ITMI20090243A1 - POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT - Google Patents
POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORTInfo
- Publication number
- ITMI20090243A1 ITMI20090243A1 IT000243A ITMI20090243A ITMI20090243A1 IT MI20090243 A1 ITMI20090243 A1 IT MI20090243A1 IT 000243 A IT000243 A IT 000243A IT MI20090243 A ITMI20090243 A IT MI20090243A IT MI20090243 A1 ITMI20090243 A1 IT MI20090243A1
- Authority
- IT
- Italy
- Prior art keywords
- gas
- electrolyte
- catalytic
- per
- porous electrode
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000008187 granular material Substances 0.000 claims description 7
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 5
- 230000010349 pulsation Effects 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000010348 incorporation Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/861—Porous electrodes with a gradient in the porosity
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/05—Pressure cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
- H01M8/083—Alkaline fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
Description
Domanda di brevetto per invenzione industriale dal titolo: Patent application for industrial invention entitled:
ELETTRODO POROSO CON TRASPORTO DI GAS E DI ELETTROLITA POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT
L'elettrochimica elettrodica considera la zona interfase in cui si ha il contatto tra il conduttore di Ima specie (elettrodo) ed il conduttore di 2da specie (conduttore ionico) dal punto di vista delle condizioni di equilibrio (termodinamica elettrochimica), della struttura del doppio strato ionico, del meccanismo delle reazioni elettrochimiche e delle dissipazioni che accompagnano il decorrere delle reazioni stesse e loro intensità (cinetica elettrochimica). Electrode electrochemistry considers the interphase zone in which there is contact between the conductor of Ima species (electrode) and the conductor of 2da species (ionic conductor) from the point of view of the equilibrium conditions (electrochemical thermodynamics), of the structure of the double ion layer, of the mechanism of electrochemical reactions and of the dissipations that accompany the course of the reactions themselves and their intensity (electrochemical kinetics).
La classificazione degli scambi energetici nei processi elettrochimici si riferisce alle pile o generatori dove la produzione di energia elettrica è a spese dell'energia chimica del processo ed agli elettrolizzatori che aumentano l'energia chimica del processo a spese dell'energia elettrica fornita dall'esterno. The classification of energy exchanges in electrochemical processes refers to batteries or generators where the production of electricity is at the expense of the chemical energy of the process and to electrolysers that increase the chemical energy of the process at the expense of electricity supplied from the outside. .
Le tecnologie elettrochimiche sono intrinsicamente pulite e come tali possibili di sviluppo per risolvere i gravi problemi dell'inquinamento ambientale, in particolare l'elettrolisi dell'acqua come punto di partenza di una tecnologia dell'idrogeno. Electrochemical technologies are intrinsically clean and as such possible for development to solve the serious problems of environmental pollution, in particular water electrolysis as the starting point of a hydrogen technology.
Gli elettrodi sono porosi in modo da rendere disponibile una vasta superficie catalitica di reazione nelle loro strutture dei materiali compositi costituiti da grani catalitici idrofilici in contatto con particelle di grafite quale materiale carbonioso di supporto e di conduzione elettronica, il tutto legato ad es.dal granulare PTFE (politetrafluoroetilene), polimero che dà flessibilità e resistenza meccanica all'elettrodo e spazi idrofobici tra i granuli. The electrodes are porous so as to make available a large catalytic reaction surface in their structures of composite materials consisting of hydrophilic catalytic grains in contact with graphite particles as a carbonaceous support and electron conduction material, all bound for example by the granular PTFE (polytetrafluoroethylene), polymer that gives flexibility and mechanical resistance to the electrode and hydrophobic spaces between the granules.
La idrofobicità genera la sicurezza intrinseca degli impianti in quanto la pressione dell'elettrolita interposto tra gli elettrodi anodo e catodo è sempre superiore alle pressioni dei due gas, ad es. idrogeno ed ossigeno, agenti sulle superfici esterne degli elettrodi, impedendo il loro incontro. The hydrophobicity generates the intrinsic safety of the systems as the pressure of the electrolyte interposed between the anode and cathode electrodes is always higher than the pressures of the two gases, eg. hydrogen and oxygen, acting on the external surfaces of the electrodes, preventing them from meeting.
La reattività dell' elettrodo poroso dipende dalla attività catalitica del metallo o composto chimico che promuove la reazione elettrochimica e dallo stabilirsi delle superfici di interfaccia delle tre fasi, gas ed elettrolita e centri attivi catalitici, superfici dislocate nei pori dei due elettrodi anodo e catodo. The reactivity of the porous electrode depends on the catalytic activity of the metal or chemical compound that promotes the electrochemical reaction and on the establishment of the interface surfaces of the three phases, gas and electrolyte and catalytic active centers, surfaces located in the pores of the two electrodes, anode and cathode.
Lo stato dell'arte riguarda Elettrodi porosi di Diffusione del Gas (GDE) mentre l'innovazione divulga gli Elettrodi porosi con Trasporto di Gas e di Liquido elettrolitico (qui nominati GLTE). The state of the art concerns porous Gas Diffusion Electrodes (GDE) while the innovation discloses porous electrodes with gas and electrolytic liquid transport (here named GLTE).
Il processo tecnologico è la "Termodinamo Elettrochimica" , PCT W02004/113590 A2, con i parametri di esercizio che sono le pulsazioni positive della pressione dell'elettrolita circolante nella cella e loro frequenza periodica. The technological process is the "Electrochemical Thermodynamo", PCT W02004 / 113590 A2, with the operating parameters which are the positive pulsations of the pressure of the electrolyte circulating in the cell and their periodic frequency.
Le pulsazioni generano le fluttuazioni del gas e dell'elettrolita nei pori degli elettrodi cioè determinano i volumi di catalisi eterogenea che incrementano le capacità operative dell'elettrodo poroso. The pulsations generate the gas and electrolyte fluctuations in the pores of the electrodes, that is, they determine the volumes of heterogeneous catalysis that increase the operating capacities of the porous electrode.
I volumi moltiplicano le superfici di incontro delle tre fasi ed il numero dei centri attivi interessati, così aumentano la potenza / modulo ed elevano l'exergia cioè la quota di energia che va a lavoro utile, con alti valori delle efficienze di conversione dell'energia elettrica a chimica (elettrolisi dell'acqua in idrogeno ed ossigeno) e viceversa da energia chimica ad elettrica (sintesi dell'acqua). The volumes multiply the meeting surfaces of the three phases and the number of active centers involved, thus increasing the power / module and elevating the exergy, i.e. the share of energy that goes to useful work, with high values of energy conversion efficiencies. electrical to chemical (electrolysis of water into hydrogen and oxygen) and vice versa from chemical to electrical energy (water synthesis).
L'innovazione consegue l'impiego di metalli catalitici non nobili, di minore costo e maggiore reperibilità, ad es. argento, nichel, cobalto etc. The innovation follows the use of non-noble catalytic metals, of lower cost and greater availability, eg. silver, nickel, cobalt etc.
Gli elettrodi porosi GLTE hanno tre differenti sistemi di pori, uno idrofilo e due idrofobi. GLTE porous electrodes have three different pore systems, one hydrophilic and two hydrophobic.
*-ll sistema idrofobico del componente a sostegno e conduzione dell'elettrodo è costituito dalla rete conduttrice-1 (grafite PTFE)-2, elementi sinterizzati e disposti lato gas - Fig.A, strato di sbarramento con la distribuzione dei mìcropori inferiori ai valore massimo attorno 1 micron - rifer. 4 - Fig.B : curva tratteggiata. * -The hydrophobic system of the component supporting and conducting the electrode is made up of the conductive network-1 (graphite PTFE) -2, sintered elements arranged on the gas side - Fig. A, barrier layer with the distribution of micropores below the value maximum around 1 micron - ref. 4 - Fig.B: dashed curve.
Viene effettuata la setacciatura ad es.della grafite tipo TIMREX KS75 e/o KS150 -www.timcal.com (in modo analogo le granulometrie del PTFE presente al 20-50% nello strato di sbarramento) ottenendo due tagli granulometrici, cioè separando i granuli aventi dimensioni maggiori di 30 micron da quelli a dimensioni minori. For example, the sieving of graphite such as TIMREX KS75 and / or KS150 -www.timcal.com is carried out (similarly the granulometries of PTFE present at 20-50% in the barrier layer) obtaining two granulometric cuts, i.e. separating the granules having dimensions greater than 30 microns from those to smaller dimensions.
Per avere la massima microporosità attorno ad 1 micron si impiega il taglio granuli a dimensioni minori per la fabbricazione dello strato di sbarramento negli elettrodi con la miscelazione dei due componenti e la incorporazione della rete conduttrice, evaporazione dell'acqua, rullatura ed essiccamento e sinterizzazione. To have the maximum microporosity around 1 micron, smaller size granule cutting is used for the manufacture of the barrier layer in the electrodes with the mixing of the two components and the incorporation of the conductive mesh, evaporation of water, rolling and drying and sintering.
La microporosità attorno ad 2 micron corrisponde alla sovrapressione dell'elettrolita di ca. 1000 mbar, valori che possono essere un po' variati nell'esercizio pratico. The microporosity around 2 microns corresponds to the electrolyte overpressure of approx. 1000 mbar, values that can be slightly varied in practical exercise.
*-ll sistema idrofilico è sparso e diffuso. Sono granuli catalitici aventi dimensioni attorno e nel campo 1 - 100 micron e pori attorno a 50-100 Anstromg, ad alta area superficiale dovuta al loro elevato ammontare di area esposta e struttura con molti micropori. I granuli sono uniti a particelle di grafite, PTFE e materiali inerti, a varie percentuali nel sistema idrofobico sottodescritto : spessore strato catalitico da 0,5 a ca.2 mm - 3 in Fig.A. * - the hydrophilic system is scattered and diffused. They are catalytic granules having dimensions around and in the range 1 - 100 microns and pores around 50-100 Anstromg, with a high surface area due to their high amount of exposed area and structure with many micropores. The granules are joined to particles of graphite, PTFE and inert materials, at various percentages in the hydrophobic system described below: catalytic layer thickness from 0.5 to approx. 2 mm - 3 in Fig.A.
*-ll sistema idrofobico di permeazione dello strato catalitico risulta dalla miscelazione progressiva dei grani catalitici con tagli granulometrici di particelle di grafite prima e poi di legante PTFE ed infine di cariche inerti di materiali, decomponibili ed allontanabili, con la distribuzione dei mesopori non inferiori ma superiori al valore di 10 micron, formati a seguito della evaporazione dell'acqua, la rullatura e/o pressatura, l'essiccamento e sinterizzazione : congiuntamente si hanno macropori addizionali superiori a 100 micron. * -The hydrophobic system of permeation of the catalytic layer results from the progressive mixing of the catalytic grains with granulometric cuts of graphite particles first and then of PTFE binder and finally of inert charges of materials, decomposable and removable, with the distribution of mesopores not lower but higher than the value of 10 microns, formed following the evaporation of water, rolling and / or pressing, drying and sintering: together there are additional macropores greater than 100 microns.
Lo strato catalitico è caratterizzato dall'impiego del taglio granulometrico della grafite e del PTFE aventi particelle superiori a 30 micron , PTFE 15-20% e 5-10% di materiali volatili da 100-200 micron ( bicarbonato di ammonio o composto organico). La Fig.B mostra un esempio di distribuzione pori nell'elettrodo sotto forma di diagramma dell'aumento di volume del poro per aumento della dimensione del poro in funzione del diametro del poro in ascissa : l'ordinata non è quotata numericamente, senza le scale proprie e singole delle porosità indicate come andamento 5-porosità intrinseca dei granuli catalitici, 6-porosità di formazione e 7-porosità addizionale: linee a tratti continui. The catalytic layer is characterized by the use of the granulometric cut of graphite and PTFE having particles greater than 30 microns, PTFE 15-20% and 5-10% of volatile materials of 100-200 microns (ammonium bicarbonate or organic compound). Fig.B shows an example of the pore distribution in the electrode in the form of a diagram of the pore volume increase due to the pore size increase as a function of the pore diameter on the abscissa: the ordinate is not quoted numerically, without the scales characteristics of the porosities indicated as intrinsic 5-porosity of the catalytic granules, 6-formation porosity and 7-additional porosity: lines with continuous lines.
Gli GLTE sono caratterizzati da uno strato di sbarramento ed uno strato catalitico, ciascuno strato con caratteristiche e funzioni peculiari : per le reazioni di elettrolisi dell'acqua si sovrappone, lato elettrolita, uno strato millimetrico di materiale poroso non conduttivo, preferenzialmente idrofilico. GLTEs are characterized by a barrier layer and a catalytic layer, each layer with peculiar characteristics and functions: for the electrolysis reactions of the water, a millimeter layer of non-conductive porous material, preferentially hydrophilic, is superimposed on the electrolyte side.
Lo GLTE non ha lo strato di diffusione come lo GDE ma le sequenze di fabbricazione sono le stesse ad eccezione delle diverse granulometrie dei materiali impiegati, tagli di granulometrie con una loro specifica funzionalità allo scopo di ottenere i valori suddetti per la porosità di sbarramento che sia inferiore ed attorno ad 1 micron e per le porosità di formazione ed addizionali superiori rispettivamente a 10 e 100 micron. La porosità di sbarramento determina il grado di pianto degli elettrodi Iato gas correlato con la sovrapressione della pulsazione dell'elettrolita, pianto che con le gocce allontana l'acqua e gli ossidrili di reazione o di accumulo nell'elettrolita diluito o arricchito alle superfici di incontro delle tre fasi. GLTE does not have a diffusion layer like GDE but the manufacturing sequences are the same with the exception of the different grain sizes of the materials used, grain size cuts with their own specific functionality in order to obtain the aforementioned values for the barrier porosity that is lower and around 1 micron and for the formation and additional porosities above 10 and 100 micron respectively. The barrier porosity determines the degree of weeping of the electrodes The gas correlated with the overpressure of the electrolyte pulsation, weeping that with the drops removes the water and the hydroxyls of reaction or accumulation in the diluted or enriched electrolyte at the meeting surfaces of the three phases.
Negli elettrodi le porosità di formazione ed addizionale sono attinenti e conformi alle necessità dei veloci ed ampi flussi dell'elettrolita e dei gas. In the electrodes the formation and additional porosities are relevant and conform to the needs of the fast and wide flows of the electrolyte and gases.
Le fluttuazioni dell'elettrolita effettuano lo scambio termico tra gli elettrodi porosi del modulo ed una sorgente esterna calda o fredda tramite l'elettrolita circolante nelle celle elettrochimiche e fluttuante nei pori degli elettrodi. The fluctuations of the electrolyte effect the heat exchange between the porous electrodes of the module and an external hot or cold source through the electrolyte circulating in the electrochemical cells and floating in the pores of the electrodes.
Lo scambio di calore effettua l'attivazione anodica della elettrolisi e l'attivazione catodica della sintesi, mitiga i punti freddi e caldi dei grappoli catalitici e le sovratensioni agli elettrodi, migliora le cinetiche delle reazioni elettrochimiche. The heat exchange carries out the anodic activation of the electrolysis and the cathodic activation of the synthesis, mitigates the cold and hot points of the catalytic clusters and the overvoltages at the electrodes, improves the kinetics of the electrochemical reactions.
L'ottimizzazione degli elettrodi porosi, al fine di conseguire le maggiori rese energetiche e la maggiore potenza/modulo, avviene tramite simulazioni matematiche che correlano le strutture dei materiali con i risultati in esercizio. The optimization of the porous electrodes, in order to achieve the highest energy yields and the highest power / module, takes place through mathematical simulations that correlate the structures of the materials with the results in operation.
Gli elettrodi GLTE per la "Termodinamo Elettrochimica" realizzano la Nuova Scienza della Elettrochimica Dinamica. GLTE electrodes for "Electrochemical Thermodynamics" realize the New Science of Dynamic Electrochemistry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000243A ITMI20090243A1 (en) | 2009-02-20 | 2009-02-20 | POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000243A ITMI20090243A1 (en) | 2009-02-20 | 2009-02-20 | POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT |
Publications (1)
Publication Number | Publication Date |
---|---|
ITMI20090243A1 true ITMI20090243A1 (en) | 2010-08-21 |
Family
ID=41258396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IT000243A ITMI20090243A1 (en) | 2009-02-20 | 2009-02-20 | POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT |
Country Status (1)
Country | Link |
---|---|
IT (1) | ITMI20090243A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3338747A (en) * | 1962-08-27 | 1967-08-29 | Bbc Brown Boveri & Cie | Fuel cell system with pressure pulse generator |
WO2004113590A2 (en) * | 2003-06-24 | 2004-12-29 | Mario Melosi | Electrochemical thermodynamo |
-
2009
- 2009-02-20 IT IT000243A patent/ITMI20090243A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3338747A (en) * | 1962-08-27 | 1967-08-29 | Bbc Brown Boveri & Cie | Fuel cell system with pressure pulse generator |
WO2004113590A2 (en) * | 2003-06-24 | 2004-12-29 | Mario Melosi | Electrochemical thermodynamo |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sha et al. | In situ grown 3D hierarchical MnCo2O4. 5@ Ni (OH) 2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation | |
Arenas et al. | Three-dimensional porous metal electrodes: Fabrication, characterisation and use | |
Wei et al. | A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water | |
JP6049986B2 (en) | Oxygen consuming electrode and method for producing the same | |
CN1303255C (en) | Electrolysis cell with gas diffusion electrode | |
US6666961B1 (en) | High differential pressure electrochemical cell | |
CN103891023B (en) | Porous current collector, method for manufacturing same, and fuel cell that uses porous current collector | |
ES2792910T3 (en) | Oxygen Generating Anode | |
US9175410B2 (en) | Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide | |
KR102380034B1 (en) | Porous metal body, fuel battery, and method for producing porous metal body | |
NO802634L (en) | IMPROVED CARBON TISSUE-BASED ELECTROCATALYTIC GAS DIFFUSION ELECTRODE, AGGREGATE AND ELECTROCHEMICAL CELLS CONTAINING THESE | |
CN104797742A (en) | Electrolysis electrocatalyst | |
CN106133199A (en) | Organic hydride material producing device | |
Park et al. | Pore-controlled carbon nanotube sheet anodes for proton/anion-exchange membrane water electrolyzers | |
ITMI20090243A1 (en) | POROUS ELECTRODE WITH GAS AND ELECTROLYTE TRANSPORT | |
JP5457951B2 (en) | Electrolytic cell | |
CN114717587B (en) | Proton exchange membrane electrolytic cell | |
JP4115686B2 (en) | Electrode structure and electrolysis method using the structure | |
JP7053128B1 (en) | Gas diffusion layer for water electrolysis cell, water electrolysis cell and water electrolysis device | |
JP3625520B2 (en) | Gas diffusion electrode | |
RU2054050C1 (en) | Electrolyzer for electrolysis of aqueous solution of sodium chloride | |
RU2006101869A (en) | Expanding Anode for Diaphragm Electrolyzers | |
RU136926U1 (en) | OXYGEN ALKALINE FUEL CELL | |
EP3579314B1 (en) | Carbon based electrode with large geometric dimensions | |
WO2023023093A1 (en) | Novel-architecture electrodes with enhanced mass transport for high-efficiency and low-cost hydrogen energy |