatus and imaging system
JP2004048444A (en) * 2002-07-12 2004-02-12 Fuji Photo Film Co Ltd Solid-state imaging device
JP2004222286A (en) * 2003-01-13 2004-08-05 Samsung Electronics Co Ltd Imaging element and fixed pattern noise reduction method
WO2004073301A1 (en) * 2003-02-13 2004-08-26 Matsushita Electric Industrial Co., Ltd. Solid-state image pickup device, drive method thereof, and camera using the same
JP2005020716A (en) * 2003-05-30 2005-01-20 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2005198239A (en) * 2003-12-29 2005-07-21 Hynix Semiconductor Inc Image sensor with improved sensitivity and method for driving the same
JP2006054276A (en) * 2004-08-11 2006-02-23 Sony Corp Solid state image sensor
JP2006303328A (en) * 2005-04-22 2006-11-02 Sharp Corp Method of manufacturing solid imaging apparatus, and electronic information apparatus
US7148927B2 (en) 2002-03-01 2006-12-12 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
WO2007015420A1 (en) * 2005-08-03 2007-02-08 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
US7189951B2 (en) 2002-04-09 2007-03-13 Canon Kabushiki Kaisha Solid-state image sensing apparatus and image sensing system
JP2007142776A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2007180336A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Semiconductor imaging device
JP2008005155A (en) * 2006-06-21 2008-01-10 Sharp Corp Amplified solid-state imaging apparatus, its driving method, and electronic information device
JP2008109543A (en) * 2006-10-27 2008-05-08 Matsushita Electric Ind Co Ltd Imaging apparatus
US7456886B2 (en) 2002-10-08 2008-11-25 Canon Kabushiki Kaisha Image pickup apparatus
JP2009503896A (en) * 2005-08-01 2009-01-29 マイクロン テクノロジー, インク. Combination of double conversion gain gate and capacitor
JP2010034576A (en) * 2009-10-30 2010-02-12 Renesas Technology Corp Imaging device
US7671912B2 (en) 2002-11-20 2010-03-02 Sony Corporation Solid-state imaging apparatus
JP2010087962A (en) * 2008-10-01 2010-04-15 Sony Corp Solid-state imaging device, imaging apparatus, and ad conversion gain adjusting method
JP2010098193A (en) * 2008-10-17 2010-04-30 Canon Inc Image sensing device and image sensing system
WO2010074007A1 (en) * 2008-12-24 2010-07-01 シャープ株式会社 Solid-state imaging element, method for manufacturing same, and electronic information device
JP2011249825A (en) * 2011-07-19 2011-12-08 Sony Corp Semiconductor image sensor
JP2011254090A (en) * 2011-07-19 2011-12-15 Sony Corp Semiconductor image sensor
US8405178B2 (en) 2009-08-17 2013-03-26 Hitachi, Ltd. Solid-state image sensor device
JP2014060453A (en) * 2013-12-18 2014-04-03 Sony Corp Solid-state imaging device and electronic apparatus
CN110663248A (en) * 2017-06-02 2020-01-07 索尼半导体解决方案公司 Solid-state image pickup device and electronic apparatus

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721380B2 (en) * 2000-04-14 2011-07-13 キヤノン株式会社 Solid-state imaging device and imaging system
JP2001298177A (en) * 2000-04-14 2001-10-26 Canon Inc Solid-state image pickup device and image pickup system
JP4686060B2 (en) * 2000-06-22 2011-05-18 ピクシム インコーポレイテッド Improved design of digital pixel sensors
JP2002044527A (en) * 2000-06-22 2002-02-08 Pixim Inc Improved design for digital pixel sensor
EP1185089A2 (en) * 2000-08-28 2002-03-06 Canon Kabushiki Kaisha Image pickup apparatus
EP1185089A3 (en) * 2000-08-28 2004-11-24 Canon Kabushiki Kaisha Image pickup apparatus
JP2003018465A (en) * 2001-07-03 2003-01-17 Canon Inc Imaging apparatus and imaging system
JP4551588B2 (en) * 2001-07-03 2010-09-29 キヤノン株式会社 Imaging apparatus and imaging system
US7148927B2 (en) 2002-03-01 2006-12-12 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
US7719587B2 (en) 2002-03-01 2010-05-18 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
US7189951B2 (en) 2002-04-09 2007-03-13 Canon Kabushiki Kaisha Solid-state image sensing apparatus and image sensing system
JP2004048444A (en) * 2002-07-12 2004-02-12 Fuji Photo Film Co Ltd Solid-state imaging device
US7456886B2 (en) 2002-10-08 2008-11-25 Canon Kabushiki Kaisha Image pickup apparatus
US7671912B2 (en) 2002-11-20 2010-03-02 Sony Corporation Solid-state imaging apparatus
US8994863B2 (en) 2002-11-20 2015-03-31 Sony Corporation Solid state imaging device having a plurality of unit cells
US8482643B2 (en) 2002-11-20 2013-07-09 Sony Corporation Solid-state imaging device including a plurality of pixels and a plurality of signal lines
JP2004222286A (en) * 2003-01-13 2004-08-05 Samsung Electronics Co Ltd Imaging element and fixed pattern noise reduction method
US8084796B2 (en) 2003-02-13 2011-12-27 Panasonic Corporation Solid state imaging apparatus, method for driving the same and camera using the same
US7436010B2 (en) 2003-02-13 2008-10-14 Matsushita Electric Industrial Co., Ltd. Solid state imaging apparatus, method for driving the same and camera using the same
US8378401B2 (en) 2003-02-13 2013-02-19 Panasonic Corporation Solid state imaging apparatus, method for driving the same and camera using the same
WO2004073301A1 (en) * 2003-02-13 2004-08-26 Matsushita Electric Industrial Co., Ltd. Solid-state image pickup device, drive method thereof, and camera using the same
US8106431B2 (en) 2003-02-13 2012-01-31 Panasonic Corporation Solid state imaging apparatus, method for driving the same and camera using the same
JP2005020716A (en) * 2003-05-30 2005-01-20 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2005198239A (en) * 2003-12-29 2005-07-21 Hynix Semiconductor Inc Image sensor with improved sensitivity and method for driving the same
JP2006054276A (en) * 2004-08-11 2006-02-23 Sony Corp Solid state image sensor
JP4492250B2 (en) * 2004-08-11 2010-06-30 ソニー株式会社 Solid-state image sensor
US7812878B2 (en) 2004-08-11 2010-10-12 Sony Corporation Solid-state imaging device and imaging apparatus
JP2006303328A (en) * 2005-04-22 2006-11-02 Sharp Corp Method of manufacturing solid imaging apparatus, and electronic information apparatus
JP4518996B2 (en) * 2005-04-22 2010-08-04 シャープ株式会社 Solid-state imaging device manufacturing method and electronic information device
US8158921B2 (en) 2005-08-01 2012-04-17 Micron Technology, Inc. Dual conversion gain gate and capacitor combination
JP2009503896A (en) * 2005-08-01 2009-01-29 マイクロン テクノロジー, インク. Combination of double conversion gain gate and capacitor
US7719040B2 (en) 2005-08-03 2010-05-18 Panasonic Corporation Solid-state imaging device
WO2007015420A1 (en) * 2005-08-03 2007-02-08 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
JP4695967B2 (en) * 2005-11-17 2011-06-08 パナソニック株式会社 Solid-state imaging device and camera
JP2007142776A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2007180336A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Semiconductor imaging device
JP2008005155A (en) * 2006-06-21 2008-01-10 Sharp Corp Amplified solid-state imaging apparatus, its driving method, and electronic information device
JP2008109543A (en) * 2006-10-27 2008-05-08 Matsushita Electric Ind Co Ltd Imaging apparatus
JP2010087962A (en) * 2008-10-01 2010-04-15 Sony Corp Solid-state imaging device, imaging apparatus, and ad conversion gain adjusting method
US8427551B2 (en) 2008-10-01 2013-04-23 Sony Corporation Solid-state imaging device, imaging apparatus, and ad conversion gain adjusting method
JP2010098193A (en) * 2008-10-17 2010-04-30 Canon Inc Image sensing device and image sensing system
US8946611B2 (en) 2008-12-24 2015-02-03 Sharp Kabushiki Kaisha Solid-state imaging element and manufacturing method thereof, and electronic information device
WO2010074007A1 (en) * 2008-12-24 2010-07-01 シャープ株式会社 Solid-state imaging element, method for manufacturing same, and electronic information device
JP2010153511A (en) * 2008-12-24 2010-07-08 Sharp Corp Solid-state image sensor and method of manufacturing the same, and electronic information apparatus
US8405178B2 (en) 2009-08-17 2013-03-26 Hitachi, Ltd. Solid-state image sensor device
JP2010034576A (en) * 2009-10-30 2010-02-12 Renesas Technology Corp Imaging device
JP2011254090A (en) * 2011-07-19 2011-12-15 Sony Corp Semiconductor image sensor
JP2011249825A (en) * 2011-07-19 2011-12-08 Sony Corp Semiconductor image sensor
JP2014060453A (en) * 2013-12-18 2014-04-03 Sony Corp Solid-state imaging device and electronic apparatus
CN110663248A (en) * 2017-06-02 2020-01-07 索尼半导体解决方案公司 Solid-state image pickup device and electronic apparatus
CN110663248B (en) * 2017-06-02 2023-10-24 索尼半导体解决方案公司 Solid-state image pickup device and electronic apparatus

Also Published As

Publication number Publication date
JP3854729B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP3854729B2 (en) Imaging apparatus and imaging system using the same
JP3697073B2 (en) Imaging apparatus and imaging system using the same
US6734906B1 (en) Image pickup apparatus with photoelectric conversion portions arranged two dimensionally
US10778918B2 (en) Solid-state imaging device
JP4290066B2 (en) Solid-state imaging device and imaging system
JP3559714B2 (en) Imaging device and imaging system using the same
KR101204571B1 (en) Solid-state imaging device, method for driving the same and camera
JP4611296B2 (en) Charge binning image sensor
US8614757B2 (en) Arrangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing apparatus
JP4423112B2 (en) Solid-state imaging device and imaging system
JP3524391B2 (en) Imaging device and imaging system using the same
JP4497872B2 (en) Imaging device
JP3854720B2 (en) Imaging apparatus and imaging system using the same
KR100823376B1 (en) Imaging apparatus and imaging system
RU2378791C2 (en) Device for image perception and image grabber system
JP2000295530A (en) Solid-state image pickup device
JP3501693B2 (en) Color imaging device and imaging system
JP5089674B2 (en) Imaging device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees