[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

HRP930460A2 - A process for purifying aqueous solutions of n-methyl-morpholine n-oxide - Google Patents

A process for purifying aqueous solutions of n-methyl-morpholine n-oxide Download PDF

Info

Publication number
HRP930460A2
HRP930460A2 HR930460A HRP930460A HRP930460A2 HR P930460 A2 HRP930460 A2 HR P930460A2 HR 930460 A HR930460 A HR 930460A HR P930460 A HRP930460 A HR P930460A HR P930460 A2 HRP930460 A2 HR P930460A2
Authority
HR
Croatia
Prior art keywords
coal
nmmo
filtration
spinning bath
filter
Prior art date
Application number
HR930460A
Other languages
Croatian (hr)
Inventor
Stefan Astegger
Heinrich Firgo
Bernd Wolschner
Johann Manner
Karin Weinzierl
Stefan Zikeli
Dieter Eichniger
Original Assignee
Chemiefaser Lenzing Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemiefaser Lenzing Ag filed Critical Chemiefaser Lenzing Ag
Priority to HR930460A priority Critical patent/HRP930460A2/en
Publication of HRP930460A2 publication Critical patent/HRP930460A2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

Izum se odnosi na postupak za čišćenje vodene N-metilmorfolin-N-oksidne (NMMO)-otopine, osobito otopine kupelji za predenje kod priprave celuloznih proizvoda. The invention relates to a process for cleaning the aqueous N-methylmorpholine-N-oxide (NMMO) solution, especially the solution of the spinning bath in the preparation of cellulose products.

Poznato je, da se celuloza unosi u vodene NMMO-otopine i priprema se homogena celulozna otopina za predenje. Taloženjem tih otopina u vodi dobivaju se folije, vlakna ili oblikovani proizvodi na osnovi celuloze, tj. predmeti, koji se danas u velikom opsegu proizvode postupkom viskoznih vlakana. Otopine celuloze za predenje u vodenom NMMO s obzirom na prenosivost na okolinu imaju odličnu prednost prema viskozi, jer se NMMO iz kupelji za predenje može ponovno dobiti i osim toga ne dolazi do emisija koje sadrže sumpor. It is known that cellulose is introduced into aqueous NMMO solutions and a homogeneous cellulose solution is prepared for spinning. By settling these solutions in water, foils, fibers or shaped products based on cellulose are obtained, i.e. objects, which today are produced on a large scale using the viscose fiber process. Spinning pulp solutions in aqueous NMMO have an excellent advantage over viscose in terms of environmental portability, as the NMMO from the spinning bath can be recovered and, in addition, no sulfur-containing emissions occur.

Budući da se NMMO iz upotrijebljene kupelji može upotrijebiti za ponovnu pripravu celuloznih otopina za predenje, otopinu kupelji za predenje treba očistiti i koncentrirati. Since the NMMO from the spent bath can be used to re-prepare cellulose spinning solutions, the spinning bath solution needs to be cleaned and concentrated.

Potpuno čišćenje mora obuhvatiti slijedeće stupnjeve: Complete cleaning must include the following stages:

A) Uklanjanje boje: A) Color removal:

Isparavanjem vode zbog koncentriranja NMMO iz razrijeđenih vodenih NMMO-otopina, zbog reakcije NMMO s proizvodima razgradnje celuloze dolazi do jakog crvenog do smeđeg obojenja. Evaporation of water due to the concentration of NMMO from diluted aqueous NMMO solutions results in a strong red to brown coloration due to the reaction of NMMO with cellulose degradation products.

Stvaraju se, prije svega, pigmentni spojevi iz polihidroksifenola, iz proizvoda razgradnje same celuloze i iz NMMO-stabilizatora, koji se obično moraju dodati otopini. Pigment compounds are created, first of all, from polyhydroxyphenol, from the decomposition products of cellulose itself and from NMMO-stabilizers, which usually have to be added to the solution.

Zbog rastućeg obojenja NMMO celulozni poluproizvodi više se ne mogu izbijeliti do željenog stupnja bjeline. Due to the growing coloration, NMMO cellulose semi-products can no longer be bleached to the desired degree of whiteness.

B) Uklanjanje prelaznih metala: B) Removal of transition metals:

Prelazni metali, osobito željezo, unose se u ciklus postupka, s jedne strane, s upotrijebljenom staničevinom, i, s druge strane, s korozijom. Međutim, sadržaj prelaznih metalnih iona kritičan je u toliko, što se time snizuje početna temperatura za deflagraciju mase za predenje. Ako se kao stabilizator upotrebljava propilester galne kiseline, nastaju anionski metalni kompleksi, koji se mogu ukloniti s anionskim izmjenjivačima. Ako se međutim kao stabilizator upotrebljava npr. rutin, nastaju kompleksi željeza koji se više ne mogu ukloniti s ionskim izmjenjivačima. Dakle bez čišćenja NMMO u ciklusu vođenja došlo bi do neizbježnog nagomilavanja željeza u postupku i time do povećanja rizika sigurnosti. Zbog toga je uklanjanje željeza i drugih iona prelaznih metala iz postupka bezuvjetno potrebno. Transitional metals, especially iron, are introduced into the process cycle, on the one hand, with the used tissue, and, on the other hand, with corrosion. However, the content of transition metal ions is critical in that it lowers the initial temperature for deflagration of the spinning mass. If gallic acid propyl ester is used as a stabilizer, anionic metal complexes are formed, which can be removed with anion exchangers. However, if, for example, rutin is used as a stabilizer, iron complexes are formed that can no longer be removed with ion exchangers. Therefore, without cleaning the NMMO in the lead cycle, there would be an inevitable accumulation of iron in the process and thus an increase in the safety risk. Therefore, the removal of iron and other transition metal ions from the process is absolutely necessary.

C) Uklanjanje nitrozamina: C) Removal of nitrosamines:

U svježem NMMO mogu biti prisutni - ovisno o njegovoj pripravi - još i nitrozamini; oni mogu izazvati niz različitih toksičnih učinaka, kao npr. akutna oštećenja jetre, gensku toksičnost i to kako in vitro, tako također i u kličnim stanicama, kancerogena oboljenja u somatskim stanicama itd. Na osnovi općeg učinka nitrozamina, da potiču tumor, zbog sigurnosti rada treba ustrajati na njihovom potpunom uklanjanju. Nitrosamines may also be present in fresh NMMO - depending on its preparation; they can cause a number of different toxic effects, such as, for example, acute liver damage, gene toxicity both in vitro and in germ cells, cancerous diseases in somatic cells, etc. Based on the general effect of nitrosamines, that they promote tumors, due to work safety, insist on their complete removal.

D) Uklanjanje tvari koje uzrokuje mutnost: D) Removal of substances that cause turbidity:

Dodatno uz obojenje kupelji za predenje može nastati i talog, koji se uglavnom sastoji od najfinije celulozne tvari. Pored toga tu su još alkalne i zemno alkalne soli. Te tvari, koje uzrokuju mutnost, i koje se kod višestruke upotrebe otapala nagomilavaju, ne mogu se filtrirati bez pomoćnog sredstva; one djeluju na kakvoću proizvoda, dovode do smetnji npr. kod kontinuiranog mjerenja boje i stoga se moraju ukloniti. In addition to the coloring of the spinning bath, a precipitate may also form, which mainly consists of the finest cellulose substance. In addition, there are also alkaline and alkaline earth salts. These substances, which cause turbidity, and which accumulate during repeated use of solvents, cannot be filtered without an auxiliary means; they affect the quality of the product, lead to disturbances, for example, in continuous color measurement and must therefore be removed.

Kod spomenutih stupnjeva čišćenja dodatno treba upozoriti da pri tome treba maksimalno izbjegavati gubitak NMMO - a . With the mentioned stages of cleaning, it should be additionally warned that the loss of NMMO should be avoided as much as possible.

Do sada poznati postupci čišćenja koriste obje od slijedećih metoda s temeljnim nedostacima: The cleaning procedures known so far use both of the following methods with fundamental disadvantages:

a) Čišćenje s anionskim izmjenjivačem: a) Cleaning with anion exchanger:

Po toj metodi uklanjanje boje ograničeno je na ionske obojene komplekse: željezo ili prelazni metali mogu se ukloniti samo ako su u ionskom obliku, što je, između ostalog, ovisno o sistemu stabilizatora; nitrozamini se ne mogu ukloniti; također nije moguće spomena vrijedno uklanjanje finog celuloznog taloga; za regeneraciju su potrebne relativno velike količine kemikalija. According to this method, color removal is limited to ionic colored complexes: iron or transition metals can only be removed if they are in ionic form, which, among other things, depends on the stabilizer system; nitrosamines cannot be removed; it is also not possible to remove the fine cellulose sediment worth mentioning; relatively large amounts of chemicals are required for regeneration.

b) Prekristalizacija iz acetona: b) Recrystallization from acetone:

Ta metoda zahtjeva vrlo mnogo vremena i energije; osim toga ponovni dobitak NMMO-a iznosi samo najviše 85%. This method requires a lot of time and energy; in addition the NMMO recovery is only at most 85%.

U smislu izuma mogu se izbjeći ti nedostaci tako da otopinu dovedemo u dodir s apsorpcijskim sredstvima i zatim ju podvrgnemo filtraciji. Pri tome, od posebne prednosti može biti ako se kao apsorpcijsko sredstvo upotrijebi aluminijev oksid, silicijev dioksid i/ili ugljen. In terms of the invention, these defects can be avoided by bringing the solution into contact with absorbents and then subjecting it to filtration. In this case, it can be of particular advantage if aluminum oxide, silicon dioxide and/or coal are used as absorbent.

Postupkom u smislu izuma uspijeva nam barem 70%-tno obezbojenje otopine, praktički kvantitativno uklanjanje prelaznih metala, potpuno uklanjanje nitorzamina, kao također i uklanjanje finog celuloznog taloga. The process according to the invention achieves at least 70% decolorization of the solution, practically quantitative removal of transition metals, complete removal of nitrosamine, as well as removal of a fine cellulose precipitate.

Očišćena otopina je nadalje potpuno bez bilo koje tvari koja uzrokuje mutnost. The purified solution is furthermore completely free of any turbidity-causing substance.

Nadalje, bitna prednost postupka u smislu izuma je u tome da praktički ne dolazi do gubitka aminoksida. Slijedeća upozorenja služe za pojašnjenje postupka: Furthermore, a significant advantage of the process according to the invention is that there is practically no loss of amine oxide. The following warnings serve to clarify the procedure:

i) Upotrebljavamo Al2O3 tip "C" tvrtke DEGUSSA. Upotrijebljena količina izračunata na 20% kupelji za predenje je pribl. 1%. Vrijeme zadržavanja je nekoliko minuta. Apsorpcijsko sredstvo se može jednostavno ukloniti filtracijom zajedno s tvarima koje uzrokuju mutnost. Naknadnim ispiranjem filtarske pogače NMMO se u potpunosti dobije natrag. i) We use Al2O3 type "C" from DEGUSSA. The amount used calculated at 20% of the spinning bath is approx. 1%. The retention time is a few minutes. The absorbent can easily be removed by filtration together with the turbidity-causing substances. By subsequent washing of the filter cake, NMMO is completely recovered.

ii) Upotrebljavamo kremenicu tvrtke DEGUSSA s oznakom tipa "FK 700". Upotrijebljena količina izračunata na 20%-tni vodeni NMMO je 1%. Vrijeme zadržavanja je nekoliko minuta i odvajanje SiO2 vrši se filtracijom zajedno s tvarima koje uzrokuju mutnost. ii) We use flint from the company DEGUSSA with the type mark "FK 700". The amount used calculated on 20% aqueous NMMO is 1%. The retention time is a few minutes and the separation of SiO2 is done by filtration together with substances that cause turbidity.

iii) Upotrebljavamo ugljen u prahu (iz smeđeg ili crnog ugljena) prosječne veličine čestica 0,15 mm. U tom slučaju odlučujuća je veličina čestica upotrijebljenog ugljena i time raspoloživa za čišćenje. iii) We use powdered coal (from brown or black coal) with an average particle size of 0.15 mm. In this case, the particle size of the coal used and thus available for cleaning is decisive.

Upotreba ugljena glede stupnja onečišćenja kupelji za predenje, željenog učinka čišćenja i veličine aktivne površine ugljena je između 0,1% i 1% s obzirom na količinu kupelji za predenje. Vrijeme zadržavanja iznosi prosječno nekoliko minuta. The use of coal in terms of the degree of contamination of the spinning baths, the desired cleaning effect and the size of the active surface of the coal is between 0.1% and 1% with respect to the amount of spinning baths. The average residence time is a few minutes.

Na normalnu filtraciju za odvajanje obloženog ugljena otežavajuće utječu, prvo, manji tragovi prisutnog celuloznog taloga, jer jako povećavaju gubitak tlaka na filtru već nakon najkraćeg trajanja filtracije i, drugo, tvari prisutne u kupelji za predenje, koje uzrokuju mutnost. Stoga za odvajanje ugljena predlažemo slijedeće metode: Normal filtration for the separation of coated coal is adversely affected, firstly, by small traces of present cellulose sediment, because they greatly increase the pressure loss on the filter even after the shortest duration of filtration, and, secondly, by substances present in the spinning bath, which cause turbidity. Therefore, we suggest the following methods for coal separation:

- filtraciju sa staničevinom, - filtration with tissue,

- naplavnu filtraciju ili - flood filtration or

- brzu mikrofiltraciju (QMF) . - fast microfiltration (QMF).

Osim toga, posebno treba paziti na slijedeće: In addition, special attention should be paid to the following:

Filtracija sa staničevinom kao filtarskim pomoćnim sredstvom Filtration with tissue as a filter aid

Budući da već najmanje čestice ugljena drastično smanjuju bjelinu celuloznih poluproizvoda, odvajanje obloženog ugljena mora biti potpuno. To je također garancija da su većinom uklonjene tvari koje uzrokuju mutnost. Since even the smallest coal particles drastically reduce the whiteness of cellulose semi-products, the separation of coated coal must be complete. It is also a guarantee that most of the substances that cause turbidity have been removed.

Fini celulozni talog u NMMO-kupelji za predenje kao i najsitnije čestice ugljena već nakon vrlo kratkog trajanja filtracije dovode do velikog gubitka tlaka na filtru. Zbog toga se mora potražiti porozni filtarski sloj koji je inače propustan za vodeni NMMO, a zadržava gore opisane fine tvari. The fine cellulose sediment in the NMMO spinning bath as well as the smallest coal particles lead to a large pressure loss on the filter even after a very short period of filtration. For this reason, a porous filter layer must be sought which is normally permeable to aqueous NMMO, and retains the fine substances described above.

Taj zadatak riješen je tako da lisnatu staničevinu razbijemo s miješalicom u vodi (da dobijemo vlakna) i zatim naplavimo na srazmjerno grubo metalno sito. Kad dobijemo otprilike l cm debeli sloj staničevina možemo potpuno ukloniti ugljen iz suspenzije. Naknadnim ispiranjem s VE-vodom (tj. potpuno demineraliziranorn vodom) NMMO se može isprati iz filtarskog sloja bez gubitka. This task was solved by breaking the leaf tissue with a blender in water (to obtain fibers) and then floating it on a relatively coarse metal sieve. When we get a layer of cells about 1 cm thick, we can completely remove the coal from the suspension. By subsequent washing with VE-water (i.e. completely demineralized water) NMMO can be washed from the filter layer without loss.

Naplavna filtracija Alluvial filtration

Porozan fitarski sloj dobijemo ako ugljen u obliku guste suspenzije ugljen/voda naplavimo izravno na npr. stojeću filtarsku kolonu. Otopinu kupelji za predenje, koju treba očistiti, možemo zatim osloboditi ugljena preko tog sloja, pri čemu treba paziti, da kod tog načina vođenja ne dođe do zamućenja koje uzrokuju najsitnije čestice ugljena. Budući da je učinak čišćenja ugljena istrošen, s naknadnim ispiranjem s VE-vodom potpuno isperemo aminoksid iz sloja ugljena. Stojeća filtarska kolona nudi osim toga prednost da zbog minimiranja količine vode za ispiranje aminoksid možemo ispustiti prije ciklusa ispiranja i time spriječimo tvorbu miješane zone pri ispiranju ugljena. Prije sušenja puhanjem ugljena za povišenje kaloričke moći, ponovno ispustimo vodu od ispiranja. Ako se kod ispuštanja tekućina održi razlika tlaka između slojeva ugljena izvana i filtarske kolone iznutra, to omogućuje da se održi sloj ugljena također i kod izmjene medija. A porous filter layer is obtained if coal in the form of a dense coal/water suspension is floated directly onto, for example, a standing filter column. The solution of the spinning bath, which needs to be cleaned, can then be freed from the coal through this layer, where care must be taken to avoid clouding caused by the smallest coal particles in this way of guiding. Since the carbon cleaning effect has worn off, with subsequent rinsing with VE-water, we completely wash the amine oxide from the coal layer. The standing filter column also offers the advantage that, due to the minimization of the amount of water for rinsing, we can release the amine oxide before the rinsing cycle and thus prevent the formation of a mixed zone during coal rinsing. Before drying by blowing coal to increase the calorific value, let's drain the water from washing again. If the pressure difference between the carbon layers outside and the filter column inside is maintained when the liquid is discharged, this enables the carbon layer to be maintained also when the medium is changed.

Brza mikrofiltracija (QMF) Quick microfiltration (QMF)

Najprije suspenziju ugljen/kupelj za predenje stavimo u postavljeni spremnik uređaja za brzu mikrofiltraciju (QMF). Zatim ide kontinuirano odvajanje očišćene kupelji za predenje kao permeata QMF. Suspenziju ugljena s jako zgušnjenim volumenom (retentat) zatima osušimo preko komornih filtarskih preša. Zatim isperemo ugljen s VE-vodom u komornoj filtarskoj preši, da je bez NMMO. Upuhavanjem zraka ugljen sušimo još dalje, da mu povisimo kaloričku vrijednost. Ugljen možemo ili zagrijati ili ga ponovno regenerirati za novu upotrebu. First, we put the charcoal/spinning bath suspension into the installed container of the rapid microfiltration (QMF) device. Then there is a continuous separation of the cleaned spinning bath as QMF permeate. The coal suspension with a highly concentrated volume (retentate) is then dried over chamber filter presses. Then we wash the coal with VE-water in a chamber filter press, so that it is free of NMMO. By blowing air, we dry the coal even further, to increase its calorific value. We can either heat the coal or regenerate it again for a new use.

Za regeneraciju prikladne su npr. slijedeće kemikalije za regeneraciju: natrijev hidroksid/etanol, arnonijak/-rnetanol, amonijak/propanol-2 i/ili amonijak/aceton. For regeneration, for example, the following regeneration chemicals are suitable: sodium hydroxide/ethanol, ammonia/methanol, ammonia/propanol-2 and/or ammonia/acetone.

Ugljen, kojeg treba regenerirati, nakon potpune elucije NMMO suspendiramo u otopini za regeneraciju i zatim odfiltriramo. Nakon neutralnog ispiranja možemo ga zatim opet upotrijebiti za čišćenje vodene NMMO-otopine. The coal, which needs to be regenerated, is suspended in the regeneration solution after complete elution of NMMO and then filtered. After the neutral rinse, it can then be used again to clean the aqueous NMMO solution.

Za ispitivanje učinka čišćenja pojedinih varijanti postupka koristimo slijedeće analitičke metode: We use the following analytical methods to test the cleaning effect of individual variants of the procedure:

- obezbojenje: mjerenje ekstinkcije pri 470 nm s Perkin-Elmerovim fotometrom, - discoloration: measurement of extinction at 470 nm with a Perkin-Elmer photometer,

- sadržaj željeza: atomska apsorpcija i rentgensko fluorenscentno mjerenje, - iron content: atomic absorption and X-ray fluorescence measurement,

- mutnost (uzrokovana s finim celuloznim talogom): uređaj za mjerenje mutnosti TRM-L tvrtke DROTT, - turbidity (caused by fine cellulose sediment): turbidity measuring device TRM-L by DROTT,

- nitrozamini: nakon plinskog kromatografskog odvajanja dokazuje se s TEA detektorom tvrtke THERMO ELECTRON; prethodni pokus vršimo s N-nitrozomorfolinom i dimetilnitrozaminom. - nitrosamines: after gas chromatographic separation, it is proven with the THERMO ELECTRON TEA detector; the previous experiment was performed with N-nitrosomorpholine and dimethylnitrosamine.

Iz slijedećih izvedbenih primjera vidljive su daljnje pojedinosti postupka u smislu izuma. Further details of the procedure in terms of the invention are visible from the following examples.

Primjer 1 Example 1

Upotreba aluminijevog oksida kao apsorpcijskog sredstva Use of aluminum oxide as an absorbent

50 ml NMMO kupelji za predenje miješamo s 0,5 g aluminijevog oksida (tj. 0,1% s obzirom prema kupelji za predenje) u staklenoj čaši i zatim pustimo stajati 30 minuta. Zatim odfiltriramo preko filtra s plavom trakom i analiziramo filtrat. Mix 50 ml of NMMO spinning bath with 0.5 g of aluminum oxide (ie 0.1% based on the spinning bath) in a glass beaker and then let it stand for 30 minutes. Then we filter through a filter with a blue band and analyze the filtrate.

Učinak obezbojenja je 98%, uklanjanje je 94%. Smanjenje mutnosti iznosi 98%. Decolorization effect is 98%, removal is 94%. The turbidity reduction is 98%.

Primjer 2 Example 2

Upotreba silicijevog dioksida kao apsorpcijskog sredstva The use of silicon dioxide as an absorbent

50 ml kupelji za predenje miješamo s 0,5 g silicijevog dioksida i nakon 30 minuta filtriramo preko filtra s plavom trakom. Filtrat je potpuno bistar, obezbojen do 72% sadržaj željeza smanjen je za pribl. 70%. Mix 50 ml of the spinning bath with 0.5 g of silica and filter after 30 minutes through a filter with a blue strip. The filtrate is completely clear, decolorized to 72%, the iron content is reduced by approx. 70%.

Primjeri od 3 do 8 Examples 3 to 8

Upotreba smeđeg ugljena kao apsorpcijskog sredstva The use of brown coal as an absorbent

Primjer 3 Example 3

2 g koksanog praha od smeđeg ugljena suspendirarno 2 minute u 100 ml kupelji za predenje. Suspenziju filtrirarno preko staklene frite br. 3 (15 cm2 filterske površine), na koju je položen filtar s plavom trakom, i izmjerimo ekstrinkciju pri 470 nm. 2 g of brown coal coking powder suspended for 2 minutes in a 100 ml spinning bath. The suspension is filtered through glass frit no. 3 (15 cm2 filter area), on which a filter with a blue strip is laid, and measure the extrinsicity at 470 nm.

Ekstrinkcija: ishodna kupelj za predenje: 0,608 Extrinsic: spinning bath output: 0.608

očišćena kupelj za predenje: 0,095 cleaned spinning bath: 0.095

Učinak obezbojenja: 85% Decolorization effect: 85%

Mutnost: ishodna kupelj za predenje: 16,3 FTU Turbidity: Spinning bath output: 16.3 FTU

očišćena kupelj za predenje: 0,2 FTU cleaned spinning bath: 0.2 FTU

Smanjenje mutnoće: 98,8% Haze reduction: 98.8%

(FTU = formazinska jedinica mutnoće; formazin je tvar za umirenje.) (FTU = formazin turbidity unit; formazin is a sedative.)

Primjer 4 Example 4

Preko 2,5 g koksa u prahu filtriramo po 100 ml kupelji za predenje (ekstinkcija 0,413) i odredimo ekstinkciju filtrata. We filter over 2.5 g of powdered coke in a 100 ml spinning bath (extinction 0.413) and determine the extinction of the filtrate.

Iz tablice se vidi sveza između upotrijebljene količine ugljena i njegovog učinka obezbojenja. The table shows the relationship between the amount of coal used and its discoloration effect.

[image] [image]

Smanjenje ekstinkcije u svim primjerima je veće od 95%, premda je trajanje filtracije u nizu pokusa naraslo deseterostruko. The extinction reduction in all examples is greater than 95%, although the duration of filtration in a series of experiments increased tenfold.

Primjer 5 Example 5

200 ml kupelj i za predenje (20,6% NMMO) filtriramo preko 27,37 g (=50 ml) suhog koksovog praha. Pri tome dobijemo 48,52 g vlažnog koksovog praha; to odgovara količini NMMO od 4,45 g. 200 ml of the spinning bath (20.6% NMMO) is filtered over 27.37 g (=50 ml) of dry coke powder. In doing so, we get 48.52 g of wet coke powder; this corresponds to an amount of NMMO of 4.45 g.

Vlažni ugljen naknadno isperemo četiri puta, svaki puta sa po 50 ml VE-vode, i odredimo vrijednost NMMO pojedinačnih frakcija vode od ispiranja. We subsequently wash the wet coal four times, each time with 50 ml of VE-water, and determine the NMMO value of the individual fractions of the washing water.

[image] [image]

Primjer 6 Example 6

20 %-tnoj vodenoj otopini NMMO-a dodamo FeCl3 6H2O i zatim pri različitim količinama ugljena izmjerimo uklanjanje željeza. Ekstinkcija polazne tvari pri 470 nm je 0,682, sadržaj željeza je 33,5 ppm, mutnost iznosi 20,3 FTU. We add FeCl3 6H2O to a 20% aqueous solution of NMMO and then measure the removal of iron at different amounts of coal. The extinction of the starting substance at 470 nm is 0.682, the iron content is 33.5 ppm, the turbidity is 20.3 FTU.

[image] [image]

Primjer 7 Example 7

5kg kokosovog praha dispergiramo 5 minuta u 200 ml jednom upotrijebljene kupelji za predenje (20,7% NMMO) . Za odvajanje ugljena koristimo 5 μ GAF-filtar (5 1). Prvi filtrat je obojen crno zbog najsitnijih čestica, iako s rastućim trajanjem filtracije postaje sve svjetliji, dok konačno postane bistar kao voda. Disperse 5 kg of coconut powder for 5 minutes in a 200 ml disposable spinning bath (20.7% NMMO). To separate coal, we use a 5 μ GAF-filter (5 1). The first filtrate is colored black due to the smallest particles, although with increasing duration of filtration it becomes lighter and lighter, until finally it becomes as clear as water.

Obezbojenje: 93% Discoloration: 93%

Smanjenje mutnosti: 97,5%. Haze reduction: 97.5%.

Primjer 8 Example 8

200 g ugljena suspendiramo u 1800 ml VE-vode i naplavimo na stojeću kolonu za filtriranje (filtarska površina 0,012 m2) tvrtke Dr. M. Marke Fundapack. Zajedno očistimo 44 l, specifični tijek u tom trenutku opada od 1250 1/m2 na 910 1/m2. Učinak obezbojenja je 96,4%. Smanjenje mutnosti je 99%, smanjenje željeza je 96%. Za ispiranje NMMO upotrijebimo 3 1 VE-vode, NMMO pri tome potpuno isperemo iz ugljena. S upuhivanjem 7 1 zraka dosižemo sadržaj suhog ugljena od 62%. 200 g of coal is suspended in 1800 ml of VE-water and floated on a standing filtration column (filter area 0.012 m2) of the company Dr. M. Marke Fundapack. Together we clean 44 l, the specific flow at that moment drops from 1250 1/m2 to 910 1/m2. The decolorization effect is 96.4%. Turbidity reduction is 99%, iron reduction is 96%. To rinse the NMMO, use 3 1 VE-water, while washing the NMMO completely from the coal. By blowing in 7 1 air, we reach a dry coal content of 62%.

Primjer 9 Example 9

Upotreba aktivnog ugljena kao apsorpcijskog sredstva The use of activated carbon as an absorbent

200 l kupelji za predenje (20% NMMO) pomiješamo u postavljenom spremniku uređaja za brzu mikrofiltraciju s 0,05% aktivnog ug1jena tvrtke Chemviron, tip BL, i predgrijemo na 50°C . Za odvajanje ugljena i najsitnijih celuloznih čestica (polazna tvar: 12 FTU) koristimo teflonsku membranu tvrtke Purolator. Mix 200 l of the spinning bath (20% NMMO) in the installed container of the rapid microfiltration device with 0.05% activated carbon from Chemviron, type BL, and preheat to 50°C. To separate coal and the smallest cellulose particles (starting material: 12 FTU), we use a Teflon membrane from the company Purolator.

Prelijevanje membrane: 2 m/s. Membrane overflow: 2 m/s.

Tlačna razlika: 0,2 bara. Pressure difference: 0.2 bar.

Permeatni tijek: 16600 1/m2/h, koji opadne na 1000 1/m2/h. Permeate flow: 16600 1/m2/h, which decreases to 1000 1/m2/h.

Mutnost permeata: 0,2 FTU . Permeate turbidity: 0.2 FTU.

Ne dolazi do koncentriranja NMMO (NMMO-koncentracija polazne tvari je identična s onima od permeata i retentata). No concentration of NMMO occurs (NMMO-concentration of the starting material is identical to that of permeate and retentate).

Suspenziju ugljena isparimo na 9 l, što odgovara koncentriranju od 1:22. Zatim gustu suspenziju ugljena osušimo u komornoj filtarskoj preši (naplavni tlak prema kraju 10 bara) i pogaču ugljena isperemo s VE-vodom, da bude bez NMMO. Zatim upuhavanjem zraka postižemo sadržaj suhog u ugljenu od 59,6%. We evaporate the coal suspension to 9 l, which corresponds to a concentration of 1:22. Then we dry the dense coal suspension in a chamber filter press (flood pressure towards the end of 10 bar) and wash the coal cake with VE-water, so that it is free of NMMO. Then, by blowing in air, we achieve a dry content in the coal of 59.6%.

[image] [image]

Primjer 10 Example 10

Regeneracija upotrijebljenog ugljena u smislu primjera 9 Regeneration of used coal in the sense of example 9

Pobliže objašnjavamo regeneraciju aktivnog ugljena, koja se vrši ponajprije s natrijevim hidroksidom u kombinaciji s organskim otapalom, osobito s acetonom; pri tome uspijevamo održati gubitak kapaciteta nakon regeneracije ispod 2%. We explain in more detail the regeneration of activated carbon, which is carried out primarily with sodium hydroxide in combination with an organic solvent, especially acetone; at the same time, we manage to keep the loss of capacity after regeneration under 2%.

Koristimo jednom upotrijebljenu kupelj za predenje koncentracije 19,8% i aktivan ugljen tvrtke Chemviron. Za svako oblaganje suspendiramo aktivan ugljen intezivnim miješanjem u kupelji za predenje. Filtracija ugljena vrši se preko membranskog filtera (tip PA ili Versapor). Filtersku pogaču isperemo s VE-vodom do neutralnog i obradimo u manjim obrocima s regeneracijskom otopinom. Nakon ispiranja do neutralnog ugljen postružemo iz membrane opet ga upotrijebimo. We use a single-use spinning bath with a concentration of 19.8% and active carbon from Chemviron. For each coating, we suspend activated carbon by intensive mixing in the spinning bath. Coal filtration is done through a membrane filter (type PA or Versapor). The filter cake is washed with VE-water until neutral and processed in small portions with the regeneration solution. After rinsing until neutral, scrape the carbon from the membrane and use it again.

Usporedba kapaciteta ugljena nakon regeneracije s različitim regeneracijskim otopinama: Comparison of coal capacity after regeneration with different regeneration solutions:

(Količina ugljena s obzirom na NMMO: 0,5%.) (Quantity of coal with respect to NMMO: 0.5%.)

Kapacitet ugljena (% od nulte vrijednosti) Coal capacity (% of zero value)

[image] [image]

Claims (6)

1. Postupak za čišćenje vodene N-metilmorfolin-N-oksidne otopine, osobito otopine kupelji za predenje, naznačen time, da dovedemo otopinu u dodir s apsorpcijskim sredstvima i zatim ju podvrgnemo filtraciji.1. Process for cleaning the aqueous N-methylmorpholine-N-oxide solution, especially the solution of the spinning bath, indicated by bringing the solution into contact with absorbents and then subjecting it to filtration. 2. Postupak prema zahtjevu l, naznačen time, da se kao apsorpcijsko sredstvo upotrijebi aluminijev oksid.2. The method according to claim 1, characterized in that aluminum oxide is used as an absorbent. 3. Postupak prema zahtjevu l, naznačen time, da se kao apsorpcijsko sredstvo upotrijebi silicijev dioksid.3. The method according to claim 1, characterized in that silicon dioxide is used as an absorbent. 4. Postupak prema zahtjevu 1, naznačen time, da se kao apsorpcijsko sredstvo upotrijebi ugljen.4. The method according to claim 1, characterized in that coal is used as an absorbent. 5. Postupak prema jednom od zahtjeva 1 do 4, naznačen time, da apsorpcijsko sredstvo ima veličinu čestica <0, 15 nm5. The method according to one of claims 1 to 4, characterized in that the absorbent has a particle size of <0.15 nm 6. Postupak prema zahtjevu 4, naznačen time, da se filtracija provodi sa staničevinom kao pomoćnim filtarskim sredstvom, ili da je filtracija naplavna filtracija, ili brza mikrofiltracija.6. The method according to claim 4, characterized by the fact that the filtration is carried out with cellulose as an auxiliary filter agent, or that the filtration is flood filtration, or rapid microfiltration.
HR930460A 1993-03-23 1993-03-23 A process for purifying aqueous solutions of n-methyl-morpholine n-oxide HRP930460A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR930460A HRP930460A2 (en) 1993-03-23 1993-03-23 A process for purifying aqueous solutions of n-methyl-morpholine n-oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR930460A HRP930460A2 (en) 1993-03-23 1993-03-23 A process for purifying aqueous solutions of n-methyl-morpholine n-oxide

Publications (1)

Publication Number Publication Date
HRP930460A2 true HRP930460A2 (en) 1995-10-31

Family

ID=10945916

Family Applications (1)

Application Number Title Priority Date Filing Date
HR930460A HRP930460A2 (en) 1993-03-23 1993-03-23 A process for purifying aqueous solutions of n-methyl-morpholine n-oxide

Country Status (1)

Country Link
HR (1) HRP930460A2 (en)

Similar Documents

Publication Publication Date Title
US3720626A (en) Elution process for the regeneration of spent activated carbon
DE3687581T2 (en) FILTRATION BY BIOGENETIC SILICON DIOXIDE.
US4430226A (en) Method and apparatus for producing ultrapure water
EP0460499A2 (en) Method for the filtration of beverages and of chemical, pharmaceutical and similar liquids
EP0197006B1 (en) Process for the manufacture of preparations of water soluble organic dyes
US5443740A (en) Process for the conditioning of ion exchange resins
BRPI0808829A2 (en) PROCESS FOR REGENERATION OF INORGANIC, NATURAL AND SEMI-SYNTHETIC FILTRATION AID AND REGENERATED MATERIAL
DE2051200B2 (en) Process for decolorizing wastewater from the bleaching of pulp
CA2056137C (en) Process for cleaning or purifying aqueous n-methylmorpholine-n-oxide solutions
DE2608376A1 (en) LIQUID PERMEABLE, WATER-INSOLUBLE PLASTIC BODY
HRP930460A2 (en) A process for purifying aqueous solutions of n-methyl-morpholine n-oxide
DE10254575A1 (en) Photocatalytic activated charcoal, including colored and color-changing forms, used as deodorant and adsorbent and for purifying ground contaminated with dioxins, are coated with photocatalyst by vapor deposition
JPH10507498A (en) Method for purifying aqueous solution of tertiary amine oxide
DE2242702A1 (en) GAS PURIFICATION PROCESS
SI9111803A (en) Process for purifying aqueous solutions of N-methylmorpholine-N-oxide
Kaneko Adsorption of several dyes from aqueous solutions on silica-containing complex-oxide gels
DE1442410C (en) Use of ion exchangers in powder form to exchange organic ions
CN109824507A (en) A kind of long-chain biatomic acid method of purification
CH625716A5 (en) Process for preparing adsorbent cellulose microcapsules
DE1442410B (en) Use of ion exchangers in powder form to exchange organic ions
DE1442410A1 (en) Use of ion exchangers in powder form to exchange organic ions
AT100735B (en) Process for the clarification and decolourization of waste water from paint processing companies.
JP2001348507A (en) Method for purification of anthocyanin pigment
DE710703C (en) Method for filtering Trueben
DE1798116A1 (en) Chromatographic separating agents

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBC Application rejected