[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000046083A - Self-lubricating friction material and manufacture thereof - Google Patents

Self-lubricating friction material and manufacture thereof

Info

Publication number
JP2000046083A
JP2000046083A JP21280298A JP21280298A JP2000046083A JP 2000046083 A JP2000046083 A JP 2000046083A JP 21280298 A JP21280298 A JP 21280298A JP 21280298 A JP21280298 A JP 21280298A JP 2000046083 A JP2000046083 A JP 2000046083A
Authority
JP
Japan
Prior art keywords
self
lubricating
base metal
pores
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21280298A
Other languages
Japanese (ja)
Inventor
Yasuyuki Fujiwara
康之 藤原
Hiromichi Nakada
博道 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21280298A priority Critical patent/JP2000046083A/en
Publication of JP2000046083A publication Critical patent/JP2000046083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the abrasion resistant low-friction coefficient characteristic while holding the strength as a metal ingot material by fixing the self-lubricating material in narrow holes passing through a hard anodic oxide coating formed in a surface of a base metal and arriving at the base material. SOLUTION: This self-lubricating friction material is formed of the base material metal 3, a hard anodic oxide coating 2 and the self-lubricating material 1. As the base material metal 3, a metal material such as an ingot material capable of being formed with a hard anodic oxide coating 2 in a surface thereof is used. The self-lubricating friction material is formed of the hard anodic oxide coating 2 formed in a surface of the base metal and the self-lubricating material 1 fixed in narrow holes 3a passing through the hard anodic oxide coating 2 and arriving at the base material. Since the narrow holes 3a are formed so as to arrive at the inside of the base material, a large quantity of the self-lubricating material 1 can be held without easily falling out it, and the base metal 3 suitable for a sliding member holding an abrasion resistant low-friction coefficient for a long time can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自己潤滑性摩擦材料
とその製造方法に関する。
[0001] The present invention relates to a self-lubricating friction material and a method for producing the same.

【0002】[0002]

【従来の技術】従来、耐摩耗低摩擦を目的とした自己潤
滑性摩擦材料として、含油タイプ、固体潤滑剤を用いた
粉末焼結タイプなどの複合材が多く知られている(田中
章浩油真空技術96.10.21〜29)。一般に機械
的強度が必要な摩擦材料としては埋め込みタイプの摩擦
材料があるが、埋め込み材では潤滑剤を表面に微細に分
散させることは不可能である。したがって、材料に均一
で十分な耐摩耗及び低摩擦を付与することは困難であ
る。
2. Description of the Related Art Conventionally, as a self-lubricating friction material for the purpose of abrasion resistance and low friction, many composite materials such as an oil impregnated type and a powder sintered type using a solid lubricant have been known (Akihiro Tanaka Technology 96.10.21-29). Generally, there is an embedded friction material as a friction material requiring mechanical strength, but it is impossible to finely disperse a lubricant on a surface of the embedded material. Therefore, it is difficult to impart uniform and sufficient wear resistance and low friction to the material.

【0003】一方、粉末焼結タイプの自己潤滑性摩擦材
料で潤滑剤が多孔質の孔に充填されるタイプのもので
は、潤滑性は付与できるが摩擦材料の全体がポーラス状
のため材料の強度が不足するという不具合がある。した
がって、部材の強度向上と表面の優れた摩擦摩耗特性と
を両立させた部材を得ることは、現状では困難である。
On the other hand, a powder-sintering type self-lubricating friction material in which a lubricant is filled in porous pores can provide lubrication, but the strength of the material is high because the entire friction material is porous. Is insufficient. Therefore, it is difficult at present to obtain a member having both improved strength of the member and excellent friction and wear characteristics of the surface.

【0004】特開平5−25696号公報には、アルミ
ニウム合金素材の表面にアルマイト処理層を設け、該ア
ルマイト処理層の表面部に多数の孔を形成し、この孔に
固体潤滑剤を含浸させたアルミニウム合金の摺動部材の
開示がある。この摩擦材は孔が浅く、十分な量の固体潤
滑剤を含有させるのが困難である。
[0004] Japanese Patent Application Laid-Open No. 5-25669 discloses that an alumite-treated layer is provided on the surface of an aluminum alloy material, a large number of holes are formed on the surface of the alumite-treated layer, and the holes are impregnated with a solid lubricant. There is a disclosure of a sliding member made of an aluminum alloy. This friction material has shallow holes, and it is difficult to contain a sufficient amount of solid lubricant.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、金属溶製材としての強度を保持
しながら耐摩耗低摩擦係数特性を有する自己潤滑性摩擦
材料を提供するこを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a self-lubricating friction material having abrasion resistance and a low friction coefficient characteristic while maintaining strength as a metal ingot. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明の自己潤滑性摩擦
材料は、母材金属と該母材金属表面に形成された硬質皮
膜と、該硬質皮膜を貫通し該母材に達する細孔中に固定
された自己潤滑性材料とからなることを特徴とする。本
発明の自己潤滑性摩擦材料は、図1に示すように母材金
属3と該母材金属表面に形成された硬質皮膜2と該硬質
皮膜を貫通し該母材に達する細孔3a中に固定された自
己潤滑性材料1とからなる。この細孔3aが母材内部に
まで形成されいることにより自己潤滑性材料1を多量に
かつ容易に脱落することなく保持でき、長期間の耐摩耗
低摩擦係数を保持した摺動部材に適用できる母材金属を
得ることができる。
The self-lubricating friction material of the present invention comprises a base metal, a hard coating formed on the surface of the base metal, and pores penetrating through the hard coating and reaching the base metal. And a self-lubricating material fixed to the substrate. As shown in FIG. 1, the self-lubricating friction material of the present invention includes a base metal 3, a hard film 2 formed on the surface of the base metal, and pores 3 a penetrating the hard film and reaching the base material. It is composed of a fixed self-lubricating material 1. Since the pores 3a are formed inside the base material, the self-lubricating material 1 can be held in a large amount without easily falling off, and can be applied to a sliding member having a long-term wear resistance and a low friction coefficient. A base metal can be obtained.

【0007】[0007]

【発明の実施の形態】本発明の自己潤滑性摩擦材料は母
材金属と硬質皮膜と自己潤滑性材料とからなる。母材金
属は溶製材などの金属材料で、母材の表面に硬質皮膜の
形成が可能な金属材料が使用できる。例えばステンレス
スチールなどの鉄系金属、アルミニウム、チタン等の軽
金属等が利用できる。また、母材には浸炭焼入れ、高周
波焼入れ、窒化などの熱処理を加えたものも利用でき
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The self-lubricating friction material of the present invention comprises a base metal, a hard coating and a self-lubricating material. The base metal is a metal material such as an ingot material, and a metal material capable of forming a hard film on the surface of the base material can be used. For example, iron-based metals such as stainless steel, and light metals such as aluminum and titanium can be used. In addition, the base material which has been subjected to heat treatment such as carburizing and quenching, induction hardening, and nitriding can be used.

【0008】硬質皮膜は、前記金属母材の表面に形成さ
れるもので、例えば炭化チタン(TiC)、窒化クロム
(CrN)などのセラミックス皮膜、Ni−P(ニッケ
ル−リン)、Cr(クロム)などの硬質メッキ、母材金
属成分を基とした不動態膜の酸化物、炭化物、窒化物ま
たはその複合皮膜などが利用できる。前記硬質皮膜には
金属母材に貫通する細孔が形成され、自己潤滑性材料が
該細孔中に充填されて保持される。細孔の形成は、例え
ば、硬質皮膜の一部を表面から脱落させ、電解・化学研
磨などの化学的な方法による孔食穴の細穴を形成する
か、あるいはショットピーニングのような機械的な打痕
により母材金属面まで貫通している孔を形成する。
The hard coating is formed on the surface of the metal base material, for example, a ceramic coating such as titanium carbide (TiC) and chromium nitride (CrN), Ni-P (nickel-phosphorus), and Cr (chromium). Hard oxide such as, for example, oxide, carbide, nitride or a composite film of a passive film based on a base metal component can be used. The hard coating has pores penetrating through the metal base material, and the self-lubricating material is filled and held in the pores. The formation of the pores, for example, by dropping a part of the hard coating from the surface, forming fine holes of pits by chemical methods such as electrolytic and chemical polishing, or mechanical such as shot peening A hole penetrating to the base metal surface is formed by a dent.

【0009】細孔に充填される自己潤滑性材料は、フッ
素樹脂、MoS2、WS2、グラファイト、CF、BN、
AlN、ガラス繊維などの細孔に含浸充填可能な材料が
利用できる。自己潤滑性材料が充填される細孔は、硬質
皮膜を貫通して母材金属まで達しており、充填された自
己潤滑性材料が母材金属まで貫通した深い細孔内に多く
充填されており長期間保持されて摩擦係数を低くすると
共に摩耗を低下させることができる。
The self-lubricating material filled in the pores is made of fluororesin, MoS 2 , WS 2 , graphite, CF, BN,
Materials that can impregnate and fill pores, such as AlN and glass fiber, can be used. The pores filled with the self-lubricating material penetrate the hard coating and reach the base metal, and the filled self-lubricating material is filled in deep pores penetrating to the base metal. It can be held for a long time to lower the coefficient of friction and reduce wear.

【0010】本発明の自己潤滑性摩擦材料の製造方法
は、硬質皮膜形成工程と細孔形成工程と充填工程とから
なる。硬質皮膜形成工程では、母材金属の表面に硬質皮
膜を形成する。通常、予め硬質皮膜が形成し易いように
母材金属の表面を機械加工や超仕上げやラッピングなど
の表面仕上げ処理などを施し、硬質皮膜の密着をよくす
る処理を行っておくのが好ましい。
The method for producing a self-lubricating friction material according to the present invention comprises a hard film forming step, a pore forming step, and a filling step. In the hard film forming step, a hard film is formed on the surface of the base metal. Usually, it is preferable that the surface of the base metal is previously subjected to a surface finishing treatment such as machining, superfinishing, or lapping so that the hard coating is easily formed, and a treatment for improving the adhesion of the hard coating is performed in advance.

【0011】硬質皮膜としては、PVD、CVD、窒化
等の熱処理、水蒸気処理等によりセラミック皮膜、酸化
膜などの不動態膜などの硬質皮膜を公知の手段により母
材金属表面に形成する。例えば窒素雰囲気下でクロムを
鋼材表面に蒸着すると金属クロムのドロップレットを伴
なった硬質皮膜が形成できる。細孔形成工程では、形成
された該硬質皮膜に該母材金属に達する細孔を化学的手
段または物理的手段により形成する。この場合、予め硬
質皮膜の一部分を除去し細孔を形成し易くしておいても
よい。例えば、上記した硬質皮膜の窒化クロムをPVD
法で形成した場合には、母材金属表面に硬質皮膜と共に
形成されたドロップレットをラッピング手段を用いて母
材金属から脱落させて母材金属表面の一部を露出させる
ことで細孔を形成しても良い。
As the hard film, a hard film such as a ceramic film or a passivation film such as an oxide film is formed on the surface of the base metal by a known means by a heat treatment such as PVD, CVD, or nitriding, or a steam treatment. For example, when chromium is vapor-deposited on the surface of a steel material in a nitrogen atmosphere, a hard film with chromium metal droplets can be formed. In the pore forming step, pores reaching the base metal are formed in the formed hard coating by chemical means or physical means. In this case, a part of the hard coating may be removed in advance to facilitate formation of pores. For example, chromium nitride of the above hard coating is PVD
When formed by the method, the droplets formed together with the hard coating on the base metal surface are dropped from the base metal using wrapping means to expose a part of the base metal surface to form pores. You may.

【0012】また、母材金属表面を電解・化学研磨など
の方法により孔食を行い母材金属に貫通した細孔を所望
の深さにすることもできる。電解・化学研磨は、例え
ば、希釈した塩酸または硝酸で硬質皮膜に化学的侵食に
よる細孔を形成し、細孔内のpHの低下と塩素イオンま
たは硝酸イオンの上昇による孔食の持続で母材金属に貫
通するような所望の深さの細孔を形成する。また、他の
方法としてショットピーニングなどの機械的方法によっ
て生じる打痕を利用して硬質皮膜を貫通した細孔を形成
することもできる。
The surface of the base metal can be pitted by a method such as electrolytic polishing or chemical polishing so that the pores penetrating the base metal can have a desired depth. Electrolytic and chemical polishing involves, for example, forming fine pores in a hard coating with diluted hydrochloric acid or nitric acid due to chemical erosion, and lowering the pH in the fine pores and maintaining pitting corrosion due to an increase in chloride ions or nitrate ions. A pore having a desired depth is formed so as to penetrate the metal. Further, as another method, it is possible to form pores penetrating through the hard film by using a dent made by a mechanical method such as shot peening.

【0013】さらに、レーザー光を硬質皮膜に照射して
照射された部分の硬質皮膜を蒸散除去し、細孔を形成し
ても良い。この場合細孔の断面積は1mm2以下の開口
面積で、全仕上げ表面に対する全開口の面積が1%以上
50%以下の範囲であることが好ましい。充填工程で
は、形成された細孔中に自己潤滑性材料を含浸させて充
填する。自己潤滑性材料を含浸しやすい分散液などと混
合した処理液を母材金属の硬質皮膜表面に塗布し、加圧
あるいは減圧など公知の手段を用いて細孔内に自己潤滑
性材料を浸透充填させる。必要に応じて自己潤滑性材料
の浸透の充填工程をくり返して、細孔内を自己潤滑性材
料で充満させることが好ましい。充填の後、母材金属の
硬質皮膜表面を表面仕上げのバフ研磨や、ラッピング等
の後処理をおこなうのが好ましい。
Further, the hard film may be irradiated with a laser beam to evaporate and remove the irradiated portion of the hard film to form pores. In this case, it is preferable that the cross-sectional area of the pores is 1 mm 2 or less, and the area of all the openings with respect to all the finished surfaces is in the range of 1% to 50%. In the filling step, the formed pores are filled with a self-lubricating material impregnated. A treatment liquid mixed with a dispersion liquid that is easy to impregnate the self-lubricating material is applied to the surface of the hard coating of the base metal, and the self-lubricating material is permeated and filled into the pores using known means such as pressurization or decompression. Let it. It is preferable to repeat the filling step of infiltration of the self-lubricating material as needed to fill the pores with the self-lubricating material. After filling, it is preferable to perform a post-treatment such as buffing or lapping of the surface of the hard coating surface of the base metal.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
る。 (実施例1)使用した母材金属はSUS440C−調質
(焼入焼戻し)材、硬さ700HVで、機械加工と表面
仕上げにより表面粗さをRz0.5μm以下としたもの
を使用した。
The present invention will be described below in more detail with reference to examples. (Example 1) The base metal used was a SUS440C-tempered (quenched and tempered) material having a hardness of 700 HV and a surface roughness of Rz 0.5 µm or less by machining and surface finishing.

【0015】硬質皮膜の形成は、PVD(AIP方式)
法による窒化クロム(CrN)の蒸着を行った。蒸着条
件はCr電極を用い、処理圧力2Pa:N2、バイアス
電圧:200V、アーク電流:80〜100A、Crイ
オンボンバード:3分〜20分、成膜時間:60〜90
分である。得られた硬質皮膜の表面硬さは1400HV
で、ドロップレットを面積率で20〜40%生成させ
た。
The hard film is formed by PVD (AIP method)
Chromium nitride (CrN) was deposited by a vacuum method. The deposition conditions were as follows: using a Cr electrode, processing pressure: 2 Pa: N 2 , bias voltage: 200 V, arc current: 80 to 100 A, Cr ion bombard: 3 to 20 minutes, film formation time: 60 to 90
Minutes. The surface hardness of the obtained hard coating is 1400 HV
Thus, droplets were generated at an area ratio of 20 to 40%.

【0016】ドロップレットの脱落除去は、ダイヤモン
ドペースト使用してペーパーラップで行った。その後、
硬質皮膜の表面を電解研磨した。電解研磨の加工電圧は
DC24Vとし、硝酸ナトリウム溶液15〜25%(p
H7〜10)中で加工時間1〜30分行った。自己潤滑
性材料の含浸処理は、得られた電解研磨後の摩擦材料
を、フッ素樹脂(テフロン)粒子分散剤(0.3〜0.
5μm)の50〜70%溶液中に浸漬し、液温25℃、
圧力10〜100Torr下で20〜30分処理し、形成さ
れた細孔中にフッ素樹脂を充填した。
Droplets were removed by paper wrap using a diamond paste. afterwards,
The surface of the hard coating was electropolished. The processing voltage of the electropolishing is DC 24 V, and the sodium nitrate solution is 15 to 25% (p
H7 to 10) for a processing time of 1 to 30 minutes. In the impregnation treatment of the self-lubricating material, the obtained friction material after electropolishing is coated with a fluororesin (Teflon) particle dispersant (0.3 to 0.1).
5 μm) in a 50-70% solution, at a liquid temperature of 25 ° C.
The treatment was performed under a pressure of 10 to 100 Torr for 20 to 30 minutes, and the formed pores were filled with a fluororesin.

【0017】後処理として母材金属の硬質皮膜表面をバ
フ研磨仕上げを行った。このようにして実施例1の試料
を調製した。 (比較例1)実施例1と同じ母材金属を用い、同じ方法
で窒化クロムからなる硬質皮膜を形成した。
As a post-treatment, the hard coating surface of the base metal was buff-polished. Thus, the sample of Example 1 was prepared. Comparative Example 1 A hard coating made of chromium nitride was formed using the same base metal as in Example 1 and by the same method.

【0018】(比較例2)実施例1と同じ母材金属を採
用し、母材金属の表面をバフ研磨処理したものをこの比
較例2の試料とした。従って、比較例2の試料は実施例
1の試料の硬質皮膜の形成、自己潤滑性材料の含浸が行
われていない。 (実施例2)母材金属にSUS420J2−調質(焼き
入れ焼き戻し)材、硬さ600HVを用いた。この母材
金属を機械加工するとともに表面仕上げ処理を行い、表
面粗さをRz0.5μm以下とした。
Comparative Example 2 A sample of Comparative Example 2 was prepared by using the same base metal as in Example 1 and buffing the surface of the base metal. Therefore, the sample of Comparative Example 2 was not subjected to the formation of the hard coating and the impregnation of the self-lubricating material of the sample of Example 1. (Example 2) An SUS420J2-tempered (quenched and tempered) material and a hardness of 600 HV were used as a base metal. The base metal was machined and subjected to a surface finishing treatment to reduce the surface roughness to Rz 0.5 μm or less.

【0019】この表面処理を行った母材金属を、350
℃で90分間大気中で酸化処理を行い、続いて550℃
で60分間1〜5気圧の水蒸気で水蒸気処理を行ない、
表面硬さ700HVの酸化皮膜を形成した。細孔形成に
は、ショットピーニング(エアノズル型)で粒径φ0.
1〜0.5mm、粒の硬さ700〜800HVの粒子
を、エア圧2〜5kgf/cm2、ショット時間3〜15秒
行い、表面の約40%(カバレージ40%)にショット
ピーニングをかけた。この後、実施例1と同じ方法で電
解研磨すると共に得られた細孔中に実施例1と同じ方法
でフッ素樹脂を含浸させた。その後、実施例1と同様に
母材金属の硬質皮膜表面をバフ研磨仕上げを行った。こ
のようにして実施例2の試料を調製した。
The base metal having been subjected to the surface treatment is treated with 350
Oxidation treatment in the air at 90 ° C. for 90 minutes, followed by 550 ° C.
Perform steam treatment with 1-5 atm steam for 60 minutes.
An oxide film having a surface hardness of 700 HV was formed. The pores are formed by shot peening (air nozzle type) with a particle size of φ0.
Particles having a hardness of 1 to 0.5 mm and a hardness of 700 to 800 HV were subjected to an air pressure of 2 to 5 kgf / cm 2 and a shot time of 3 to 15 seconds, and shot peening was applied to about 40% (coverage 40%) of the surface. . Thereafter, electrolytic polishing was performed in the same manner as in Example 1, and the obtained pores were impregnated with a fluororesin in the same manner as in Example 1. Thereafter, the hard coating surface of the base metal was buffed and polished in the same manner as in Example 1. Thus, the sample of Example 2 was prepared.

【0020】(比較例3)実施例2と同じ母材金属を採
用し、母材金属の表面をバフ研磨処理したものをこの比
較例3の試料とした。従って、比較例3の試料は実施例
2の試料の硬質皮膜の形成、自己潤滑性材料の含浸が行
われていない。上記の各試料の母材金属の種類、硬質皮
膜処理、自己潤滑性材料の有無および硬質皮膜の硬度を
表1にまとめて示した。
Comparative Example 3 A sample of Comparative Example 3 was prepared by using the same base metal as in Example 2 and buffing the surface of the base metal. Therefore, the sample of Comparative Example 3 was not subjected to the formation of the hard coating and the impregnation of the self-lubricating material of the sample of Example 2. Table 1 summarizes the type of base metal, hard coating treatment, the presence or absence of a self-lubricating material, and the hardness of the hard coating for each of the above samples.

【0021】 上記した各試料を以下に示す条件で耐焼き付き性評価を
行った。この評価は図2に示すように、各試料を試験材
5として使用し、表面処理を施した面にリング状の相手
部材6を上方から潤滑油を注入しながら荷重圧下で押圧
しつつ摺動回転させ、摩擦面で焼付きが発生した時点で
の面圧を調べた。
[0021] Each of the above-mentioned samples was evaluated for seizure resistance under the following conditions. In this evaluation, as shown in FIG. 2, each sample was used as a test material 5, and a ring-shaped mating member 6 was slid while being pressed under a load pressure while lubricating oil was injected from above into a surface-treated surface. It was rotated and the surface pressure at the time when seizure occurred on the friction surface was examined.

【0022】試験方法 潤滑油:エンジンオイル(5W−30) 摺動速度:0.2m/Sec 相手材(リング)SUJ2調質材 硬さ780HV 試験材(平板):試験数各5 結果を図3に示す。実施例1の硬質皮膜に自己潤滑性材
料を含む試料は、比較例1の含まない試料よりも焼付き
面圧値が大きくなり、比較例2の硬質皮膜のない試料よ
り一段と焼付き面圧値が大きくなっている。
Test method Lubricating oil: Engine oil (5W-30) Sliding speed: 0.2 m / Sec Counterpart material (ring) SUJ2 tempered material Hardness 780 HV Test material (flat plate): Number of tests 5 Results are shown in FIG. Shown in The sample having the self-lubricating material in the hard coating of Example 1 had a higher seizure surface pressure value than the sample not containing Comparative Example 1, and the seizure surface pressure value was higher than the sample without the hard coating of Comparative Example 2. Is getting bigger.

【0023】また、実施例2の酸化皮膜の場合も比較例
3の硬質皮膜のない場合に比べて一段と焼付き面圧値が
向上していることが明らかである。
Further, it is apparent that the surface pressure value of seizure is further improved in the case of the oxide film of Example 2 as compared with the case where the hard film of Comparative Example 3 is not provided.

【0024】[0024]

【発明の効果】本発明の自己潤滑性摩擦材料は母材金属
と該母材金属表面に形成された硬質皮膜と該硬質皮膜を
貫通し該母材に達する細孔中に固定された自己潤滑性材
料とからなる。本発明の自己潤滑性材料は硬質皮膜を貫
通する深い細孔内に充填保持されているため自己潤滑性
材料の一体性が高い。また、母材金属は金属溶製材であ
りその表面に硬質皮膜が形成されている。このため高い
機械的強度とともに優れた耐摩耗低摩擦係数特性を有す
る。本発明の自己潤滑性摩擦材料は有用な摺動部材とし
て利用できる。
The self-lubricating friction material of the present invention has a base metal, a hard coating formed on the surface of the base metal, and a self-lubricating material fixed in pores penetrating the hard coating and reaching the base metal. It consists of a material. Since the self-lubricating material of the present invention is filled and held in deep pores penetrating the hard coating, the self-lubricating material has high integrity. Further, the base metal is a molten metal material, and a hard film is formed on the surface thereof. For this reason, it has excellent wear resistance and low friction coefficient characteristics together with high mechanical strength. The self-lubricating friction material of the present invention can be used as a useful sliding member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の自己潤滑性摩擦材料の断面模式図であ
る。
FIG. 1 is a schematic sectional view of a self-lubricating friction material of the present invention.

【図2】本実施例で用いた評価試験法の概略模式図であ
る。
FIG. 2 is a schematic diagram of an evaluation test method used in this example.

【図3】本実施例での評価試験結果を示す棒グラフであ
る。
FIG. 3 is a bar graph showing an evaluation test result in this example.

【符号の説明】[Explanation of symbols]

1:自己潤滑性材料、2:硬質皮膜、3:母材金属、3
a:細孔、5:試験材、6:相手材
1: self-lubricating material, 2: hard coating, 3: base metal, 3
a: pore, 5: test material, 6: partner material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 母材金属と該母材金属表面に形成された
硬質皮膜と該硬質皮膜を貫通し該母材に達する細孔中に
固定された自己潤滑性材料とからなることを特徴とする
自己潤滑性摩擦材料。
1. A method comprising: a base metal; a hard coating formed on a surface of the base metal; and a self-lubricating material fixed in pores penetrating through the hard coating and reaching the base material. Self-lubricating friction material.
【請求項2】 前記母材金属はステンレススチールであ
り、前記硬質皮膜は窒化クロムあるいは母材金属の酸化
物であり、前記自己潤滑性材料はフッ素樹脂である請求
項1に記載の自己潤滑性摩擦材料。
2. The self-lubricating material according to claim 1, wherein the base metal is stainless steel, the hard coating is chromium nitride or an oxide of the base metal, and the self-lubricating material is a fluororesin. Friction material.
【請求項3】 母材金属の表面に硬質皮膜を形成する硬
質皮膜形成工程と、得られた該硬質皮膜に該母材金属に
達する細孔を形成する細孔形成工程と、得られた該細孔
中に自己潤滑性材料を充填する充填工程と、からなるこ
とを特徴とする自己潤滑性摩擦材料の製造方法。
3. A hard film forming step of forming a hard film on the surface of the base metal, a pore forming step of forming pores reaching the base metal in the obtained hard film, A method for producing a self-lubricating friction material, comprising: a filling step of filling a self-lubricating material into pores.
【請求項4】 前記細孔形成工程はレーザービームの照
射で前記硬質皮膜を蒸散させて前記細孔を形成する工程
である請求項3に記載の自己潤滑性摩擦材料の製造方
法。
4. The method for producing a self-lubricating friction material according to claim 3, wherein said pore forming step is a step of evaporating said hard coating by laser beam irradiation to form said pores.
【請求項5】 前記細孔形成工程はショットピーニング
で前記硬質皮膜に亀裂形成して前記細孔を形成する工程
である請求項3に記載の自己潤滑性摩擦材料の製造方
法。
5. The method for producing a self-lubricating friction material according to claim 3, wherein the pore forming step is a step of forming cracks in the hard coating by shot peening to form the pores.
JP21280298A 1998-07-28 1998-07-28 Self-lubricating friction material and manufacture thereof Pending JP2000046083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21280298A JP2000046083A (en) 1998-07-28 1998-07-28 Self-lubricating friction material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21280298A JP2000046083A (en) 1998-07-28 1998-07-28 Self-lubricating friction material and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000046083A true JP2000046083A (en) 2000-02-15

Family

ID=16628627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21280298A Pending JP2000046083A (en) 1998-07-28 1998-07-28 Self-lubricating friction material and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000046083A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161981A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Seal ring and manufacturing method of seal ring and oil hydraulic seal device
JP2006002016A (en) * 2004-06-17 2006-01-05 Nachi Fujikoshi Corp Abrasion resistant sliding film and member with the same film formed
JP2010090345A (en) * 2008-10-10 2010-04-22 Toyota Motor Corp Friction pair
KR100989690B1 (en) 2008-09-03 2010-10-26 김정은 Metal forming dies and mold having deep nitriding hard layer and excellent lubricant, and a method of preparing the same
WO2013190184A1 (en) * 2012-06-21 2013-12-27 Coligro Oy Method of processing porous article
CN116174546A (en) * 2023-04-28 2023-05-30 佛山高谱机械科技有限公司 Pipe thermal bending method based on composite action of electric conduction and self lubrication
FR3136530A1 (en) * 2022-06-14 2023-12-15 Valeo Embrayages Torsion damping device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161981A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Seal ring and manufacturing method of seal ring and oil hydraulic seal device
JP2006002016A (en) * 2004-06-17 2006-01-05 Nachi Fujikoshi Corp Abrasion resistant sliding film and member with the same film formed
JP4697925B2 (en) * 2004-06-17 2011-06-08 株式会社不二越 Method for forming abrasion-resistant sliding coating
KR100989690B1 (en) 2008-09-03 2010-10-26 김정은 Metal forming dies and mold having deep nitriding hard layer and excellent lubricant, and a method of preparing the same
JP2010090345A (en) * 2008-10-10 2010-04-22 Toyota Motor Corp Friction pair
WO2013190184A1 (en) * 2012-06-21 2013-12-27 Coligro Oy Method of processing porous article
FR3136530A1 (en) * 2022-06-14 2023-12-15 Valeo Embrayages Torsion damping device
WO2023242224A1 (en) * 2022-06-14 2023-12-21 Valeo Embrayages Torsion damping device
CN116174546A (en) * 2023-04-28 2023-05-30 佛山高谱机械科技有限公司 Pipe thermal bending method based on composite action of electric conduction and self lubrication

Similar Documents

Publication Publication Date Title
Hirvonen et al. Present progress in the development of low friction coatings
EP2316983A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
Dong et al. Enhanced corrosion resistance of duplex coatings
EP1231299B1 (en) Light alloy-based composite protective multifunction coating
JP2620976B2 (en) Sliding member
US6410125B1 (en) Wear-resistant, mechanically highly stressed and low-friction boundary coating construction for titanium or the alloys thereof and a method for producing the same
US6231956B1 (en) Wear-resistance edge layer structure for titanium or its alloys which can be subjected to a high mechanical load and has a low coefficient of friction, and method of producing the same
EP0878558B1 (en) Coated material and method of manufacturing the same
EP2098610B1 (en) Hard coating film excellent in lubrication characteristics, process for formation thereof, and tool for the plastic working of metal
JP2000046083A (en) Self-lubricating friction material and manufacture thereof
Arun et al. Synthesis of electrical discharge metal matrix composite coating through compacted semi-sintered electrode and its tribological studies
WO2005100810A1 (en) Process for finishing critical surfaces of a bearing
JP2008144281A (en) Multifunctional composite coating for protection based on lightweight alloy
JPS6113064A (en) Piston ring for internal-combustion engine
US5653822A (en) Coating method of gas carburizing highly alloyed steels
US6602829B1 (en) Method for applying a lubricating layer on an object and object with an adhesive lubricating layer
Bhushan Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications—Part 1: Coating Materials and Surface Treatments
JP7570420B2 (en) Method for treating ferrous metal parts and ferrous metal parts
EP1052306A1 (en) s METAL-BASED GRADIENT COMPOSITE MATERIAL HAVING GOOD LUBRICATION AND WEAR RESISTANCE PROPERTY, THE PRODUCTION AND THE USE OF THE SAME
JP3719847B2 (en) Sliding material and manufacturing method thereof
JPH046265A (en) Formation of solid lubricating film to ferrous alloy base body and sliding member having solid lubricating film
US6087009A (en) Surface treating methods
Bair et al. Tribological experience with hard coats on soft metallic substrates
JPH0118990B2 (en)
JPH11124604A (en) Production of wear resistant ferrous sintered alloy