JP2000055486A - Refrigeration device - Google Patents
Refrigeration deviceInfo
- Publication number
- JP2000055486A JP2000055486A JP10219244A JP21924498A JP2000055486A JP 2000055486 A JP2000055486 A JP 2000055486A JP 10219244 A JP10219244 A JP 10219244A JP 21924498 A JP21924498 A JP 21924498A JP 2000055486 A JP2000055486 A JP 2000055486A
- Authority
- JP
- Japan
- Prior art keywords
- air
- blower
- wind speed
- refrigerant evaporator
- air volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Defrosting Systems (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、保冷庫等に用いら
れる冷凍装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used for a cool box or the like.
【0002】[0002]
【従来の技術】従来技術として、特開平5−39974
号公報に開示された冷却装置がある。この冷却装置は、
蒸発器出口管部と庫内の貯蔵品近傍との温度差の大きさ
に応じて蒸発器用送風機の回転数を制御することによ
り、着霜による蒸発器風量の低下、冷却能力の低下を抑
制するものである。2. Description of the Related Art As a prior art, Japanese Patent Application Laid-Open No. 5-39974 is disclosed.
There is a cooling device disclosed in Japanese Patent Publication No. This cooling device
By controlling the number of rotations of the evaporator blower according to the magnitude of the temperature difference between the evaporator outlet pipe and the vicinity of the storage items in the refrigerator, it is possible to suppress a decrease in the evaporator air volume and a decrease in cooling capacity due to frost formation. Things.
【0003】[0003]
【発明が解決しようとする課題】ところが、車両の走行
用エンジンで圧縮機を駆動する場合は、エンジン回転数
の変動により圧縮機の回転数が変動し、蒸発器出口管部
の温度も変動するため、蒸発器出口管部と庫内の貯蔵品
近傍との温度差も変動して安定した制御ができないとい
う問題が生じる。このため、冷凍(冷却)運転中の着霜
による蒸発器風量の低下、冷却能力の低下を抑制するこ
とは困難である。However, when the compressor is driven by the vehicle engine, the rotation speed of the compressor fluctuates due to the fluctuation of the engine speed, and the temperature of the evaporator outlet pipe also fluctuates. Therefore, there arises a problem that the temperature difference between the evaporator outlet pipe portion and the vicinity of the stored goods in the storage fluctuates and stable control cannot be performed. For this reason, it is difficult to suppress a decrease in the evaporator air volume and a decrease in the cooling capacity due to frost formation during the freezing (cooling) operation.
【0004】本発明は、上記事情に基づいて成されたも
ので、その目的は、安定した制御により着霜時の蒸発器
風量と冷凍能力の低下を抑制できる冷凍装置を提供する
ことにある。The present invention has been made based on the above circumstances, and an object of the present invention is to provide a refrigeration apparatus capable of suppressing a decrease in an evaporator air volume and refrigeration capacity during frost formation by stable control.
【0005】[0005]
【課題を解決するための手段】(請求項1の手段)本発
明では、冷凍装置の実効冷凍能力が最大となる時の冷媒
蒸発器への送風量を送風機の初期風量として設定し、冷
媒蒸発器を通過して吹き出される吹出風量が初期風量と
略等しくなるように送風機の回転数を制御する。この場
合、従来技術のように蒸発器出口管部の温度に基づいて
送風機の回転数を制御する必要がないので、エンジン回
転数の変動に関わりなく、安定した制御を実行できる。
なお、冷凍装置の実行冷凍能力は、冷凍装置の冷凍能力
から送風機の消費電力を減算して求められる。According to the present invention, the amount of air blown to the refrigerant evaporator when the effective refrigeration capacity of the refrigeration system is maximized is set as the initial air flow of the blower, and the refrigerant evaporates. The number of rotations of the blower is controlled so that the amount of blown air blown out through the fan becomes substantially equal to the initial amount of air. In this case, since it is not necessary to control the rotation speed of the blower based on the temperature of the evaporator outlet pipe unlike the related art, stable control can be performed irrespective of fluctuations in the engine rotation speed.
Note that the effective refrigerating capacity of the refrigerating apparatus is obtained by subtracting the power consumption of the blower from the refrigerating capacity of the refrigerating apparatus.
【0006】また、冷凍装置の実効冷凍能力が最大とな
る時の冷媒蒸発器への送風量を送風機の初期風量として
設定することにより、最も効率的に庫内をクールダウン
(急速冷却)できるため、そのクールダウン時間を短縮
できる。更に、冷媒蒸発器の着霜時には、冷媒蒸発器を
通過して吹き出される吹出風量が送風機の初期風量と略
等しくなるように、送風機の回転数を上げて冷媒蒸発器
への送風量を増加することにより、蒸発器風量と冷凍能
力の低下を抑制できる。In addition, by setting the amount of air blown to the refrigerant evaporator when the effective refrigeration capacity of the refrigeration system is maximized as the initial air flow of the blower, the inside of the refrigerator can be most efficiently cooled down (rapid cooling). , Can reduce its cooldown time. Furthermore, at the time of frost formation of the refrigerant evaporator, the rotation speed of the blower is increased to increase the amount of air blown to the refrigerant evaporator so that the amount of air blown out through the refrigerant evaporator is substantially equal to the initial air amount of the blower. By doing so, it is possible to suppress a decrease in the evaporator air volume and the refrigeration capacity.
【0007】(請求項2の手段)冷媒蒸発器の着霜時に
は、冷媒蒸発器の吹出風速を風速センサで検出し、その
風速センサで検出された風速が、送風機の初期風量時の
風速と略等しくなるように送風機の回転数を制御する。
これにより、着霜時においても冷媒蒸発器の吹出風量を
送風機の初期風量と略等しくできる。When the refrigerant evaporator is frosted, the wind speed of the air blown from the refrigerant evaporator is detected by a wind speed sensor, and the wind speed detected by the wind speed sensor is substantially equal to the wind speed of the blower at the time of the initial air flow. The number of rotations of the blower is controlled to be equal.
Thereby, even at the time of frost formation, the amount of air blown from the refrigerant evaporator can be made substantially equal to the initial amount of air from the blower.
【0008】(請求項3の手段)送風機の回転数が予め
設定されている最高回転数に到達した後、風速センサで
検出される風速が予め設定した風速まで低下した場合に
除霜運転を行う。この制御により除霜運転を効率的に行
うことができる。なお、送風機の回転数が予め設定され
ている最高回転数に到達した後、その最高回転数を一定
時間維持し、その後に除霜運転を行っても良い。(3) The defrosting operation is performed when the wind speed detected by the wind speed sensor decreases to the preset wind speed after the rotational speed of the blower reaches the preset maximum revolution speed. . By this control, the defrosting operation can be performed efficiently. After the rotation speed of the blower has reached a preset maximum rotation speed, the maximum rotation speed may be maintained for a certain period of time, and then the defrosting operation may be performed.
【0009】[0009]
【発明の実施の形態】次に、本発明の実施形態を図面に
基づいて説明する。図1は冷凍装置の冷凍サイクル図で
ある。本実施形態の冷凍装置は、例えば食料品等を貯蔵
する保冷庫に適用されるもので、保冷庫内を冷却(また
は冷凍)するための冷却手段である冷凍サイクルSと、
この冷凍サイクルSに使用する送風機1の作動を制御す
る制御手段(後述する)とを備える。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigeration cycle diagram of the refrigeration apparatus. The refrigeration apparatus of the present embodiment is applied to, for example, a cool box that stores food items and the like, and includes a refrigeration cycle S that is a cooling unit for cooling (or freezing) the inside of the cool box.
Control means (described later) for controlling the operation of the blower 1 used for the refrigeration cycle S is provided.
【0010】冷凍サイクルSは、冷媒圧縮機2、冷媒凝
縮器3、膨張弁4、冷媒蒸発器5を有し、これらの機能
部品を冷媒配管6により接続して構成される。また、冷
凍サイクルSには、冷媒凝縮器3と膨張弁4とをバイパ
スして冷媒圧縮機2より吐出された高温冷媒を冷媒蒸発
器5へ導くためのバイパス通路7と、このバイパス通路
7を開閉する電磁弁8とが設けられている。The refrigeration cycle S has a refrigerant compressor 2, a refrigerant condenser 3, an expansion valve 4, and a refrigerant evaporator 5, and is constituted by connecting these functional components by a refrigerant pipe 6. In the refrigeration cycle S, a bypass passage 7 for bypassing the refrigerant condenser 3 and the expansion valve 4 and guiding the high-temperature refrigerant discharged from the refrigerant compressor 2 to the refrigerant evaporator 5 is provided. An electromagnetic valve 8 that opens and closes is provided.
【0011】送風機1は、保冷庫内の空気を冷媒蒸発器
5に送風して循環させるもので、ファン1Aとモータ1
Bから成る。制御手段は、送風機1のモータ回転数を可
変するモータ制御器9と、冷媒蒸発器5の吹出風速が低
下した場合に、送風機1の風量アップを指示する制御信
号をモータ制御器9へ出力する風速演算器10とから成
る。この風速演算器10は、図示しないマイクロコンピ
ュータを内蔵し、このマイクロコンピュータに送風機1
の作動制御に必要な演算式や制御プログラム等がインプ
ットされている。The blower 1 blows the air in the cool box to the refrigerant evaporator 5 and circulates the air. The fan 1A and the motor 1
B. The control unit outputs to the motor controller 9 a motor controller 9 for varying the motor rotation speed of the blower 1 and a control signal for instructing an increase in the air volume of the blower 1 when the blowing air speed of the refrigerant evaporator 5 decreases. And a wind speed calculator 10. The wind speed calculator 10 has a built-in microcomputer (not shown), and the blower 1
An arithmetic expression, a control program, and the like necessary for operation control of the computer are input.
【0012】なお、上記の「冷媒蒸発器5の吹出風速」
とは、送風機1より送風された空気が冷媒蒸発器5を通
過して吹き出される空気の風速であり、冷媒蒸発器5の
空気下流側(吹出側)に配された風速センサ11によっ
て検出される。[0012] The above "blowing wind speed of refrigerant evaporator 5"
Is the wind speed of the air blown from the blower 1 passing through the refrigerant evaporator 5 and detected by the wind speed sensor 11 arranged downstream of the refrigerant evaporator 5 on the air side (blowing side). You.
【0013】次に、本実施例の作動を図2に示すフロー
チャートに基づいて説明する。まず、送風機1の送風レ
ベル(初期風量)を決定する(S10)。ここで、送風
機1の初期風量(冷媒蒸発器5に着霜していない時の風
量)について説明する。Next, the operation of this embodiment will be described with reference to the flowchart shown in FIG. First, the blowing level (initial air volume) of the blower 1 is determined (S10). Here, the initial air volume of the blower 1 (the air volume when the refrigerant evaporator 5 is not frosted) will be described.
【0014】冷凍装置は、冷媒蒸発器5への送風量を増
加すると冷凍能力が増加する。しかし、ある程度まで増
加すると、図3のグラフに示すように、風量の増加に
対して冷凍能力の増加が頭打ち(微量)となる。一方、
送風機1のモータ消費電力は、図3のグラフに示すよ
うに、風量の増加に対して2次曲線的に増加する。In the refrigeration system, the refrigeration capacity increases as the amount of air blown to the refrigerant evaporator 5 increases. However, when it increases to a certain extent, as shown in the graph of FIG. 3, the increase in the refrigerating capacity reaches a plateau (trace amount) with the increase in the air flow. on the other hand,
As shown in the graph of FIG. 3, the motor power consumption of the blower 1 increases in a quadratic curve with an increase in the air volume.
【0015】これにより、冷凍装置の冷凍能力からモー
タ消費電力を減算して求められる実効冷凍能力(保冷庫
からの排熱量)は、図3のグラフに示すように、風量
の増加率よりモータ消費電力の増加率の方が小さいうち
は増加するが、風量の増加率よりモータ消費電力の増加
率の方が大きくなると減少する。As a result, the effective refrigeration capacity (the amount of heat exhausted from the cool box) obtained by subtracting the motor power consumption from the refrigeration capacity of the refrigeration system is, as shown in the graph of FIG. It increases while the rate of increase in power is smaller, but decreases when the rate of increase in motor power consumption is greater than the rate of increase in airflow.
【0016】言い換えると、実効冷凍能力が最大(図3
のA点)となる風量及びモータ消費電力が存在すること
になる。従って、冷媒蒸発器5が無着霜時の風量を実効
冷凍能力が最大となる風量(モータ消費電力)に設定す
れば、クールダウン時間を短縮でき、且つ省エネ効果を
得ることができる。以上の理由から、送風機1の初期風
量を冷凍装置の実効冷凍能力が最大となる風量に設定す
る。In other words, the effective refrigeration capacity is maximum (FIG. 3
At point A) and the motor power consumption. Therefore, if the air volume when the refrigerant evaporator 5 is not frosted is set to the air volume (motor power consumption) at which the effective refrigeration capacity is maximized, the cool down time can be reduced and the energy saving effect can be obtained. For the above reasons, the initial air volume of the blower 1 is set to the air volume at which the effective refrigeration capacity of the refrigeration system is maximized.
【0017】送風機1の初期風量が決定された後、風速
センサ11のセンサ値を読み込む(S20)。続いて、
読み込んだセンサ値により、冷媒蒸発器5の吹出風速が
低下しているか否かを判定する(S30)。ここでは、
風速センサ11のセンサ値と送風機1の初期風量時の風
速とを比較して、センサ値の方が初期風量時の風速より
所定値以上低下した場合に冷媒蒸発器5の吹出風速が低
下していると判断する。After the initial air volume of the blower 1 is determined, the sensor value of the wind speed sensor 11 is read (S20). continue,
Based on the read sensor value, it is determined whether or not the blowing wind speed of the refrigerant evaporator 5 is decreasing (S30). here,
The sensor value of the wind speed sensor 11 is compared with the wind speed of the blower 1 at the time of the initial air flow. If the sensor value is lower than the wind speed at the time of the initial air flow by a predetermined value or more, the blowing air speed of the refrigerant evaporator 5 decreases. Judge that there is.
【0018】S30の判定結果がNOの場合、つまり冷
媒蒸発器5の吹出風速が低下していない場合は、冷媒蒸
発器5が着霜していないと判断できるため、再びS20
へ戻る。S30の判定結果がYESの場合、つまり冷媒
蒸発器5の吹出風速が低下している場合は、送風機1の
送風レベル(モータ回転数)を1段階アップする(S4
0)。If the result of the determination in S30 is NO, that is, if the blowing air speed of the refrigerant evaporator 5 has not decreased, it can be determined that the refrigerant evaporator 5 is not frosted.
Return to If the result of the determination in S30 is YES, that is, if the blowing speed of the refrigerant evaporator 5 is decreasing, the blowing level (motor rotation speed) of the blower 1 is increased by one step (S4).
0).
【0019】続いて、送風機1の送風レベルが予め設定
されている最大風量レベル(モータ1Bの最高回転数)
に到達したか否かを判定する(S50)。この判定結果
がNOの場合、つまり送風機1の送風レベルが最大風量
レベルに達してない場合は再びS20へ戻る。S50の
判定結果がYESの場合、つまり送風機1の送風レベル
が最大風量レベルに達した場合は、その送風レベル(最
大風量レベル)を所定時間維持する(S60)。Subsequently, the air blowing level of the air blower 1 is set to a preset maximum air volume level (maximum rotation speed of the motor 1B).
Is determined (S50). If this determination result is NO, that is, if the air blowing level of the blower 1 has not reached the maximum air volume level, the process returns to S20 again. If the result of the determination in S50 is YES, that is, if the air blowing level of the blower 1 has reached the maximum air volume level, the air blowing level (maximum air volume level) is maintained for a predetermined time (S60).
【0020】所定時間経過後、風速センサ11のセンサ
値が予め設定されている吹出風速まで低下したか否かを
判定する(S70)。この判定結果がYESの場合、つ
まりセンサ値が予め設定されている吹出風速まで低下し
た場合は、これ以上送風機1の送風レベルを上げること
ができないため、除霜運転を実行する(S80)。この
除霜運転は、冷凍サイクルSのバイパス通路7に設けら
れている電磁弁8を開弁して行われる。除霜運転を実行
した後、S10へ戻って再び送風機1の初期風量を設定
する。After a lapse of a predetermined time, it is determined whether or not the sensor value of the wind speed sensor 11 has decreased to a preset blowing wind speed (S70). If the result of this determination is YES, that is, if the sensor value has dropped to the preset blowout wind speed, the blowing level of the blower 1 cannot be raised any more, so the defrosting operation is executed (S80). This defrosting operation is performed by opening the solenoid valve 8 provided in the bypass passage 7 of the refrigeration cycle S. After executing the defrosting operation, the process returns to S10 and sets the initial air volume of the blower 1 again.
【0021】(本実施形態の効果)本実施形態では、冷
凍装置の実効冷凍能力が最大となる時の風量を送風機1
の初期風量として設定し、冷媒蒸発器5の吹出風速と初
期風量時の風速とを比較して冷媒蒸発器5の着霜を判断
している。この場合、従来技術のように蒸発器出口管部
の温度に基づいて送風機1の回転数を制御する必要がな
いので、エンジン回転数の変動に関わりなく、安定した
制御を実行できる。(Effect of this embodiment) In this embodiment, the air flow when the effective refrigeration capacity of the refrigeration system is maximized is determined by the blower 1
Is set as the initial air volume, and the blowing air speed of the refrigerant evaporator 5 is compared with the air speed at the initial air volume to determine the frost formation of the refrigerant evaporator 5. In this case, since there is no need to control the rotation speed of the blower 1 based on the temperature of the evaporator outlet pipe unlike the related art, stable control can be performed regardless of fluctuations in the engine rotation speed.
【0022】また、冷凍装置の実効冷凍能力が最大とな
る時の風量を送風機1の初期風量として設定することに
より、最も効率的に庫内をクールダウン(急速冷却)で
きるため、そのクールダウン時間を短縮でき、且つ省エ
ネ効果を得ることができる。Further, by setting the air flow when the effective refrigeration capacity of the refrigeration system is maximized as the initial air flow of the blower 1, the inside of the refrigerator can be most efficiently cooled down (rapid cooling). Can be shortened, and an energy saving effect can be obtained.
【0023】更に、冷媒蒸発器5の着霜時には、冷媒蒸
発器5の吹出風速が初期風量時の風速と略等しくなるよ
うに送風機1のモータ回転数を上げて冷媒蒸発器5への
送風量を増加することにより、蒸発器風量と冷凍能力の
低下を抑制できる。この点を図4を参照して説明する。
風量Aから着霜した場合と、風量Aより大きい風量Bか
ら着霜した場合とを比較すると、着霜により同一実効冷
凍能力C及びDまで低下した時の冷凍能力は、風量Aよ
り大きい風量Bから着霜した場合の方が着霜量が多くな
るため、その分だけ冷凍能力が高いと言える。Further, at the time of frost formation of the refrigerant evaporator 5, the motor rotation speed of the blower 1 is increased so that the blown air velocity of the refrigerant evaporator 5 becomes substantially equal to the wind velocity at the time of the initial air flow. , The decrease in the evaporator air volume and the refrigerating capacity can be suppressed. This will be described with reference to FIG.
Comparing the case where the frost is formed from the air volume A and the case where the frost is formed from the air volume B which is larger than the air volume A, the refrigeration capacity when the frost is reduced to the same effective refrigeration capacity C and D is larger than the air volume A. Since the amount of frost is greater when frost is formed from above, it can be said that the refrigeration capacity is higher by that much.
【0024】これにより、本実施形態では、クールダウ
ン時間を短縮するために冷凍装置の実効冷凍能力が最大
となる時の風量Aを送風機1の初期風量として設定して
いるが、冷媒蒸発器5の着霜に応じて送風機1の風量レ
ベルを上昇させているため、クールダウン時間を短縮で
きる効果に加えて、上記の説明から冷凍能力の低下を抑
制できる効果も生じる。Thus, in the present embodiment, in order to shorten the cool down time, the air volume A when the effective refrigerating capacity of the refrigerating device is maximized is set as the initial air volume of the blower 1. Since the airflow level of the blower 1 is increased in accordance with the frost formation, the effect of suppressing the decrease in the refrigerating capacity is obtained from the above description, in addition to the effect of shortening the cool down time.
【0025】(変形例)上記の実施形態では、冷媒蒸発
器5の着霜により吹出風速が低下した場合に、送風機1
の送風レベルを1段階ずつアップする制御例を示した
が、吹出風速の低下度合いに応じて送風機1の風量レベ
ルを上げても良い。送風機1のモータ回転数が予め設定
されている最高回転数に到達した後、その状態を所定時
間維持してから冷媒蒸発器5の吹出風速を判定している
が、所定時間維持するための処理(S60)を省略して
も良い。(Modification) In the above-described embodiment, the blower 1
Although the control example in which the air blowing level is increased by one stage has been described, the air volume level of the air blower 1 may be increased in accordance with the degree of decrease in the blowing air speed. After the motor rotation speed of the blower 1 reaches a preset maximum rotation speed, the state is maintained for a predetermined time, and then the blowing wind speed of the refrigerant evaporator 5 is determined. (S60) may be omitted.
【図1】冷凍装置の冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram of a refrigeration apparatus.
【図2】冷凍装置の制御手順を示すフローチャートであ
る。FIG. 2 is a flowchart illustrating a control procedure of the refrigeration apparatus.
【図3】冷凍装置の実効冷凍能力を示すグラフである。FIG. 3 is a graph showing an effective refrigeration capacity of the refrigeration apparatus.
【図4】冷媒蒸発器の着霜時の実効冷凍能力を示すグラ
フである。FIG. 4 is a graph showing an effective refrigeration capacity of the refrigerant evaporator when frost is formed.
1 送風機 5 冷媒蒸発器 9 モータ制御器(制御手段) 10 風速演算器(制御手段) 11 風速センサ REFERENCE SIGNS LIST 1 blower 5 refrigerant evaporator 9 motor controller (control means) 10 wind speed calculator (control means) 11 wind speed sensor
Claims (3)
送風空気を冷却する冷媒蒸発器と、 この冷媒蒸発器に送風する送風機と、 この送風機の回転数を制御する制御手段とを備えた冷凍
装置であって、 前記制御手段は、 前記冷凍装置の実効冷凍能力が最大となる時の前記冷媒
蒸発器への送風量を前記送風機の初期風量として設定
し、 前記冷媒蒸発器を通過して吹き出される吹出風量が前記
初期風量と略等しくなるように前記送風機の回転数を制
御することを特徴とする冷凍装置。1. A refrigeration system comprising: a refrigerant evaporator for cooling blast air by heat exchange with a low-temperature refrigerant flowing inside; a blower for blowing the refrigerant evaporator; and control means for controlling the rotation speed of the blower. The apparatus, wherein the control means sets an air flow rate to the refrigerant evaporator when the effective refrigeration capacity of the refrigeration apparatus is maximized as an initial air flow rate of the blower, and blows out through the refrigerant evaporator. A refrigeration system, wherein the number of rotations of the blower is controlled such that a blown air volume to be blown is substantially equal to the initial air volume.
蒸発器を通過して吹き出される吹出空気の風速を検出す
る風速センサを備え、 前記制御手段は、前記風速センサで検出される風速が、
前記送風機の初期風量時の風速と略等しくなるように前
記送風機の回転数を制御することを特徴とする請求項1
に記載した冷凍装置。2. The apparatus according to claim 1, further comprising: a wind speed sensor for detecting a wind speed of air blown by the air blown from the blower through the refrigerant evaporator, wherein the control means detects a wind speed detected by the wind speed sensor. ,
The rotation speed of the blower is controlled to be substantially equal to the wind speed of the blower at the time of the initial air flow.
The refrigeration apparatus described in 1.
め設定されている最高回転数に到達した後、前記風速セ
ンサで検出される風速が予め設定した風速まで低下した
場合に除霜運転を行うことを特徴とする請求項2に記載
した冷凍装置。3. The defrosting operation is performed when the wind speed detected by the wind speed sensor decreases to a preset wind speed after the revolution speed of the blower reaches a preset maximum revolution speed. The refrigeration apparatus according to claim 2, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10219244A JP2000055486A (en) | 1998-08-03 | 1998-08-03 | Refrigeration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10219244A JP2000055486A (en) | 1998-08-03 | 1998-08-03 | Refrigeration device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000055486A true JP2000055486A (en) | 2000-02-25 |
Family
ID=16732489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10219244A Pending JP2000055486A (en) | 1998-08-03 | 1998-08-03 | Refrigeration device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000055486A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7631509B2 (en) * | 2005-04-27 | 2009-12-15 | Gideon Shavit | Integrated freezer-anteroom control |
JP2013238354A (en) * | 2012-05-15 | 2013-11-28 | Mitsubishi Electric Corp | Fin tube type heat exchanger and refrigerating air-conditioning device using the same |
-
1998
- 1998-08-03 JP JP10219244A patent/JP2000055486A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7631509B2 (en) * | 2005-04-27 | 2009-12-15 | Gideon Shavit | Integrated freezer-anteroom control |
JP2013238354A (en) * | 2012-05-15 | 2013-11-28 | Mitsubishi Electric Corp | Fin tube type heat exchanger and refrigerating air-conditioning device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6216478B1 (en) | Operation speed change system and method for refrigerator | |
US20170038129A1 (en) | Refrigerator and method of controlling the same | |
JPWO2017163296A1 (en) | Refrigeration equipment | |
US20200208898A1 (en) | Refrigerator and method for controlling the same | |
KR100308529B1 (en) | Method and apparatus for driving an air curtain fan for a refrigerator | |
CN110926045B (en) | Water chilling unit and control method thereof | |
CN114502902B (en) | Refrigerator, refrigeration control method, and recording medium | |
JP3398022B2 (en) | Freezer refrigerator | |
JPH08327193A (en) | Air conditioner | |
JP2000055486A (en) | Refrigeration device | |
CN112856718A (en) | Air conditioner, control method thereof and storage medium | |
WO2018108117A1 (en) | Refrigerator for improving stability of linear compressor, and control method therefor | |
CN113048716B (en) | Control method and refrigerator | |
JP2017166730A (en) | Refrigerator | |
WO2018108118A1 (en) | Refrigerator for improving stability of linear compressor, and control method therefor | |
JP2003294327A (en) | Cooling system | |
JP2001241779A (en) | Refrigerant flow rate controller for air conditioner | |
JP3900697B2 (en) | Refrigeration equipment | |
KR100400470B1 (en) | Fan Control Method of Air Conditioner | |
JP4827416B2 (en) | Cooling system | |
JP3434094B2 (en) | High pressure protection device and condensing pressure control device in refrigeration system | |
JP2015098987A (en) | Cold storage system | |
US20240230215A9 (en) | Refrigerator and control method thereof | |
CN112344615B (en) | Control method of refrigerator | |
CN113048717B (en) | Refrigeration control method and refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070424 |