JP2000049005A - R-tm-b permanent magnet - Google Patents
R-tm-b permanent magnetInfo
- Publication number
- JP2000049005A JP2000049005A JP10226538A JP22653898A JP2000049005A JP 2000049005 A JP2000049005 A JP 2000049005A JP 10226538 A JP10226538 A JP 10226538A JP 22653898 A JP22653898 A JP 22653898A JP 2000049005 A JP2000049005 A JP 2000049005A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- grain boundary
- boundary phase
- interface
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 claims abstract description 86
- 230000005291 magnetic effect Effects 0.000 claims abstract description 67
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 46
- 150000003624 transition metals Chemical class 0.000 claims abstract description 45
- 150000001875 compounds Chemical class 0.000 claims abstract description 37
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 17
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 264
- 238000000034 method Methods 0.000 description 49
- 238000005245 sintering Methods 0.000 description 25
- 230000005294 ferromagnetic effect Effects 0.000 description 23
- 239000000203 mixture Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000005381 magnetic domain Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 229910017135 Fe—O Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000005090 crystal field Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004836 empirical method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000767 Tm alloy Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 101100425901 Rattus norvegicus Tpm1 gene Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、R−TM−B系永
久磁石(R:Yを含む希土類元素、TM:遷移金属)に関
し、詳細にはR−TM−B系永久磁石原料、R−TM−
B系永久磁石中間体及び最終製品であるR−TM−B系
永久磁石に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-TM-B permanent magnet (R: a rare earth element containing Y, TM: transition metal), and more particularly, to an R-TM-B permanent magnet raw material, TM-
The present invention relates to a B-based permanent magnet intermediate and an R-TM-B-based permanent magnet as a final product.
【0002】[0002]
【従来の技術】R−TM−B系永久磁石は優れた磁気特
性を持ち、様々な用途に使用されている。R−TM−B
系永久磁石には種々の製造方法があるが、代表的な製造
方法としては焼結法と超急冷法がある。焼結法は、例え
ば特開昭59-46008号公報に開示されているように、特定
組成を持つインゴットを平均粒径数μmの単結晶微粉末
に粉砕し、これを磁界中で配向しながら任意の形状に成
形した後、焼結してバルク状の磁石を得る方法である。
超急冷法は、例えば特開昭60-9852号公報に開示されて
いるように、特定組成を持つ合金を、ロール急冷法など
の方法で超急冷してアモルファス状態にし、ついで熱処
理を行うことで微細な結晶粒を析出させる方法である。
超急冷法で得られた磁石合金は通常粉末状であり、一般
的にこれを樹脂と混合して成形することによりボンド磁
石の形態で使用する。さらに、急冷薄板を粉砕して焼結
する方法も用いられている。2. Description of the Related Art R-TM-B permanent magnets have excellent magnetic properties and are used for various purposes. R-TM-B
There are various manufacturing methods for the system permanent magnet, and typical manufacturing methods include a sintering method and a super-quenching method. In the sintering method, for example, as disclosed in JP-A-59-46008, an ingot having a specific composition is pulverized into a single crystal fine powder having an average particle size of several μm, and the powder is oriented in a magnetic field. This is a method of obtaining a bulk magnet by molding into an arbitrary shape and then sintering.
The rapid quenching method is, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-9852, by rapidly quenching an alloy having a specific composition into an amorphous state by a method such as a roll quenching method, and then performing a heat treatment. This is a method of precipitating fine crystal grains.
The magnet alloy obtained by the rapid quenching method is usually in the form of a powder, and is generally used in the form of a bonded magnet by mixing and molding with a resin. Further, a method of pulverizing and sintering a quenched thin plate has also been used.
【0003】[0003]
【発明が解決しようとする課題】このような従来技術で
は、試料作成及び評価を繰り返し行うことにより、磁石
の製造工程の各種の条件を最適化し、経験的に磁石の磁
気特性を向上させている。しかし、このような経験的な
方法では、磁気特性の飛躍的な向上を達成することが困
難である。また、永久磁石の組成が異なる場合、それぞ
れ試料作成及び評価を繰り返し行う必要がある。In such a prior art, various conditions in the magnet manufacturing process are optimized by repeatedly performing sample preparation and evaluation, and the magnetic properties of the magnet are empirically improved. . However, with such an empirical method, it is difficult to achieve a dramatic improvement in magnetic properties. Further, when the composition of the permanent magnet is different, it is necessary to repeatedly perform sample preparation and evaluation.
【0004】本発明は、高い磁気性能を有するR−TM
−B系永久磁石を設計するための指針を提供することを
課題とする。The present invention provides an R-TM having high magnetic performance.
It is an object to provide a guide for designing a B-based permanent magnet.
【0005】[0005]
【課題を解決するための手段】従来、磁石の磁気特性、
なかでも保磁力を決定する主相(強磁性相)、粒界相間
の界面の構造が未知であった。このため、従来技術で
は、磁石の製造工程の各種の条件を最適化することで、
経験的に磁石の磁気特性を向上させている。このような
経験的な手法は、試料作成及び評価のための時間及び費
用がかかる上に、磁石特性の向上には限界がある。Means for Solving the Problems Conventionally, the magnetic properties of a magnet,
Above all, the structure of the interface between the main phase (ferromagnetic phase) that determines the coercive force and the grain boundary phase was unknown. For this reason, in the prior art, by optimizing various conditions in the magnet manufacturing process,
Experience has shown to improve the magnetic properties of magnets. Such an empirical method takes time and expense for sample preparation and evaluation, and has a limit in improving magnet properties.
【0006】そこで、本発明者らは、経験的な手法に依
拠せず、理想的な界面の構造はどうあるべきかという根
本的な問題を探求した結果、核生成型の保磁力発生機構
を示す種々の磁石材料において、核生成の容易さが磁性
相の最外殻近傍における結晶磁気異方性の大きさに依存
しており、最外殻近傍の異方性定数K1の値を少なくと
も内部と同等、もしくはそれ以上に制御することにより
核生成が抑制され、磁石の保磁力を高めることができる
ことを見出し、さらに鋭意研究を進めた結果、本発明を
完成するに至ったものである。The present inventors have investigated the fundamental problem of what the ideal interface structure should be, without relying on an empirical method. As a result, the present inventors have developed a nucleation-type coercive force generation mechanism. in various magnetic materials, ease of nucleation depends on the size of the crystal magnetic anisotropy in the outermost shell near the magnetic phase, the value of the anisotropy constant K 1 of the outermost shell near at least showing It has been found that nucleation can be suppressed and the coercive force of the magnet can be increased by controlling it to be equal to or more than the inside, and as a result of further intensive research, the present invention has been completed.
【0007】本発明は、第1の視点において、結晶構造
が正方晶であるR2TM14B金属間化合物(R:Yを含む
希土類元素、TM:遷移金属)から主としてなる磁性相
と、R−TM−O合金を含む粒界相と、が存在し、前記
磁性相と前記粒界相の界面近傍における該粒界相の結晶
構造が面心立方構造であって、該磁性相と該粒界相が整
合している。According to a first aspect of the present invention, there is provided a magnetic phase mainly composed of an R 2 TM 14 B intermetallic compound (R: a rare earth element containing Y, TM: transition metal) having a tetragonal crystal structure; And a grain boundary phase containing a TM-O alloy, wherein a crystal structure of the grain boundary phase near an interface between the magnetic phase and the grain boundary phase is a face-centered cubic structure, and the magnetic phase and the grain The phases are consistent.
【0008】第2の視点において、前記粒界相の前記界
面近傍にR−TM−O化合物が析出している。第3の視
点において、前記R2TM14B金属間化合物において、
R中のNdとPrの合計が50at%以上、TMはFeまたはCoで
TM中のFeが50at%以上であり、前記R−TM−O化合
物において、RとTMの合計に対するRの比率が90at%
以上であり、Oの比率は1at%以上、70at%以下である。
第4の視点において、前記磁性相と前記粒界相の界面近
傍における結晶学的方位関係が、[0008] In the second viewpoint, an R-TM-O compound is precipitated near the interface of the grain boundary phase. In a third aspect, in the R 2 TM 14 B intermetallic compound,
The total of Nd and Pr in R is 50 at% or more, TM is Fe or Co, and the content of Fe in TM is 50 at% or more. In the R-TM-O compound, the ratio of R to the total of R and TM is 90 at%. %
That is, the ratio of O is 1 at% or more and 70 at% or less.
In a fourth aspect, the crystallographic orientation relationship near the interface between the magnetic phase and the grain boundary phase is:
【0009】[0009]
【化2】 Embedded image
【0010】の少なくとも一組で表され、かつ該方位関
係のずれの角度が5°以内である。第5の視点におい
て、結晶構造が正方晶である磁性相と、前記磁性相との
界面近傍に、酸素を含み結晶構造が面心立方構造である
化合物が存在する粒界相と、を含み、前記磁性相と前記
粒界相が前記界面をはさんで整合している。And the angle of the misalignment in the azimuth relationship is within 5 °. In a fifth aspect, a magnetic phase having a tetragonal crystal structure and a grain boundary phase in which a compound containing oxygen and having a crystal structure having a face-centered cubic structure is present near an interface with the magnetic phase, The magnetic phase and the grain boundary phase are aligned across the interface.
【0011】本発明は、第6の視点において、R(R:Y
を含む希土類元素)、TM(TM:遷移金属)、B及びOを
含む合金から、R2TM14B正方晶を析出させ、さらに
該R2TM14B正方晶相の周囲にR−TM−O面心立方
晶相を析出させることにより、該R2TM14B正方晶相
と該R−TM−O面心立方晶相を整合させ、少なくとも
整合した界面近傍の前記R2TM14B正方晶相の結晶磁
気異方性を高める。好ましくは、強磁性を発揮するR2
TM14B金属間化合物(R:Yを含む希土類元素、TM:
遷移金属)源と、R−TM−O化合物源を原料として用
いる。According to the present invention, in a sixth aspect, R (R: Y
R 2 TM 14 B tetragonal crystal is precipitated from an alloy containing TM, a transition metal (TM), B and O, and R-TM- is formed around the R 2 TM 14 B tetragonal phase. By precipitating an O-face centered cubic phase, the R 2 TM 14 B tetragonal phase is matched with the R-TM-O face-centered cubic phase, and at least the R 2 TM 14 B tetragon near the aligned interface is matched. Increase the crystal magnetic anisotropy of the crystal phase. Preferably, R 2 exhibiting ferromagnetism is used.
TM 14 B intermetallic compound (R: rare earth element including Y, TM:
A transition metal) source and an R-TM-O compound source are used as raw materials.
【0012】ここで、R2TM14B金属間化合物(好ま
しくは単結晶体)から主として構成される主相(強磁性
相)と,R−TM−O化合物を含む粒界相と、から主と
して構成されるR−TM−B系永久磁石を例として、本
発明の原理を説明する。なお、R−TM−B系永久磁石
中にはB−rich相(R1+ αTM4B4)、R−TM準安
定相などが存在することが知られているが、これらの相
が該永久磁石の磁気特性に及ぼす影響は該主相、該粒界
相の二相と比べて副次的である。Here, a main phase (ferromagnetic phase) mainly composed of an R 2 TM 14 B intermetallic compound (preferably a single crystal) and a grain boundary phase containing an R—TM—O compound are mainly used. The principle of the present invention will be described using the R-TM-B-based permanent magnet as an example. Incidentally, R-TM-B system in the permanent magnet B-rich phase (R 1+ α TM 4 B 4 ), it is known that such R-TM meta-stable phase is present, these phases The effect on the magnetic properties of the permanent magnet is secondary compared to the two phases of the main phase and the grain boundary phase.
【0013】粒界相の存在は実用的な保磁力の発現に必
要であり、一般に磁石の組成中に粒界相の形成に必要な
R成分が不足してくると保磁力は低下する。これは、R
成分の不足によってR2TM14B相とR−TM相の二相
が平衡状態で共存できなくなり、かわりにR2TM17相
などの強磁性相がR2TM14B相の粒界に析出し、そこ
が逆磁区発生の起点となり、容易に磁化反転して保磁力
が低下するためと考えられている。The existence of the grain boundary phase is necessary for realizing a practical coercive force. Generally, when the R component necessary for forming the grain boundary phase becomes insufficient in the composition of the magnet, the coercive force decreases. This is R
Due to lack of components, the two phases of R 2 TM 14 B phase and R-TM phase cannot coexist in an equilibrium state, and instead a ferromagnetic phase such as R 2 TM 17 phase precipitates at the grain boundary of R 2 TM 14 B phase. However, it is considered that this becomes the starting point of the generation of the reverse magnetic domain, and the magnetization is easily inverted to lower the coercive force.
【0014】また、焼結法で作製したR−TM−B系永
久磁石に実用上十分な保磁力を与えるためには強磁性相
である主相と粒界相とが格子欠陥のないスムーズな界面
で接していることが必要であることが、透過電子顕微鏡
による該界面のミクロな観察で明らかにされている。こ
の理由は、界面に格子欠陥などが存在すると、そこが逆
磁区発生の起点となり、容易に磁化反転して保磁力が低
下するためと説明されている。In order to give a practically sufficient coercive force to the R-TM-B permanent magnet produced by the sintering method, the main phase and the grain boundary phase, which are ferromagnetic phases, must be smooth without lattice defects. The necessity of contact at the interface is revealed by microscopic observation of the interface with a transmission electron microscope. The reason is described as follows: if a lattice defect or the like is present at the interface, this becomes the starting point of the generation of a reverse magnetic domain, and the magnetization is easily inverted to lower the coercive force.
【0015】本発明者らは、上記の従来技術において
は、R−TM−B系永久磁石の持つ優れた磁気特性を発
現させる上で、該永久磁石を構成する粒界相の好ましい
形態に関して以下の問題点があることを知見した。すな
わち、従来の技術ではR−TM粒界相が存在する組成領
域や、主相と粒界相との界面の欠陥の有無についての知
見は得られていたものの、R−TM粒界相の結晶構造
と、その主相との好ましい方位関係については知られて
いなかった。このため、特定の組成を持つR−TM−B
系永久磁石のミクロな構造を制御して優れた磁気特性を
発現させることは不可能であった。その代わりに、従来
技術においては、磁石の製造工程の各種の条件を最適化
することにより、経験的に磁石の磁気特性を向上させて
いる。In the above-mentioned prior art, in order to express the excellent magnetic properties possessed by the R-TM-B permanent magnet, the present inventors described the preferred form of the grain boundary phase constituting the permanent magnet as follows. It was found that there was a problem. That is, in the prior art, although knowledge about the composition region in which the R-TM grain boundary phase exists and the presence or absence of defects at the interface between the main phase and the grain boundary phase has been obtained, the crystal of the R-TM grain boundary phase has No known orientation relation between the structure and its main phase was known. Therefore, R-TM-B having a specific composition
It has not been possible to control the microstructure of the system-based permanent magnet to exhibit excellent magnetic properties. Instead, in the related art, the magnetic properties of the magnet are empirically improved by optimizing various conditions in the magnet manufacturing process.
【0016】すなわち、従来は、磁石の磁気特性、なか
でも保磁力を決定する主相、粒界相間の界面の構造が未
知であったため、界面の構造を変化させると思われるさ
まざまな処理(例えば熱処理など)を磁石に施して、界面
の状態はブラックボックスのまま磁石特性を制御してい
る。このような手法は、個々の組成の磁石の製造条件を
最適化する上では支障がなかったが、理想的な界面の構
造はどうあるべきかという材料開発上の指針がないまま
では、磁石特性をさらに向上させるのは極めて困難であ
る。That is, conventionally, since the magnetic properties of the magnet, especially the structure of the interface between the main phase and the grain boundary phase which determine the coercive force, were unknown, various processes which are considered to change the structure of the interface (for example, Heat treatment, etc.) is applied to the magnet to control the magnet properties while keeping the state of the interface as a black box. Such a method did not hinder the optimization of the manufacturing conditions for magnets of individual compositions, but without the guidelines for material development as to what the ideal interface structure should be, the magnet characteristics Is extremely difficult to further improve.
【0017】本発明者らは、透過電子顕微鏡(TEM)を用
いて、種々のR−TM−B系永久磁石の粒界相のミクロ
な解析を行った結果、すべてのR−TM−B系永久磁石
の粒界には必ずR−TM−O化合物(RとTMの合計に
対するRの比率が90at%以上)を含む粒界相が存在し、主
相との界面近傍における粒界相の結晶構造が面心立方構
造をとるときに優れた磁気特性が得られることを知見し
た。The present inventors conducted a microscopic analysis of the grain boundary phase of various R-TM-B permanent magnets using a transmission electron microscope (TEM), and found that all R-TM-B At the grain boundaries of the permanent magnet, there is always a grain boundary phase containing an R-TM-O compound (the ratio of R to the sum of R and TM is at least 90 at%), and the crystal of the grain boundary phase near the interface with the main phase is present. It has been found that excellent magnetic properties can be obtained when the structure has a face-centered cubic structure.
【0018】また、本発明者らは、上記の面心立方構造
をもつR−TM−O粒界相が存在するR−TM−B系永
久磁石の粒界相と主相(R2TM14B相)との界面の構造
について、高分解能透過電子顕微鏡(HR-TEM)や走査トン
ネル顕微鏡などで詳細に観察した結果、主相と粒界相と
が界面近傍において特定の結晶学的方位関係を持つよう
にミクロ組織が制御され、整合しているときに磁気特性
が最も高くなることを見出し、さらに鋭意研究を進めた
結果、本発明を完成させたものである。Further, the present inventors have proposed that the grain boundary phase and the main phase (R 2 TM 14) of the R-TM-B permanent magnet in which the R-TM-O grain boundary phase having the above-mentioned face-centered cubic structure exists. The structure of the interface with the (B phase) was observed in detail using a high-resolution transmission electron microscope (HR-TEM) or scanning tunneling microscope. It has been found that the microstructure is controlled so as to have the highest magnetic properties when the microstructures are matched, and the present inventors completed the present invention as a result of further intensive studies.
【0019】図1、図2(A)及び(B)を参照して、
主相(強磁性相)と粒界相がその界面で整合している場
合と、整合していない場合とで、界面近傍における結晶
磁気異方性の分布の相違を説明する。図1又は図2
(A)及び(B)において、横軸の「最外殻」とは主相
の最も外側の原子層の位置を示し、「第2層」、「第3
層」とはそれぞれ最外殻位置から内部に向かって数えて
2番目、3番目の原子層の位置を示す。第n層とは最外
殻からの距離が遠く、界面からの影響が無視できる位置
を示す。図1のグラフ中、縦軸は主相の一軸異方性定数
K1(結晶磁気異方性の強さを示す)の大きさを示し、
K1の値が大きいほど主相の自発磁化の向きは磁化容易
軸(c軸)の方向で安定化する。また、図1中、実施例
(本発明)は図2(A)に示すように主相と粒界相が界
面で整合している条件でのK1の計算値を示し、比較例
は図2(B)に示すように粒界相の欠落などによって界
面の不整合などがある場合のK1の計算値を示してい
る。Referring to FIGS. 1, 2 (A) and 2 (B),
The difference in the distribution of magnetocrystalline anisotropy near the interface between the case where the main phase (ferromagnetic phase) and the grain boundary phase match at the interface and the case where they do not match will be described. FIG. 1 or FIG.
In (A) and (B), the “outermost shell” on the horizontal axis indicates the position of the outermost atomic layer of the main phase, and the “second layer”, “third layer”
The “layer” indicates the positions of the second and third atomic layers counted from the outermost shell position toward the inside. The n-th layer indicates a position where the distance from the outermost shell is long and the influence from the interface can be ignored. In the graph of FIG. 1, the ordinate indicates the magnitude of the uniaxial anisotropy constant K 1 (indicating the strength of crystal magnetic anisotropy) of the main phase,
As the value of K 1 is larger, the direction of the spontaneous magnetization of the main phase is stabilized in the direction of the axis of easy magnetization (c-axis). In FIG. 1, the example (the present invention) shows the calculated value of K 1 under the condition that the main phase and the grain boundary phase match at the interface as shown in FIG. As shown in FIG. 2B, the calculated value of K 1 is shown in the case where there is an interface mismatch due to a lack of a grain boundary phase or the like.
【0020】図1を参照して、比較例においては、界面
からの距離によって異方性定数K1の大きさが大きく変
化し、最外殻におけるK1の値が内部に比べて著しく低
下している。一方、実施例においては、界面からの距離
によってK1の大きさがあまり変化せず、むしろ最外殻
相においてK1が上昇している。従って、比較例によれ
ば、最外殻において逆磁区の核生成に要するエネルギー
が局所的に低下して核生成と磁化反転が容易になるた
め、磁石の保磁力が低下する。一方、実施例によれば、
最外殻におけるK1がむしろ内部より高いため、界面に
おける逆磁区の核生成が抑制され、その結果磁石の保磁
力が増加する。[0020] Referring to FIG. 1, in the comparative example, vary greatly in size of the anisotropy constant K 1 by the distance from the interface, the value of K 1 is significantly reduced compared to the inside of the outermost shell ing. On the other hand, in the embodiment, without much change in the magnitude of K 1 by the distance from the interface, K 1 in the outermost shell phase is rather increased. Therefore, according to the comparative example, the energy required for nucleation of the reverse magnetic domain in the outermost shell is locally reduced to facilitate nucleation and magnetization reversal, so that the coercive force of the magnet is reduced. On the other hand, according to the embodiment,
Since K 1 in the outermost shell is rather higher than in the interior, nucleation of reverse domains at the interface is suppressed, resulting in increased coercivity of the magnet.
【0021】[0021]
【発明の実施の形態】本発明の好ましい実施の形態につ
いて、焼結法(粉末冶金法)を例にとって説明する。他
の公知のR−TM−B系永久磁石の製造方法において
も、好ましい界面の構造を発現する具体的な方法につい
ては焼結法と同様である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described by taking a sintering method (powder metallurgy) as an example. In other known R-TM-B-based permanent magnet manufacturing methods, the specific method of developing a preferable interface structure is the same as that of the sintering method.
【0022】出発原料となるR−TM−B基合金におい
て、R中のNdとPrの合計を50at%以上とすることによ
り、得られる磁石の保磁力と残留磁化が向上するので好
ましい。また、保磁力を向上させるためにNdの一部をDy
やTbで置換することも好ましい。TMは、特にFe又はCo
が好ましい。TM中のFeが50at%以上で保磁力と残留磁
化が向上するので好ましい。この他、さまざまな目的で
上記以外の添加元素を添加することも可能である。In the R-TM-B base alloy as the starting material, it is preferable that the total of Nd and Pr in R is at least 50 at%, because the coercive force and the residual magnetization of the obtained magnet are improved. Also, to improve coercive force, part of Nd is replaced with Dy
And substitution with Tb is also preferred. TM is especially Fe or Co
Is preferred. When the content of Fe in the TM is 50 at% or more, the coercive force and the residual magnetization are improved. In addition, it is also possible to add additional elements other than the above for various purposes.
【0023】本発明に基づく永久磁石の平均の組成はR
2TM14B相とR−TM−O相(RとTMの合計に対する
Rの比率が90at%以上)の少なくとも二相が共存できる組
成範囲が好ましい。これには、組成範囲をR:8〜30at
%、B:2〜40at%、残部主としてTMとすればよい。好ま
しくは、組成範囲をR:8〜30at%、B:2〜40at%、Fe:40
〜90at%、Co:50at%以下とする。さらに、好ましくは組
成範囲をR:11〜50at%、B:5〜40at%、残部主としてT
Mとすればよい。より好ましくは、組成範囲をR:12〜1
6at%、B:6.5〜9at%、残部主としてTMとすればよい。
一層好ましくは、組成範囲をR:12〜14at%、B:7〜8at
%、残部主としてTMとすればよい。また、用いる原料
は必ずしも単一の所要組成からなる必要はなく、異なる
組成の合金を粉砕した後、混合し所要組成に調整して用
いることもできる。The average composition of the permanent magnet according to the present invention is R
A composition range in which at least two phases of the 2 TM 14 B phase and the R-TM-O phase (the ratio of R to the sum of R and TM is 90 at% or more) is preferable. For this, the composition range is R: 8-30at.
%, B: 2 to 40 at%, with the balance being mainly TM. Preferably, the composition range is R: 8 to 30 at%, B: 2 to 40 at%, Fe: 40
~ 90at%, Co: 50at% or less. Further, preferably, the composition range is R: 11 to 50 at%, B: 5 to 40 at%, and the balance is mainly T
M may be set. More preferably, the composition range is R: 12 to 1
6 at%, B: 6.5 to 9 at%, and the balance may be mainly TM.
More preferably, the composition range is R: 12 to 14 at%, B: 7 to 8 at%.
% And the remainder may be mainly TM. In addition, the raw materials used do not necessarily have to have a single required composition, and alloys having different compositions may be pulverized, then mixed and adjusted to the required composition before use.
【0024】なお、本明細書において、数値範囲に関す
る記載は、その上下限値のみならず、その数値範囲に含
まれる任意の中間値を含むものとする。In this specification, the description regarding the numerical range includes not only the upper and lower limits but also any intermediate value included in the numerical range.
【0025】酸素は、原料中、例えば原料として用いら
れるFe合金、R合金に添加してもよく、例えば、粉砕工
程などの製造プロセス中に添加してもよい。なお、工業
的には、原料中に不可避的に含まれている酸素をR−T
M−O化合物の酸素源として利用することも可能であ
り、或いは製造プロセス中に酸素を取り込ませ(例え
ば、原料合金や中間生成物合金に取り込ませる)、取り
込ませた酸素をR−TM−O化合物の酸素源として用い
てもよい。Oxygen may be added to the raw materials, for example, to the Fe alloy or R alloy used as the raw materials, or may be added, for example, to a manufacturing process such as a pulverizing step. Note that industrially, the oxygen unavoidably contained in the raw material is converted to R-T
It can be used as an oxygen source for the MO compound, or oxygen can be incorporated during the manufacturing process (for example, incorporated into the raw material alloy or intermediate product alloy), and the incorporated oxygen can be used as R-TM-O It may be used as a source of oxygen for the compound.
【0026】また、主相において、Bの一部ないし大部
分をC,Si,Pなどのいわゆる半金族元素で置換しても
よい。例えば、BをCで置換する場合、B1-xCx;但し
好ましくはxは少なくとも0.8まで可である。In the main phase, part or most of B may be replaced by a so-called semi-metallic element such as C, Si, or P. For example, when B is replaced by C, B 1-x C x ; preferably x can be at least 0.8.
【0027】R−TM−B基合金を粉末にする方法に
は、鋳造粉砕法、急冷薄板粉砕法、超急冷法、直接還元
拡散法、水素含有崩壊法、アトマイズ法などの公知の方
法を適宜選択することができる。合金粉末の平均粒径を
1μm以上とすることにより、粉末が大気中の酸素など
と反応しにくく酸化しにくくなり、焼結後の磁気特性が
向上する。また、平均粒径を10μm以下とすることによ
り、焼結密度が高くなり好ましい。より好ましい平均粒
径の範囲は1〜6μmである。The R-TM-B base alloy can be made into a powder by a known method such as a casting pulverization method, a quenched thin plate pulverization method, a super-quenching method, a direct reduction diffusion method, a hydrogen-containing disintegration method, or an atomizing method. You can choose. Average particle size of alloy powder
When the thickness is 1 μm or more, the powder hardly reacts with oxygen in the atmosphere and is hardly oxidized, and the magnetic properties after sintering are improved. Further, by setting the average particle size to 10 μm or less, the sintering density is increased, which is preferable. A more preferable range of the average particle size is 1 to 6 μm.
【0028】得られた合金粉末を金型中に給粉し、磁界
中で配向しながら圧縮成形する。この際に、例えば特開
平8-20801号公報に開示されているように、合金粉末の
流動性を高めて給粉を容易にする目的で合金粉末にバイ
ンダーを添加してスプレー造粒を行うことも好ましい。
あるいは、特開平6-77028号公報に開示されているよう
に、合金粉末にバインダーを加えて金属射出成形法によ
って複雑形状品の成形を行うことも可能である。これら
バインダーを用いた場合は、焼結前に成形体に含まれる
バインダーを熱分解によって除去することが好ましい。The obtained alloy powder is fed into a mold, and compression-molded while orienting in a magnetic field. At this time, as disclosed in, for example, JP-A-8-20801, spray granulation is performed by adding a binder to the alloy powder for the purpose of increasing the fluidity of the alloy powder and facilitating powder supply. Is also preferred.
Alternatively, as disclosed in JP-A-6-77028, it is also possible to add a binder to an alloy powder and form a complex-shaped product by a metal injection molding method. When these binders are used, it is preferable to remove the binder contained in the molded body by thermal decomposition before sintering.
【0029】得られた成形体は真空中、または窒素を除
く不活性ガス中で焼結する。焼結条件はR−TM−B基
合金粉末の組成や粒径に応じて適宜選定されるが、例え
ば1000〜1180℃で1〜4時間が好ましい。焼結後の冷却速
度は粒界相の結晶構造を制御する上で重要である。すな
わち、焼結温度では粒界相は液相になっており、焼結温
度からの冷却速度があまり早すぎると粒界相は格子欠陥
を多く含んだり、非晶質になったりして好ましくない。The obtained compact is sintered in a vacuum or in an inert gas except nitrogen. The sintering conditions are appropriately selected according to the composition and particle size of the R-TM-B base alloy powder, but are preferably, for example, at 1000 to 1180 ° C. for 1 to 4 hours. The cooling rate after sintering is important for controlling the crystal structure of the grain boundary phase. That is, at the sintering temperature, the grain boundary phase is in a liquid phase, and if the cooling rate from the sintering temperature is too fast, the grain boundary phase contains many lattice defects or becomes amorphous, which is not preferable. .
【0030】粒界相が面心立方構造をとるためには、焼
結温度からの冷却速度は10〜200℃/minの範囲内である
ことが好ましい。このように冷却に十分時間をかけるこ
とにより、液状の粒界相が過冷却にならずに、冷却時に
規則正しい結晶構造をとることが可能になる。粒界相が
非晶質ではなく面心立方構造をとることにより、主相と
粒界相の界面における原子同士の位置関係が規則正しく
なり、両者の整合性が保たれる結果、界面が逆磁区発生
の起点となる可能性が減少し、高保磁力が実現する。よ
り好ましい焼結後の冷却速度の範囲は20〜100℃/minで
ある。In order for the grain boundary phase to have a face-centered cubic structure, the cooling rate from the sintering temperature is preferably in the range of 10 to 200 ° C./min. By allowing sufficient time for cooling in this way, the liquid grain boundary phase does not become supercooled, but can take a regular crystal structure during cooling. Since the grain boundary phase is not amorphous but has a face-centered cubic structure, the positional relationship between the atoms at the interface between the main phase and the grain boundary phase is regular, and the consistency between the two is maintained. The possibility of starting the occurrence is reduced, and a high coercive force is realized. A more preferable range of the cooling rate after sintering is 20 to 100 ° C./min.
【0031】また、粒界相が面心立方構造をとるために
は、粒界相に酸素が化合物の成分として含有されている
ことが好ましい。例えば、前記の組成範囲のR−TM−
B基合金を粉砕、成形、焼結する工程中に、磁石中に酸
素が導入でき、この酸素は主として粒界相中に固溶し、
R−TM−O化合物の成分となり、粒界相の面心立方構
造を安定化する。このようにして形成された粒界相のR
−TM−O化合物中のRとTMの合計に対するRの比率
は90at%以上が好ましい。In order for the grain boundary phase to have a face-centered cubic structure, it is preferable that the grain boundary phase contains oxygen as a component of the compound. For example, R-TM-
During the process of pulverizing, molding and sintering the B-based alloy, oxygen can be introduced into the magnet, and this oxygen is mainly dissolved in the grain boundary phase,
It becomes a component of the R-TM-O compound and stabilizes the face-centered cubic structure of the grain boundary phase. The R of the grain boundary phase thus formed is
The ratio of R to the sum of R and TM in the -TM-O compound is preferably at least 90 at%.
【0032】また、粒界相のR−TM−O化合物中のO
の比率は、1at%以上で面心立方構造の安定化の効果が大
きく、保持力の向上に理想的な界面の形成ができ保磁力
が向上して好ましく、また、70at%以下で粒界相による
R2TM14B正方晶相の界面近傍における結晶磁気異方
性を高める効果が大きく、保磁力が向上するするので好
ましい。したがって、粒界相のR−TM−O化合物中の
Oの比率は1at%以上、70at%以下が好ましい。すなわ
ち、粒界相、特に、下記に説明するように、前記界面近
傍にOの組成比に幅をもった不定比のR−TM−O化合
物(好ましくは、Oは1at%以上、70at%以下)が存在す
ることが好ましい。さらに、好ましくは、組成範囲を
O:2〜50at%とすればよい。より、好ましくは、組成範
囲をO:4〜15at%、又はO:5〜15at%とすればよい。In addition, O in the R-TM-O compound of the grain boundary phase
When the ratio is 1 at% or more, the effect of stabilizing the face-centered cubic structure is large, an ideal interface can be formed to improve the coercive force, and the coercive force is improved. Is preferable because the effect of increasing the crystal magnetic anisotropy in the vicinity of the interface of the R 2 TM 14 B tetragonal phase is large and the coercive force is improved. Therefore, the ratio of O in the R-TM-O compound in the grain boundary phase is preferably at least 1 at% and at most 70 at%. That is, as described below, a non-stoichiometric R-TM-O compound having a wide range in the composition ratio of O (preferably, O is 1 at% or more and 70 at% or less) in the vicinity of the interface, as described below. ) Is preferably present. Further, preferably, the composition range may be O: 2 to 50 at%. More preferably, the composition range may be O: 4 to 15 at%, or O: 5 to 15 at%.
【0033】界面の整合性の効果を得るには、主相と粒
界相の界面近傍のたかだか数原子層の範囲で粒界相の結
晶構造が面心立方構造になっていればよい。また、主相
は一般に粒界相よりも早く形成されており、主相を構成
する結晶粒は単結晶になっているため、主相と粒界相が
整合していることにより、結晶粒内部から外殻に至るま
で結晶粒内の結晶磁気異方性が高くなり、高保磁力が得
られる。In order to obtain the effect of interface consistency, it is sufficient that the crystal structure of the grain boundary phase has a face-centered cubic structure in the range of at most several atomic layers near the interface between the main phase and the grain boundary phase. In addition, the main phase is generally formed earlier than the grain boundary phase, and the crystal grains constituting the main phase are single crystals. The crystal magnetic anisotropy in the crystal grains increases from the surface to the outer shell, and a high coercive force can be obtained.
【0034】それぞれの主相の結晶粒はその一部又は全
部が粒界相に囲まれていることが好ましく、主相の結晶
粒径は10nm〜500μmの範囲にあることが好ましい。
より好ましい結晶粒径の範囲は、例えば焼結法の場合は
10〜30μm、超急冷法の場合は20〜100nmなどと、そ
れぞれの製法によって異なる。また、主相中に粒界相を
伴わない粒界や双晶粒界、あるいは析出物などが存在す
ると磁石の保磁力が低下するため、主相は単結晶である
ことが好ましい。It is preferable that a part or all of the crystal grains of each main phase is surrounded by a grain boundary phase, and the crystal grain size of the main phase is preferably in the range of 10 nm to 500 μm.
A more preferable range of the crystal grain size is, for example, in the case of the sintering method.
It varies from 10 to 30 μm, and 20 to 100 nm in the case of the ultra-quenching method, depending on the respective production method. If the main phase contains a grain boundary without a grain boundary phase, a twin grain boundary, a precipitate, or the like, the coercive force of the magnet decreases. Therefore, the main phase is preferably a single crystal.
【0035】上記の主相と粒界相の界面における原子同
士の位置関係をさらに理想的に制御するには、主相と粒
界相の結晶学的方位関係を特定すればよい。ここで、記
号[hkl]はミラー指数がh、k、lで表される結晶面に垂直
な法線の方向を表す。また、記号[hkl]の添字「主相」
又は「粒界相」とは、それぞれの方向が主相、または粒
界相のものであることを示す。例えば、記号[001]主相
は主相であるR2TM14B相のc軸の方向を表してい
る。一組の方向の間に記された記号「//」は、これらの
方向が互いに平行であることを示す。In order to more ideally control the positional relationship between atoms at the interface between the main phase and the grain boundary phase, the crystallographic orientation relationship between the main phase and the grain boundary phase may be specified. Here, the symbol [hkl] indicates the direction of the normal line perpendicular to the crystal plane represented by the Miller index h, k, l. The subscript "main phase" of the symbol [hkl]
Alternatively, the “grain boundary phase” indicates that each direction is that of the main phase or the grain boundary phase. For example, the symbol [001] main phase indicates the direction of the c-axis of the R 2 TM 14 B phase that is the main phase. The symbol "//" written between a set of directions indicates that these directions are parallel to each other.
【0036】次に、記号(hkl)はミラー指数がh、k、lで
表される結晶面を表し、添字で記された「主相」、「粒
界相」と、記号「//」の意味するところは方向の場合と
同じである。ここで、同一の相についての方向と結晶面
の表記においては、用いられるミラー指数は一般化され
た指数ではなく、特定の結晶方向、ないし結晶面を示し
ている。Next, the symbol (hkl) represents a crystal plane whose Miller index is represented by h, k, l, and the subscripts “main phase”, “grain boundary phase”, and the symbol “//” Has the same meaning as in the direction. Here, in the notation of the direction and the crystal plane for the same phase, the Miller index used is not a generalized index but indicates a specific crystal direction or crystal plane.
【0037】例えば、下記に示すミラー指数は粒界相の
固定されたx、y、z座標に基づいた指数であり、いいか
えれば(221)面と(212)面は厳密に区別される。このよう
な表記方法によって、主相と粒界相の空間的な方位関係
は厳密に規定される。For example, the Miller index shown below is an index based on the fixed x, y, and z coordinates of the grain boundary phase. In other words, the (221) plane and the (212) plane are strictly distinguished. With such a notation method, the spatial orientation relationship between the main phase and the grain boundary phase is strictly defined.
【0038】[0038]
【化3】 Embedded image
【0039】界面における特定の結晶方位関係が磁石の
磁気特性を向上させる理由は以下の通りである。すなわ
ち、主相の界面近傍では、主相の結晶磁気異方性を決め
ているR原子の周囲の結晶場が、隣接する粒界相の原子
配列の影響を受けて変化する。R−TM−O粒界相の結
晶方位が主相に対して、下記の(A)〜(C)の関係を有する
場合、R−TM−O粒界相のR原子と、主相中のR原子
とが上記の結晶場の異方性を強める位置関係にあるた
め、主相の界面近傍での結晶磁気異方性が高まる。その
結果、粒界近傍での逆磁区発生が困難となり、容易に磁
化反転することができないため保磁力が向上すると考え
られる。The reason why the specific crystal orientation relationship at the interface improves the magnetic properties of the magnet is as follows. That is, in the vicinity of the interface of the main phase, the crystal field around the R atom that determines the crystal magnetic anisotropy of the main phase changes under the influence of the atomic arrangement of the adjacent grain boundary phase. When the crystal orientation of the R-TM-O grain boundary phase has the following relationship (A) to (C) with respect to the main phase, R atoms of the R-TM-O grain boundary phase and Since the R atoms and the R atoms are in a positional relationship that enhances the anisotropy of the crystal field, the magnetocrystalline anisotropy near the interface of the main phase increases. As a result, it is considered that the generation of a reverse magnetic domain near the grain boundary becomes difficult, and the magnetization reversal cannot be easily performed, so that the coercive force is improved.
【0040】[0040]
【化4】 Embedded image
【0041】上記の説明において、主相中のR原子の結
晶場に影響を与える粒界相の原子は、主相に隣接する界
面の近傍の原子に限られる。したがって、本発明におい
て、粒界相の結晶構造(上記の主相)と粒界相の方位関
係は両相の界面の近傍のたかだか数原子層の範囲で成立
していればよい。In the above description, the atoms in the grain boundary phase that affect the crystal field of the R atoms in the main phase are limited to those near the interface adjacent to the main phase. Therefore, in the present invention, the orientation relationship between the crystal structure of the grain boundary phase (the main phase described above) and the grain boundary phase only needs to be established within a range of at most several atomic layers near the interface between the two phases.
【0042】このような結晶方位関係を実現する方法と
して、例えば、焼結後の冷却速度制御がある。例えば、
R−TM−O粒界相が液相状態である800℃以上から、
原子の拡散が極めて遅くなる300℃以下までの温度範囲
を、10〜200℃/minの冷却速度で冷却することにより、
主相と整合性のある特定の結晶方位関係を持ったR−T
M−O粒界相を主相との界面近傍に析出させることがで
きる。より好ましい冷却速度は20〜100℃/minである。As a method of realizing such a crystal orientation relationship, for example, there is a cooling rate control after sintering. For example,
From 800 ° C or higher where the R-TM-O grain boundary phase is in a liquid state,
By cooling the temperature range up to 300 ° C or less, where the diffusion of atoms becomes extremely slow, at a cooling rate of 10 to 200 ° C / min,
RT with a specific crystal orientation relationship compatible with the main phase
The MO grain boundary phase can be precipitated near the interface with the main phase. A more preferred cooling rate is 20 to 100 ° C / min.
【0043】この際に、主相と粒界相の成分元素、ある
いは組成の違いによって両相の格子定数の比率が異なる
ために、結晶方位が若干ずれることもある。しかし、こ
のずれの角度はたかだか5°以内であるため、たとえず
れたとしても主相中のR原子の結晶場に与える影響は少
なく、所期の効果を発現することができる。At this time, since the ratio of the lattice constants of the main phase and the grain boundary phase differs depending on the component elements or the composition of the two phases, the crystal orientation may be slightly shifted. However, since the angle of this shift is at most 5 °, even if the angle is shifted, the effect on the crystal field of the R atoms in the main phase is small, and the desired effect can be exhibited.
【0044】高温からの冷却速度の制御の他に、焼結法
や超急冷法などで一旦得られた磁石を、粒界相中の原子
の拡散が容易な融点以下の300〜800℃の温度域で熱処理
を行うことも、界面構造の制御に有効である。この場合
も、界面のエネルギーが駆動力となり、主相との界面近
傍で粒界相の結晶構造の並び替えが起こり、整合性のあ
る界面が実現する。熱処理後の好ましい冷却速度は10〜
200℃/minである。In addition to controlling the cooling rate from a high temperature, the magnet once obtained by a sintering method, a super-quenching method, or the like is heated to a temperature of 300 to 800 ° C. below the melting point at which atoms in the grain boundary phase can easily diffuse. Heat treatment in the region is also effective in controlling the interface structure. Also in this case, the energy of the interface becomes the driving force, the crystal structure of the grain boundary phase is rearranged near the interface with the main phase, and a consistent interface is realized. Preferred cooling rate after heat treatment is 10 ~
200 ° C / min.
【0045】以上、主として焼結法を例にとって実施の
形態を説明してきたが、他のR−TM−B系永久磁石の
製造方法においても、好ましい界面の構造の発現方法に
関しては焼結法と全く同様である。Although the embodiment has been described mainly with reference to the sintering method as an example, other methods for producing an R-TM-B-based permanent magnet also have a favorable interface structure. It is exactly the same.
【0046】上記の方法で得られた優れた磁気特性をも
つ永久磁石材料は、焼結体などのバルク磁石の場合に
は、研削加工等により所定の寸法精度を与えた後、必要
な表面処理を施し、着磁をして用いることができる。こ
の際に、加工歪みの影響を緩和するために、加工後に熱
処理を行うことも好ましい実施形態である。ボンド磁石
の場合は、得られた磁粉を樹脂と混合し、成形を行った
後、必要であれば表面処理を施し、着磁をして用いるこ
とができる。In the case of a bulk magnet such as a sintered body, the permanent magnet material having excellent magnetic properties obtained by the above method is provided with a predetermined dimensional accuracy by grinding or the like and then subjected to a necessary surface treatment. And magnetized for use. At this time, it is also a preferable embodiment to perform a heat treatment after the processing in order to reduce the influence of the processing distortion. In the case of a bonded magnet, the obtained magnetic powder is mixed with a resin, molded, then, if necessary, subjected to a surface treatment and magnetized before use.
【0047】[異方性定数]本発明に基づく永久磁石に
おいて、強磁性相の最外殻近傍の異方性定数K1の値は
内部と同等、もしくはそれ以上であることが好ましい。
この場合の同等とは、内部での値の少なくとも50%以上
である。強磁性粒子の最外殻部における結晶磁気異方性
が、粒界相が存在しない場合の該強磁性粒子の最外殻部
の結晶磁気異方性に比べて強められることが好ましい。[Anisotropy Constant] In the permanent magnet according to the present invention, the value of the anisotropy constant K 1 near the outermost shell of the ferromagnetic phase is preferably equal to or greater than that of the inside.
Equivalence in this case is at least 50% or more of the internal value. It is preferable that the magnetocrystalline anisotropy in the outermost shell of the ferromagnetic particles be enhanced as compared with the magnetocrystalline anisotropy of the outermost shell of the ferromagnetic particles in the absence of the grain boundary phase.
【0048】[結晶磁気異方性の分布]また、非晶質で
ない特定の結晶構造を持ち、かつ室温において強磁性体
である金属、合金、または金属間化合物の少なくとも1
種の結晶粒からなる永久磁石において、該結晶粒の最外
殻位置での結晶磁気異方性が、結晶粒外部の影響が無視
できる結晶粒内部(中心部)と同等であるか、もしくは
向上し、内部に比べて大きく減少することのないことが
好ましい。実用的な保磁力を得るために、結晶粒の最外
殻位置での結晶磁気異方性は、結晶粒外部の影響が無視
できる内部の結晶磁気異方性の半分以上であることが好
ましい。[Distribution of Crystalline Magnetic Anisotropy] At least one of a metal, alloy, or intermetallic compound which has a specific crystal structure which is not amorphous and which is ferromagnetic at room temperature.
In a permanent magnet composed of seed crystal grains, the crystal magnetic anisotropy at the outermost shell position of the crystal grains is equal to or improved within the crystal grains (center portion) where the influence of the crystal grains outside can be ignored. However, it is preferable that it does not greatly decrease compared to the inside. In order to obtain a practical coercive force, the crystal magnetic anisotropy at the outermost shell position of the crystal grain is preferably at least half of the internal crystal magnetic anisotropy where the influence of the crystal grain outside can be ignored.
【0049】[囲まれた主相、離隔構造]非晶質でない
特定の結晶構造を持ち、かつ室温において強磁性体であ
る金属、合金、または金属間化合物からなる主相と,金
属、合金、または金属間化合物からなり、かつ主相の周
囲を取り囲む形で存在する粒界相の少なくとも2相で構
成されることが好ましい。粒界相は、主相を構成する強
磁性相(強磁性粒子)の一部ないし全部を囲むことによ
り保磁力向上が見られる。強磁性相(強磁性粒子)が粒
界相によって半分以上囲まれていることが好ましい。ま
た、主相を構成する一つの強磁性粒子と、他の強磁性粒
子が互いに離隔されていることが好ましい。また、実質
的に非磁性の粒界相によって、一つの強磁性粒子と、他
の強磁性粒子とが部分的ないし全体的に互いに離隔され
ていることが好ましい。[Enclosed Main Phase, Separated Structure] A main phase composed of a metal, alloy, or intermetallic compound having a specific non-amorphous crystal structure and being ferromagnetic at room temperature, and a metal, alloy, Alternatively, it is preferable to be composed of at least two phases of a grain boundary phase which are made of an intermetallic compound and exist around the main phase. The grain boundary phase can improve the coercive force by surrounding a part or all of the ferromagnetic phase (ferromagnetic particles) constituting the main phase. It is preferable that the ferromagnetic phase (ferromagnetic particles) is surrounded by a grain boundary phase by half or more. It is preferable that one ferromagnetic particle constituting the main phase and another ferromagnetic particle are separated from each other. Preferably, one ferromagnetic particle and another ferromagnetic particle are partially or wholly separated from each other by a substantially nonmagnetic grain boundary phase.
【0050】[主相と粒界相の好ましい組み合わせ]本
発明において、主相として好ましい金属、合金または金
属間化合物は、永久磁石の主相として優れた性質を有す
るものがよく、具体的には、飽和磁化が高く、キュリー
温度が室温以上で十分に高いものがよい。[Preferred Combination of Main Phase and Grain Boundary Phase] In the present invention, the metal, alloy or intermetallic compound preferable as the main phase preferably has excellent properties as the main phase of the permanent magnet. , A material having a high saturation magnetization and a sufficiently high Curie temperature at room temperature or higher.
【0051】本発明において、粒界相として好ましい金
属、合金、または金属間化合物は、室温よりも高く、か
つ、主相の融点、または分解速度よりも低い融点、また
は分解温度を有し、熱処理によって主相の周りに拡散さ
せることが容易なものがよい。また、粒界相を構成する
原子は主相の最外殻原子に対して陽イオンとしてふるま
い、主相の結晶磁気異方性を高めるものが好ましい。特
に、少なくとも強磁性粒子に隣接する粒界相部分に陽イ
オン源を含む結晶を析出し、強磁性相に隣接する粒界相
の結晶構造において、強磁性粒子の最外殻に位置する希
土類元素イオンの4f電子雲が伸びている方向に陽イオン
を位置させることが好ましい。R−TM−O化合物中の
Rの他、上記の条件を満たす金属を例示すれば、Be、M
g、Ca、Sr、Ba、すべての遷移金属元素(Zn、Cdを含
む)、Al、Ga、In、Tl、Sn、Pbの一種以上などである。
また、Be、Mg、Al、Si、P、Ca、Sc、Ti、V、Cr、Mn、
Fe、Co、Ni、Cu、Zn、Ga、Sr、Zr、Nb、Mo、Cd、In、S
n、Ba、Hf、Ta、Ir、Pbの一種以上である。また、これ
らの金属同士の合金、または金属間化合物も粒界相とな
り得るが、以上に挙げた例は本発明の適用範囲を限定す
るものではない。In the present invention, the metal, alloy or intermetallic compound preferable as the grain boundary phase has a melting point or decomposition temperature higher than room temperature and lower than the melting point or decomposition rate of the main phase. What is easy to diffuse around the main phase by using is preferred. Further, it is preferable that the atoms constituting the grain boundary phase behave as cations with respect to the outermost shell atoms of the main phase to enhance the crystal magnetic anisotropy of the main phase. In particular, a crystal containing a cation source is precipitated at least in a grain boundary phase portion adjacent to the ferromagnetic particles, and in the crystal structure of the grain boundary phase adjacent to the ferromagnetic phase, a rare earth element located in the outermost shell of the ferromagnetic particles It is preferable to position the cation in the direction in which the 4f electron cloud of the ion extends. In addition to R in the R-TM-O compound, examples of metals satisfying the above conditions include Be, M
g, Ca, Sr, Ba, all transition metal elements (including Zn, Cd), and one or more of Al, Ga, In, Tl, Sn, and Pb.
Also, Be, Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Sr, Zr, Nb, Mo, Cd, In, S
It is at least one of n, Ba, Hf, Ta, Ir, and Pb. In addition, alloys of these metals or intermetallic compounds can also be the grain boundary phase, but the examples given above do not limit the scope of the present invention.
【0052】上記の主相と粒界相の組み合わせは、例え
ばSmCo5主相とY粒界相のように、両相がある温度域で
平衡に共存するものが好ましい。また、例えばSm2Fe17
N3主相とZn相の反応で金属間化合物相(Γ-FeZn)が形
成されるように、主相と第2相とが反応することにより
粒界に好ましい第3相を形成してもよい。後者の場合に
は、第3相が本発明でいうところの粒界相となる。The combination of the main phase and the grain boundary phase is preferably one in which both phases coexist in an equilibrium in a certain temperature range, such as the SmCo 5 main phase and the Y grain boundary phase. Also, for example, Sm 2 Fe 17
Just as the intermetallic compound phase (Γ-FeZn) is formed by the reaction between the N 3 main phase and the Zn phase, even if the main phase and the second phase react to form a preferable third phase at the grain boundary. Good. In the latter case, the third phase is the grain boundary phase in the present invention.
【0053】[微量添加元素の範囲]本発明において、
主相と粒界相との整合性を高めるためないし磁気特性を
高めるために、主として金属元素又は半金属元素を微量
に添加することは好ましい実施形態である。上記の微量
添加元素は、粒界相に濃縮偏在して界面の濡れ性を高め
たり、あるいは界面の不整合な位置に拡散して粒界相の
格子定数を調整して界面エネルギーを下げ、界面の整合
性を高める効果があり、その結果として磁石の保磁力が
向上する。[Range of trace addition element] In the present invention,
It is a preferred embodiment to mainly add a trace amount of a metal element or a metalloid element in order to enhance the consistency between the main phase and the grain boundary phase or to enhance the magnetic properties. The above-mentioned trace added elements are concentrated and unevenly distributed in the grain boundary phase to enhance the wettability of the interface, or diffuse to an inconsistent position of the interface to adjust the lattice constant of the grain boundary phase to lower the interface energy, Has the effect of improving the coherence of the magnet, and as a result, the coercive force of the magnet improves.
【0054】上記の働きをする微量添加元素としては、
粒界相中に固溶しうる元素が好ましく、例えば、C、
N、Al、Si、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Z
n、Ga、Zr、Nb、Mo、これら以外の上述の金属元素など
があるが、以上に挙げた例は本発明の適用範囲を限定す
るものではない。上記の目的で添加する元素の添加量
は、磁石全体に対する割合で1.0wt%以下で良好な磁石の
残留磁束密度が得られ、0.05wt%以上で所定の効果が得
られるので、添加量の範囲は0.05〜1.0wt%が好ましい。
より好ましい範囲は0.1〜0.5wt%である。微量添加元素
の添加方法は、母合金に初めから含有させる、粉末冶金
的手法で後から添加するなど、磁石の製造方法に応じて
適宜選択できる。また、上記微量元素などが主相(強磁
性相)に侵入し又は主相を構成する元素を置換してもよ
い。[0054] The trace additive elements acting as described above include:
Elements that can form a solid solution in the grain boundary phase are preferred, for example, C,
N, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Z
There are n, Ga, Zr, Nb, Mo, and the above-mentioned metal elements other than these, but the examples given above do not limit the applicable scope of the present invention. The addition amount of the element to be added for the above purpose is 1.0% by weight or less with respect to the whole magnet to obtain a good residual magnetic flux density of the magnet, and the predetermined effect is obtained at 0.05% by weight or more. Is preferably 0.05 to 1.0 wt%.
A more preferred range is from 0.1 to 0.5 wt%. The addition method of the trace addition element can be appropriately selected according to the manufacturing method of the magnet, such as adding it to the mother alloy from the beginning or adding it later by a powder metallurgy technique. Further, the above-mentioned trace elements may invade the main phase (ferromagnetic phase) or replace the elements constituting the main phase.
【0055】[磁性相と粒界相の結晶構造]粒界相の結
晶構造は、磁性相の結晶構造と似ていることが好まし
い。さらに、粒界相の結晶構造と磁性相の結晶構造とが
特定の方位関係にあることが好ましい。これによって、
粒界相側の特定原子と主相側の特定原子の整合性が高ま
る。例えば、正方晶R2TM14B金属間化合物(R:Yを
含む希土類元素、TM:FeまたはCo)からなる主相と、
特にR−TM−O化合物からなる粒界相から構成される
永久磁石においては、該主相と該粒界相の界面近傍にお
ける該粒界相の結晶構造が面心立方構造であることが好
ましい。特に、この界面近傍の粒界相にR−TM−O化
合物が析出していることが好ましい。さらに、面指数と
方位指数に関して、該主相と該粒界相との界面近傍にお
ける結晶学的方位関係が上記(A)〜(C)の組み合わせのい
ずれかであることが好ましい。[Crystal Structure of Magnetic Phase and Grain Boundary Phase] The crystal structure of the grain boundary phase is preferably similar to the crystal structure of the magnetic phase. Further, it is preferable that the crystal structure of the grain boundary phase and the crystal structure of the magnetic phase have a specific orientation relationship. by this,
The consistency between the specific atom on the grain boundary phase side and the specific atom on the main phase side is enhanced. For example, a main phase comprising a tetragonal R 2 TM 14 B intermetallic compound (a rare earth element containing R: Y, TM: Fe or Co);
In particular, in a permanent magnet composed of a grain boundary phase composed of an R-TM-O compound, the crystal structure of the grain boundary phase near the interface between the main phase and the grain boundary phase is preferably a face-centered cubic structure. . In particular, it is preferable that the R-TM-O compound is precipitated in the grain boundary phase near the interface. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship in the vicinity of the interface between the main phase and the grain boundary phase is any one of the combinations of the above (A) to (C).
【0056】また、正方晶R2TM14B金属間化合物
(R:Yを含む希土類元素、TM:FeまたはCo)からなる
主相と、R3TM合金からなる粒界相から構成される永
久磁石においては、該主相と該粒界相の界面近傍におけ
る該粒界相の結晶構造が斜方晶構造であることが好まし
い。さらに、方向ベクトルと面指数に関して、該主相と
該粒界相との界面近傍における結晶学的方位関係が下記
(D)〜(G)の組み合わせのいずれかであることが好まし
い。Further, tetragonal R 2 TM 14 B intermetallic compound
In a permanent magnet composed of a main phase composed of (R: a rare earth element containing Y, TM: Fe or Co) and a grain boundary phase composed of an R 3 TM alloy, the vicinity of the interface between the main phase and the grain boundary phase In the above, the crystal structure of the grain boundary phase is preferably an orthorhombic structure. Further, with respect to the direction vector and the plane index, the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
It is preferably any one of the combinations of (D) to (G).
【0057】[0057]
【化5】 Embedded image
【0058】R−TM−O化合物からなる粒界相とR3
TM合金からなる粒界相が共存する場合、粒界相と主相
との結晶学的方位関係は、上記(A)〜(C)の組み合わせの
いずれか、上記(D)〜(G)の組み合わせのいずれかである
ことがそれぞれ好ましい。The grain boundary phase comprising the R-TM-O compound and R 3
When a grain boundary phase composed of a TM alloy coexists, the crystallographic orientation relationship between the grain boundary phase and the main phase is any one of the combinations of the above (A) to (C) and the above (D) to (G). Each of them is preferably one of the combinations.
【0059】なお、R−TM−O化合物からOを取り除
いた、R−TM−O化合物と同様の結晶構造を有するR
−TM化合物が粒界相として共存していてもよく、この
粒界相と上記主相との結晶学的方位関係は、上記(A)〜
(C)の組み合わせのいずれかであることが好ましい。さ
らに、このR−TM化合物において、RとTMの合計に
対するRの比率が90at%以上であることが好ましい。It is to be noted that R having the same crystal structure as the R-TM-O compound obtained by removing O from the R-TM-O compound.
-TM compound may coexist as a grain boundary phase, the crystallographic orientation relationship between the grain boundary phase and the main phase, (A) ~
It is preferably any one of the combinations of (C). Further, in the R-TM compound, the ratio of R to the total of R and TM is preferably at least 90 at%.
【0060】なお、原料中に不可避的に含まれている酸
素をほぼ完全取り除き、さらに製造プロセス中における
酸素の混入をほぼ完全にゼロにすることが、実験室的に
は可能であると考えられるが、工業的にはきわめて困難
である。従って、工業上、酸素を成分とするR−TM−
O化合物と上記主相を整合させることが好ましい。It is considered from a laboratory that it is possible to almost completely remove oxygen unavoidably contained in the raw material and further to make oxygen contamination almost completely zero during the manufacturing process. However, it is extremely difficult industrially. Therefore, industrially, R-TM-
It is preferable to match the O compound with the main phase.
【0061】粒界相は、その主相との界面近傍(高々数
原子層)の原子が主相側と整合であればよく、非晶質、
部分的に非晶質、ほとんどが非晶質であってもよい。ま
た、界面の一部が整合であることによって効果が得られ
るが、界面の半分以上が整合であることが好ましい。ま
た、主相と粒界相は、その界面近傍に格子欠陥がなく連
続性が維持され規則的であることが好ましいが、一部格
子欠陥があってもよい。なお、界面において、主相と粒
界相が50%以上整合していることが好ましい。The grain boundary phase may be any one as long as atoms in the vicinity of the interface with the main phase (at most several atomic layers) match the main phase.
It may be partially amorphous and mostly amorphous. Although the effect can be obtained when a part of the interface is matched, it is preferable that half or more of the interface is matched. The main phase and the grain boundary phase preferably have regularity without lattice defects near the interface and maintain continuity, but may have some lattice defects. Note that it is preferable that the main phase and the grain boundary phase match at least 50% at the interface.
【0062】本発明に基づく永久磁石において、強磁性
相はある条件下で実用的な保磁力を示すものであればよ
く、金属、合金、金属間化合物、半金属、その他の化合
物の一種以上から構成することが可能である。また、本
発明の原理は、永久磁石原料から中間体さらに最終製品
としての永久磁石及びそれらの製造方法まで適用され
る。例えば、永久磁石原料としては、鋳造粉砕法、急冷
薄板粉砕法、超急冷法、直接還元法、水素含有崩壊法、
アトマイズ法によって得られる粉末がある。中間体とし
ては、粉砕されて粉末冶金法の原料とする急冷薄板、熱
処理されて一部又は全部が結晶化する非晶質体(一部又
は全部)がある。最終製品である永久磁石としては、そ
れらの粉末を焼結又はボンド等によってバルク化した磁
石、鋳造磁石、圧延磁石、さらに、スパッタリング法、
イオンプレーティング法、PVD法又はCVD法などに
よる薄膜磁石などがある。さらに、永久磁石原料又は最
終製品として永久磁石の製造方法として、メカニカルア
ロイング法、ホットプレス法、ホットフォーミング法、
熱間・冷間圧延法、HDDR法、押出法、ダイアップセット
法などがあり、特に限定されない。本発明に基づくR−
TM−B系永久磁石は、モーター、医療用MRI装置、ス
ピーカーなどに用いられる。In the permanent magnet according to the present invention, the ferromagnetic phase only needs to exhibit a practical coercive force under certain conditions, and may be formed of one or more of metals, alloys, intermetallic compounds, semimetals, and other compounds. It is possible to configure. In addition, the principle of the present invention is applied to permanent magnet raw materials, intermediates, permanent magnets as final products, and methods for producing them. For example, as raw materials for permanent magnets, casting and pulverization methods, quenched thin plate pulverization methods, ultra-quench methods, direct reduction methods, hydrogen-containing collapse methods,
There is a powder obtained by an atomizing method. Examples of the intermediate include a quenched thin plate that is pulverized and used as a raw material for the powder metallurgy method, and an amorphous body (part or all) that is partially or wholly crystallized by heat treatment. As permanent magnets as final products, magnets made by bulking these powders by sintering or bonding, cast magnets, rolled magnets, further sputtering method,
There is a thin film magnet by an ion plating method, a PVD method, a CVD method, or the like. Furthermore, as a method of manufacturing a permanent magnet as a permanent magnet raw material or a final product, a mechanical alloying method, a hot pressing method, a hot forming method,
There are a hot / cold rolling method, an HDR method, an extrusion method, a die upset method, and the like, and there is no particular limitation. R- based on the present invention
The TM-B permanent magnet is used for a motor, a medical MRI apparatus, a speaker, and the like.
【0063】[0063]
【実施例】[実施例1]Nd13.0at%、B6.5at%、残部Fe、
および不可避的不純物からなる原料を、φ0.3mmのオ
リフィス径を持つ石英管中に装填し、Arガス雰囲気中で
高周波溶解して、溶湯をロール周速度20m/sで回転す
る銅製ロールの表面に噴射して急冷し、超急冷薄帯を得
た。これを目の開き300μmのメッシュを全量通るまで
粗く粉砕した後、Ar雰囲気中で600℃、30minの熱処理を
行い、100℃/minの冷却速度で室温まで冷却した。得ら
れたR2TM14B系磁石粉末は、工程中で取り込まれた
O(R−TM−O化合物中のO源となる)を2.3at%含ん
でいた。得られた磁石粉末の小片をサンプリングし、Ar
中のイオンミリングによって透過電子顕微鏡用の試料を
作製し、観察した結果、平均の結晶粒径は74nm、粒界
相は厚み5nmの面心立方構造のNd−Fe−O化合物であ
った。得られた磁石粉末の着磁後の磁気特性を表1に示
す。[Example 1] Nd13.0at%, B6.5at%, balance Fe,
The raw material consisting of unavoidable impurities is loaded into a quartz tube with an orifice diameter of φ0.3 mm, melted by high frequency in an Ar gas atmosphere, and melted on a copper roll rotating at a roll peripheral speed of 20 m / s. It was quenched by spraying to obtain a super-quenched ribbon. This was roughly pulverized until the whole amount passed through a mesh having an opening of 300 μm, and then heat-treated at 600 ° C. for 30 minutes in an Ar atmosphere and cooled to room temperature at a cooling rate of 100 ° C./min. The obtained R 2 TM 14 B-based magnet powder contained 2.3 at% of O (used as an O source in the R-TM-O compound) incorporated in the process. A small piece of the obtained magnet powder was sampled, and Ar
A sample for a transmission electron microscope was prepared by ion milling in the inside and observed. As a result, the average crystal grain size was 74 nm, and the grain boundary phase was a face-centered cubic Nd-Fe-O compound having a thickness of 5 nm. Table 1 shows the magnetic properties of the obtained magnet powder after magnetization.
【0064】[比較例1]実施例1で得られた超急冷薄
帯の粗粉砕粉の小片をそのままサンプリングし、透過電
子顕微鏡で観察した結果、平均の結晶粒径は73nm、粒
界相は厚み4nmの非晶質Nd−Fe−O化合物であった。
得られた磁石粉末の着磁後の磁気特性を表1に示す。[Comparative Example 1] A small piece of the coarsely crushed powder of the ultra-quenched ribbon obtained in Example 1 was directly sampled and observed with a transmission electron microscope. As a result, the average crystal grain size was 73 nm and the grain boundary phase was It was an amorphous Nd-Fe-O compound having a thickness of 4 nm.
Table 1 shows the magnetic properties of the obtained magnet powder after magnetization.
【0065】[0065]
【表1】 [Table 1]
【0066】表1の結果から明らかなように、結晶粒径
がほぼ同一で粒界相の結晶構造が非晶質、または面心立
方構造のR−TM−B系永久磁石の磁気特性を比較する
と、面心立方構造のものが保磁力の面で特に優れた磁気
特性を発現することがわかる。As is clear from the results in Table 1, the magnetic properties of R-TM-B permanent magnets having substantially the same crystal grain size and an amorphous grain boundary phase or a face-centered cubic structure were compared. Then, it can be seen that the face-centered cubic structure exhibits particularly excellent magnetic properties in terms of coercive force.
【0067】[実施例2]Nd14.0at%、Co3.0at%、B7.0
at%、残部Fe、および不可避的不純物からなる原料を、A
rガス雰囲気中で高周波溶解して、合金を溶製した。次
に、該合金を粗粉砕した後、ジョークラッシャー、およ
び、ディスクミルにより420μm以下に粉砕し、さら
に、ジェットミル粉砕して平均粒径3μmの粉末を得
た。得られた微粉末を縦15mm、横20mmのダイス中に
給粉し、11kOeの磁界中で配向しながら、深さ方向に1.5
ton/cm2の圧力を加えて成形した。成形体を取り出し
た後、真空中で1100℃まで昇温し、2時間保持する焼結
を行い、さらに、焼結完了後、200℃/minの速度で800℃
まで冷却し、その後、100℃/minの速度で300℃まで冷却
し、ついでArを導入して室温まで冷却して焼結磁石を得
た。得られた焼結体の寸法は収縮によって成形体よりも
減少したが、ワレ、ヒビ、変形などは全く見られなかっ
た。次に、焼結後の磁石を真空中、500℃で2h保持した
後、20℃/minの速度で室温まで冷却した。得られた焼結
磁石は、主として粉砕工程で取り込まれたO(R−TM
−O化合物中のO源となる)を4.5at%含んでいた。焼結
磁石の着磁後の磁気特性を表2に示す。Example 2 Nd 14.0at%, Co3.0at%, B7.0
A raw material consisting of at%, balance Fe, and inevitable impurities
r High frequency melting was performed in a gas atmosphere to melt the alloy. Next, after roughly pulverizing the alloy, the alloy was pulverized to 420 μm or less by a jaw crusher and a disc mill, and further pulverized by a jet mill to obtain a powder having an average particle diameter of 3 μm. The obtained fine powder is fed into a die of 15 mm in length and 20 mm in width, and is oriented in a magnetic field of 11 kOe.
Molding was performed by applying a pressure of ton / cm 2 . After taking out the molded body, the temperature is raised to 1100 ° C in a vacuum, and sintering is performed for 2 hours.
And then cooled to 300 ° C. at a rate of 100 ° C./min. Then, Ar was introduced and cooled to room temperature to obtain a sintered magnet. Although the size of the obtained sintered body was smaller than that of the molded body due to shrinkage, cracks, cracks, deformation and the like were not observed at all. Next, the magnet after sintering was kept in vacuum at 500 ° C. for 2 hours, and then cooled to room temperature at a rate of 20 ° C./min. The obtained sintered magnet is mainly composed of O (R-TM
-The O source in the -O compound) was contained at 4.5 at%. Table 2 shows the magnetic properties of the sintered magnet after magnetization.
【0068】また、得られた磁石の小片をサンプリング
し、Ar中のイオンミリングによって透過電子顕微鏡用の
試料を作製し、観察した結果、平均の結晶粒径は12μ
m、粒界相は厚み15nmの面心立方構造のNd−Fe−O化
合物であった。図3は、その主相と粒界相の界面付近の
高分解能透過電子顕微鏡写真であって、右半分にR2T
M14B主相、左半分にR−TM−O粒界相の格子像が見
られる。両者は界面において互いに接している。図4
は、図3中右側のR2TM14B主相の制限視野電子線回
折像である。回折点は解析の結果、図4中に示すよう
に、格子定数がa=0.88nm、c=1.22nmの正方晶で
指数付けすることができる。この指数から、この回折像
における電子線の入射方向は、次のようになることがわ
かる。A small piece of the obtained magnet was sampled, a sample for a transmission electron microscope was prepared by ion milling in Ar, and observed. As a result, the average crystal grain size was 12 μm.
m, the grain boundary phase was a 15 nm thick Nd-Fe-O compound having a face-centered cubic structure. Figure 3 is a high resolution transmission electron micrograph of the vicinity of the interface between the main phase and a grain boundary phase, the right half R 2 T
M 14 B main phase, the lattice image of the R-TM-O grain boundary phase is shown the left half. Both are in contact with each other at the interface. FIG.
Is a selected area electron diffraction image of the R 2 TM 14 B main phase on the right side in FIG. As a result of the analysis, as shown in FIG. 4, the diffraction point can be indexed by a tetragonal crystal having a lattice constant of a = 0.88 nm and c = 1.22 nm. From this index, it can be seen that the incident direction of the electron beam in this diffraction image is as follows.
【0069】[0069]
【化6】 Embedded image
【0070】図5は、図3中左側のR−TM−O粒界相
の制限視野電子線回折像である。回折点は解析の結果、
図5中に示すように、格子定数がa=0.54nmの面心立
方晶で指数付けすることができる。指数から、この回折
像における電子線の入射方向は[001]であることがわか
る。図3〜図5に示した界面における主相と粒界相の結
晶方位関係は、次の通りに表される。FIG. 5 is a selected area electron beam diffraction image of the R-TM-O grain boundary phase on the left side in FIG. The diffraction point is the result of the analysis,
As shown in FIG. 5, the lattice constant can be indexed by a face-centered cubic crystal with a = 0.54 nm. From the index, it can be seen that the incident direction of the electron beam in this diffraction image is [001]. The crystal orientation relationship between the main phase and the grain boundary phase at the interface shown in FIGS. 3 to 5 is expressed as follows.
【0071】[0071]
【化7】 Embedded image
【0072】そして、その方位関係のずれが平行から5
°以内であった。同様に、主相との界面付近の粒界相の
結晶方位を制限視野電子線回折像で解析した結果、ほと
んどの観察部位で、上述の(A)、(B)ないし(C)のいずれ
かの組の結晶方位関係を持っていることがわかった。The deviation of the azimuth relationship is 5
°. Similarly, as a result of analyzing the crystal orientation of the grain boundary phase near the interface with the main phase with a selected area electron diffraction image, at most of the observed sites, any of the above (A), (B) or (C) It was found that there was a crystal orientation relationship of the following set.
【0073】[比較例2]実施例2で得られた焼結後の
磁石を、熱処理せずにサンプリングし、透過電子顕微鏡
用で観察した結果、平均の結晶粒径は12μm、粒界相は
厚み15nmの面心立方構造のNd−Fe−O化合物であっ
た。しかし、主相との界面付近の粒界相の結晶方位を制
限視野電子線回折像で解析した結果、特定の方位関係は
見いだせなかった。得られた焼結磁石の着磁後の磁気特
性を表2に示す。Comparative Example 2 The magnet after sintering obtained in Example 2 was sampled without heat treatment and observed with a transmission electron microscope. As a result, the average crystal grain size was 12 μm, and the grain boundary phase was It was a 15 nm thick face-centered cubic Nd-Fe-O compound. However, as a result of analyzing the crystal orientation of the grain boundary phase near the interface with the main phase using a selected area electron beam diffraction image, no specific orientation relationship was found. Table 2 shows the magnetic properties of the obtained sintered magnet after magnetization.
【0074】[0074]
【表2】 [Table 2]
【0075】表2の結果から明らかなように、結晶粒径
がほぼ同一で粒界相の結晶構造が同じ面心立方構造のR
−TM−B系永久磁石の磁気特性を比較すると、主相と
その近傍の粒界相とに特定の方位関係がある場合、保磁
力の面で特に優れた磁気特性を発現することがわかる。As is evident from the results in Table 2, R of a face-centered cubic structure having almost the same crystal grain size and the same crystal structure of the grain boundary phase.
Comparing the magnetic properties of the -TM-B-based permanent magnets, it can be seen that particularly excellent magnetic properties are exhibited in terms of coercive force when the main phase and the neighboring grain boundary phase have a specific orientation relationship.
【0076】[0076]
【発明の効果】本発明によれば、高磁気性能(特に高保
磁力)を有するR−TM−B系永久磁石を設計するため
指針が提供される。従来、保磁力を決定する主相と粒界
相間の界面の構造が未知であったが、本発明によって、
保磁力を向上させるための理想的な界面の構造が明らか
にされたことにより、新たなR−TM−B系永久磁石の
開発の指針が提供されると共に、既存のR−TM−B系
永久磁石の保磁力のさらなる向上が可能となる。この結
果、新規な磁石材料の発見が容易となり、今まで保磁力
が低いため実用されていないR−TM−B系永久磁石の
実用化も可能となる。According to the present invention, a guide is provided for designing an R-TM-B-based permanent magnet having high magnetic performance (particularly, high coercive force). Conventionally, the structure of the interface between the main phase and the grain boundary phase that determines the coercive force was unknown.
The elucidation of the ideal interface structure for improving the coercive force provides guidance for the development of a new R-TM-B-based permanent magnet, as well as the existing R-TM-B-based permanent magnet. The coercive force of the magnet can be further improved. As a result, it is easy to find a new magnet material, and it is also possible to commercialize an R-TM-B-based permanent magnet that has not been practically used because of its low coercive force.
【0077】本発明によるR−TM−B系永久磁石は、
主相と粒界相の界面における原子同士の位置関係が規則
正しくなり、両者の整合性が保たれる結果、界面が逆磁
区発生の起点となる可能性が減少し、高保磁力を得るこ
とができる。また、本発明によるR−TM−B系永久磁
石は、粒界近傍での逆磁区発生を困難ならしめ、容易に
磁化反転することができないため保磁力が向上した、優
れた磁気特性を持つ磁石材料である。The R-TM-B-based permanent magnet according to the present invention
The positional relationship between the atoms at the interface between the main phase and the grain boundary phase becomes regular, and the consistency between the two is maintained. As a result, the possibility that the interface becomes the starting point of generation of reverse magnetic domains is reduced, and a high coercive force can be obtained. . In addition, the R-TM-B permanent magnet according to the present invention makes it difficult to generate a reverse magnetic domain near the grain boundary, and cannot easily reverse the magnetization, so that the magnet having excellent magnetic properties with improved coercive force. Material.
【図1】界面からの距離と結晶磁気異方性の関係を説明
するための図であって、白丸が実施例の一軸異方性定数
K1、黒丸が比較例の一軸異方性定数K1を示す。FIG. 1 is a diagram for explaining a relationship between a distance from an interface and crystal magnetic anisotropy, in which a white circle indicates a uniaxial anisotropy constant K 1 of an example, and a black circle indicates a uniaxial anisotropy constant K of a comparative example. Indicates 1 .
【図2】(A)は主相と粒界相が整合している様子を示
すモデル図、(B)は主相と粒界相の界面が整合してい
ない様子を示すモデル図である。FIG. 2A is a model diagram showing a state where a main phase and a grain boundary phase match, and FIG. 2B is a model diagram showing a state where an interface between a main phase and a grain boundary phase does not match.
【図3】主相と粒界相が整合している永久磁石を撮影し
た電子顕微鏡写真である。FIG. 3 is an electron micrograph of a permanent magnet in which a main phase and a grain boundary phase are matched.
【図4】図3に示した主相側の制限視野電子線回折像を
示す結晶構造の写真である。FIG. 4 is a photograph of a crystal structure showing a selected area electron beam diffraction image of the main phase shown in FIG. 3;
【図5】図3に示した粒界相側の制限視野電子線回折像
を示す結晶構造の写真である。5 is a photograph of a crystal structure showing a selected area electron beam diffraction image on the grain boundary phase side shown in FIG. 3;
Claims (6)
間化合物(R:Yを含む希土類元素、TM:遷移金属)から
主としてなる磁性相と、R−TM−O化合物を含む粒界
相と、が存在し、 前記磁性相と前記粒界相の界面近傍における該粒界相の
結晶構造が面心立方構造であって、該磁性相と該粒界相
が整合していることを特徴とするR−TM−B系永久磁
石。1. A magnetic phase mainly composed of an R 2 TM 14 B intermetallic compound having a tetragonal crystal structure (R: a rare earth element containing Y, TM: a transition metal), and a grain containing an R-TM-O compound. And a crystal structure of the grain boundary phase in the vicinity of the interface between the magnetic phase and the grain boundary phase is a face-centered cubic structure, and the magnetic phase and the grain boundary phase are matched. An R-TM-B permanent magnet characterized by the following.
面心立方構造である前記R−TM−O化合物が析出して
いることを特徴とする請求項1記載のR−TM−B系永
久磁石。2. The R-TM-O compound according to claim 1, wherein the R-TM-O compound having a face-centered cubic crystal structure is precipitated near the interface of the grain boundary phase. B type permanent magnet.
R中のNdとPrの合計が50at%以上、TMはFeまたはCoで
TM中のFeが50at%以上であり、 前記R−TM−O化合物において、RとTMの合計に対
するRの比率が90at%以上であり、Oの比率は1at%以
上、70at%以下であることを特徴とする請求項1又は2
記載のR−TM−B系永久磁石。3. The R 2 TM 14 B intermetallic compound,
The total of Nd and Pr in R is 50 at% or more, TM is Fe or Co, and the content of Fe in TM is 50 at% or more. In the R-TM-O compound, the ratio of R to the total of R and TM is 90 at%. % Or more, and the ratio of O is 1 at% or more and 70 at% or less.
The R-TM-B-based permanent magnet as described.
る結晶学的方位関係が、 【化1】 の少なくとも一組で表され、かつ該方位関係のずれの角
度が5°以内であることを特徴とする請求項1〜3のい
ずれか一記載のR−TM−B系永久磁石。4. The crystallographic orientation relationship in the vicinity of the interface between the magnetic phase and the grain boundary phase is as follows: The R-TM-B-based permanent magnet according to any one of claims 1 to 3, wherein the angle of deviation of the azimuthal relationship is within 5 °.
性相との界面近傍に、酸素を含み結晶構造が面心立方構
造である化合物が存在する粒界相と、を含み、 前記磁性相と前記粒界相が前記界面をはさんで整合して
いることを特徴とするR−TM−B系永久磁石。5. A magnetic phase having a tetragonal crystal structure, and a grain boundary phase in which a compound containing oxygen and having a face-centered cubic crystal structure is present in the vicinity of an interface with the magnetic phase, An R-TM-B-based permanent magnet, wherein a magnetic phase and the grain boundary phase are aligned with the interface interposed therebetween.
遷移金属)、B及びOを含む合金から、R2TM14B正方
晶を析出させ、さらに該R2TM14B正方晶相の周囲に
R−TM−O面心立方晶相を析出させることにより、該
R2TM14B正方晶相と該R−TM−O面心立方晶相を
整合させ、 少なくとも整合した界面近傍の前記R2TM14B正方晶
相の結晶磁気異方性を高めることを特徴とするR−TM
−B系永久磁石の製造方法。6. R (Rare earth element containing R: Y), TM (TM:
(Transition metal), an R 2 TM 14 B tetragonal crystal is precipitated from an alloy containing B and O, and an R-TM-O face-centered cubic phase is further precipitated around the R 2 TM 14 B tetragonal phase. Thereby aligning the R 2 TM 14 B tetragonal phase with the R-TM-O face-centered cubic phase, and increasing the crystal magnetic anisotropy of the R 2 TM 14 B tetragonal phase at least near the aligned interface. R-TM characterized by the following:
-A method for producing a B-based permanent magnet.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10226538A JP2000049005A (en) | 1998-07-27 | 1998-07-27 | R-tm-b permanent magnet |
US09/265,669 US6511552B1 (en) | 1998-03-23 | 1999-03-10 | Permanent magnets and R-TM-B based permanent magnets |
EP99105857A EP0945878A1 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and methods for their production |
EP06006902A EP1737001A3 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and methods for their production |
CNB991073118A CN1242426C (en) | 1998-03-23 | 1999-03-23 | Permanent magnet and R-TM-B series permanent magnet |
CNB031016642A CN1242424C (en) | 1998-03-23 | 1999-03-23 | Permanent magnet and R-TM-B series permanent magnet |
KR1019990009794A KR100606156B1 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and R-TM-B based permanent magnet |
US10/256,166 US7025837B2 (en) | 1998-03-23 | 2002-09-27 | Permanent magnets and R-TM-B based permanent magnets |
US10/256,193 US6821357B2 (en) | 1998-03-23 | 2002-09-27 | Permanent magnets and R-TM-B based permanent magnets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10226538A JP2000049005A (en) | 1998-07-27 | 1998-07-27 | R-tm-b permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000049005A true JP2000049005A (en) | 2000-02-18 |
Family
ID=16846725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10226538A Pending JP2000049005A (en) | 1998-03-23 | 1998-07-27 | R-tm-b permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000049005A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201102A (en) * | 2006-01-25 | 2007-08-09 | Neomax Co Ltd | Iron group rare-earth permanent magnet and manufacturing method therefor |
JP2019036707A (en) * | 2017-08-10 | 2019-03-07 | 煙台首鋼磁性材料株式有限公司 | R-t-b system permanent magnet |
-
1998
- 1998-07-27 JP JP10226538A patent/JP2000049005A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201102A (en) * | 2006-01-25 | 2007-08-09 | Neomax Co Ltd | Iron group rare-earth permanent magnet and manufacturing method therefor |
JP2019036707A (en) * | 2017-08-10 | 2019-03-07 | 煙台首鋼磁性材料株式有限公司 | R-t-b system permanent magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100606156B1 (en) | Permanent magnets and R-TM-B based permanent magnet | |
Cui et al. | Current progress and future challenges in rare-earth-free permanent magnets | |
EP1158545B1 (en) | Permanent magnet including multiple ferromagnetic phases and method for producing the magnet | |
CN104078176B (en) | Rare earth magnet | |
US7208097B2 (en) | Iron-based rare earth alloy nanocomposite magnet and method for producing the same | |
KR100320249B1 (en) | Hard magnetic alloy with supercooled liquid region, sintered body and casting article thereof, and stepping motor and speaker using the same | |
JP3267133B2 (en) | Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet | |
CN105957680A (en) | Rare earth-cobalt permanent magnet | |
US20020003006A1 (en) | Alloy for high-performance rare earth permanent magnet and manufacturing method thereof | |
JP7010884B2 (en) | Rare earth cobalt permanent magnets, their manufacturing methods, and devices | |
JP2008248369A (en) | Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME | |
JP3264664B1 (en) | Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof | |
Aich et al. | Rapidly Solidified Rare-Earth Permanent Magnets: Processing, Properties, and Applications | |
JPH11273920A (en) | R-tm-b permanent magnet | |
JP2000049005A (en) | R-tm-b permanent magnet | |
JP3695964B2 (en) | Rare earth magnetic powder for bonded magnet and method for producing the same | |
JPH11273919A (en) | R-tm-b permanent magnet | |
JP3773484B2 (en) | Nano composite magnet | |
JP3763774B2 (en) | Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet | |
JP6519300B2 (en) | Rare earth permanent magnet and method of manufacturing rare earth permanent magnet | |
JP2005272924A (en) | Material for anisotropic exchange spring magnet, and manufacturing method therefor | |
JPH0533076A (en) | Rare earth permanent magnet alloy and its production | |
JPH11273918A (en) | Permanent magnet | |
JP2001050935A (en) | Magnetic sensor | |
Wecker et al. | New permanent magnets and new processing techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020226 |