[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000061488A - Treatment of organic wastewater and chemical agent used therein - Google Patents

Treatment of organic wastewater and chemical agent used therein

Info

Publication number
JP2000061488A
JP2000061488A JP11036390A JP3639099A JP2000061488A JP 2000061488 A JP2000061488 A JP 2000061488A JP 11036390 A JP11036390 A JP 11036390A JP 3639099 A JP3639099 A JP 3639099A JP 2000061488 A JP2000061488 A JP 2000061488A
Authority
JP
Japan
Prior art keywords
treatment
activated sludge
sludge
treatment tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11036390A
Other languages
Japanese (ja)
Other versions
JP3167021B2 (en
Inventor
Kazuyoshi Suzuki
和義 鈴木
Kenta Kosho
健太 古庄
Osamu Koyama
修 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26375433&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000061488(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP3639099A priority Critical patent/JP3167021B2/en
Publication of JP2000061488A publication Critical patent/JP2000061488A/en
Application granted granted Critical
Publication of JP3167021B2 publication Critical patent/JP3167021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of generated excess sludge without deteriorating the quality of treated water discharged from the final stage and to reduce excess sludge treatment cost in the treatment utilizing activated sludge. SOLUTION: This purification treatment utilizing activated sludge involves in any one of its treatment process stages, controlling the pH or temp. of organic wastewater, or adding at least one chemical agent selected from alkali agents, acids, waste acids and compounds each having a sterilizing or bacterolytic effect on the activated sludge to organic wastewater, or alternatively, performing a combination of plural of the above procedures, to subject a part of constituent bacteria of the activated sludge to sterilization or bacteriolysis and to inhibit growth of the activated sludge from being caused in the treatment process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃水の処理
方法に関し、更に詳しくは、有機性廃水を活性汚泥で処
理する場合に、活性汚泥を構成している細菌の増殖を抑
制し、余剰汚泥の発生量を格段に減量化できる有機性廃
水の処理方法及びこれに使用する薬剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic wastewater, and more particularly, when treating organic wastewater with activated sludge, it suppresses the growth of bacteria constituting the activated sludge and produces a surplus. The present invention relates to a method for treating organic wastewater capable of remarkably reducing the amount of sludge generated, and a chemical agent used therefor.

【0002】[0002]

【従来の技術】水中の汚濁物質は、河川や湖沼等の自然
の中で、沈殿、凝集、酸化、還元等の物理化学的、生物
学的な作用を受けて分解除去されて浄化される。特に有
機物を含んだ汚濁は、微生物によって生物学的な作用で
浄化され易い。これを利用した有機性廃水の浄化方法と
して、好気性微生物を含んだ活性汚泥により有機性廃水
を処理する活性汚泥法がある。該方法は、浄化能力が高
く、処理経費が比較的少なくて済む等の利点があるた
め、これを利用した種々の方法が提案されており、下水
処理や産業廃水処理等において広く一般に使用されてい
る。
2. Description of the Related Art Pollutants in water are decomposed and purified in nature such as rivers and lakes by being subjected to physicochemical and biological actions such as precipitation, aggregation, oxidation and reduction. In particular, contaminants containing organic substances are easily purified by microorganisms by a biological action. As a method for purifying organic wastewater utilizing this, there is an activated sludge method of treating organic wastewater with activated sludge containing aerobic microorganisms. Since this method has advantages such as high purification capacity and relatively low treatment cost, various methods utilizing this method have been proposed and widely used in sewage treatment and industrial wastewater treatment. There is.

【0003】上記活性汚泥法では、調整槽等で廃水のp
H調整や均一化等の前処理を行なった後、有機性廃水を
エアレーションタンク(曝気槽)へと導き、この曝気槽
内で、活性汚泥によりBODで示される廃水中の有機汚
濁成分を分解させて浄化処理している。この際、分解し
たBODのうちの50〜70%は微生物の維持エネルギ
ーとして消費されるが、残りの30〜50%は菌体の増
殖に使用されるので活性汚泥の量は次第に増加してい
く。このため、一般的には、図4に示したように、曝気
槽で処理された廃水を沈澱槽へと導き、沈殿した活性汚
泥の中から有機性廃水の浄化処理に必要な量だけ返送汚
泥として曝気槽内へと戻し、それ以外の活性汚泥を余剰
汚泥として取り除いている。このように、活性汚泥を利
用した有機性廃水の浄化処理では多量の余剰汚泥が発生
するが、この余剰汚泥は、生物難分解性物質等を含み、
粘性が高く、取り扱いにくいこと等の欠点があり、有機
性廃水を活性汚泥法によって浄化処理する場合において
は、常に余剰汚泥処理が問題となる。
In the above-mentioned activated sludge method, waste water p
After pretreatment such as H adjustment and homogenization, the organic wastewater is led to the aeration tank (aeration tank), and in this aeration tank, organic sludge components in the wastewater indicated by BOD are decomposed by activated sludge. And is purifying. At this time, 50 to 70% of the decomposed BOD is consumed as maintenance energy for microorganisms, but the remaining 30 to 50% is used for the growth of bacterial cells, so the amount of activated sludge gradually increases. . Therefore, generally, as shown in FIG. 4, the wastewater treated in the aeration tank is guided to the settling tank, and only the amount of the returned sludge necessary for the purification treatment of the organic wastewater from the precipitated activated sludge is returned. As a result, it is returned to the aeration tank and the other activated sludge is removed as excess sludge. In this way, a large amount of excess sludge is generated in the purification treatment of organic wastewater using activated sludge, but this excess sludge contains a biodegradable substance or the like,
It has drawbacks such as high viscosity and difficulty in handling, and when purifying organic wastewater by the activated sludge method, excess sludge treatment is always a problem.

【0004】これに対し、現在、一般に行なわれている
余剰汚泥の処理方法には、余剰汚泥を脱水して水分を分
離し、固形分を焼却するか或いは産業廃棄物として埋め
立て処分等する方法、或いは余剰汚泥を嫌気性消化処理
して、メタンガス、二酸化炭素、水素、硫化水素等に分
解して減量化し、その後に分解されなかった余剰汚泥及
びその他の固形物を脱水により分離し、固形分を焼却す
るか或いは産業廃棄物として処分する方法等がある。更
に、近年では、余剰汚泥の減量化を目的として、余剰汚
泥の一部をオゾンにより処理した後、オゾン処理汚泥を
曝気槽に導入して好気的処理を行う方法が知られている
(特公昭57−19719号、特開平7−88495号
公報等参照)。
On the other hand, currently used methods for treating excess sludge are the methods of dehydrating the excess sludge to separate the water content, incinerating the solid content, or landfilling it as industrial waste. Alternatively, excess sludge is subjected to anaerobic digestion, decomposed into methane gas, carbon dioxide, hydrogen, hydrogen sulfide, etc. to reduce the amount, and thereafter excess sludge and other solid matter that have not been decomposed are separated by dehydration to remove solids. There are methods such as incineration or disposal as industrial waste. Furthermore, in recent years, for the purpose of reducing excess sludge, a method of treating a part of the excess sludge with ozone and then introducing the ozone-treated sludge into an aeration tank to perform aerobic treatment is known. (See JP-A-57-19719, JP-A-7-88495, etc.).

【0005】しかしながら、上記した従来の余剰汚泥の
処理方法には、下記に述べるような種々の問題があっ
た。先ず、余剰汚泥を嫌気性消化処理を行わずに脱水機
により濃縮し、焼却或いは産業廃棄物として処分する場
合には、余剰汚泥量が多いために、処理コストが著しく
嵩むという問題がある。現在の汚泥の処分費は2〜3万
円/m3と高く、更に、この処分費は今後一層高騰する
傾向にある。又、埋め立て処分場の確保の問題や汚泥焼
却に伴うエネルギー消費の増加の問題等、地球規模の環
境に及ぼす影響も看過できない。
However, the above-mentioned conventional method for treating excess sludge has various problems as described below. First, when the excess sludge is concentrated by a dehydrator without performing anaerobic digestion treatment and incinerated or disposed of as industrial waste, there is a problem that the treatment cost is significantly increased due to the large amount of excess sludge. The current sludge disposal cost is as high as 20,000 yen / m 3, and this disposal cost tends to rise further in the future. In addition, the impact on the global environment such as the problem of securing landfill disposal sites and the problem of increased energy consumption due to sludge incineration cannot be overlooked.

【0006】又、先に述べた嫌気性消化による余剰汚泥
の減量化方法においては、エネルギーがメタンガスとし
て回収される等の利点があるものの、消化に要する日数
が20〜40日と長く、余剰汚泥の分解率が60%程度
と低いため、広い敷地面積が要求され、更に未分解余剰
汚泥及びその他の固形物を脱水機により分離し、焼却す
るか或いは産業廃棄物として処分しなければならないた
め、非効率で処理コストが嵩むという問題がある。更
に、上記と同様に、地球環境に及ぼす影響の問題もあ
る。
The above-mentioned method for reducing excess sludge by anaerobic digestion has the advantage that energy is recovered as methane gas, but the number of days required for digestion is as long as 20 to 40 days, and excess sludge is required. Since the decomposition rate of is as low as about 60%, a large site area is required, and undecomposed excess sludge and other solids must be separated by a dehydrator and incinerated or disposed of as industrial waste. There is a problem of inefficiency and high processing cost. Further, similar to the above, there is a problem of influence on the global environment.

【0007】又、余剰汚泥の一部をオゾンにより処理す
る方法は、余剰汚泥の容量をかなり減少させることがで
きるが、特別にオゾン発生装置を設ける必要がある。そ
のため、小規模施設には不向きであり、設備費が高い上
に運転費が嵩み処理コストが上昇し、経済性に劣るとい
う実用上の問題がある。
Further, the method of treating a part of the excess sludge with ozone can considerably reduce the volume of the excess sludge, but it is necessary to provide a special ozone generator. Therefore, it is not suitable for small-scale facilities, and there is a practical problem that the facility cost is high, the operating cost is high, the treatment cost is high, and the economy is poor.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、活性汚泥を利用した有機性廃水の処理方法におい
て、最終段階で放出される処理水の水質を悪化させるこ
となく、余剰汚泥の発生量を大幅に減量して、余剰汚泥
処理にかかるコストの低減が可能な、簡易且つ経済的な
有機性廃水の処理方法及びこれに使用する薬剤を提供す
ることにある。
Therefore, an object of the present invention is to produce an excess sludge in a method for treating organic wastewater using activated sludge without deteriorating the quality of the treated water discharged at the final stage. An object of the present invention is to provide a simple and economical method for treating organic wastewater, which is capable of significantly reducing the amount of the sludge to reduce the cost required for treating excess sludge, and a chemical agent used therefor.

【0009】[0009]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、有機性廃水
を活性汚泥を利用して浄化処理する場合に、いずれかの
処理過程で、pH又は温度を制御することによって、或
いは、アルカリ剤、酸又は廃酸、活性汚泥に対して殺菌
作用又は溶菌作用を有する化合物から選ばれる少なくと
も1種を添加することによって、又は、上記の要件を2
以上組み合わせることによって、活性汚泥を構成してい
る細菌の一部を殺菌又は溶菌して処理過程中における活
性汚泥の増殖を抑制することを特徴とする有機性廃水の
処理方法、及びこれに使用する薬剤である。
The above objects can be achieved by the present invention described below. That is, the present invention, when purifying the organic wastewater using the activated sludge, by controlling the pH or temperature in any treatment process, or by alkaline agent, acid or waste acid, activated sludge Or by adding at least one selected from compounds having a bactericidal action or a bacteriolytic action to
By combining the above, a method for treating organic wastewater characterized by sterilizing or lysing a part of bacteria constituting active sludge to suppress the growth of activated sludge during the treatment process, and used for this It is a drug.

【0010】[0010]

【発明の実施の形態】本発明の好ましい実施の形態を挙
げて更に詳細に説明する。本発明者らは、上記従来技術
の問題点を解決すべく鋭意研究の結果、図4に示したよ
うな、従来から行なわれている活性汚泥を利用した有機
性廃水の処理方法において、曝気槽内や沈殿槽から取り
出した一部の活性汚泥を、pH又は温度を制御すること
によって、或いは、アルカリ剤、酸又は廃酸、活性汚泥
に対して殺菌作用又は溶菌作用を有する化合物のいずれ
かを添加をすることによって、又は、上記の要件を2以
上組み合わせることによって(以下、単に、各種殺菌又
は溶菌処理手段とも呼ぶ)殺菌又は溶菌処理し、処理し
たものを再び曝気槽に戻して活性汚泥処理を行なえば、
従来の場合と比較して最終的な処理水の水質を損なうこ
となく、余剰汚泥の発生量を極めて僅かとすることがで
きることを知見して本発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The preferred embodiments of the present invention will be described in more detail. As a result of earnest research to solve the above-mentioned problems of the prior art, the present inventors have conducted an aeration tank in a conventional organic wastewater treatment method using activated sludge as shown in FIG. Some of the activated sludge taken out from the inside or from the settling tank, by controlling the pH or temperature, or an alkaline agent, acid or waste acid, a compound having a bactericidal action or bacteriolytic action to the activated sludge Sterilization or bactericidal treatment by adding or by combining two or more of the above requirements (hereinafter, also simply referred to as various sterilizing or bacteriolytic treatment means) and returning the treated substance to the aeration tank again for activated sludge treatment. If you do
The present inventors have found that the amount of surplus sludge generated can be made extremely small without deteriorating the quality of the final treated water as compared with the conventional case, and arrived at the present invention.

【0011】即ち、上記に挙げた各種殺菌又は溶菌処理
手段によって活性汚泥を処理すると、上記手段のいずれ
もが、活性汚泥を構成している細菌の細胞壁(膜)に損
傷を生じさせて破壊し細菌を溶菌させる機能や、細菌を
構成している細胞質を加水分解して機能障害を生じさせ
るといった機能に優れているため、細菌の細胞壁が破壊
されて細胞壁内の多糖類や蛋白質等が溶け出て(本明細
書では、この状態を溶菌と呼ぶ)、細菌自体がBODで
示される廃水中の有機汚濁成分となって細菌の格好な餌
となるため、活性汚泥の余分な増殖が抑制され、余剰汚
泥の発生量の減量化が達成される。更に、上記曝気槽内
や沈殿槽から取り出した一部の活性汚泥を処理する方法
に限定されることなく、活性汚泥を利用して有機性廃水
を浄化処理する場合に、いずれかの処理過程で、活性汚
泥を構成している細菌の一部を、各種殺菌又は溶菌処理
手段によって殺菌又は溶菌処理すれば、処理過程中にお
ける活性汚泥量を浄化処理に必要且つ十分な量に保つこ
とができ、最終的な処理水の水質を損なうことなく、余
剰汚泥の発生量を極めて僅かにすることができることが
わかった。
That is, when the activated sludge is treated by the above-mentioned various sterilization or bacteriolysis treatment means, all of the above means destroy and destroy the cell wall (membrane) of the bacteria constituting the activated sludge. It has excellent functions to lyse bacteria and hydrolyze the cytoplasm that makes up the bacteria to cause functional disorders, so the bacterial cell wall is destroyed and polysaccharides and proteins in the cell wall are dissolved. (In this specification, this state is referred to as lysis), since the bacteria themselves become organic pollutants in the wastewater indicated by BOD and serve as a suitable bait for the bacteria, excessive growth of the activated sludge is suppressed, Reduction of excess sludge generation is achieved. Furthermore, the method is not limited to the method of treating a part of the activated sludge taken out from the aeration tank or the settling tank, and in the case of purifying the organic wastewater by using the activated sludge, any of the treatment steps may be performed. , A part of the bacteria constituting the activated sludge is sterilized or lysed by various sterilization or lysis treatment means, and the amount of activated sludge in the treatment process can be maintained at a necessary and sufficient amount for purification treatment, It was found that the amount of excess sludge generated can be made extremely small without impairing the quality of the final treated water.

【0012】本発明者らは、pH又は温度の制御、或い
は、アルカリ剤、酸又は廃酸及び活性汚泥に対して殺菌
作用又は溶菌作用を有する化合物の添加、或いはこれら
を適宜に組み合わせた各種の手段によって活性汚泥を構
成している細菌の殺菌又は溶菌処理を行なうことで、余
剰汚泥の発生量が低減化できるのは、下記のようにして
活性汚泥の余分な増殖が抑制されるからであると考えて
いる。活性汚泥による廃水の生物処理において、被処理
水中の有機物は、活性汚泥を構成している細菌によって
酸化分解され、これに伴い、細菌自体は有機物を栄養源
として増殖する。従って、細菌処理による現象のみをみ
れば、廃水中の有機物が細菌に変換したと言うこともで
きる。本発明者らの検討によれば、有機物の細菌への変
換率といった点からみると、その変換率は約40〜50
%程度であり、有機物100重量部は、約40〜50重
量部の細菌に変換される。一方、この現象を細菌側から
見ると、細菌量が40〜50重量部増加したことにな
る。そして、これらの細菌は、細菌同士が共食いし合っ
たり、原生動物によって捕食されて、凝集性及び沈降性
のよい活性汚泥となって沈澱したりする。
The inventors of the present invention have controlled the pH or the temperature, or added a compound having a bactericidal action or a bactericidal action to an alkaline agent, an acid or a waste acid and activated sludge, or various combinations of these. By sterilizing or lysing the bacteria that make up the activated sludge by means, the amount of excess sludge generated can be reduced because the excessive growth of activated sludge is suppressed as follows. I believe. In the biological treatment of wastewater with activated sludge, the organic matter in the water to be treated is oxidatively decomposed by the bacteria constituting the activated sludge, and along with this, the bacteria themselves grow using the organic matter as a nutrient source. Therefore, it can be said that the organic matter in the wastewater was converted into bacteria by observing only the phenomenon caused by the bacterial treatment. According to the study by the present inventors, in terms of conversion rate of organic matter to bacteria, the conversion rate is about 40 to 50.
%, And 100 parts by weight of organic matter is converted to about 40 to 50 parts by weight of bacteria. On the other hand, when this phenomenon is viewed from the bacteria side, the amount of bacteria has increased by 40 to 50 parts by weight. Then, these bacteria are cannibalized with each other, or are predated by protozoa, and are precipitated as activated sludge having good cohesiveness and sedimentability.

【0013】そこで、本発明者らは、所謂、細菌の共食
いを助長することができれば、有機物を餌として次第に
増殖していく細菌(活性汚泥)の量を減らすことがで
き、余剰汚泥の発生の問題を解消することができるので
はないかと考え、細菌の共食いを助長させることができ
る条件について種々の検討を行なった。その結果、活性
汚泥の処理槽のpH又は温度を制御することによって、
或いは、アルカリ剤、酸又は廃酸、活性汚泥に対して殺
菌作用又は溶菌作用を有する化合物のいずれかを添加を
することによって、更には、これらの手段を組み合わせ
た条件で処理することによって、活性汚泥を構成してい
る細菌の細胞壁が容易に破壊されて殺菌又は溶菌し、細
胞壁内の多糖類や蛋白質等を溶け出させることができる
ので(図1参照)、細菌自体を、BODで示される有機
汚濁成分に効率よく変化させることができ、有効である
ことがわかった。即ち、細菌が殺菌又は溶菌された場合
に出てくる多糖類や蛋白質等は、細菌や原生動物の格好
の餌となるので、活性汚泥の一部を上記した各種の殺菌
又は溶菌処理手段で処理すれば、細菌の増殖を格段に抑
制することが可能となる(図1参照)。
Therefore, if the present inventors can promote so-called cannibalism of bacteria, the amount of bacteria (activated sludge) that gradually grows by using organic matter as food can be reduced, and the generation of excess sludge can be prevented. We considered that the problem could be resolved, and conducted various studies on conditions that could promote cannibalism of bacteria. As a result, by controlling the pH or temperature of the activated sludge treatment tank,
Alternatively, by adding an alkaline agent, an acid or a waste acid, or a compound having a bactericidal action or a bacteriolytic action to the activated sludge, and further by treating under a condition in which these means are combined, the activity is increased. Since the cell walls of the bacteria that make up the sludge can be easily destroyed and sterilized or lysed to dissolve the polysaccharides and proteins in the cell walls (see Fig. 1), the bacteria themselves are indicated by BOD. It was found to be effective because it can be efficiently converted into organic pollutants. That is, since polysaccharides and proteins that appear when bacteria are sterilized or lysed serve as suitable feeds for bacteria and protozoa, a part of the activated sludge is treated with the various sterilization or lysis treatment means described above. Then, it becomes possible to remarkably suppress the growth of bacteria (see FIG. 1).

【0014】本発明の有機性廃水の処理方法おいては、
有機性廃水を活性汚泥を利用して浄化処理する場合に、
いずれかの処理過程で、活性汚泥を構成している細菌の
一部を下記に挙げる各種殺菌又は溶菌処理手段で処理す
るものであれば、その条件はいかなるものであってもよ
い。本発明では、細菌の一部を殺菌又は溶菌処理する手
段として、処理すべき活性汚泥が入っている処理槽内の
pH値又は温度を特定の範囲に制御することによって、
或いは、処理槽内にアルカリ剤、酸又は廃酸、或いは活
性汚泥に対して殺菌作用又は溶菌作用を有する化合物を
添加する方法を用いる。更に、活性汚泥を構成している
細菌の一部を殺菌又は溶菌処理する効率を向上させるた
めには、上記した手段を適宜に組み合わせた方法によっ
て行なうことが好ましい。以下、これらの処理手段につ
いて説明する。
In the method for treating organic wastewater of the present invention,
When purifying organic wastewater using activated sludge,
In any treatment process, any condition may be used as long as a part of the bacteria constituting the activated sludge is treated by the various sterilization or lysis treatment means described below. In the present invention, as a means for sterilizing or lysing part of the bacteria, by controlling the pH value or temperature in the treatment tank containing the activated sludge to be treated within a specific range,
Alternatively, a method of adding an alkaline agent, an acid or a waste acid, or a compound having a bactericidal action or a bacteriolytic action to activated sludge is used in the treatment tank. Furthermore, in order to improve the efficiency of sterilizing or lysing part of the bacteria constituting the activated sludge, it is preferable to carry out by a method in which the above means are appropriately combined. Hereinafter, these processing means will be described.

【0015】先ず、pH値を制御して行なう場合には、
処理すべき活性汚泥が入っている処理槽内のpH値を
4.5以下、好ましくは、2.5〜3.5の強い酸性状
態にするか、又は、処理槽内のpH値を9.5以上、好
ましくは、10〜12の強いアルカリ性状態とすること
が好ましい。pH値を制御する具体的な方法としては、
処理槽内に後述するようなアルカリ剤、酸又は廃酸を添
加して、処理槽内のpH値が上記した範囲内になるよう
に調整すればよい。
First, when the pH value is controlled,
The pH value in the treatment tank containing the activated sludge to be treated is set to 4.5 or less, preferably 2.5 to 3.5 in a strong acid state, or the pH value in the treatment tank is set to 9. It is preferable to make it a strong alkaline state of 5 or more, preferably 10 to 12. As a specific method for controlling the pH value,
An alkaline agent, an acid or a waste acid as described below may be added to the treatment tank so that the pH value in the treatment tank falls within the above range.

【0016】本発明の有機性廃水の処理方法おいては、
処理すべき活性汚泥が入っている処理槽内の温度を制御
して、熱によって活性汚泥を構成している細菌の一部を
殺菌又は溶菌処理することも有効である。例えば、処理
すべき活性汚泥が入っている処理槽内の温度を40〜1
00℃、更に好ましくは、40〜80℃に制御すれば、
熱によって細菌の細胞壁(膜)又は細胞質を構成してい
る蛋白質が変性或いは凝固する結果、細菌が死滅した
り、機能障害を生じるので、細菌を殺菌又は溶菌させる
ことができる。特に、加熱にかかるコストを考慮する
と、40〜50℃前後で処理することが好ましい。本発
明の有機性廃水の処理方法においては、上記したよう
に、処理槽内のpH値を制御すること、或いは、上記し
たように処理槽内の温度を制御することのいずれか一方
の方法のみによって、活性汚泥を構成している細菌の一
部を殺菌又は溶菌処理することができる。更に、pH値
の制御及び温度制御の両方の手段を適宜に組み合わせた
条件で処理し、活性汚泥を構成している細菌の一部を殺
菌又は溶菌処理を行なってもよい。
In the method for treating organic wastewater of the present invention,
It is also effective to control the temperature in the treatment tank containing the activated sludge to be treated to sterilize or lyse a part of the bacteria constituting the activated sludge by heat. For example, the temperature in the treatment tank containing the activated sludge to be treated is 40 to 1
If the temperature is controlled to 00 ° C, more preferably 40 to 80 ° C,
Proteins constituting the cell wall (membrane) or cytoplasm of bacteria are denatured or coagulated by heat, resulting in death or dysfunction of the bacteria, and therefore bacteria can be killed or lysed. Particularly, considering the cost of heating, it is preferable to perform the treatment at about 40 to 50 ° C. In the method for treating the organic wastewater of the present invention, either one of controlling the pH value in the treatment tank as described above or controlling the temperature in the treatment tank as described above is used. By this, a part of the bacteria constituting the activated sludge can be sterilized or lysed. Further, treatment may be carried out under conditions in which both means for controlling the pH value and temperature control are appropriately combined to sterilize or lyse a part of the bacteria constituting the activated sludge.

【0017】更に、本発明の有機性廃水の処理方法おい
ては、処理槽内にアルカリ剤、酸又は廃酸、活性汚泥に
対して殺菌作用又は溶菌作用を有する化合物を添加する
方法によって、活性汚泥を構成している細菌の一部を殺
菌又は溶菌処理を行ってもよい。この場合に使用するア
ルカリ剤としては、例えば、水酸化ナトリウム、水酸化
カリウム、水酸化マグネシウム、水酸化カルシウム、ア
ンモニア等が挙げられる。これらのアルカリ剤を添加し
て処理槽内で処理した場合に、活性汚泥を構成している
細菌の細胞壁(膜)に損傷を生じさせて破壊し、細菌を
殺菌又は溶菌させる機能が大きく、更に、細菌を構成し
ている細胞質を加水分解して機能障害を生じさせる機能
を有し、しかも安価な化合物であるので、先に述べた本
発明の所期の目的を簡易且つ経済的に達成し得る。
Further, in the method for treating organic wastewater of the present invention, the activity is obtained by adding an alkaline agent, an acid or a waste acid, and a compound having a bactericidal action or a bacteriolytic action to activated sludge in the treatment tank. A part of the bacteria that make up the sludge may be sterilized or lysed. Examples of the alkaline agent used in this case include sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and ammonia. When treated in a treatment tank with the addition of these alkaline agents, the cell wall (membrane) of the bacteria that make up the activated sludge is damaged and destroyed, and has a large function of sterilizing or lysing the bacteria. Since it is a cheap compound having a function of hydrolyzing the cytoplasm that constitutes bacteria to cause dysfunction, and yet achieving the intended purpose of the present invention described above simply and economically. obtain.

【0018】本発明者らは、アルカリ剤を用いて活性汚
泥を処理する場合の最適な処理条件を見いだすため、以
下のような模擬実験を行なった。試験方法としては、先
ず、1リットルのメスシリンダーを複数用意し、夫々の
メスシリンダーの中に活性汚泥を5,000mg/リッ
トルになるよう調整して入れた。更に、牛乳を人工廃水
として用い、この中にBOD負荷量で1.0kg/m3
日になるように1日1回添加し、その都度よく撹拌した
後、曝気処理を行なった。そして、その間に、1日1
回、常温及び40℃下で、活性汚泥を1000mg取り
出してアルカリ剤を夫々下記のpHになるように添加し
て処理し、処理した汚泥を元の活性汚泥に戻すという処
理を継続して行なった。更に、比較のために、アルカリ
剤による処理をしない系についても並行して行った。こ
の際の処理条件を表1に示した。
The present inventors conducted the following simulated experiments in order to find the optimum treatment conditions when treating activated sludge with an alkaline agent. As a test method, first, a plurality of 1-liter graduated cylinders were prepared, and activated sludge was adjusted to 5,000 mg / liter in each graduated cylinder. Furthermore, milk was used as artificial wastewater, and the amount of BOD in this was 1.0 kg / m 3
The solution was added once a day so that the solution was well agitated each time, and then aerated. And in the meantime, 1 a day
At a normal temperature and 40 ° C., 1000 mg of activated sludge was taken out, alkali agents were added to each of the following pHs for treatment, and the treated sludge was returned to the original activated sludge. . Further, for comparison, a system not treated with an alkaline agent was also run in parallel. The processing conditions at this time are shown in Table 1.

【0019】[0019]

【表1】表1 アルカリ剤処理条件 [Table 1] Table 1 Alkaline treatment conditions

【0020】この結果、常温において活性汚泥にアルカ
リ剤を添加する場合に、アルカリ剤を添加した状態で処
理される活性汚泥のpHが9.5以上である場合に、平
均汚泥の平均汚泥生成量(g/日)が少なくなることが
わかった。又、常温の場合よりも40℃で処理した場合
の方がアルカリ剤を添加量が少なくて済むことがわかっ
た。更に、上記検討の結果、活性汚泥の一部をこのよう
に殺菌又は溶菌処理した場合も、従来の有機廃水の処理
方法の場合と比べて何ら遜色なく、浄化能力が低下する
ことがないことを確認できた。
As a result, when the alkaline agent is added to the activated sludge at room temperature, when the pH of the activated sludge treated with the added alkaline agent is 9.5 or more, the average sludge generation amount of the average sludge. It was found that (g / day) decreased. It was also found that the amount of the alkaline agent added was smaller when the treatment was carried out at 40 ° C. than when it was at room temperature. Furthermore, as a result of the above study, even when a part of the activated sludge is sterilized or lysed in this way, there is no difference compared to the case of the conventional organic wastewater treatment method, and that the purification capacity does not decrease. It could be confirmed.

【0021】本発明の有機性廃水の処理方法において
は、活性汚泥処理槽(曝気槽)内に、上記したアルカリ
剤に代えて酸又は廃酸を添加し、活性汚泥を構成してい
る細菌の一部を殺菌又は溶菌処理してもよい。この場合
に使用する酸としては、例えば、硫酸、硝酸、塩酸等が
挙げられる。又、各種工場等から廃棄物として出される
廃酸を有効に使用することができるが、中でも特に廃硝
酸を使用することが好ましい。本発明においては、各種
工場等から廃棄物として出される廃硫酸や廃塩酸等を使
用することも可能である。これらの酸又は廃酸は、活性
汚泥を処理した場合に、活性汚泥を構成している細菌の
細胞壁(膜)に損傷を生じさせて破壊して細菌を殺菌又
は溶菌させる機能があり、しかも安価な化合物であるの
で、先に述べた本発明の所期の目的を、簡易且つ経済的
に達成し得る。本発明者らが詳細に検討した結果、この
場合においても勿論、酸の添加のみで、常温でも活性汚
泥を構成している細菌の一部を殺菌又は溶菌処理を行な
うことができるが、前記したアルカリ剤の場合と同様
に、処理槽内の温度を40〜50℃前後に制御しながら
行なえば、効率のよい処理が行なえることがわかった。
In the method for treating organic wastewater of the present invention, in the activated sludge treatment tank (aeration tank), acid or waste acid is added instead of the above-mentioned alkaline agent to remove the bacteria constituting the activated sludge. A part may be sterilized or lysed. Examples of the acid used in this case include sulfuric acid, nitric acid, hydrochloric acid and the like. Further, waste acid discharged as waste from various factories can be effectively used, but it is particularly preferable to use waste nitric acid. In the present invention, it is also possible to use waste sulfuric acid, waste hydrochloric acid, etc. which are discharged as waste from various factories. These acids or waste acids have the function of sterilizing or lysing bacteria by damaging and destroying the cell wall (membrane) of the bacteria that make up the activated sludge when the activated sludge is treated, and at a low cost. Since the compound is a compound, the intended purpose of the present invention described above can be achieved simply and economically. As a result of a detailed study by the present inventors, in this case as well, it is possible to sterilize or lyse a part of the bacteria constituting the activated sludge even at room temperature, of course, only by adding an acid. As in the case of the alkaline agent, it was found that efficient treatment can be performed by controlling the temperature in the treatment tank to around 40 to 50 ° C.

【0022】更に、本発明の有機性廃水の処理方法で
は、下記に挙げるような活性汚泥に対して殺菌作用又は
溶菌作用を有する化合物のいずれかを添加することによ
っても活性汚泥を構成している細菌の一部を殺菌又は溶
菌処理を行なうことができる。即ち、処理すべき活性汚
泥が入っている活性汚泥処理槽内に、ソルビン酸、ソル
ビン酸ナトリウム、ソルビン酸カリウム、ソルビン酸カ
ルシウム、グルタルアルデヒドに代表されるアルデヒド
類、カチオン性界面活性剤、ノニオン性界面活性剤、両
性界面活性剤、塩素化合物類、ポリアミン類、脂肪族ア
ミン類、フェノール類、ニトロフラン類、トリクロルア
ルキルチオ基を有する化合物、ジチオカルバメート類、
アルコール類、プロテアーゼ、グルカナーゼ、アミラー
ゼ、モノパーオキシフタレートマグネシウム、過酸化水
素、過酸化ナトリウム、過炭酸ナトリウム、炭化ナトリ
ウムから選択される少なくとも1種の化合物を添加する
ことによって、活性汚泥を構成している細菌の一部を殺
菌又は溶菌を行なうことができる。これらの化合物は、
活性汚泥に対して殺菌作用又は溶菌作用を有するにもか
かわらず、強い毒性を有さず、薬剤効果がpH依存性や
温度依存性等の活性汚泥の性状に影響を及ぼすことがな
く、又、コスト的にも有用であるので、本発明の有機性
廃水の処理方法に好適に使用できる。これらの化合物の
添加量は、処理対象の活性汚泥に対して0.1〜5重量
%程度とすることが好ましい。
Further, in the method for treating organic wastewater of the present invention, the activated sludge is constituted by adding any one of the compounds having a bactericidal action or bacteriolytic action to the activated sludge as described below. A part of bacteria can be sterilized or lysed. That is, in an activated sludge treatment tank containing activated sludge to be treated, sorbic acid, sodium sorbate, potassium sorbate, calcium sorbate, aldehydes typified by glutaraldehyde, cationic surfactants, nonionic Surfactants, amphoteric surfactants, chlorine compounds, polyamines, aliphatic amines, phenols, nitrofurans, compounds having a trichloroalkylthio group, dithiocarbamates,
An activated sludge is formed by adding at least one compound selected from alcohols, protease, glucanase, amylase, monoperoxyphthalate magnesium, hydrogen peroxide, sodium peroxide, sodium percarbonate, and sodium carbide. Some of the bacteria present can be sterilized or lysed. These compounds are
Despite having a bactericidal action or a bacteriolytic action on the activated sludge, it does not have strong toxicity, and the drug effect does not affect the properties of the activated sludge such as pH dependency and temperature dependency, and Since it is cost effective, it can be preferably used in the method for treating organic wastewater of the present invention. The addition amount of these compounds is preferably about 0.1 to 5% by weight with respect to the activated sludge to be treated.

【0023】上記に挙げた化合物は、活性汚泥を構成し
ている細菌の細胞壁(膜)に損傷を生じさせて破壊して
細菌を溶菌させる機能や、有機成分の酸化分解によって
細菌の機能障害を生じさせる機能や、細菌の細胞蛋白質
との結合、或いは蛋白質の変性、凝固によって機能障害
を生じさせる機能や、酵素系の不活化や破壊、代謝障害
を発生させる等によって活性汚泥に機能障害を生じさせ
る等の種々の機能を有する。従って、これらのいずれか
の化合物を単独で添加して処理すれば、活性汚泥を構成
している細菌の一部を殺菌又は溶菌を行なうことができ
る。しかしながら、更に殺菌又は溶菌処理の効率を向上
させるためには、これらの化合物を前記したアルカリ
剤、酸又は廃酸に併用して使用することが好ましい。即
ち、処理する有機廃水の性状や処理条件等に応じて、上
記に挙げた化合物から適宜な機能を有する化合物を選択
してアルカリ剤或いは酸と併用すれば、アルカリ剤或い
は酸とは異なる機能が組み合わさった相乗効果が得られ
るので、細菌の殺菌又は溶菌を更に効率的に行なうこと
が可能となる。従って、アルカリ剤或いは酸を主成分と
し、上記に挙げたような化合物を併用して調製した薬剤
は、本発明の有機性廃水の処理方法に好適に用いること
ができる。更に、活性汚泥処理槽内の温度を制御し、加
熱した状態で処理を行なうことも好ましい。
The compounds listed above have the function of causing damage to the cell wall (membrane) of the bacteria constituting the activated sludge and destroying them to lyse the bacteria, and the dysfunction of the bacteria due to oxidative decomposition of organic components. The function that causes it, the function that causes binding to bacterial cell proteins, the function that causes protein denaturation and coagulation, and the function that causes inactivation and destruction of the enzyme system and the occurrence of metabolic damage that causes functional failure in activated sludge. It has various functions such as making it. Therefore, if any one of these compounds is added and treated, a part of the bacteria constituting the activated sludge can be sterilized or lysed. However, in order to further improve the efficiency of sterilization or lysis treatment, it is preferable to use these compounds in combination with the above-mentioned alkaline agent, acid or waste acid. That is, if a compound having an appropriate function is selected from the above-listed compounds and used in combination with an alkali agent or an acid, depending on the properties of the organic wastewater to be treated, the treatment conditions, etc., the function different from that of the alkali agent or the acid is obtained. Since a combined synergistic effect is obtained, it becomes possible to more effectively sterilize or lyse bacteria. Therefore, a chemical agent containing an alkaline agent or an acid as a main component and the above-mentioned compounds in combination can be suitably used in the method for treating organic wastewater of the present invention. Furthermore, it is also preferable to control the temperature in the activated sludge treatment tank and perform the treatment in a heated state.

【0024】更に、上記に挙げたような化合物を、アル
カリ剤、酸又は廃酸と組み合わせて用いる態様として
は、例えば、下記に挙げる〜の処理方法等を採用す
ることができる。従って、本発明の有機性廃水の処理方
法に使用するアルカリ剤或いは酸を主成分とする薬剤を
調製する場合には、これらの処理方法に対して便利に使
用できる形態のものを適宜に調製することが好ましい。 アルカリ剤処理(又は、酸処理)に先だって、併用
化合物で処理した後、アルカリ剤処理(又は、酸処理)
を行なう。 アルカリ剤処理(又は、酸処理)する際に、併用化
合物を加えてアルカリ剤(又は、酸)と併用して処理を
行なう。 アルカリ剤処理(又は、酸処理)した後、併用化合
物を添加して処理を行なう。
Further, as a mode in which the above-mentioned compounds are used in combination with an alkaline agent, an acid or a waste acid, for example, the following treatment methods (1) to (3) can be adopted. Therefore, when preparing a chemical agent containing an alkali agent or an acid as a main component to be used in the method for treating organic wastewater of the present invention, a form which can be conveniently used for these treatment methods is appropriately prepared. It is preferable. Prior to the alkali agent treatment (or acid treatment), the compound is treated with the combined compound, and then the alkali agent treatment (or acid treatment)
Do. When the treatment with an alkaline agent (or the treatment with an acid), a compound to be used in combination is added and the treatment is performed in combination with an alkaline agent (or an acid). After treatment with an alkaline agent (or acid treatment), a concomitant compound is added to perform treatment.

【0025】本発明の有機廃水の処理方法において、例
えば、活性汚泥の殺菌又は溶菌処理手段に酸を用いる場
合には、酸と共に、ソルビン酸、ソルビン酸ナトリウ
ム、ソルビン酸カリウム、ソルビン酸カルシウム、過酸
化水素、過炭酸ナトリウムから選択される少なくとも1
種の化合物を併用することが好ましい。具体的な組み合
わせとしては、例えば、硝酸或いは塩酸に対して、過酸
化水素を0.1〜5重量%程度加えた組み合わせが挙げ
られる。経済性及び地球環境保護を考慮すると、この場
合に、酸として廃硝酸や廃塩酸、特に廃硝酸を使用する
ことも好ましい形態である。本発明の有機廃水の処理方
法において、特に好ましいアルカリ剤とこれに併用させ
る化合物との組み合わせとしては、例えば、アルカリ剤
とカチオン性界面活性剤との組み合わせ、アルカリ剤と
塩素化合物の組み合わせ、アルカリ剤とプロテアーゼの
組み合わせ、アルカリ剤とグルタルアルデヒドの組み合
わせ等が挙げられる。
In the method for treating organic wastewater of the present invention, for example, when an acid is used for sterilizing or lysing lysis of activated sludge, sorbic acid, sodium sorbate, potassium sorbate, calcium sorbate, a peroxide and At least one selected from hydrogen oxide and sodium percarbonate
It is preferable to use two kinds of compounds in combination. As a specific combination, for example, a combination of about 0.1 to 5% by weight of hydrogen peroxide with respect to nitric acid or hydrochloric acid can be mentioned. In this case, it is also preferable to use waste nitric acid or hydrochloric acid as the acid, especially waste nitric acid, in view of economy and protection of the global environment. In the method for treating organic wastewater of the present invention, as a combination of a particularly preferred alkaline agent and a compound used in combination therewith, for example, a combination of an alkaline agent and a cationic surfactant, a combination of an alkaline agent and a chlorine compound, an alkaline agent And a combination of protease and a combination of an alkaline agent and glutaraldehyde.

【0026】アルカリ剤と併用させるカチオン性界面活
性剤としては、具体的には、第4級アンモニウム塩型の
カチオン性界面活性剤の、ジ又はモノ長鎖アルキル、ジ
又はトリ低級アルキル又はベンジルアンモニウム塩が挙
げられ、このようなものとしては、例えば、ジアルキル
ジメチルアンモニウム塩、アルキルジメチルエチルアン
モニウム塩、アルキルトリメチルアンモニウム塩、アル
キルジメチルベンジルアンモニウム塩、アルキルアミド
プロピルジメチルベンジルアンモニウム塩等が挙げられ
る。更に具体的には、例えば、ジデシルジメチルアンモ
ニウムクロライド、ジオクチルジメチルアンモニウムク
ロライド、塩化ベンゼトニウム、トリメトキシシリルプ
ロピルジメチルオクタデシルアンモニウムクロライド、
デシルイソノニルジメチルアンモニウムクロライドを使
用することができる。勿論、他の塩であってもよい。
Specific examples of the cationic surfactant used in combination with the alkaline agent include di- or mono-long-chain alkyl, di- or tri-lower alkyl or benzyl ammonium of a quaternary ammonium salt type cationic surfactant. Examples thereof include salts, and examples thereof include dialkyldimethylammonium salt, alkyldimethylethylammonium salt, alkyltrimethylammonium salt, alkyldimethylbenzylammonium salt, alkylamidopropyldimethylbenzylammonium salt and the like. More specifically, for example, didecyldimethylammonium chloride, dioctyldimethylammonium chloride, benzethonium chloride, trimethoxysilylpropyldimethyloctadecylammonium chloride,
Decylisononyldimethylammonium chloride can be used. Of course, other salts may be used.

【0027】又、アルキルピリジニウム塩、アルキルキ
ノリニウム塩等のピリジニウム型のカチオン性界面活性
剤も好適に用いられ、例えば、炭素数12のアルキルキ
ノリニウムクロライドを使用することができる。更に、
アルキルジ(アミノエチル)グリシン塩酸塩やジ(アル
キルアミノジエチル)グリシン塩酸塩等の両性界面活性
剤も使用し得る。
Pyridinium type cationic surfactants such as alkylpyridinium salts and alkylquinolinium salts are also preferably used, and for example, alkylquinolinium chloride having 12 carbon atoms can be used. Furthermore,
Amphoteric surfactants such as alkyldi (aminoethyl) glycine hydrochloride and di (alkylaminodiethyl) glycine hydrochloride may also be used.

【0028】更に、本発明において、アルカリ剤と併用
させる具体的な化合物としては、上記の他、塩酸クロル
ヘキシジンやグルコン酸クロルヘキシジン(これらは有
機の塩素化合物でもある)等のポリアミン類や、二酸化
塩素、次亜塩素酸ナトリウム等の無機の塩素化合物類も
有効である。更に、パパイン等のプロテアーゼやグルカ
ナーゼ、アミラーゼ等の各種酵素類も好適に使用でき
る。その他、N−アルキレンアルキルジアミン等の脂肪
族アミン類、グルタルアルデヒド等のアルデヒド類、ク
レゾール等のフェノール類、過酸化水素、過酸化ナトリ
ウム等の過酸化物、過炭酸ナトリウム、炭化ナトリウ
ム、モノパーオキシフタレートマグネシウム等も使用し
得る。
Further, in the present invention, as specific compounds to be used in combination with the alkaline agent, in addition to the above, polyamines such as chlorhexidine hydrochloride and chlorhexidine gluconate (these are also organic chlorine compounds), chlorine dioxide, Inorganic chlorine compounds such as sodium hypochlorite are also effective. Furthermore, proteases such as papain and various enzymes such as glucanase and amylase can be preferably used. In addition, aliphatic amines such as N-alkylenealkyldiamine, aldehydes such as glutaraldehyde, phenols such as cresol, peroxides such as hydrogen peroxide and sodium peroxide, sodium percarbonate, sodium carbide, monoperoxy. Magnesium phthalate and the like can also be used.

【0029】本発明の有機性廃水の処理方法の好適なシ
ステム図を図2に示したが、図2に示したように、有機
性廃水を処理槽に導入して活性汚泥と共に曝気処理した
後、上記処理槽(曝気槽)内、又は該処理槽の下流に設
けられた沈殿槽内から活性汚泥の少なくとも一部を抜き
出して汚泥処理槽へと導入し、該汚泥処理槽内のpH或
いは温度を適宜に制御することによって、或いは、アル
カリ剤、酸又は廃酸、活性汚泥に対して殺菌作用又は溶
菌作用を有する化合物を投入することによって活性汚泥
を殺菌又は溶菌処理した後、処理された活性汚泥を上記
有機廃水の処理槽内へと導入し、再度曝気処理を継続す
る。この結果、図4に示した従来の有機性廃水の浄化シ
ステムに比較し、発生する余剰汚泥の量を、1/2〜1
/100に減量化することが可能となる。
A suitable system diagram of the method for treating organic wastewater according to the present invention is shown in FIG. 2. As shown in FIG. 2, after introducing the organic wastewater into the treatment tank and performing aeration treatment with the activated sludge. , At least a part of the activated sludge is introduced into the sludge treatment tank from the treatment tank (aeration tank) or a settling tank provided downstream of the treatment tank, and the pH or temperature in the sludge treatment tank By appropriately controlling, or after sterilizing or lysing the activated sludge by adding an alkali agent, an acid or a waste acid, a compound having a bactericidal action or a bacteriolytic action to the activated sludge, the treated activity The sludge is introduced into the treatment tank for the organic waste water, and the aeration treatment is continued again. As a result, compared with the conventional organic wastewater purification system shown in FIG.
It is possible to reduce the amount to / 100.

【0030】本発明においては、汚泥処理槽で、細菌の
殺菌又は溶菌処理する対象の活性汚泥は、いずれの処理
段階のものでもよい。例えば、図2に示した例のよう
に、沈澱槽から曝気槽へと返送される返送汚泥の一部を
抜き出して汚泥処理槽へと導き、該槽内で活性汚泥を殺
菌又は溶菌処理し、その後、処理汚泥を曝気槽へと戻し
て更に処理を継続するように構成してもよい。又、別の
態様として、図3に示したように、沈澱槽を設けない回
分式の活性汚泥法等によって処理が行なわれている場合
には、曝気槽内の処理水の一部を抜き出して汚泥処理槽
へと導いて、各種殺菌又は溶菌処理手段による殺菌又は
溶菌処理してもよい。更に、図2及び図3に示した例で
は共に汚泥処理槽を別に設けているが、例えば、家庭用
の浄化槽のような場合には、曝気槽の中にアルカリ剤、
酸又は廃酸、或いは活性汚泥に対して殺菌作用又は溶菌
作用を有する化合物、或いはこれらを組み合わせたをア
ルカリ剤、酸又は廃酸、特に廃硝酸を主成分とする薬剤
を投入してもよく、これによって余剰汚泥の発生量を減
量化することが可能になる。
In the present invention, the activated sludge to be sterilized or lysed by bacteria in the sludge treatment tank may be of any treatment stage. For example, as in the example shown in FIG. 2, a part of the returned sludge returned from the settling tank to the aeration tank is extracted and guided to a sludge treatment tank, and the activated sludge is sterilized or lysed in the tank, After that, the treated sludge may be returned to the aeration tank to continue the treatment. Further, as another embodiment, as shown in FIG. 3, when the treatment is carried out by a batch type activated sludge method without a settling tank, a part of the treated water in the aeration tank is extracted. It may be introduced into a sludge treatment tank and subjected to sterilization or lysis treatment by various sterilization or lysis treatment means. Further, although the sludge treatment tanks are separately provided in both of the examples shown in FIGS. 2 and 3, for example, in the case of a domestic septic tank, an alkaline agent,
An acid or a waste acid, or a compound having a bactericidal action or a bacteriolytic action on activated sludge, or a combination thereof may be added as an alkaline agent, an acid or a waste acid, particularly a drug having waste nitric acid as a main component, This makes it possible to reduce the amount of excess sludge generated.

【0031】[0031]

【実施例】次に本発明の実施例を挙げて本発明を更に詳
細に説明する。 <実施例1>(常温酸処理) 図2に示したフローに従って建設した800m3/日規
模の処理設備を使用して、BOD負荷量で0.8kg/
3の乳製品を扱う食品工場からの有機性廃水を原水と
して有機性廃水の活性汚泥処理を行った。原水の性状を
表2に示した。本実施例では、この原水を、図2に示し
たフローに従い活性汚泥濃度(MLSS)5,000m
g/lで活性汚泥と共に曝気処理した。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples of the present invention. <Example 1> (Acid treatment at room temperature) Using a treatment facility of 800 m 3 / day constructed according to the flow shown in FIG. 2, 0.8 kg / BOD load was used.
Activated sludge treatment of organic wastewater was performed using the organic wastewater from a food factory handling m 3 dairy products as raw water. The properties of the raw water are shown in Table 2. In this embodiment, this raw water is treated with activated sludge concentration (MLSS) of 5,000 m according to the flow shown in FIG.
Aerated with activated sludge at g / l.

【0032】[0032]

【表2】表2 原水性状(食品工場廃水) [Table 2] Table 2 Raw water condition (food factory wastewater)

【0033】本実施例では、上記の処理の過程から返送
汚泥の1部を引き抜いて汚泥処理槽へと導入し、該汚泥
処理槽内に硫酸を投入して、活性汚泥を構成している細
菌の一部を殺菌又は溶菌処理した。返送汚泥の濃度は1
0,000mg/l(約1%濃度)であった。汚泥処理
槽へは、この返送汚泥を3m3/hrの流量で導入し
た。そして、汚泥処理槽で75%の硫酸を添加し、汚泥
処理槽内のpHが3.0になるように調整した後、常温
(20℃)で殺菌又は溶菌処理を行った。6時間の滞留
時間で処理を終了させ、処理した活性汚泥を800m3
の曝気槽内へと戻し、通常の処理フローによって処理を
行なった。
In this embodiment, a part of the returned sludge is extracted from the above treatment process and introduced into the sludge treatment tank, and sulfuric acid is introduced into the sludge treatment tank to form the activated sludge. Was partially sterilized or lysed. Concentration of returned sludge is 1
It was 50,000 mg / l (about 1% concentration). The returned sludge was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr. Then, after adding 75% sulfuric acid in the sludge treatment tank to adjust the pH in the sludge treatment tank to 3.0, sterilization or bacteriolysis was performed at room temperature (20 ° C.). The treatment was terminated with a residence time of 6 hours, and the treated activated sludge was treated with 800 m 3
It returned to the inside of the aeration tank and was processed by the normal processing flow.

【0034】この結果、発生した余剰汚泥の量は約40
kg/日であった。これに対して、後述する比較例1で
示したように、返送汚泥の1部について殺菌等の処理を
行わない従来の処理方法における余剰汚泥量は200k
g/日であり、本実施例の方法によって明らかに余剰汚
泥量を減量化することができた。又、最終的な処理水に
ついての水質を調べたところ、表4に示したように、後
述する比較例1で述べる従来の方法で処理した場合と比
較して何ら遜色なく、本実施例の有機廃水の処理方法に
おいても浄化能力が低下することがないことが確認でき
た。本実施例において、上記殺菌又は溶菌処理に供した
活性汚泥(濃度10,000mg/l)の処理量は、8
0m3/日であった。本実施例において、活性汚泥処理
槽内で殺菌又は溶菌処理を施した活性汚泥の量を、処理
工程に存在した総活性汚泥量(4,000kg/日)に
対しての率(割合)として求めると20%であった。表
3に、本実施例の処理条件等について、まとめて示し
た。
As a result, the amount of excess sludge generated was about 40.
It was kg / day. On the other hand, as shown in Comparative Example 1 to be described later, the amount of surplus sludge in the conventional treatment method in which a part of the returned sludge is not sterilized is 200 k.
It was g / day, and the amount of excess sludge could be obviously reduced by the method of this example. Further, the water quality of the final treated water was examined, and as shown in Table 4, there was no difference as compared with the case of treating by the conventional method described in Comparative Example 1 to be described later, and the organic matter of this example was compared. It was confirmed that the purification capacity did not deteriorate even in the wastewater treatment method. In this example, the treatment amount of the activated sludge (concentration 10,000 mg / l) subjected to the sterilization or lysis treatment was 8
It was 0 m 3 / day. In this example, the amount of activated sludge that has been sterilized or lysed in the activated sludge treatment tank is obtained as a ratio (rate) with respect to the total amount of activated sludge (4,000 kg / day) existing in the treatment process. And 20%. Table 3 collectively shows the processing conditions and the like of this example.

【0035】<実施例2>(常温アルカリ処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に水酸化ナトリウムを投入して、活性汚泥を構成してい
る細菌の一部を殺菌又は溶菌処理した。この際、汚泥処
理槽へは、約1%濃度の活性汚泥を3m3/hrの流量
で導入した。そして、25%の水酸化ナトリウムを添加
して汚泥処理槽内のpHが10.0になるように調整し
た後、常温(20℃)で殺菌又は溶菌処理を行った。6
時間の滞留時間で処理を終了させ、処理した活性汚泥を
800m3の曝気槽内へと戻し、通常の処理フローによ
って処理を行なった。
<Example 2> (Alkaline treatment at room temperature) In the same manner as in Example 1, a part of the returned sludge was extracted and introduced into the sludge treatment tank, and in this embodiment, the sludge treatment tank was hydrated. Sodium was added to sterilize or lyse a part of the bacteria constituting the activated sludge. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr. Then, 25% sodium hydroxide was added to adjust the pH in the sludge treatment tank to 10.0, and then sterilization or bacteriolysis was performed at room temperature (20 ° C.). 6
The treatment was terminated at the retention time of time, the treated activated sludge was returned to the inside of the aeration tank of 800 m 3 , and the treatment was carried out by the usual treatment flow.

【0036】上記した処理を行なった結果、発生した余
剰汚泥の量は約40kg/日であり、実施例1と同様に
余剰汚泥量を減量化することができた。又、最終的な処
理水について調べたところ、表4に示したように、後述
する比較例1で述べる従来の方法で処理した場合と比較
して何ら遜色なく、本実施例の有機廃水の処理方法にお
いても浄化能力が低下することがないことが確認され
た。又、本実施例においても、実施例1と同様に殺菌又
は溶菌処理に供した活性汚泥の量は80m3/日であ
り、総活性汚泥に対しての殺菌又は溶菌処理を施した活
性汚泥の率は、同様に20%であった。表3に、本実施
例の処理条件をまとめて示した。
As a result of the above treatment, the amount of excess sludge generated was about 40 kg / day, and the amount of excess sludge could be reduced as in Example 1. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also in this example, as in Example 1, the amount of activated sludge subjected to sterilization or lysis treatment was 80 m 3 / day, and the total amount of activated sludge subjected to sterilization or lysis treatment was The rate was 20% as well. Table 3 collectively shows the processing conditions of this example.

【0037】<実施例3>(熱処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入し、熱によって活性汚泥を構成してい
る細菌の一部を殺菌又は溶菌処理した。汚泥処理槽へ
は、約1%濃度の汚泥を3m3/hrの流量で導入し、
該汚泥処理槽内の温度を70℃に保って殺菌又は溶菌処
理を行った。6時間の滞留時間で処理を終了させ、処理
した活性汚泥を800m3の曝気槽内へと戻し、通常の
処理フローによって処理を行なった。
<Embodiment 3> (Heat Treatment) After returning a portion of the returned sludge to the sludge treatment tank and introducing it into the sludge treatment tank in the same manner as in Example 1, heated steam is introduced into the sludge treatment tank in this embodiment. Then, a part of the bacteria constituting the activated sludge was sterilized or lysed by heat. Introduce sludge of about 1% concentration into the sludge treatment tank at a flow rate of 3 m 3 / hr,
The temperature in the sludge treatment tank was kept at 70 ° C. for sterilization or bacteriolysis. The treatment was terminated with a residence time of 6 hours, the treated activated sludge was returned into the aeration tank of 800 m 3 , and the treatment was performed according to a normal treatment flow.

【0038】上記した処理を行なった結果、発生した余
剰汚泥の量は約40kg/日であり、実施例1と同様に
余剰汚泥量を減量化することができた。又、最終的な処
理水について調べたところ、表4に示したように、後述
する比較例1で述べる従来の方法で処理した場合と比較
して何ら遜色なく、本実施例の有機廃水の処理方法にお
いても浄化能力が低下することがないことが確認され
た。又、本実施例においても、実施例1と同様に殺菌又
は溶菌処理に供した活性汚泥の量は80m3/日であ
り、総活性汚泥に対しての殺菌又は溶菌処理を施した活
性汚泥の率は、同様に20%であった。表3に、本実施
例の処理条件をまとめて示した。
As a result of the above treatment, the amount of excess sludge generated was about 40 kg / day, and the amount of excess sludge could be reduced as in Example 1. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also in this example, as in Example 1, the amount of activated sludge subjected to sterilization or lysis treatment was 80 m 3 / day, and the total amount of activated sludge subjected to sterilization or lysis treatment was The rate was 20% as well. Table 3 collectively shows the processing conditions of this example.

【0039】<実施例4>(ソルビン酸カリウム添加処
理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
にソルビン酸カリウムを0.3g/リットルの濃度にな
るように投入し、活性汚泥を構成している細菌の一部を
殺菌又は溶菌処理した。この際、汚泥処理槽へは、約1
%濃度の活性汚泥を3m3/hrの流量で導入した。そ
して、常温(20℃)で殺菌又は溶菌処理を行った。6
時間の滞留時間で処理を終了させ、処理した活性汚泥を
800m3の曝気槽内へと戻し、通常の処理フローによ
って処理を行なった。
<Example 4> (potassium sorbate addition treatment) [0039] In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into the sludge treatment tank, in this embodiment, it was placed in the sludge treatment tank. Potassium sorbate was added at a concentration of 0.3 g / liter to sterilize or lyse a part of the bacteria constituting the activated sludge. At this time, about 1 to the sludge treatment tank
% Active sludge was introduced at a flow rate of 3 m 3 / hr. Then, sterilization or lysis treatment was performed at room temperature (20 ° C.). 6
The treatment was terminated at the retention time of time, the treated activated sludge was returned to the inside of the aeration tank of 800 m 3 , and the treatment was carried out by the usual treatment flow.

【0040】上記した処理を行なった結果、発生した余
剰汚泥の量は約40kg/日であり、実施例1と同様に
余剰汚泥量を減量化することができた。又、最終的な処
理水について調べたところ、表4に示したように、後述
する比較例1で述べる従来の方法で処理した場合と比較
して何ら遜色なく、本実施例の有機廃水の処理方法にお
いても浄化能力が低下することがないことが確認され
た。又、本実施例においても、実施例1と同様に殺菌又
は溶菌処理に供した活性汚泥の量は80m3/日であ
り、総活性汚泥に対しての殺菌又は溶菌処理を施した活
性汚泥の率は、同様に20%であった。表3に、本実施
例の処理条件をまとめて示した。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 40 kg / day, and it was possible to reduce the amount of excess sludge as in Example 1. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also in this example, as in Example 1, the amount of activated sludge subjected to sterilization or lysis treatment was 80 m 3 / day, and the total amount of activated sludge subjected to sterilization or lysis treatment was The rate was 20% as well. Table 3 collectively shows the processing conditions of this example.

【0041】<実施例5>(グルタルアルデヒドの添加
処理) 本実施例では、汚泥処理槽内に、ソルビン酸カリウムの
代わりにグルタルアルデヒドを0.3g/リットルにな
るように投入して処理する以外は実施例4と同様にし
て、活性汚泥を構成している細菌の一部を殺菌又は溶菌
処理した。上記のように処理した活性汚泥は、その後、
800m3の曝気槽内へと戻し、通常の処理フローによ
って処理を行なった。
<Example 5> (Glutaraldehyde addition treatment) In this example, glutaraldehyde is charged into the sludge treatment tank at 0.3 g / liter instead of potassium sorbate for treatment. In the same manner as in Example 4, a part of the bacteria constituting the activated sludge was sterilized or lysed. The activated sludge treated as above is then
Back to 800 m 3 in the aeration tank and subjected to processing by conventional process flow.

【0042】上記した処理を行なった結果、発生した余
剰汚泥の量は約40kg/日であり、実施例1と同様に
余剰汚泥量を減量化することができた。又、最終的な処
理水について調べたところ、表4に示したように、後述
する比較例1で述べる従来の方法で処理した場合と比較
して何ら遜色なく、本実施例の有機廃水の処理方法にお
いても浄化能力が低下することがないことが確認され
た。又、本実施例においても、実施例1と同様に殺菌又
は溶菌処理に供した活性汚泥の量は80m3/日であ
り、総活性汚泥に対しての殺菌又は溶菌処理を施した活
性汚泥の率は、同様に20%であった。表3に、本実施
例の処理条件をまとめて示した。
As a result of the above treatment, the amount of excess sludge generated was about 40 kg / day, and the amount of excess sludge could be reduced as in Example 1. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also in this example, as in Example 1, the amount of activated sludge subjected to sterilization or lysis treatment was 80 m 3 / day, and the total amount of activated sludge subjected to sterilization or lysis treatment was The rate was 20% as well. Table 3 collectively shows the processing conditions of this example.

【0043】<実施例6>(デシルイソノニルジメチル
アンモニウムの添加処理) 本実施例では、汚泥処理槽内に、ソルビン酸カリウムの
代わりにデシルイソノニルジメチルアンモニウムを0.
5g/リットルになるように投入して処理する以外は実
施例4と同様にして、活性汚泥を構成している細菌の一
部を殺菌又は溶菌処理した。上記のように処理した活性
汚泥は、その後、800m3の曝気槽内へと戻し、通常
の処理フローによって処理を行なった。
<Example 6> (Addition treatment of decyl isononyl dimethyl ammonium) In this example, decyl isononyl dimethyl ammonium was added to the sludge treatment tank in place of potassium sorbate at a concentration of 0.
A part of the bacteria constituting the activated sludge was sterilized or lysed in the same manner as in Example 4 except that the treatment was carried out by adding 5 g / liter. The activated sludge treated as described above was then returned to the aeration tank of 800 m 3 and treated by the usual treatment flow.

【0044】上記した処理を行なった結果、発生した余
剰汚泥の量は約40kg/日であり、実施例1と同様に
余剰汚泥量を減量化することができた。又、最終的な処
理水について調べたところ、表4に示したように、後述
する比較例1で述べる従来の方法で処理した場合と比較
して何ら遜色なく、本実施例の有機廃水の処理方法にお
いても浄化能力が低下することがないことが確認され
た。又、本実施例においても、実施例1と同様に殺菌又
は溶菌処理に供した活性汚泥の量は80m3/日であ
り、総活性汚泥に対しての殺菌又は溶菌処理を施した活
性汚泥の率は、同様に20%であった。表3に、本実施
例の処理条件をまとめて示した。
As a result of the above treatment, the amount of excess sludge generated was about 40 kg / day, and the amount of excess sludge could be reduced as in Example 1. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also in this example, as in Example 1, the amount of activated sludge subjected to sterilization or lysis treatment was 80 m 3 / day, and the total amount of activated sludge subjected to sterilization or lysis treatment was The rate was 20% as well. Table 3 collectively shows the processing conditions of this example.

【0045】<実施例7>(酸処理+ソルビン酸カリウ
ム添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
にソルビン酸カリウムを0.2g/lになるように投入
し、更に、廃硝酸にて処理槽内のpHが3.0になるよ
うに調整して活性汚泥を構成している細菌の一部を殺菌
又は溶菌処理した。この際、汚泥処理槽へは、約1%濃
度の活性汚泥を3m3/hrの流量で導入した。そし
て、常温(20℃)で殺菌又は溶菌処理を行った。4時
間の滞留時間で処理を終了させ、処理した活性汚泥を8
00m3の曝気槽内へと戻し、通常の処理フローによっ
て処理を行なった。
<Example 7> (Acid treatment + potassium sorbate addition treatment) In the same manner as in Example 1, a part of the returned sludge was extracted and introduced into a sludge treatment tank. Potassium sorbate was added to the tank so that it would be 0.2 g / l, and the pH of the treatment tank was adjusted to 3.0 with waste nitric acid. A part was sterilized or lysed. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr. Then, sterilization or lysis treatment was performed at room temperature (20 ° C.). The treatment was completed after a residence time of 4 hours, and the treated activated sludge was treated with 8
Back to 00m 3 in the aeration tank and subjected to processing by conventional process flow.

【0046】上記した処理を行なった結果、発生した余
剰汚泥の量は約30kg/日であり、余剰汚泥量を減量
化することができた。又、最終的な処理水について調べ
たところ、表4に示したように、後述する比較例1で述
べる従来の方法で処理した場合と比較して何ら遜色な
く、本実施例の有機廃水の処理方法においても浄化能力
が低下することがないことが確認された。又、本実施例
において、殺菌又は溶菌処理に供した活性汚泥の量は6
0m3/日であり、総活性汚泥に対しての殺菌又は溶菌
処理を施した活性汚泥の率は、15%であった。表3
に、本実施例の処理条件をまとめて示した。更に、本実
施例の場合は、2種類の化合物を添加した状態で処理を
行なったが、単独の要件で処理を行なった実施例1〜実
施例6の場合と比べて、効率のよい処理が可能であり、
滞留時間を短くすることができ、しかも、殺菌等の処理
を施す活性汚泥の割合が少なくても効率のよい処理が可
能で、優れた余剰汚泥量の減量化効果が得られることが
わかった。
As a result of the above treatment, the amount of excess sludge generated was about 30 kg / day, and the amount of excess sludge could be reduced. Further, when the final treated water was examined, as shown in Table 4, the treatment of the organic wastewater of this example was comparable with that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 6
It was 0 m 3 / day, and the ratio of the activated sludge that had been sterilized or lysed to the total activated sludge was 15%. Table 3
The processing conditions of this example are shown together. Further, in the case of this example, the treatment was performed in a state where two kinds of compounds were added, but as compared with the cases of Examples 1 to 6 in which the treatment was performed under a single requirement, a more efficient treatment was obtained. Is possible,
It was found that the residence time can be shortened, moreover, efficient treatment can be performed even if the ratio of activated sludge to be treated such as sterilization is small, and an excellent effect of reducing the excess sludge amount can be obtained.

【0047】<実施例8>(アルカリ剤+グルタルアル
デヒド添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
にグルタルアルデヒドを0.2g/lになるように投入
し、更に、25%の水酸化ナトリウムにてpHが10.
0になるように調整して、活性汚泥を構成している細菌
の一部を殺菌又は溶菌処理した。この際、汚泥処理槽へ
は、約1%濃度の活性汚泥を3m3/hrの流量で導入
した。そして、常温(20℃)で殺菌又は溶菌処理を行
った。3時間の滞留時間で処理を終了させ、処理した活
性汚泥を800m3の曝気槽内へと戻し、通常の処理フ
ローによって処理を行なった。
<Embodiment 8> (Alkaline agent + glutaraldehyde addition treatment) In the same manner as in Embodiment 1, after a part of the returned sludge was extracted and introduced into the sludge treatment tank, in the present embodiment, the sludge treatment tank was treated. Glutaraldehyde was added to the inside so that it would be 0.2 g / l, and the pH was adjusted to 10 with 25% sodium hydroxide.
It was adjusted to 0, and a part of the bacteria constituting the activated sludge was sterilized or lysed. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr. Then, sterilization or lysis treatment was performed at room temperature (20 ° C.). The treatment was terminated after a residence time of 3 hours, the treated activated sludge was returned to the aeration tank of 800 m 3 , and the treatment was carried out according to a usual treatment flow.

【0048】上記した処理を行なった結果、発生した余
剰汚泥の量は約30kg/日であり、余剰汚泥量を減量
化することができた。又、最終的な処理水について調べ
たところ、表4に示したように、後述する比較例1で述
べる従来の方法で処理した場合と比較して何ら遜色な
く、本実施例の有機廃水の処理方法においても浄化能力
が低下することがないことが確認された。又、本実施例
において、殺菌又は溶菌処理に供した活性汚泥の量は6
0m3/日であり、総活性汚泥に対しての殺菌又は溶菌
処理を施した活性汚泥の率は、15%であった。表3
に、本実施例の処理条件をまとめて示した。更に、本実
施例の場合は、2種類の化合物を添加した状態で処理を
行なったが、単独の要件で処理を行なった実施例1〜実
施例6の場合と比べて、効率のよい処理が可能であり、
滞留時間を短くすることができ、しかも、殺菌等の処理
を施す活性汚泥の割合が少なくても効率のよい処理が可
能で、優れた余剰汚泥量の減量化効果が得られることが
わかった。
As a result of the above treatment, the amount of excess sludge generated was about 30 kg / day, and the amount of excess sludge could be reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 6
It was 0 m 3 / day, and the ratio of the activated sludge that had been sterilized or lysed to the total activated sludge was 15%. Table 3
The processing conditions of this example are shown together. Further, in the case of this example, the treatment was performed in a state where two kinds of compounds were added, but as compared with the cases of Examples 1 to 6 in which the treatment was performed under a single requirement, a more efficient treatment was obtained. Is possible,
It was found that the residence time can be shortened, moreover, efficient treatment can be performed even if the ratio of activated sludge to be treated such as sterilization is small, and an excellent effect of reducing the amount of excess sludge can be obtained.

【0049】<実施例9>(アルカリ剤+デシルイソノ
ニルジメチルアンモニウム添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
にデシルイソノニルジメチルアンモニウムを0.3/リ
ットルになるように投入し、更に、25%の水酸化ナト
リウムにてpHが9.0になるように調整して、活性汚
泥を構成している細菌の一部を殺菌又は溶菌処理した。
この際、汚泥処理槽へは、約1%濃度の活性汚泥を3m
3/hrの流量で導入した。そして、常温(20℃)で
殺菌又は溶菌処理を行った。4時間の滞留時間で処理を
終了させ、処理した活性汚泥を800m3の曝気槽内へ
と戻し、通常の処理フローによって処理を行なった。
<Example 9> (Alkaline agent + decylisononyldimethylammonium addition treatment) In the same manner as in Example 1, one part of the returned sludge was extracted and introduced into a sludge treatment tank. Decylisononyldimethylammonium was added to the sludge treatment tank at 0.3 / liter, and the pH was adjusted to 9.0 with 25% sodium hydroxide to form active sludge. A part of the bacteria that are sterilized or lysed.
At this time, 3m of activated sludge with a concentration of about 1% was added to the sludge treatment tank.
It was introduced at a flow rate of 3 / hr. Then, sterilization or lysis treatment was performed at room temperature (20 ° C.). The treatment was terminated with a residence time of 4 hours, the treated activated sludge was returned to the 800 m 3 aeration tank, and treatment was carried out according to a normal treatment flow.

【0050】上記した処理を行なった結果、発生した余
剰汚泥の量は約30kg/日であり、余剰汚泥量を減量
化することができた。又、最終的な処理水について調べ
たところ、表4に示したように、後述する比較例1で述
べる従来の方法で処理した場合と比較して何ら遜色な
く、本実施例の有機廃水の処理方法においても浄化能力
が低下することがないことが確認された。又、本実施例
において、殺菌又は溶菌処理に供した活性汚泥の量は6
0m3/日であり、総活性汚泥に対しての殺菌又は溶菌
処理を施した活性汚泥の率は、15%であった。表3
に、本実施例の処理条件をまとめて示した。更に、本実
施例の場合は、2種類の化合物を添加した状態で処理を
行なったが、単独の要件で処理を行なった実施例1〜実
施例6の場合と比べて、効率のよい処理が可能であり、
滞留時間を短くすることができ、しかも、殺菌等の処理
を施す活性汚泥の割合が少なくても効率のよい処理が可
能で、優れた余剰汚泥量の減量化効果が得られることが
わかった。
As a result of the above treatment, the amount of excess sludge generated was about 30 kg / day, and the amount of excess sludge could be reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 6
It was 0 m 3 / day, and the ratio of the activated sludge that had been sterilized or lysed to the total activated sludge was 15%. Table 3
The processing conditions of this example are shown together. Further, in the case of this example, the treatment was performed in a state where two kinds of compounds were added, but as compared with the cases of Examples 1 to 6 in which the treatment was performed under a single requirement, a more efficient treatment was obtained. Is possible,
It was found that the residence time can be shortened, moreover, efficient treatment can be performed even if the ratio of activated sludge to be treated such as sterilization is small, and an excellent effect of reducing the excess sludge amount can be obtained.

【0051】<実施例10>(熱処理+酸処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、更に、75%の硫酸にて
pHが3.0になるように調整して、活性汚泥を構成し
ている細菌の一部を殺菌又は溶菌処理した。この際、汚
泥処理槽へは、約1%濃度の活性汚泥を3m3/hrの
流量で導入し、50℃で殺菌又は溶菌処理を行った。4
時間の滞留時間で処理を終了させ、処理した活性汚泥を
800m3の曝気槽内へと戻し、通常の処理フローによ
って処理を行なった。
<Example 10> (Heat treatment + acid treatment) After a part of the returned sludge was extracted and introduced into the sludge treatment tank in the same manner as in Example 1, in this embodiment, the sludge treatment tank was heated. Steam was introduced and heated, and further, the pH was adjusted to 3.0 with 75% sulfuric acid to sterilize or lyse a part of the bacteria constituting the activated sludge. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr, and sterilized or lysed at 50 ° C. Four
The treatment was terminated at the retention time of time, the treated activated sludge was returned to the inside of the aeration tank of 800 m 3 , and the treatment was carried out by the usual treatment flow.

【0052】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を大幅
に減量化することができた。又、最終的な処理水につい
て調べたところ、表4に示したように、後述する比較例
1で述べる従来の方法で処理した場合と比較して何ら遜
色なく、本実施例の有機廃水の処理方法においても浄化
能力が低下することがないことが確認された。又、本実
施例において、殺菌又は溶菌処理に供した活性汚泥の量
は50m3/日であり、総活性汚泥に対しての殺菌又は
溶菌処理を施した活性汚泥の率は、12.5%であっ
た。表3に、本実施例の処理条件をまとめて示した。更
に、本実施例の場合は、熱処理を含む2種の要件を付加
した状態で処理を行なったが、単独の要件で処理を行な
った実施例1〜実施例6の場合と比べて、滞留時間を短
くすることができると共に、処理する活性汚泥の割合が
少なくても同様の効果が得られることがわかった。しか
も、2種類の化合物を添加して処理を行なった実施例7
〜実施例9の場合よりも更に殺菌又は溶菌処理する活性
汚泥の割合が少なくても同様の効果が得られ、効率がよ
いことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be significantly reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Further, in this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of sterilized or lysis treatment to total activated sludge was 12.5%. Met. Table 3 collectively shows the processing conditions of this example. Further, in the case of the present example, the treatment was carried out in a state where two kinds of requirements including heat treatment were added, but as compared with the case of Examples 1 to 6 in which the treatment was carried out under the single requirement, the residence time was changed. It has been found that the same effect can be obtained even when the ratio of activated sludge to be treated is small, as well as being able to shorten. Moreover, Example 7 in which two kinds of compounds were added for treatment
It was found that even if the ratio of the activated sludge to be sterilized or lysed was smaller than that in Example 9, the same effect was obtained and the efficiency was good.

【0053】<実施例11>(熱処理+アルカリ剤処
理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、更に、25%の水酸化ナ
トリウムにてpHが10.0になるように調整して、活
性汚泥を構成している細菌の一部を殺菌又は溶菌処理し
た。この際、汚泥処理槽へは、約1%濃度の活性汚泥を
3m3/hrの流量で導入し、50℃で殺菌又は溶菌処
理を行った。4時間の滞留時間で処理を終了させ、処理
した活性汚泥を800m3の曝気槽内へと戻し、通常の
処理フローによって処理を行なった。
<Example 11> (Heat treatment + Alkali agent treatment) In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into the sludge treatment tank, in this embodiment, it was placed in the sludge treatment tank. A heating steam was introduced and heated, and further, the pH was adjusted to 10.0 with 25% sodium hydroxide, and a part of bacteria constituting the activated sludge was sterilized or lysed. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr, and sterilized or lysed at 50 ° C. The treatment was terminated with a residence time of 4 hours, the treated activated sludge was returned to the 800 m 3 aeration tank, and treatment was carried out according to a normal treatment flow.

【0054】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を大幅
に減量化することができた。又、最終的な処理水につい
て調べたところ、表4に示したように、後述する比較例
1で述べる従来の方法で処理した場合と比較して何ら遜
色なく、本実施例の有機廃水の処理方法においても浄化
能力が低下することがないことが確認された。又、本実
施例において、殺菌又は溶菌処理に供した活性汚泥の量
は50m3/日であり、総活性汚泥に対しての殺菌又は
溶菌処理を施した活性汚泥の率は、12.5%であっ
た。表3に、本実施例の処理条件をまとめて示した。更
に、本実施例の場合は、熱処理を含む2種の要件を付加
した状態で処理を行なったが、単独の要件で処理を行な
った実施例1〜実施例6の場合と比べて、滞留時間を短
くすることができると共に、処理する活性汚泥の割合が
少なくても同様の効果が得られることがわかった。しか
も、2種類の化合物を添加して処理を行なった実施例7
〜実施例9の場合よりも更に殺菌又は溶菌処理する活性
汚泥の割合が少なくても同様の効果が得られ、効率がよ
いことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be significantly reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Further, in this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of sterilized or lysis treatment to total activated sludge was 12.5%. Met. Table 3 collectively shows the processing conditions of this example. Further, in the case of the present example, the treatment was carried out in a state where two kinds of requirements including heat treatment were added, but as compared with the case of Examples 1 to 6 in which the treatment was carried out under the single requirement, the residence time was changed. It has been found that the same effect can be obtained even when the ratio of activated sludge to be treated is small, as well as being able to shorten. Moreover, Example 7 in which two kinds of compounds were added for treatment
It was found that even if the ratio of the activated sludge to be sterilized or lysed was smaller than that in Example 9, the same effect was obtained and the efficiency was good.

【0055】<実施例12>(熱処理+ソルビン酸カリ
ウム添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、更に、ソルビン酸カリウ
ムを0.2g/リットルとなるように投入して、活性汚
泥を構成している細菌の一部を殺菌又は溶菌処理した。
この際、汚泥処理槽へは、約1%濃度の活性汚泥を3m
3/hrの流量で導入し、50℃で殺菌又は溶菌処理を
行った。4時間の滞留時間で処理を終了させ、処理した
活性汚泥を800m3の曝気槽内へと戻し、通常の処理
フローによって処理を行なった。
<Example 12> (Heat treatment + potassium sorbate addition treatment) In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into the sludge treatment tank, the sludge treatment tank was used in this embodiment. A heating steam was introduced thereinto to heat the mixture, and then potassium sorbate was added at a concentration of 0.2 g / liter to sterilize or lyse some of the bacteria constituting the activated sludge.
At this time, 3m of activated sludge with a concentration of about 1% was added to the sludge treatment tank.
It was introduced at a flow rate of 3 / hr and sterilized or lysed at 50 ° C. The treatment was terminated with a residence time of 4 hours, the treated activated sludge was returned to the 800 m 3 aeration tank, and treatment was carried out according to a normal treatment flow.

【0056】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を大幅
に減量化することができた。又、最終的な処理水につい
て調べたところ、表4に示したように、後述する比較例
1で述べる従来の方法で処理した場合と比較して何ら遜
色なく、本実施例の有機廃水の処理方法においても浄化
能力が低下することがないことが確認された。又、本実
施例において、殺菌又は溶菌処理に供した活性汚泥の量
は50m3/日であり、総活性汚泥に対しての殺菌又は
溶菌処理を施した活性汚泥の率は、12.5%であっ
た。表3に、本実施例の処理条件をまとめて示した。更
に、本実施例の場合は、熱処理を含む2種の要件を付加
した状態で処理を行なったが、単独の要件で処理を行な
った実施例1〜実施例6の場合と比べて、滞留時間を短
くすることができると共に、処理する活性汚泥の割合が
少なくても同様の効果が得られることがわかった。しか
も、2種類の化合物を添加して処理を行なった実施例7
〜実施例9の場合よりも更に殺菌又は溶菌処理する活性
汚泥の割合が少なくても同様の効果が得られ、効率がよ
いことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be greatly reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Further, in this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of sterilized or lysis treatment to total activated sludge was 12.5%. Met. Table 3 collectively shows the processing conditions of this example. Further, in the case of the present example, the treatment was carried out in a state where two kinds of requirements including heat treatment were added, but as compared with the case of Examples 1 to 6 in which the treatment was carried out under the single requirement, the residence time was changed. It has been found that the same effect can be obtained even when the ratio of activated sludge to be treated is small, as well as being able to shorten. Moreover, Example 7 in which two kinds of compounds were added for treatment
It was found that even if the ratio of the activated sludge to be sterilized or lysed was smaller than that in Example 9, the same effect was obtained and the efficiency was good.

【0057】<実施例13>(熱処理+グルタルアルデ
ヒド添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、更に、グルタルアルデヒ
ドを0.2g/リットルとなるように投入して、活性汚
泥を構成している細菌の一部を殺菌又は溶菌処理した。
この際、汚泥処理槽へは、約1%濃度の活性汚泥を3m
3/hrの流量で導入し、50℃で殺菌又は溶菌処理を
行った。4時間の滞留時間で処理を終了させ、処理した
活性汚泥を800m3の曝気槽内へと戻し、通常の処理
フローによって処理を行なった。
<Example 13> (Heat Treatment + Glutaraldehyde Addition Treatment) In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into the sludge treatment tank, in the present embodiment, the sludge treatment tank A heating steam was introduced into the mixture to heat it, and then glutaraldehyde was added at a concentration of 0.2 g / liter to sterilize or lyse a part of the bacteria constituting the activated sludge.
At this time, 3m of activated sludge with a concentration of about 1% was added to the sludge treatment tank.
It was introduced at a flow rate of 3 / hr and sterilized or lysed at 50 ° C. The treatment was terminated with a residence time of 4 hours, the treated activated sludge was returned to the 800 m 3 aeration tank, and treatment was carried out according to a normal treatment flow.

【0058】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を大幅
に減量化することができた。又、最終的な処理水につい
て調べたところ、表4に示したように、後述する比較例
1で述べる従来の方法で処理した場合と比較して何ら遜
色なく、本実施例の有機廃水の処理方法においても浄化
能力が低下することがないことが確認された。又、本実
施例において、殺菌又は溶菌処理に供した活性汚泥の量
は50m3/日であり、総活性汚泥に対しての殺菌又は
溶菌処理を施した活性汚泥の率は、12.5%であっ
た。表3に、本実施例の処理条件をまとめて示した。更
に、本実施例の場合は、熱処理を含む2種の要件を付加
した状態で処理を行なったが、単独の要件で処理を行な
った実施例1〜実施例6の場合と比べて、滞留時間を短
くすることができると共に、処理する活性汚泥の割合が
少なくても同様の効果が得られることがわかった。しか
も、2種類の化合物を添加して処理を行なった実施例7
〜実施例9の場合よりも更に殺菌又は溶菌処理する活性
汚泥の割合が少なくても同様の効果が得られ、効率がよ
いことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be significantly reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Further, in this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of sterilized or lysis treatment to total activated sludge was 12.5%. Met. Table 3 collectively shows the processing conditions of this example. Further, in the case of the present example, the treatment was carried out in a state where two kinds of requirements including heat treatment were added, but as compared with the case of Examples 1 to 6 in which the treatment was carried out under the single requirement, the residence time was changed. It has been found that the same effect can be obtained even when the ratio of activated sludge to be treated is small, as well as being able to shorten. Moreover, Example 7 in which two kinds of compounds were added for treatment
It was found that even if the ratio of the activated sludge to be sterilized or lysed was smaller than that in Example 9, the same effect was obtained and the efficiency was good.

【0059】<実施例14>(熱処理+デシルイソノニ
ルジメチルアンモニウム添加処理) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、更に、デシルイソノニル
ジメチルアンモニウムを0.3g/リットルとなるよう
に投入して、活性汚泥を構成している細菌の一部を殺菌
又は溶菌処理した。この際、汚泥処理槽へは、約1%濃
度の活性汚泥を3m3/hrの流量で導入し、50℃で
殺菌又は溶菌処理を行った。4時間の滞留時間で処理を
終了させ、処理した活性汚泥を800m3の曝気槽内へ
と戻し、通常の処理フローによって処理を行なった。
<Example 14> (Heat treatment + decylisononyldimethylammonium addition treatment) In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into a sludge treatment tank, the sludge was treated in this example. Introduce heating steam into the treatment tank to heat it, and then add decylisononyldimethylammonium at 0.3 g / liter to sterilize or lyse some of the bacteria that make up the activated sludge. did. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr, and sterilized or lysed at 50 ° C. The treatment was terminated with a residence time of 4 hours, the treated activated sludge was returned to the 800 m 3 aeration tank, and treatment was carried out according to a normal treatment flow.

【0060】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を大幅
に減量化することができた。又、最終的な処理水につい
て調べたところ、表4に示したように、後述する比較例
1で述べる従来の方法で処理した場合と比較して何ら遜
色なく、本実施例の有機廃水の処理方法においても浄化
能力が低下することがないことが確認された。又、本実
施例において、殺菌又は溶菌処理に供した活性汚泥の量
は50m3/日であり、総活性汚泥に対しての殺菌又は
溶菌処理を施した活性汚泥の率は、12.5%であっ
た。表3に、本実施例の処理条件をまとめて示した。更
に、本実施例の場合は、熱処理を含む2種の要件を付加
した状態で処理を行なったが、単独の要件で処理を行な
った実施例1〜実施例6の場合と比べて、滞留時間を短
くすることができると共に、処理する活性汚泥の割合が
少なくても同様の効果が得られることがわかった。しか
も、2種類の化合物を添加して処理を行なった実施例7
〜実施例9の場合よりも更に殺菌又は溶菌処理する活性
汚泥の割合が少なくても同様の効果が得られることがわ
かった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be significantly reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Further, in this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of sterilized or lysis treatment to total activated sludge was 12.5%. Met. Table 3 collectively shows the processing conditions of this example. Further, in the case of the present example, the treatment was carried out in a state where two kinds of requirements including heat treatment were added, but as compared with the case of Examples 1 to 6 in which the treatment was carried out under the single requirement, the residence time was changed. It has been found that the same effect can be obtained even when the ratio of activated sludge to be treated is small, as well as being able to shorten. Moreover, Example 7 in which two kinds of compounds were added for treatment
It was found that the same effect can be obtained even when the ratio of the activated sludge to be sterilized or lysed is smaller than in the case of Example 9.

【0061】<実施例15>(熱処理+酸処理+ソルビ
ン酸カリウム添加) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、ソルビン酸カリウムを
0.1g/リットルとなるように投入し、更に75%硫
酸にてpHが3.0になるように調整し、活性汚泥を構
成している細菌の一部を殺菌又は溶菌処理した。この
際、汚泥処理槽へは、約1%濃度の活性汚泥を3m3
hrの流量で導入し、50℃で殺菌又は溶菌処理を行っ
た。3時間の滞留時間で処理を終了させ、処理した活性
汚泥を800m3の曝気槽内へと戻し、通常の処理フロ
ーによって処理を行なった。
<Example 15> (Heat treatment + acid treatment + addition of potassium sorbate) In the same manner as in Example 1, a part of the returned sludge was extracted and introduced into a sludge treatment tank. Heated steam is introduced into the treatment tank to heat it, potassium sorbate is added to 0.1 g / liter, and the pH is adjusted to 75 with 75% sulfuric acid to remove activated sludge. A part of the constituting bacteria was sterilized or lysed. At this time, the activated sludge with a concentration of about 1% was added to the sludge treatment tank at 3 m 3 /
It was introduced at a flow rate of hr and sterilized or lysed at 50 ° C. The treatment was terminated after a residence time of 3 hours, the treated activated sludge was returned to the aeration tank of 800 m 3 , and the treatment was carried out according to a usual treatment flow.

【0062】上記した処理を行なった結果、発生した余
剰汚泥の量はほぼ0kg/日であり、余剰汚泥量を更に
大幅に減量化することができた。又、最終的な処理水に
ついて調べたところ、表4に示したように、後述する比
較例1で述べる従来の方法で処理した場合と比較して何
ら遜色なく、本実施例の有機廃水の処理方法においても
浄化能力が低下することがないことが確認された。又、
本実施例において、殺菌又は溶菌処理に供した活性汚泥
の量は50m3/日であり、総活性汚泥に対しての殺菌
又は溶菌処理を施した活性汚泥の率は、12.5%であ
った。表3に、本実施例の処理条件をまとめて示した。
更に、本実施例の場合は、熱処理を含む3種の要件を付
加した状態で処理を行なったが、単独或いは2種の要件
を付加した状態で処理を行なった実施例1〜実施例14
の場合と比べて、滞留時間を短くすることができること
がわかった。しかも、余剰汚泥の量をほぼゼロにするこ
とができ、減量化の効果が大きいことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was almost 0 kg / day, and the amount of excess sludge could be further reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. or,
In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of activated sludge subjected to sterilization or lysis treatment to the total activated sludge was 12.5%. It was Table 3 collectively shows the processing conditions of this example.
Further, in the case of this example, the treatment was performed in the state where three kinds of requirements including the heat treatment were added, but the treatment was performed alone or in the state where two kinds of requirements were added. Examples 1 to 14
It was found that the residence time can be shortened as compared with the case. Moreover, it was found that the amount of excess sludge can be reduced to almost zero, and the effect of reducing the amount is great.

【0063】<実施例16>(熱処理+アルカリ剤+グ
ルタルアルデヒド添加) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、グルタルアルデヒドを
0.1g/リットルとなるように投入し、更に25%水
酸化ナトリウムにてpHが10.0になるように調整
し、活性汚泥を構成している細菌の一部を殺菌又は溶菌
処理した。この際、汚泥処理槽へは、約1%濃度の活性
汚泥を3m3/hrの流量で導入し、50℃で殺菌又は
溶菌処理を行った。3時間の滞留時間で処理を終了さ
せ、処理した活性汚泥を800m3の曝気槽内へと戻
し、通常の処理フローによって処理を行なった。
<Example 16> (heat treatment + alkali agent + glutaraldehyde addition) In the same manner as in Example 1, a part of the returned sludge was extracted and introduced into a sludge treatment tank. Introduce heated steam into the tank to heat it, add glutaraldehyde to 0.1 g / liter, and adjust the pH to 10.0 with 25% sodium hydroxide to remove activated sludge. A part of the constituting bacteria was sterilized or lysed. At this time, activated sludge having a concentration of about 1% was introduced into the sludge treatment tank at a flow rate of 3 m 3 / hr, and sterilized or lysed at 50 ° C. The treatment was terminated after a residence time of 3 hours, the treated activated sludge was returned to the aeration tank of 800 m 3 , and the treatment was carried out according to a usual treatment flow.

【0064】上記した処理を行なった結果、発生した余
剰汚泥の量はほぼ0kg/日であり、余剰汚泥量を更に
大幅に減量化することができた。又、最終的な処理水に
ついて調べたところ、表4に示したように、後述する比
較例1で述べる従来の方法で処理した場合と比較して何
ら遜色なく、本実施例の有機廃水の処理方法においても
浄化能力が低下することがないことが確認された。又、
本実施例において、殺菌又は溶菌処理に供した活性汚泥
の量は50m3/日であり、総活性汚泥に対しての殺菌
又は溶菌処理を施した活性汚泥の率は、12.5%であ
った。表3に、本実施例の処理条件をまとめて示した。
更に、本実施例の場合は、熱処理を含む3種の要件を付
加した状態で処理を行なったが、単独或いは2種の要件
を付加した状態で処理を行なった実施例1〜実施例14
の場合と比べて、滞留時間を短くすることができること
がわかった。しかも、余剰汚泥の量をほぼゼロにするこ
とができ、減量化の効果が大きいことがわかった。
As a result of the above-mentioned treatment, the amount of excess sludge generated was approximately 0 kg / day, and the amount of excess sludge could be further reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. or,
In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of activated sludge subjected to sterilization or lysis treatment to the total activated sludge was 12.5%. It was Table 3 collectively shows the processing conditions of this example.
Further, in the case of this example, the treatment was performed in the state where three kinds of requirements including the heat treatment were added, but the treatment was performed alone or in the state where two kinds of requirements were added. Examples 1 to 14
It was found that the residence time can be shortened as compared with the case. Moreover, it was found that the amount of excess sludge can be reduced to almost zero, and the effect of reducing the amount is great.

【0065】<実施例17>(熱処理+アルカリ剤+デ
シルイソノニルジメチルアンモニウム添加) 実施例1と同様にして返送汚泥の1部を引き抜いて汚泥
処理槽へと導入した後、本実施例では、該汚泥処理槽内
に加熱蒸気を導入して加熱し、デシルイソノニルジメチ
ルアンモニウムを0.1g/リットルとなるように投入
し、更に25%水酸化ナトリウムにてpHが9.0にな
るように調整し、活性汚泥を構成している細菌の一部を
殺菌又は溶菌処理した。この際、汚泥処理槽へは、約1
%濃度の活性汚泥を3m3/hrの流量で導入し、50
℃で殺菌又は溶菌処理を行った。3時間の滞留時間で処
理を終了させ、処理した活性汚泥を800m3の曝気槽
内へと戻し、通常の処理フローによって処理を行なっ
た。
<Example 17> (Heat treatment + alkali agent + decylisononyldimethylammonium addition) In the same manner as in Example 1, after a part of the returned sludge was extracted and introduced into a sludge treatment tank, Heating steam was introduced into the sludge treatment tank to heat it, and decylisononyldimethylammonium was added so as to be 0.1 g / liter, and the pH was adjusted to 9.0 with 25% sodium hydroxide. The bacterium was prepared and part of the bacteria constituting the activated sludge was sterilized or lysed. At this time, about 1 to the sludge treatment tank
50% of activated sludge was introduced at a flow rate of 3 m 3 / hr,
Sterilization or bacteriolysis was performed at ℃. The treatment was terminated after a residence time of 3 hours, the treated activated sludge was returned to the aeration tank of 800 m 3 , and the treatment was carried out according to a usual treatment flow.

【0066】上記した処理を行なった結果、発生した余
剰汚泥の量はほぼ0kg/日であり、余剰汚泥量を更に
大幅に減量化することができた。又、最終的な処理水に
ついて調べたところ、表4に示したように、後述する比
較例1で述べる従来の方法で処理した場合と比較して何
ら遜色なく、本実施例の有機廃水の処理方法においても
浄化能力が低下することがないことが確認された。又、
本実施例において、殺菌又は溶菌処理に供した活性汚泥
の量は50m3/日であり、総活性汚泥に対しての殺菌
又は溶菌処理を施した活性汚泥の率は、12.5%であ
った。表3に、本実施例の処理条件をまとめて示した。
更に、本実施例の場合は、熱処理を含む3種の要件を付
加した状態で処理を行なったが、単独或いは2種の要件
を付加した状態で処理を行なった実施例1〜実施例14
の場合と比べて滞留時間を短くすることができることが
わかった。しかも、余剰汚泥の量をほぼゼロにすること
ができ、減量化の効果が大きいことがわかった。
As a result of performing the above-mentioned treatment, the amount of excess sludge generated was approximately 0 kg / day, and the amount of excess sludge could be further reduced significantly. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. or,
In this example, the amount of activated sludge subjected to sterilization or lysis treatment was 50 m 3 / day, and the ratio of activated sludge subjected to sterilization or lysis treatment to the total activated sludge was 12.5%. It was Table 3 collectively shows the processing conditions of this example.
Further, in the case of this example, the treatment was performed in the state where three kinds of requirements including the heat treatment were added, but the treatment was performed alone or in the state where two kinds of requirements were added. Examples 1 to 14
It was found that the residence time can be shortened as compared with the case. Moreover, it was found that the amount of excess sludge can be reduced to almost zero, and the effect of reducing the amount is great.

【0067】<実施例18>図3に示した沈澱槽を設け
ずに、曝気槽から所定量の活性汚泥を引き抜いて汚泥処
理槽へと入れて処理し、その後曝気槽へと処理汚泥を戻
す回分式の活性汚泥処理システムにおいて、廃水工程時
に活性汚泥を汚泥処理槽へと1回に80m3導入して処
理する以外は、実施例1と同様にして有機性廃水の活性
汚泥処理を行った。上記した処理を行なった結果、発生
した余剰汚泥の量は約40kg/日であり、表3に示し
たように回分式の活性汚泥処理システムにおいても余剰
汚泥量を減量化することができることが確認できた。
又、最終的な処理水について調べたところ、表4に示し
たように、後述する比較例1で述べる従来の方法で処理
した場合と比較して何ら遜色なく、本実施例の有機廃水
の処理方法においても浄化能力が低下することがないこ
とが確認できた。
<Example 18> Without providing the settling tank shown in FIG. 3, a predetermined amount of activated sludge was extracted from the aeration tank and put into the sludge treatment tank for treatment, and then the treated sludge was returned to the aeration tank. In the batch type activated sludge treatment system, the activated sludge treatment of the organic wastewater was performed in the same manner as in Example 1 except that the activated sludge was introduced into the sludge treatment tank at a time of 80 m 3 at the time of the wastewater process. . As a result of performing the above treatment, the amount of excess sludge generated was about 40 kg / day, and as shown in Table 3, it was confirmed that the excess sludge amount can be reduced even in the batch type activated sludge treatment system. did it.
In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method.

【0068】<比較例1>曝気槽からの活性汚泥の一部
をアルカリ剤によって処理しない以外は、実施例18と
同様にして有機性廃水の活性汚泥処理を行った。この結
果、表4に示したように発生した余剰汚泥の量は、20
0kg/日であり、実施例の場合に比較して、少なくと
も5倍以上の量の余剰汚泥が発生した。
Comparative Example 1 Organic sludge was treated with activated sludge in the same manner as in Example 18 except that a portion of the activated sludge from the aeration tank was not treated with an alkaline agent. As a result, the amount of excess sludge generated as shown in Table 4 was 20
It was 0 kg / day, and at least 5 times or more of excess sludge was generated as compared with the case of the example.

【0069】<実施例19>実施例1で使用したと同様
の乳製品を扱う食品工場からの有機性廃水を原水として
有機性廃水の活性汚泥処理を行った。本実施例では、返
送汚泥等の一部を引き抜いて汚泥処理槽へと導入し、該
汚泥処理槽内に、廃硝酸と、過酸化水素水とを投入し
て、活性汚泥を可溶化して溶菌処理した。この際、過酸
化水素水の投入量は5kgとしたが、これは、処理対象
の活性汚泥に対して約1.3重量%に相当していた。汚
泥処理槽へは1回に付き12m3の量の活性汚泥を導入
し、pHが3になるまで廃硝酸を添加し、20℃で4時
間撹拌処理を行なった。その後、処理した活性汚泥を再
び800m3の容量の曝気処理槽内へと戻した。
<Example 19> Activated sludge treatment of organic wastewater was carried out by using organic wastewater from a food factory handling dairy products similar to that used in Example 1 as raw water. In this example, a part of the returned sludge or the like is extracted and introduced into a sludge treatment tank, and waste nitric acid and hydrogen peroxide water are put into the sludge treatment tank to solubilize the activated sludge. Lysis treatment was performed. At this time, the amount of hydrogen peroxide solution added was 5 kg, which was equivalent to about 1.3% by weight with respect to the activated sludge to be treated. 12 m 3 of activated sludge was introduced into the sludge treatment tank at one time, waste nitric acid was added until the pH reached 3, and the mixture was stirred at 20 ° C. for 4 hours. Then, the treated activated sludge was returned to the aeration treatment tank having a capacity of 800 m 3 .

【0070】上記した処理を行なった結果、発生した余
剰汚泥の量は約30kg/日であり、余剰汚泥量を減量
化することができた。又、最終的な処理水について調べ
たところ、表4に示したように、後述する比較例1で述
べる従来の方法で処理した場合と比較して何ら遜色な
く、本実施例の有機廃水の処理方法においても浄化能力
が低下することがないことが確認された。又、殺菌又は
溶菌処理に供した活性汚泥の量は60m3/日であり、
総活性汚泥に対しての殺菌又は溶菌処理を施した活性汚
泥の率は、15%であった。表3に、本実施例の処理条
件をまとめて示した。更に、本実施例の場合は、廃硝酸
を含む2種類の化合物を添加した状態で処理を行なった
が、この場合にも、単独の条件で処理を行なった実施例
1〜実施例6の場合と比較して、殺菌又は溶菌処理する
活性汚泥の割合が少なくても同様の効果が得られること
がわかった。本実施例のように構成すれば、廃硝酸を使
用することによってより経済的な処理が可能となる。
As a result of the above-mentioned treatment, the amount of excess sludge generated was about 30 kg / day, and the amount of excess sludge could be reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also, the amount of activated sludge subjected to sterilization or lysis treatment is 60 m 3 / day,
The ratio of the activated sludge that had been sterilized or lysed to the total activated sludge was 15%. Table 3 collectively shows the processing conditions of this example. Further, in the case of this example, the treatment was carried out in a state where two kinds of compounds containing waste nitric acid were added, and in this case also, in the case of Examples 1 to 6 in which the treatment was carried out under a single condition. It was found that similar effects can be obtained even when the ratio of the activated sludge to be sterilized or lysed is small as compared with. If configured as in this example, more economical treatment can be achieved by using waste nitric acid.

【0071】<実施例20>実施例1で使用したと同様
の乳製品を扱う食品工場からの有機性廃水を原水として
有機性廃水の活性汚泥処理を行った。本実施例では、返
送汚泥等の一部を引き抜いて汚泥処理槽へと導入し、該
汚泥処理槽内に、廃硝酸と、過酸化水素水とを投入し
て、活性汚泥を可溶化して溶菌処理した。この際、過酸
化水素水の投入量は5kgとしたが、これは、処理対象
の活性汚泥に対して約1.3重量%に相当していた。汚
泥処理槽へは1回に付き12m3の量の活性汚泥を導入
し、pHが3になるまで廃硝酸を添加し、40℃で殺菌
又は溶菌処理を行った。3時間の滞留時間で処理を終了
させ、処理した活性汚泥を再び800m3の容量の曝気
処理槽内へと戻した。
Example 20 The activated sludge treatment of the organic wastewater was carried out by using the organic wastewater from a food factory handling dairy products similar to that used in Example 1 as raw water. In this example, a part of the returned sludge or the like is extracted and introduced into a sludge treatment tank, and waste nitric acid and hydrogen peroxide water are put into the sludge treatment tank to solubilize the activated sludge. Lysis treatment was performed. At this time, the amount of hydrogen peroxide solution added was 5 kg, which was equivalent to about 1.3% by weight with respect to the activated sludge to be treated. An amount of 12 m 3 of activated sludge was introduced into the sludge treatment tank at one time, waste nitric acid was added until the pH reached 3, and sterilization or bacteriolysis was performed at 40 ° C. The treatment was terminated after a residence time of 3 hours, and the treated activated sludge was returned to the aeration treatment tank having a capacity of 800 m 3 .

【0072】上記した処理を行なった結果、発生した余
剰汚泥の量は約20kg/日であり、余剰汚泥量を減量
化することができた。又、最終的な処理水について調べ
たところ、表4に示したように、後述する比較例1で述
べる従来の方法で処理した場合と比較して何ら遜色な
く、本実施例の有機廃水の処理方法においても浄化能力
が低下することがないことが確認された。又、殺菌又は
溶菌処理に供した活性汚泥の量は50m3/日であり、
総活性汚泥に対しての殺菌又は溶菌処理を施した活性汚
泥の率は、12.5%であった。表3に、本実施例の処
理条件をまとめて示した。更に、本実施例の場合は、熱
処理を含む3種の要件を付加した状態で処理を行なった
が、単独或いは2種の要件を付加した状態で処理を行な
った実施例1〜実施例14及び実施例19の場合と比べ
て滞留時間を短くすることができることがわかった。し
かも、余剰汚泥の量をほぼゼロにすることができ、減量
化の効果が大きいことがわかった。更に、本実施例のよ
うに構成すれば、廃硝酸を使用することによってより経
済的な処理が可能となる。
As a result of the above treatment, the amount of excess sludge generated was about 20 kg / day, and the amount of excess sludge could be reduced. In addition, when the final treated water was investigated, as shown in Table 4, the treatment of the organic wastewater of this example was comparable to that of the conventional method described in Comparative Example 1 described later. It was confirmed that the purification ability did not decrease even in the method. Also, the amount of activated sludge subjected to sterilization or lysis treatment is 50 m 3 / day,
The ratio of the activated sludge that had been sterilized or lysed to the total activated sludge was 12.5%. Table 3 collectively shows the processing conditions of this example. Furthermore, in the case of this example, the treatment was performed in a state where three kinds of requirements including heat treatment were added, but Examples 1 to 14 in which the treatment was performed alone or in a state where two kinds of requirements were added It was found that the residence time can be shortened as compared with the case of Example 19. Moreover, it was found that the amount of excess sludge can be reduced to almost zero, and the effect of reducing the amount is great. Further, with the configuration as in this example, more economical treatment can be performed by using waste nitric acid.

【0073】[0073]

【表3】表3 活性汚泥の殺菌又は溶菌処理条件 [Table 3] Table 3 Conditions for sterilization or lysis treatment of activated sludge

【0074】[0074]

【表4】表4 有機廃水の処理結果 [Table 4] Table 4 Result of organic wastewater treatment

【0075】[0075]

【発明の効果】上記したように、本発明によれば、活性
汚泥法を利用した有機性廃水の処理において、最終段階
で放出される処理水の水質を悪化させることなく、余剰
汚泥の発生量を大幅に減量化することが可能となり、有
機性廃水の浄化処理が簡易且つ経済的になされる。
As described above, according to the present invention, in the treatment of organic wastewater using the activated sludge method, the amount of excess sludge generated without deteriorating the quality of the treated water discharged at the final stage. It is possible to significantly reduce the amount, and the purification treatment of organic wastewater can be performed easily and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する活性汚泥に対して殺菌作用又
は溶菌作用を有する要因の作用を模式的に示した図であ
る。
FIG. 1 is a diagram schematically showing an action of a factor having a bactericidal action or a bacteriolytic action on activated sludge used in the present invention.

【図2】本発明の有機性廃水の処理方法の一例を示す概
略システム図である。
FIG. 2 is a schematic system diagram showing an example of a method for treating organic wastewater according to the present invention.

【図3】本発明の有機性廃水の処理方法の別の一例を示
す概略システム図である。
FIG. 3 is a schematic system diagram showing another example of the method for treating organic wastewater of the present invention.

【図4】従来の有機性廃水の処理方法の処理フローの一
例である。
FIG. 4 is an example of a processing flow of a conventional method for treating organic wastewater.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃水を活性汚泥を利用して浄化処
理する場合に、いずれかの処理過程で、pH又は温度を
制御することによって、或いは、アルカリ剤、酸又は廃
酸、活性汚泥に対して殺菌作用又は溶菌作用を有する化
合物から選ばれる少なくとも1種を添加することによっ
て、又は、上記の要件を2以上組み合わせることによっ
て、活性汚泥を構成している細菌の一部を殺菌又は溶菌
して処理過程中における活性汚泥の増殖を抑制すること
を特徴とする有機性廃水の処理方法。
1. When purifying an organic wastewater using activated sludge, pH or temperature is controlled in any treatment process, or an alkaline agent, an acid or a waste acid, and activated sludge are added. On the other hand, by adding at least one selected from compounds having a bactericidal action or a bacteriolytic action, or by combining two or more of the above requirements, a part of bacteria constituting the activated sludge is sterilized or lysed. A method for treating organic wastewater, which comprises suppressing the growth of activated sludge during the treatment process.
【請求項2】 アルカリ剤、酸又は廃酸、活性汚泥に対
して殺菌作用又は溶菌作用を有する化合物から選ばれる
少なくとも1種の添加を、有機性廃水を処理槽に導入し
て活性汚泥と共に曝気処理した後、上記処理槽(曝気
槽)内から或いは該処理槽の下流側に設けられた沈殿槽
内から抜き出された活性汚泥が導入されている活性汚泥
処理槽内で行なって、該処理槽内で活性汚泥を殺菌又は
溶菌した後、処理された活性汚泥を上記処理槽内へと導
入する請求項1に記載の有機性廃水の処理方法。
2. An organic wastewater is introduced into a treatment tank to aerate at least one additive selected from an alkaline agent, an acid or a waste acid, and a compound having a bactericidal action or a bacteriolytic action on activated sludge together with the activated sludge. After the treatment, the treatment is carried out in the activated sludge treatment tank into which the activated sludge extracted from the treatment tank (aeration tank) or the settling tank provided on the downstream side of the treatment tank is introduced. The method for treating organic wastewater according to claim 1, wherein the treated activated sludge is introduced into the treatment tank after sterilizing or lysing the activated sludge in the tank.
【請求項3】 化合物が、ソルビン酸、ソルビン酸ナト
リウム、ソルビン酸カリウム、ソルビン酸カルシウム、
グルタルアルデヒドに代表されるアルデヒド類、カチオ
ン性界面活性剤、ノニオン性界面活性剤、両性界面活性
剤、塩素化合物類、ポリアミン類、脂肪族アミン類、フ
ェノール類、ニトロフラン類、トリクロルアルキルチオ
基を有する化合物、ジチオカルバメート類、アルコール
類、プロテアーゼ、グルカナーゼ、アミラーゼ、モノパ
ーオキシフタレートマグネシウム、過酸化水素、過酸化
ナトリウム、過炭酸ナトリウム、炭化ナトリウムのいず
れかである請求項1に記載の有機性廃水の処理方法。
3. The compound is sorbic acid, sodium sorbate, potassium sorbate, calcium sorbate,
It has aldehydes represented by glutaraldehyde, cationic surfactants, nonionic surfactants, amphoteric surfactants, chlorine compounds, polyamines, aliphatic amines, phenols, nitrofurans, and trichloroalkylthio groups. The organic wastewater according to claim 1, which is any one of a compound, dithiocarbamate, alcohol, protease, glucanase, amylase, magnesium monoperoxyphthalate, hydrogen peroxide, sodium peroxide, sodium percarbonate, and sodium carbide. Processing method.
【請求項4】 有機性廃水を処理槽に導入して活性汚泥
と共に曝気処理した後、上記処理槽(曝気槽)内から或
いは該処理槽の下流に設けられた沈殿槽内から活性汚泥
の少なくとも一部を抜き出して活性汚泥処理槽へと導入
し、該処理槽内の温度を40〜100℃の範囲に制御し
て活性汚泥を殺菌又は溶菌した後、処理された活性汚泥
を上記処理槽内へと導入する請求項1に記載の有機性廃
水の処理方法。
4. At least the activated sludge is introduced from the inside of the treatment tank (aeration tank) or from the settling tank provided downstream of the treatment tank after introducing the organic wastewater into the treatment tank and performing aeration treatment with the activated sludge. A part is extracted and introduced into an activated sludge treatment tank, and the temperature in the treatment tank is controlled within a range of 40 to 100 ° C to sterilize or lyse the activated sludge, and the treated activated sludge is then treated in the above treatment tank. The method for treating organic wastewater according to claim 1, which is introduced into
【請求項5】 有機性廃水を処理槽に導入して活性汚泥
と共に曝気処理した後、上記処理槽内から或いは該処理
槽の下流に設けられた沈殿槽内から活性汚泥の少なくと
も一部を抜き出して活性汚泥処理槽へと導入し、該処理
槽内のpH値が4.5以下、又は9.5以上となるよう
に制御して活性汚泥を殺菌又は溶菌した後、処理された
活性汚泥を上記処理槽内へと導入する請求項1に記載の
有機性廃水の処理方法。
5. After introducing organic wastewater into the treatment tank and subjecting it to aeration treatment together with the activated sludge, at least a part of the activated sludge is extracted from the treatment tank or from a settling tank provided downstream of the treatment tank. The activated sludge is sterilized or lysed by introducing it into an activated sludge treatment tank and controlling the pH value in the treatment tank to be 4.5 or less, or 9.5 or more, and then treating the treated activated sludge. The method for treating organic wastewater according to claim 1, which is introduced into the treatment tank.
【請求項6】 活性汚泥を構成している細菌の一部を殺
菌又は溶菌するための薬剤であって、アルカリ剤、酸又
は廃酸を主成分とすることを特徴とする薬剤。
6. A chemical for sterilizing or lysing a part of bacteria constituting activated sludge, which is characterized by mainly containing an alkaline agent, an acid or a waste acid.
JP3639099A 1998-06-10 1999-02-15 Method for treating organic wastewater and chemicals used in the method Expired - Lifetime JP3167021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3639099A JP3167021B2 (en) 1998-06-10 1999-02-15 Method for treating organic wastewater and chemicals used in the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-161783 1998-06-10
JP16178398 1998-06-10
JP3639099A JP3167021B2 (en) 1998-06-10 1999-02-15 Method for treating organic wastewater and chemicals used in the method

Publications (2)

Publication Number Publication Date
JP2000061488A true JP2000061488A (en) 2000-02-29
JP3167021B2 JP3167021B2 (en) 2001-05-14

Family

ID=26375433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3639099A Expired - Lifetime JP3167021B2 (en) 1998-06-10 1999-02-15 Method for treating organic wastewater and chemicals used in the method

Country Status (1)

Country Link
JP (1) JP3167021B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005713A1 (en) * 1999-07-15 2001-01-25 Japan Environment Creation Co., Ltd. Method and apparatus for reduction of excess sludge
JP2002316184A (en) * 2001-02-19 2002-10-29 Mitsui Eng & Shipbuild Co Ltd Method for activating microorganism and method for treating organic wastewater
JP2003024970A (en) * 2001-07-13 2003-01-28 Asahi Organic Chem Ind Co Ltd Method for treating organic wastewater
JP2006159130A (en) * 2004-12-09 2006-06-22 Toyohashi Univ Of Technology Method for suppressing generation of excess sludge
KR100721271B1 (en) * 2000-03-21 2007-05-25 시코쿠가세이고교가부시키가이샤 Process for the treatment of waste water
JP2008086949A (en) * 2006-10-04 2008-04-17 Shikoku Chem Corp Volume reduction method of excess sludge
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2008207065A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2011078983A (en) * 2004-06-21 2011-04-21 Rhodia Uk Ltd Improvement of sludge quality
CN102884011A (en) * 2009-12-24 2013-01-16 Bcr环境公司 Improved digestion of biosolids in wastewater
WO2014200056A1 (en) * 2013-06-13 2014-12-18 三菱重工メカトロシステムズ株式会社 Wastewater treatment method and wastewater treatment system
CN114031266A (en) * 2021-11-05 2022-02-11 苏州埃斯腾特生物科技有限公司 Leachate sludge dewatering composite biological enzyme conditioner and preparation and use methods thereof
JP7152635B1 (en) * 2022-03-23 2022-10-13 生態環境部南京環境科学研究所 Treatment system and process for waste acid-containing wastewater in copper smelting

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005713A1 (en) * 1999-07-15 2001-01-25 Japan Environment Creation Co., Ltd. Method and apparatus for reduction of excess sludge
KR100721271B1 (en) * 2000-03-21 2007-05-25 시코쿠가세이고교가부시키가이샤 Process for the treatment of waste water
JP2002316184A (en) * 2001-02-19 2002-10-29 Mitsui Eng & Shipbuild Co Ltd Method for activating microorganism and method for treating organic wastewater
JP2003024970A (en) * 2001-07-13 2003-01-28 Asahi Organic Chem Ind Co Ltd Method for treating organic wastewater
JP2011078983A (en) * 2004-06-21 2011-04-21 Rhodia Uk Ltd Improvement of sludge quality
JP4626286B2 (en) * 2004-12-09 2011-02-02 国立大学法人豊橋技術科学大学 Control method of excess sludge generation
JP2006159130A (en) * 2004-12-09 2006-06-22 Toyohashi Univ Of Technology Method for suppressing generation of excess sludge
JP2008086949A (en) * 2006-10-04 2008-04-17 Shikoku Chem Corp Volume reduction method of excess sludge
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2008207065A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
CN102884011A (en) * 2009-12-24 2013-01-16 Bcr环境公司 Improved digestion of biosolids in wastewater
WO2014200056A1 (en) * 2013-06-13 2014-12-18 三菱重工メカトロシステムズ株式会社 Wastewater treatment method and wastewater treatment system
WO2014199500A1 (en) * 2013-06-13 2014-12-18 三菱重工メカトロシステムズ株式会社 Wastewater treatment method
JP5936774B2 (en) * 2013-06-13 2016-06-22 三菱重工メカトロシステムズ株式会社 Waste water treatment method and waste water treatment system
CN114031266A (en) * 2021-11-05 2022-02-11 苏州埃斯腾特生物科技有限公司 Leachate sludge dewatering composite biological enzyme conditioner and preparation and use methods thereof
JP7152635B1 (en) * 2022-03-23 2022-10-13 生態環境部南京環境科学研究所 Treatment system and process for waste acid-containing wastewater in copper smelting

Also Published As

Publication number Publication date
JP3167021B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP4474930B2 (en) Biological treatment method for organic wastewater
JP3167021B2 (en) Method for treating organic wastewater and chemicals used in the method
US10144044B2 (en) Treatment of trade effluent from food waste disposal systems
JP3360076B2 (en) Organic wastewater treatment method
JP4378981B2 (en) Organic wastewater treatment method
JPH09239396A (en) Treatment of chlorophenol-containing water
JP2007021431A (en) Sludge treatment method
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
JP3732089B2 (en) Method for preparing microbial cultures for wastewater treatment
JP2006247566A (en) Biological treatment method for organic waste water
JP2001162297A (en) Method and apparatus for treating organic waste water
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4406749B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
KR100391137B1 (en) Bacteria group of bacillus spp in the aerobic reacting device and method for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
JPS6242678B2 (en)
JP2005058827A (en) Treatment method for organic sewage
JP3826589B2 (en) Novel microorganism and sludge treatment method using the same
JPH1080698A (en) Reforming method of organic sludge
JP2572334B2 (en) Method and apparatus for microbiological reduction of excess sludge
JP3223145B2 (en) Organic wastewater treatment method
JP2005095811A (en) Method and apparatus for treating organic waste
JP2004188356A (en) Treatment method of organic waste water
KR200172809Y1 (en) Bacteria group of bacillus spp in the aerobic reacting device for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
CN101134615A (en) Method for treating fresh water bloom by magnetic control modified coal ash and flocculating agent
JP2000279979A (en) Wastewater treatment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term