[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

HRP920929A2 - Peroxoacid manufacture - Google Patents

Peroxoacid manufacture Download PDF

Info

Publication number
HRP920929A2
HRP920929A2 HRP920929A HRP920929A2 HR P920929 A2 HRP920929 A2 HR P920929A2 HR P920929 A HRP920929 A HR P920929A HR P920929 A2 HRP920929 A2 HR P920929A2
Authority
HR
Croatia
Prior art keywords
inlet
hydrogen peroxide
sulfuric acid
solution
outlet
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
John Raoul Grendon Lane
Colin Frederick Mcdonogh
Stephen Edward Woods
Original Assignee
Solvay Interox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Interox Ltd filed Critical Solvay Interox Ltd
Priority to HRP920929 priority Critical patent/HRP920929A2/en
Publication of HRP920929A2 publication Critical patent/HRP920929A2/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

Područje tehnike The field of technology

Ovaj izum se odnosi na proizvodnju perokso kiselina, a određenije na postupak i aparaturu za proizvodnju peroksomono sumporne kiseline. This invention relates to the production of peroxo acids, and more specifically to the process and apparatus for the production of peroxomonosulphuric acid.

Tehnički problem Technical problem

Peroksomonosumporna kiselina, koja se ponekad ovdje navodi kao Karo kiselina, ima formulu H2SO5. Ona je jako oksidacijsko sredstvo koje se može upotrijebiti u širokom području industrije, uključujući na primjer u ekstrakciji metala i procesnih industrija u kemijskoj sintezi i za brzu i efikasnu detoksikaciju efluenata koji između ostalih sadrže fenolne, cijano, sumporne i druge organske i neorganske vrste sposobne za oksidaciju. Peroxomonosulfuric acid, sometimes referred to herein as Karo acid, has the formula H2SO5. It is a strong oxidizing agent that can be used in a wide range of industries, including for example in metal extraction and process industries in chemical synthesis and for the rapid and efficient detoxification of effluents containing, among others, phenolic, cyano, sulfur and other organic and inorganic species capable of oxidation.

Skala njezine uporabe je sužena teškoćama i cijenom njezine proizvodnje, transportom i skladištenjem, što u praksi znači a i radi pogodnosti da se obično dobiva na istoj loakciji kao što je namjeravano mjesto njene upotrebe. Također se preporuča da se upotrijebi brzo nakon njezine proizvdonje. The scale of its use is narrowed by the difficulties and cost of its production, transportation and storage, which in practice means and for the sake of convenience that it is usually obtained at the same location as the intended place of its use. It is also recommended that it be used quickly after its manufacture.

Stanje tehnike State of the art

Postoje dvije osnove predloženog postupka za dobivanje Karo kiseline. Jedan postupak iziskuje parcijalnu hidrolizu na povišenoj temperaturi, peroksodisumporne kiseline H2S2O8 u kiseloj otopini koja se dobiva elektrolizom ili zakiseljavanjem soli alkalnog metala ili amonij perdisulfatne soli. Ovaj način je prikladan za dobivanje na probnoj skali, ali je od male koristi za dobivanje u većem volumenu. Drugi put obuhvaća reakciju između vodene otopine vodik peroksida i sumporne kiseline, oleuma ili plinovitog SO3. Za sumpornu kiselinu jednadžba obuhvaća: There are two bases of the proposed procedure for obtaining Karo acid. One process requires partial hydrolysis at elevated temperature of peroxodisulfuric acid H2S2O8 in an acidic solution obtained by electrolysis or acidification of an alkali metal salt or ammonium perdisulfate salt. This method is suitable for trial scale extraction, but is of little use for larger volume extraction. The second way involves the reaction between an aqueous solution of hydrogen peroxide and sulfuric acid, oleum or gaseous SO3. For sulfuric acid, the equation includes:

H2O2 + H2SO4 = H2O + H2SO5 H2O2 + H2SO4 = H2O + H2SO5

Drugi put je prikladniji jer se upotrebljavaju polazni materijali koji su komercijalno lakše dostupni. Posebni značaj se pridaje kontroli reakcije. Prema tome, na primjer, u GB-A-844 096, strana 2. redovi 28. do 42. E I Du Pont specificira reakcijsku temperaturu od do 25ºC, kao što je od 0 do 15ºC, i objašnjava da se ne preporučuju temperature iznad 25ºC jer one dovode do loše efikasnosti, usljed hidrolize monopersumporne kiseline i gubitaka aktivnog kisika. Sljedeći paragraf pokazuje da se oleum dodaje kontroliranom brzinom u vodik peroksid, uz održavanje miješanja i hlađenja smjese. Kao posljedica ovoga, reakcijska posuda je komplicirana i skupa za konstrukciju i rad, a osim toga produkcijska brzina je jako smanjena hlađenjem. The second way is more suitable because starting materials are used that are more commercially available. Special importance is attached to reaction control. Thus, for example, in GB-A-844 096, page 2, lines 28 to 42, E I Du Pont specifies a reaction temperature of up to 25ºC, such as 0 to 15ºC, and explains that temperatures above 25ºC are not recommended. because they lead to poor efficiency, due to the hydrolysis of monopersulfuric acid and losses of active oxygen. The next paragraph shows that the oleum is added at a controlled rate to the hydrogen peroxide, while maintaining stirring and cooling the mixture. As a consequence of this, the reaction vessel is complicated and expensive to construct and operate, and in addition the production rate is greatly reduced by cooling.

U GB-A-738,407 i odgovarajućem USP-2,789,954 koji je objavljen 1957. i pripada Stevenson (Dyers) Limited, u stupcu 1. redovi 42. do 49., opisan je postupak u kojem se regulirane količine vodik peroksida i koncentrirane sumporne kiseline pomiješaju pod takvim uvjetima da se dobije smjesa koja sadrži persumpornu kiselinu, smjesa se ohladi da bi se spriječila svaka daljnja reakcija i zatim se uglavnom odmah razblaži vodom. Posjednici patenta zastupaju da se protok regulira tako da temperatura smjese dostigne najmanje oko 50ºC i da se odmah nakon ovoga ohladi na primjer miješanjem reaktanta na ulazu kondenzatora koji se hladi ili u stvari unutar zone hlađenja kondenzatora s vodenom oblogom. Čitatelju je jasno da brzo i forsirano hlađenje predstavljaju osnovni element njihovog postupka, kako u konceptu, tako i u praksi. Pored toga, cjelokupni proces promatran u patentu je tegoban i u praksi zahtijeva dvostruko hlađenje. In GB-A-738,407 and the corresponding USP-2,789,954 published in 1957 and owned by Stevenson (Dyers) Limited, column 1 lines 42 to 49, a process is described in which controlled amounts of hydrogen peroxide and concentrated sulfuric acid are mixed under such conditions as to give a mixture containing persulphuric acid, the mixture is cooled to prevent any further reaction and then diluted generally immediately with water. The patentees advocate that the flow be regulated so that the temperature of the mixture reaches at least about 50ºC and that it is cooled immediately after this for example by mixing the reactant at the inlet of the cooled condenser or in fact within the cooling zone of the water jacketed condenser. It is clear to the reader that rapid and forced cooling are the basic element of their procedure, both in concept and in practice. In addition, the overall process observed in the patent is cumbersome and in practice requires double cooling.

U skorije vrijeme, Air Liquide u US P 3,900,555 i US P 3,939,072, koji su prijavljeni 1975/76, istaknuli su da postoji potreba za reaktorom koji može proizvoditi monoperoksisumpornu kiselinu u trenutku kada je potrebna za upotrebu i kao primjer za ovu svrhu opisali su reaktor konstantne razine s dvostrukom oblogom s preljevnikom da se izdvoji proizvod iz generatora i dva simetrično postavljena ulazna voda za reagens. Voda za hlađenje cirkulira kroz oblogu. U aparaturi koja je dana u primjeru, maksimalna brzina u satu proizvodnje otopine permonosumporne kiseline je bila samo 10 puta od volumena tekućine u reaktoru, vjerojatno ograničena kapacitetom obloge za hlađenje da bi se spriječilo da reakcijska temperatura pređe preko gornje stranice. Naravno, prelaskom s aparature laboratorijske veličine dane od strane Air Liquide na komercijalnu veličinu iako od teorijskih mogućnosti, može se očekivati da ili dalje smanji produkcijsku brzinu zbog toga što se odnos površine prema volumenu (i time brzina hlađenja) mijenja obrnuto prema polumjeru sfere ili cilindra ili se zahtijeva unošenje kompenzatorskih komplikacija u aparaturu. Prema tome, Air Liquide aparatura je relativno kompleksna i zbog toga što ima relativno mali produkcijski kapacitet, posljedica je da je relativno skupa i da je skupa u eksploataciji. More recently, Air Liquide in US P 3,900,555 and US P 3,939,072, which were filed in 1975/76, pointed out that there is a need for a reactor capable of producing monoperoxysulphuric acid at the time it is required for use and described as an example for this purpose a reactor double-lined constant level with an overflow to separate the product from the generator and two symmetrically placed reagent inlets. Cooling water circulates through the lining. In the apparatus exemplified, the maximum hourly rate of permonosulfuric acid solution production was only 10 times the liquid volume in the reactor, probably limited by the capacity of the cooling jacket to prevent the reaction temperature from exceeding the top side. Of course, moving from the laboratory-sized apparatus provided by Air Liquide to commercial-sized, albeit theoretical possibilities, can be expected to further reduce the production rate due to the fact that the surface-to-volume ratio (and thus the cooling rate) changes inversely with the radius of the sphere or cylinder or it is required to introduce compensatory complications in the apparatus. Therefore, the Air Liquide apparatus is relatively complex and due to the fact that it has a relatively small production capacity, the consequence is that it is relatively expensive and that it is expensive to exploit.

Izumitelji ovog izuma su shvatili da je eksploatacija Karo kiseline za različite oksidacije spriječena cijenom i cijenom eksploatacije konvencionalnih uređaja za njenu proizvodnju. The inventors of this invention realized that the exploitation of Karo acid for various oxidations is prevented by the price and the cost of exploitation of conventional devices for its production.

Pored toga, mnogi položaji na kojima bi Karo kiselina bila potencijalno korisna su locirani na udaljenim mjestima. Za druge potencijalne primjene Karo kiselina je namijenjena da modificira kemijske ili hidrometalurške procese ili tretiranje otpada proizvedenog u takvim procesima, tako da se aparatura instalirana za dobivanje Karo kiseline treba nalaziti pored postojećeg pogona. U obje situacije, veličina aparature koja osigurava dani volumen oksidansa je od praktičnog značenja. Additionally, many of the sites where Karo acid would be potentially useful are located in remote locations. For other potential applications, Karo acid is intended to modify chemical or hydrometallurgical processes or the treatment of waste produced in such processes, so the apparatus installed for obtaining Karo acid should be located next to the existing plant. In both situations, the size of the apparatus that provides a given volume of oxidant is of practical importance.

Opis rješenja Description of the solution

Prema tome, postavljen je program koji treba osigurati proces koji je efikasniji po cijeni i koji će dati opremu koja treba biti relativno prigodna za transport i upotrebu na mnogim lokacijama i relativno jednostavna i robustna. Therefore, a program has been set up that should provide a process that is more cost-effective and that will provide equipment that should be relatively suitable for transport and use in many locations and relatively simple and robust.

Izumitelji ovog izuma su također shvatili da se kod bilo kojeg procesa i aparature mora uzeti u obzir činjenica da je reakcija dobivanja permonosumporne kiseline egzotermna, i da ako se reagensi unesu u rezervoar proizvoda, prizvedena toplina se može distribuirati kroz rezervoar, tako da se povećanje temperature reakcijske smjese koja nastaje od unošenja jedinične količine reagensa proporcionalno smajnjuje. Prema tome, bilo koje smanjenje veličine rezervoara će ubrzati potencijalno povećanje temperature dobivene smjese, što će zbog toga također povećati vjerovatnost razlaganja vodik peroksida, jer brzina ove posljednje reakcije ovisi o temperaturi, ali će značajno povećati rizik od samoubrzavanja razlaganja koje nastaje jer je reakcija razlaganja peroksida sama po sebi jako egzotermna. Ovo ne samo da je rasipanje reagensa, već i nastalo prisilno izbacivanje veoma tople otopine Karo kiseline, na primjer u obliku raspršivača, biti će posebno opasno za bilo koga u blizini. Prema tome, na osnovi normalnih razmatranja sigurnosti oni su bili svjesni razumne i dobro bazirane predrasude u korist aparature s važnošću hlađenja i kontrole reakcijske smjese, kao što je opisano u Air Liquide generatoru kontaktnog volumena i kontrole i isto tako mišljenja protiv aparature koja ima takvu propusnost da ugrozi kontrolu hlađenja. The inventors of the present invention also realized that in any process and apparatus, consideration must be given to the fact that the reaction to produce permonosulfuric acid is exothermic, and that if the reagents are introduced into the product reservoir, the heat produced can be distributed throughout the reservoir, so that the increase in temperature of the reaction mixture resulting from the introduction of a unit amount of reagent is proportionally reduced. Therefore, any reduction in the size of the reservoir will accelerate the potential increase in temperature of the resulting mixture, which will therefore also increase the probability of decomposition of hydrogen peroxide, since the rate of this last reaction depends on temperature, but will significantly increase the risk of self-accelerating decomposition that occurs because the decomposition reaction peroxide itself is very exothermic. This is not only a waste of reagents, but the resulting forced ejection of a very warm solution of Karo acid, for example in the form of a spray, will be particularly dangerous for anyone nearby. Therefore, based on normal safety considerations, they were aware of a reasonable and well-founded bias in favor of apparatus with the importance of cooling and control of the reaction mixture, as described in the Air Liquide Contact Volume Generator and Control, and also of an opinion against apparatus having such permeability. to compromise cooling control.

Prema jednom aspektu ovog izuma osiguran je kontinuirani proces za proizvodnju peroksomonosumporne kiseline reakcijom između koncentrirane sumporne kiseline i koncentriranog vodik peroksida koji je naznačen unošenjem dva reagensa pod pritiskom u zatvorenu tubularnu reakcijsku komoru koja ima ulaz za otopinu sumporne kiseline na ili susjednom jednom kraju, i izlaz za reakcijsku smjesu na kraju koji je udaljen od ulaza sumporne kiseline i ulaz za otopinu vodik peroksida, koji je postavljen u sredini između ulaza sumporne kiseline i izlaza za reakcijsku smjesu, čime se otopina vodik peroksida unosi u tok otopine sumporne kiseline, pri čemu je reakcijska komora tako dimenzionirana u odnosu na brzine toka reagensa da je protok na minutu najmanje oko 20 puta njegovog unutarnjeg volumena, mjereno između ulaza za otopinu vodik peroksida i izlaza. According to one aspect of the present invention there is provided a continuous process for the production of peroxomonosulfuric acid by the reaction between concentrated sulfuric acid and concentrated hydrogen peroxide indicated by introducing the two reagents under pressure into a closed tubular reaction chamber having an inlet for a sulfuric acid solution at or adjacent one end, and an outlet for the reaction mixture at the end remote from the sulfuric acid inlet and the hydrogen peroxide solution inlet, which is placed in the middle between the sulfuric acid inlet and the reaction mixture outlet, thereby introducing the hydrogen peroxide solution into the flow of the sulfuric acid solution, whereby the reaction chamber so dimensioned in relation to reagent flow rates that the flow rate per minute is at least about 20 times its internal volume, measured between the hydrogen peroxide solution inlet and outlet.

Prema jednom drugom i srodnom aspektu ovog izuma također je osigurana aparatura prikladna za proizvodnju peroksomonosumporne kiseline reakcijom između koncentrirane sumporne kiseline i koncentriranog vodik peroksida koja je naznačena zatvorenom tubularnom reakcionom komorom koja ima ulaz za otopinu sumporne kiseline na ili susjednom jednom kraju, i izlaz za reakcijsku smjesu na kraju koji je udaljen od ulaza sumporne kiseline i ulaz pogodan za otopinu vodik peroksida, koji je postavljen na sredinu između ulaza za sumpornu kiselinu i izlaza za reakcijsku smjesu pri čemu se otopina vodik peroksida u tijeku rada unosi u tok otopine sumporne kiseline, pri čemu je reakcijska komora tako dimenzinirana u odnosu na brzine protoka reagensa da je protok na minutu na najmanje oko 20 puta njegovog unutrašnjeg voluemna mjereno između ulaza za otopinu vodik peroksida i izlaza. According to another and related aspect of the present invention there is also provided apparatus suitable for the production of peroxomonosulfuric acid by the reaction between concentrated sulfuric acid and concentrated hydrogen peroxide which is indicated by a closed tubular reaction chamber having an inlet for the sulfuric acid solution at or adjacent one end, and an outlet for the reaction mixture at the end far from the sulfuric acid inlet and an inlet suitable for the hydrogen peroxide solution, which is placed in the middle between the sulfuric acid inlet and the outlet for the reaction mixture, whereby the hydrogen peroxide solution is fed into the flow of the sulfuric acid solution during operation, at for which the reaction chamber is so dimensioned in relation to the flow rate of the reagent that the flow per minute is at least about 20 times its internal volume measured between the inlet for the hydrogen peroxide solution and the outlet.

Jasno je da aparatura upotrijebljena u postupku prema izumu ne koristi bilo kakve uređaje za hlađenje oko reakcijske komore, s rezultatom da se reakcija događa adiabatski, temperatura reakcijske smjese je suštinski viša od sobne temperature i dostiže razvnotežnu točku koja ostaje razumno konstantnom dok se reagensi šaržiraju u komoru, ali stvarna razina temperature je određena najprije smjesama reagensa sumporne kiseline i vodik peroksida i njihovim realtivnim brzinama unošenja. Ravnotežna temperatura dobivena unutar komore izgleda da se mijenja u ovisnosti o koncentraciji peroksomonosumporne kiseline dobivene u proizvodu i da ima tendenciju rasta i s porastom ukupne koncentracije oba reagensa, a i kako se njihov molski odnos približava 1:1. It is clear that the apparatus used in the process of the invention does not employ any cooling devices around the reaction chamber, with the result that the reaction occurs adiabatically, the temperature of the reaction mixture is substantially higher than room temperature and reaches an equilibrium point which remains reasonably constant as the reagents are charged into chamber, but the actual temperature level is determined first by the sulfuric acid and hydrogen peroxide reagent mixtures and their relative rates of introduction. The equilibrium temperature obtained inside the chamber seems to change depending on the concentration of peroxomonosulfuric acid obtained in the product and to have a tendency to increase with the increase in the total concentration of both reagents, and as their molar ratio approaches 1:1.

Jedna od važnih karakteristika aparature i procesa prema izumu je redosljed unošenja ova dva reagensa u reakcijsku komoru. Pronađeno je da postoji značajna razlika u efektu ako se reagensi unose u obrnutom redosljedu. Kada se vodena otopina vodik peroksida unosi u tok sumporne kiseline prema izumu, veoma brzo se formira ravnotežna smjesa Karo kiseline. S druge strane, u probama obrnutog postupka, svaki put kada se ista koncentrirana sumporna kiselina unese u tok iste vodene otopine vodik peroksida, koji teče u istoj aparaturi i pod inače identičnim uvjetima rada, rezultat je bio na početku i stalno neprihvatljiv. Temperatura reakcijske smjese je porasla u tijeku nekoliko sekundi nakon prethodno određene ravnotežne temperature do one do koje je promatrano djelomično isparavanje. U reakcijskoj komori se stvara pritisak i dolazi do prinudnog izbacivanja pare iz reaktora. Proba je dovedena što je brže moguće do prestanka zaustavljanjem utjecaja reagensa. One of the important characteristics of the apparatus and process according to the invention is the order in which these two reagents are introduced into the reaction chamber. It has been found that there is a significant difference in effect if the reagents are introduced in reverse order. When an aqueous solution of hydrogen peroxide is introduced into the flow of sulfuric acid according to the invention, an equilibrium mixture of Karo acid is formed very quickly. On the other hand, in tests of the reverse procedure, every time the same concentrated sulfuric acid is introduced into the flow of the same aqueous solution of hydrogen peroxide, which flows in the same apparatus and under otherwise identical operating conditions, the result was initially and constantly unacceptable. The temperature of the reaction mixture rose in the course of a few seconds after the previously determined equilibrium temperature up to which partial evaporation was observed. Pressure builds up in the reaction chamber and steam is forced out of the reactor. The test was brought to a stop as quickly as possible by stopping the influence of the reagent.

Iz proba je izvedeno da ne samo da postoji značajna razlika između dva načina rada, kada se upotrebi zatvorena adiabatski reakcijska komora prema ovom izumu, već i kada je izvediv način rada prema ovom izumu suprotan prvenstvenom načinu rada koji je opisan od strane Du Point u GB-A-844096. It was found from the tests that not only is there a significant difference between the two modes of operation when using a closed adiabatic reaction chamber according to the present invention, but also that the feasible mode of operation according to the present invention is the opposite of the preferred mode of operation described by Du Point in GB -A-844096.

Razumljivo je da ovaj izum koristi aparaturu u kojoj je reakcijska komora zatvorena, tj. ne ventilira se u atmosferu. To znači da je jedini izlaz za reakcijsku smjesu kroz izlazni otvor i kao posljedica ovoga je od praktičnog značenja da se kontrolira brzina ulaska reagensa u odnosu identificiranom gore, tako da se spriječi ili bar da se održi unutar razumnih granica, povećano razlaganje perkisika do kojeg će doći ako se dopusti da protok padne ispod minimalne granice. It is understood that this invention uses apparatus in which the reaction chamber is closed, i.e. it is not vented to the atmosphere. This means that the only outlet for the reaction mixture is through the exit port and as a consequence of this it is of practical importance to control the rate of entry of the reagents in the ratio identified above, so as to prevent, or at least keep within reasonable limits, the increased decomposition of peroxygen which will occur if the flow is allowed to fall below the minimum limit.

U daljnjem aspektu ovog izuma, aparatura za kontrolirano dobivanje otopine Karo kiseline obuhvaća tubularnu reakcijsku komoru koja ima ulaz za otopinu sumporne kiseline na ili susjedno jednom kraju, izlaz za reakcijsku smjesu na kraju koji je udaljen od ulaza i u poprečnom smjeru ulaz za otopinu vodik peroksida koji je postavljen u sredini između ulaza sumporne kiseline i izlaza, pri čemu navedena reakcijska komora obuhvaća prstenasto područje koje se proteže longitudinalno susjedno ulazu vodik peroksida reagensa, pri čemu se u radu ulaz otopine vodik peroksida unosi kroz njegov ulaz direktno transverzalno prema otopini sumporne kiseline koji teče longitudinalno kroz prstenasto područje prema izlazu reakcijske smjese. In a further aspect of the present invention, the apparatus for the controlled preparation of the Karo acid solution comprises a tubular reaction chamber having an inlet for a sulfuric acid solution at or adjacent to one end, an outlet for the reaction mixture at an end remote from the inlet, and in a transverse direction an inlet for a hydrogen peroxide solution which is placed in the middle between the sulfuric acid inlet and the outlet, wherein said reaction chamber includes an annular area that extends longitudinally adjacent to the hydrogen peroxide inlet of the reagent, wherein in operation the hydrogen peroxide solution inlet is introduced through its inlet directly transverse to the flowing sulfuric acid solution longitudinally through the ring area towards the outlet of the reaction mixture.

U jednoj posebno pogodnoj koncepciji reakcijske komore, širina prstenstog područja, koja ovdje znači razliku između unutrašnjeg i vanjskog promjera krugova koji definiraju područje, povećava se na ili baš prije ulaska vodik peroksida. Povećanje može biti stupnjevito ili postepeno. U nekim posebno prikladnim realizacijama, povećanje širine područja je takvo da je linearna brzina toka tekućine unutar prstenastog područja reakcijske komore prema izlazu slična samo za tok sumporne kiseline i za tok smjese sumpora kiselina/vodik peroksid. In one particularly suitable design of the reaction chamber, the width of the annular region, which here means the difference between the inner and outer diameters of the circles defining the region, is increased at or just before the entry of the hydrogen peroxide. The increase can be gradual or gradual. In some particularly suitable embodiments, the increase in width of the region is such that the linear velocity of liquid flow within the annular region of the reaction chamber toward the outlet is similar only for sulfuric acid flow and for sulfuric acid/hydrogen peroxide mixture flow.

U praksi, prstenasto područje u blizini ulaza sumporne kiseline je prvenstveno usko, tj. odnos prethodne prema posljednjoj je prvenstveno između 0.75 do 1 do oko 0.9:1. Kao posljedica ovoga, otopina sumporne kiseline teče kroz prstenasto područje razmjerno velikom brzinom prema izlazu. Ovo pomaže miješanju otopine sumporne kiseline s otopinom vodik peroksida kada se ova unosi postepeno u reakcijsku komoru. U blizini ulaza vodik peroksida i šireći se prema izlazu, širina prstenastog područja je prikladno odabrana od odnosa unutrašnjeg i vanjskog promjera od oko 0.5:1 do oko 0.8:1. Reakcijska komora je prvenstveno cilindrična ili krnje stožasta u blizini izlaza. In practice, the annular region near the sulfuric acid inlet is primarily narrow, i.e. the ratio of the former to the latter is primarily between 0.75 to 1 to about 0.9:1. As a consequence of this, the sulfuric acid solution flows through the annular region at a relatively high speed towards the outlet. This helps to mix the sulfuric acid solution with the hydrogen peroxide solution when it is fed gradually into the reaction chamber. Near the hydrogen peroxide inlet and extending toward the outlet, the width of the annular region is suitably selected from an inner to outer diameter ratio of about 0.5:1 to about 0.8:1. The reaction chamber is primarily cylindrical or frustoconical near the outlet.

Poželjno, reakcijska komora ima ukupnu dužinu mjerenu od ulaznog otvora za sumpornu kiselinu do izlaza koja je suštinski veća od njenog transverzalnog promjera, kao u rasponu od najmanje 3:1, a prikladno od oko 4:1 do oko 10:1. Preferably, the reaction chamber has an overall length measured from the sulfuric acid inlet to the outlet that is substantially greater than its transverse diameter, such as in the range of at least 3:1, and suitably from about 4:1 to about 10:1.

Prstenasta komora se može dobiti na elegantan i robustan način unošenjem prikladno oblikovanih i dimenzioniranih jezgri koaksijalno sa cilindričnom reakcionom posudom. Smanjivanjem promjera jezgre kako se ono približava izlaznom kraju, unakrsna sekcija prstena se povećava. Jezgra može imati logitudinalna ili spiralna rebra koja se protežu djelomično u prstenasti prostor. U cilju da se pojednostavni konstrukcija aparature, poveća njena robusnost i smanji na minimum rizik od propuštanja iz reakcijske komore na sastavima, vrlo je prikladna upotreba stacionirane jezgre. Alternativno, iako nije neophodno, jezgra može biti rotirajuća oko longitudinalne osi. Ako se upotrijebi rotirajuća jezgra, posebno je poželjno da širina prstenastog područja bude ekstremno uska u području između ulaza za sumpornu kiselinu i njenog susjednog kraja, tako da se smanji na minimum bilo koja interakcija između sumporne kiseline i spoja između jezgre i vanjskog zida komore. An annular chamber can be obtained in an elegant and robust manner by introducing suitably shaped and sized cores coaxially with the cylindrical reaction vessel. By reducing the diameter of the core as it approaches the exit end, the cross-section of the annulus increases. The core can have longitudinal or spiral ribs that extend partially into the annular space. In order to simplify the construction of the apparatus, increase its robustness and minimize the risk of leakage from the reaction chamber on the assemblies, the use of a stationary core is very appropriate. Alternatively, although not necessary, the core may be rotatable about a longitudinal axis. If a rotating core is used, it is particularly desirable that the width of the annular region be extremely narrow in the region between the sulfuric acid inlet and its adjacent end, so as to minimize any interaction between the sulfuric acid and the junction between the core and the outer wall of the chamber.

Jasno je da se slično stupnjevito prstenasto područje može postići mijenjanjem promjera bušotine koja definira vanjski zid prstenastog područja zajedno s jezgrom konstantnog promjera, ili daljnja opcija, promjeri i jezgre i šupljine se mogu mijenjati. It is clear that a similar stepped annular region can be achieved by varying the diameter of the bore defining the outer wall of the annular region together with a core of constant diameter, or a further option, the diameters of both the core and the cavity can be varied.

Tokovi reagenasa kroz ulaz su poželjno bez udara i često su usmjereni transverzalno u reakcijsku komoru, tj. suštinski pod pravim kutovima na longitudinalnu os reakcijske komore. Svaki ulazni otvor može biti uzdignut malo iznad volumena reakcijske komore ili pod kutom malo u odnosu na stvarni geometrijski radijalni smjer tako da usmjeri tok u prstenastu komoru. Dva ulaza mogu biti postavljena pod relativnim kutom jedan prema drugome, kada se promatra duž longitudinalne osi komore, ali u specijalno prikladnim realizacijama ulaza su postavljeni nasuprotno. Reagent flows through the inlet are preferably impingement-free and are often directed transversely into the reaction chamber, i.e. essentially at right angles to the longitudinal axis of the reaction chamber. Each inlet can be elevated slightly above the volume of the reaction chamber or at an angle slightly relative to the actual geometric radial direction so as to direct the flow into the annular chamber. The two inlets may be positioned at a relative angle to each other, when viewed along the longitudinal axis of the chamber, but in particularly suitable embodiments the inlets are positioned opposite.

U nekim prstenastim realizacijama, poželjno je da se nagne ulaz za vodik peroksid unazad, tj. dalje od izlaza, na primjer tako da je dodirni kut sa strujom sumporne kiseline zastupljen i poželjno je u području od najmanje oko 90º do oko 165º, a prikladno je u području od oko 95º do 125º. Daljnji prikladni dodirni kutovi su oko 135º i 150º. Tako postavljajući pod kutom ulaz za otopinu vodik peroksida, dvije otopine su donekle suprotne, prije nego da jedna otopina susreće drugu transverzalno i vjeruje se da ovaj način potpomaže miješanje otopina i sprečava “mrtve točke” što bi moglo izazvati razlaganje peroksi vrsta koje su prisutne. In some annular embodiments, it is desirable to angle the hydrogen peroxide inlet backward, i.e. away from the outlet, for example so that the contact angle with the sulfuric acid stream is represented and preferably in the range of at least about 90º to about 165º, and is suitable in the range from about 95º to 125º. Further suitable contact angles are around 135º and 150º. Thus, by angling the entrance to the hydrogen peroxide solution, the two solutions are somewhat opposite, before one solution meets the other transversely, and it is believed that this way helps the mixing of the solutions and prevents "dead spots" which could cause decomposition of the peroxy species present.

Izlazni otvor ima prvenstveno poprečnu površinu manje od površine reakcijske posude susjedne, tako da se tvori povratni pritisak. Ovaj regulira brzinu toka tekućine iz komora zajedno s pritiskom na crpljenim reagensima i stoga protok. Poželjno je da sadrži nepovratni ventil. The outlet opening primarily has a cross-sectional area smaller than the area of the adjacent reaction vessel, so that a back pressure is formed. This regulates the rate of liquid flow from the chambers together with the pressure on the pumped reagents and therefore the flow rate. It is preferable that it contains a non-return valve.

Reakcijska komora obično prvenstveno ima ulaze više od izlaza. U praktičnim i prikladnim realizacijama, montiranje je često približno okomito. Najprikladnije je da se montira reakcijska komora približno okomito i/ili direktno iznad razine tekućine u posudi u kojoj se Karo kiselina treba upotrijebiti, tako da reakcijska smjesa može direktno teći iz komore u prostor za tretiranje. A reaction chamber usually primarily has inlets more than outlets. In practical and convenient embodiments, the mounting is often approximately vertical. It is most suitable to mount the reaction chamber approximately vertically and/or directly above the liquid level in the vessel in which the Karo acid is to be used, so that the reaction mixture can flow directly from the chamber to the treatment area.

Brzina protoka reagensa u reaktor se prvenstveno kontrolira zajedno s volumenom reaktora i veličinom njegovog izlaska tako da je temperatura smjese sposobna zadržati ravnotežu temperature dok je još uvijek u reaktoru. Maksimalne brzine protoka će ovisiti o sastavu reagenasa i molskog odnosa pri kojima se upotrebljavaju i prema tome ravnotežne temperature koja je postignuta u njima. U mnogim slučajevima, maksimalna brzina protoka proizvoda u minuti pada unutar područja od približno 40 do 80 volumena reaktora. The rate of flow of reagents into the reactor is primarily controlled along with the volume of the reactor and the size of its outlet so that the temperature of the mixture is able to maintain temperature equilibrium while still in the reactor. The maximum flow rates will depend on the composition of the reagents and the molar ratio at which they are used and, accordingly, the equilibrium temperature reached in them. In many cases, the maximum product flow rate per minute falls within the range of approximately 40 to 80 reactor volumes.

Usvajanjem aparature prema ovom izumu, moguće je sigurno proizvesti veliki volumen Karo kiseline, bez uporabe velikog generatora. Na primjer, reakcijska komora od samo 20 ml ukupnog volumena, ali s protokom od 30 volumena u minuti, može proizvesti skoro 1.3 t proizvoda na dan ako se radi konstantno, a pri 80 volumena u minuti može se dobiti oko 3.5 t proizvoda na dan. Slično, komora koja ima volumen šalice kave, tj. oko 250 ml, može proizvesti oko 16 t do 40 t proizvoda na dan ako se radi s istim vremenom boravka koja nastaje od 30 do 80 volumena protoka na dan. Odnos H2SO5 u proizvodu ovisi, kao što se moglo očekivati, o koncentraciji sumporne kiseline i vodik peroksidnog reagensa koji su upotrijebljeni, i od njihovog relativnog molskog odnosa. Jasno je da se aparatura takvih dimenzija može lako transportirati i lako se namiješta, čak i u vrlo suženim radnim površinama. Također je jasno da se reaktor može kontrolirati tako da dâ proizvod unutar širokih granica zahtjeva. Tamo gdje se zahtijeva još šire područje, moguće je upotrebiti dva ili više reaktora paralelno s prikladnim kontrolama da bi se regulirali tokovi reagensa za jedan ili više reaktora kao što se zahtijeva u svakom trenutku. By adopting the apparatus according to this invention, it is possible to safely produce a large volume of Karo acid, without the use of a large generator. For example, a reaction chamber of only 20 ml of total volume, but with a flow rate of 30 volumes per minute, can produce almost 1.3 t of product per day if operated constantly, and at 80 volumes per minute, about 3.5 t of product per day can be obtained. Similarly, a chamber having the volume of a cup of coffee, i.e. about 250 ml, can produce about 16 t to 40 t of product per day if operated with the same residence time resulting from 30 to 80 flow volumes per day. The ratio of H2SO5 in the product depends, as might be expected, on the concentration of sulfuric acid and hydrogen peroxide reagent used, and on their relative molar ratio. It is clear that the apparatus of such dimensions can be easily transported and set up easily, even in very narrow working areas. It is also clear that the reactor can be controlled to give product within wide limits of requirements. Where an even wider area is required, it is possible to use two or more reactors in parallel with suitable controls to regulate the reagent flows to one or more reactors as required at any given time.

Adiabatski generator je poželjno konstruiran od otpornih materijala na napad reagensa i proizvoda. Posebno, određeni fluorougljikovi polimeri kao što su PTFE, FEP i PFA su prikladni, jer spajaju kvalitete robusnosti s kemijskom otpornošću. Drugi materijali vrijedni razmatranja sadrže tantal. The adiabatic generator is preferably constructed of materials resistant to attack by reagents and products. In particular, certain fluorocarbon polymers such as PTFE, FEP and PFA are suitable, as they combine the qualities of robustness with chemical resistance. Other materials worth considering contain tantalum.

Relativno veliki protoci u ovom izumu nisu samo povoljnosti, već je to osnovna karakteristika tijekom rada prema postupku iz izuma. Ako se protoci trebaju znatno smanjiti, vrijeme boravka u reakcijskoj komori se treba odgovarajuće povećati, a rezultat neće biti jednostavno smanjenje dobivenog proizvoda već će umjesto toga bitna sigurnost procesa biti neizvjesna i/ili količina peroksigen proizvoda će biti znatno smanjena. Ovo je zbog toga što će reakcijska smjesa biti ostavljena unutar ograničene reakcijske komore duži period na povišenim temperaturama koje se dobivaju kada se dopusti da koncentrirana sumporna kiselina regira adiabatski s vodik peroksidom. Kontroliranjem protoka u ograničenoj reakcionoj komori, moguće je postići ravnotežu koncentracije permonosumporne kiseline u reakcijskoj smjesi bez visokog razlaganja preostalog vodik peroksida, na taj način bez istovremenog stvaranja pritiska iz proizvodnje plina. Relatively large flows in this invention are not only advantages, but it is a basic characteristic during operation according to the process of the invention. If the flow rates are to be significantly reduced, the residence time in the reaction chamber should be increased accordingly, and the result will not be a simple reduction of the product obtained, but instead the essential safety of the process will be uncertain and/or the amount of peroxygen product will be significantly reduced. This is because the reaction mixture will be left inside the confined reaction chamber for an extended period at the elevated temperatures obtained when concentrated sulfuric acid is allowed to react adiabatically with hydrogen peroxide. By controlling the flow in the limited reaction chamber, it is possible to achieve a balance of the concentration of permonosulfuric acid in the reaction mixture without high decomposition of the remaining hydrogen peroxide, thus without simultaneously creating pressure from gas production.

Postupak prema izumu je povoljan za reakciju između koncentrirane sumporne kiseline i vodik peroksida u kojem je molski odnos sumporne kiseline prema vodik peroksidu posebno odabran u odnosu od 0.5:1 do 5:1 i posebno je povoljan kada je molski odnos unutar granica od 1:1 do 3:1. Koncentracija sumporne kiseline je normalno najmanje 90%/mas/mas a često od 92 do 99% mas/mas. Koncentracija korištenog vodik peroksida je normalno najmanje 50% a posebno do 60% do 75% mas/mas. U jednom broju vrlo korisnih slučajeva, ukupna količina vode unesena u dva reagensa predstavlja 25 do 40 mol % u odnosu na ukupne molove vode plus vodik peroksid plus sumporna kiselina. The process according to the invention is favorable for the reaction between concentrated sulfuric acid and hydrogen peroxide in which the molar ratio of sulfuric acid to hydrogen peroxide is specially selected in the ratio of 0.5:1 to 5:1 and is particularly favorable when the molar ratio is within the limits of 1:1 up to 3:1. The concentration of sulfuric acid is normally at least 90% w/w and often from 92 to 99% w/w. The concentration of hydrogen peroxide used is normally at least 50% and especially up to 60% to 75% w/w. In a number of very useful cases, the total amount of water introduced into the two reagents represents 25 to 40 mol % relative to the total moles of water plus hydrogen peroxide plus sulfuric acid.

Temperatura postignuta unutar reakcijske komore u mnogim slučajevima prelazi 80ºC, ali prvenstveno su reaktanti tako izabrani da efluentna temperatura proizvoda ne prelazi 100ºC. Takvo područje temperature predstavlja ono na kojem će se postupak prema izumu najefikasnije upotrijebiti. Poželjno je da se bilježi temperatura, na primjer u cilju uređivanja uvođenja reagensa koje se zadržava ako je temperatura napredovanja reakcije previsoka. The temperature reached inside the reaction chamber in many cases exceeds 80ºC, but primarily the reactants are chosen so that the effluent temperature of the product does not exceed 100ºC. Such a temperature range represents the one in which the method according to the invention will be used most efficiently. It is preferable to record the temperature, for example in order to regulate the introduction of reagents that are held back if the temperature of the reaction progress is too high.

Samo do jedne mjere, temperatura postignuta pri danom molskom odnosu sumporna kiselina: vodik peroksid se može mijenjati mijenjajući suprotno količinu upotrijebljene vode, na primjer mijenjajući koncentraciju šarže vodik peroksida. Naročito je povoljno da se odabere i kontrolira šarža reagensa u rekator tako da smjesa postigne temperaturu od oko 85º do oko 105ºC. Only to a certain extent, the temperature reached at a given molar ratio of sulfuric acid:hydrogen peroxide can be varied by changing the opposite amount of water used, for example by changing the concentration of the hydrogen peroxide batch. It is particularly advantageous to select and control the batch of reagents to the reactor so that the mixture reaches a temperature of about 85° to about 105°C.

Otopina Karo kiseline dobivena prema ovom izumu je povoljna za trenutačnu uporabu. Veličina reaktora u odnosu na brzinu proizvodnje označava da odgovor na zahtjev s oksidansom može biti ekstremno brz. The solution of Karo acid obtained according to this invention is convenient for immediate use. The size of the reactor relative to the production rate means that the response to oxidant demand can be extremely fast.

Tamo gdje je zahtjev niži od minimalnog protoka za siguran rad reaktora, tada se može raditi s prekidima, ali alternativno ili dodatno, u najmanje jednoj mjeri, volumen reakcijske komore se može smanjiti uporabom veće jezgre, zajedno s istim ili sličnim vremenom boravka. Where the requirement is lower than the minimum flow rate for safe reactor operation, then intermittent operation may be employed, but alternatively or additionally, to at least one extent, the volume of the reaction chamber may be reduced by using a larger core, along with the same or similar residence time.

U jednom posebno prikladnom postavu realizacije, proizvod se ostavi da teče direktno, na primjer pod djelovanjem gravitacije, u rezervoar druge posude u kojoj je poželjna njegova uporaba bez prolaska kroz uređaje za hlađenje. Velika brzina toka proizvoda i blizina adijabatskog reaktora reaktoru za tretiranje znači da je kašnjenje između njegove proizvodnje i unošenja u reaktor za tretiranje normalno veoma kratko. Alternativno, i u daljnjem setu povoljnih realizacija, proizvod se može ostaviti da teče kroz cjevovod postavljen u reaktor za tretiranje i pokriven tekućinom u njemu tako da se proizvod ohladi izmejnom topline kroz zidove i cjevovod. In one particularly suitable embodiment, the product is allowed to flow directly, for example under the influence of gravity, into the reservoir of another vessel in which it is desired to use it without passing through cooling devices. The high product flow rate and the proximity of the adiabatic reactor to the treatment reactor means that the delay between its production and its introduction into the treatment reactor is normally very short. Alternatively, and in a further set of advantageous embodiments, the product may be allowed to flow through a conduit placed in the treatment reactor and covered with liquid therein so that the product is cooled by heat exchange through the walls and conduit.

Ako se želi, proizvod Karo kiselina, dobivena u genratoru prema ovom izumu, može se provoditi kroz postavljeni uređaj za hlađenje ako je, na primjer, poželjno da se proizvod skladišti a ne upotrijebi odmah i u takvim uvjetima povoljno je da se postigne dovoljno hlađenje da bi se smanjila temperatura proizvoda na ispod oko 60ºC da bi se poboljšala njegova stabilnost pri skladištenju. Razumljivo je da ako je postignuta temperatura u adiabatskom generatoru oko 90ºC, tada je potrebno da se ukloni manje od polovine topline u usporedbi s održavanjem temperature stacionarnog stanja u reaktorskoj posudi od oko 30ºC ili niže. Drugo, temperaturna razlika je obično prosječno oko 60-70ºC između proizvoda iz adiabatskog generatora i generatora prema izumu s vodom za hlađenje, dok je temperaturna razlika između posude za stacionarno stanje na 30ºC i iste vode za hlađenje 15 do 25ºC, tj. manje od polovine. Ovo znači da veličina bilo kojeg toplinskog izmjenjivača treba biti samo dio, npr. 1/4 do 1/5 koja je potrebna za isti protok koristeći postupak stacionarnog stanja za dobivanje Karo kiseline. If desired, the Karo acid product obtained in the generator of the present invention may be passed through a cooling device installed if, for example, it is desirable to store the product rather than use it immediately and under such conditions it is advantageous to achieve sufficient cooling to the temperature of the product was reduced to below about 60ºC to improve its stability during storage. It is understood that if the temperature in the adiabatic generator is reached at about 90ºC, then less than half of the heat needs to be removed compared to maintaining a steady state temperature in the reactor vessel of about 30ºC or lower. Second, the temperature difference is usually about 60-70ºC on average between the product from the adiabatic generator and the generator according to the invention with cooling water, while the temperature difference between the steady state vessel at 30ºC and the same cooling water is 15 to 25ºC, i.e. less than half . This means that the size of any heat exchanger should be only a fraction, eg 1/4 to 1/5, of that required for the same flow rate using the steady state process to produce Karo acid.

Proizvod Karo kiselina dobiven postupkom prema izumu se može upotrijebiti za niz mnogih uporaba opisanih za proizvod dobiven drugim postupcima. Prema tome, može se upotrijebiti za tretiranje otpadnih voda koje sadrže nečistoće koje se mogu oksidirati, ili u ekstrakciji ili tretiranju metala ili u pročišćavanju ili u kemijskim sintezama. The Karo acid product obtained by the process according to the invention can be used for many of the uses described for the product obtained by other processes. Therefore, it can be used to treat wastewater containing oxidizable impurities, or in the extraction or treatment of metals or in purification or in chemical syntheses.

Pošto je ovaj izum opisan na opći način, jedna njegova realizacija će biti opisana detaljnije, u obliku primjera samo s pozivom na sliku koja prikazuje longitudinalni presjek aparature. Since this invention has been described in a general way, one of its realizations will be described in more detail, in the form of an example only with reference to a figure showing a longitudinal section of the apparatus.

Aparatura obuhvaća šuplji PTFE cilindar 1 unutrašnjeg promjera 20 mm i dužine 150 mm, koji je zatvoren na jednom kraju čašom 2 i na njegovom drugom kraju s nepovratnim ventilom 2 koji djeluje kao izlaz. Stupnjevanje PTFE jezgra 4, smještena koaksijalno unutar cilindra 1 i čaše 2, prvi stupanj dužine 28 mm koji ima promjer od 19 mm, drugi stupanj od 48 mm dužine koji ima promjer od 16 mm i treći stupanj 64 mm dužine koji ima promjer od 12 mm. Jezgra 4 je definirana jezgrom definiranom unutrašnjom površinom cilindra 1 stupnjevitim kružnom reakcionom komorom 5 koja završava u kratkoj cilindričnoj komori 6 blizu nepovratnom ventilu 3. Cilindar 1 ima gornji otvor za uvođenje 7 za sumpornu kiselinu koji je postavljen radijalno i okomito na drugi stupanj jezgre 4 i donjim ulaznim otvorom 8 za vodik peroksid koji je postavljen radijalno ali unazad pod kutom od 60ºC prema longitudinalnoj osi prema trećem stupnju jezgre 4. The apparatus includes a hollow PTFE cylinder 1 with an inner diameter of 20 mm and a length of 150 mm, which is closed at one end by a cup 2 and at its other end with a non-return valve 2 that acts as an outlet. Staged PTFE core 4, located coaxially within cylinder 1 and cup 2, first stage 28 mm long having a diameter of 19 mm, second stage 48 mm long having a diameter of 16 mm and third stage 64 mm long having a diameter of 12 mm . The core 4 is defined by the core defined by the inner surface of the cylinder 1 by a staged circular reaction chamber 5 that ends in a short cylindrical chamber 6 near the check valve 3. The cylinder 1 has an upper introduction opening 7 for sulfuric acid which is placed radially and perpendicularly to the second stage of the core 4 and the lower inlet 8 for hydrogen peroxide, which is placed radially but backwards at an angle of 60ºC to the longitudinal axis towards the third stage of the core 4.

U tijeku rada, sumporna kiselina se crpi u kružnu komoru 5 i tvori struju koja teče prema nepovratnom ventilu 3. Vodik peroksid se simultano crpi u kružnu komoru 5 i susreće struju sumporne kiseline suštinski pod kutom od oko 130º. Dvije tekućine nastavljaju se miješati zajedno u komori 6 i smjesa teče van kroz ventil 3. During operation, sulfuric acid is drawn into the circular chamber 5 and forms a current that flows towards the check valve 3. Hydrogen peroxide is simultaneously drawn into the circular chamber 5 and meets the sulfuric acid stream essentially at an angle of about 130º. The two liquids continue to mix together in chamber 6 and the mixture flows out through valve 3.

Primjer 1 Example 1

U ovom primjeru, otopine koncentrirane kiseline (98% mas/mas) i vodik peroksida (70 mas/mas) se crpi u aparaturu opisanu ranije s pozivom na sliku, brzinama protoka od 260 ml/min odnosno 56 ml/min, pod uvjetom da je molski odnos H2SO4 : H2O2 jednak 3.224. Smjesa dostiže temperaturu od 86ºC i sadržavala je 28.56% mas/mas peroksomonosumporne kiseline (H2SO5 i 0.73% mas/mas H2O2. In this example, solutions of concentrated acid (98% w/w) and hydrogen peroxide (70 w/w) are pumped into the apparatus described earlier with reference to the figure, at flow rates of 260 ml/min and 56 ml/min, respectively, provided that is the molar ratio H2SO4 : H2O2 equal to 3.224. The mixture reached a temperature of 86ºC and contained 28.56% w/w peroxomonosulfuric acid (H2SO5 and 0.73% w/w H2O2.

Primjer 2 Example 2

U ovom primjeru, primjer 1 je ponovljen, osim što se brzine tokova sumporne kiseline i vodik peroksida bile 360 ml/min i odnosno 43.8 ml/min, pod uvjetom da je molski odnos H2SO4 : H2O2 jednak 5.715. Smjesa dostiže temperaturu od 63ºC i sadržavala je 16,9% mas/mas peroksomonosumporne kiseline (H2SO5) i 0.24% mas/mas H2O2. In this example, example 1 was repeated, except that the flow rates of sulfuric acid and hydrogen peroxide were 360 ml/min and 43.8 ml/min, respectively, provided that the molar ratio of H 2 SO 4 : H 2 O 2 was equal to 5,715. The mixture reached a temperature of 63ºC and contained 16.9% w/w peroxomonosulfuric acid (H2SO5) and 0.24% w/w H2O2.

Primjer 3 Example 3

U ovom primjeru, primjer 1 je ponovljen, osim što su brzine tokova sumporne kiseline i vodik peroksida bile 210 ml/min odnosno 148.8 ml/min, pod uvjetom da je molski odnos H2SO4 : H2O2 jednak 0.980. Smjesa dostiže temperaturu od 104ºC i sadržavala je 39,4% mas/mas peroksomonosumporne kiseline (H2SO5) i 10.3% mas/mas H2O2. In this example, example 1 was repeated, except that the flow rates of sulfuric acid and hydrogen peroxide were 210 ml/min and 148.8 ml/min, respectively, provided that the molar ratio of H 2 SO 4 : H 2 O 2 was equal to 0.980. The mixture reached a temperature of 104ºC and contained 39.4% w/w peroxomonosulfuric acid (H2SO5) and 10.3% w/w H2O2.

Primjer 4 Example 4

U ovom primjeru, primjer 1 je ponovljen, osim što su brzine tokom sumporne kiseline i vodik peroksida bile 20 ml/min odnosno 92.8 ml/min, pod uvjetom da je molski odnos H2SO4:H2O2 jednak 1.647. Smjesa dostiže temperaturu od 108ºC i sadržavala je 43,05% mas/mas peroksomonosumporne kiseline (H2SO5) i 4.5% mas/mas H2O2. In this example, example 1 was repeated, except that the sulfuric acid and hydrogen peroxide flow rates were 20 ml/min and 92.8 ml/min, respectively, provided that the molar ratio of H2SO4:H2O2 was equal to 1.647. The mixture reached a temperature of 108ºC and contained 43.05% w/w peroxomonosulfuric acid (H2SO5) and 4.5% w/w H2O2.

Claims (19)

1. Aparatura prikladna za proizvodnju peroksomonosumporne kiseline reakcijom između koncentrirane sumporne kiseline i koncentriranog vodik peroksida koja je naznačena time, što ima zatvorenu cijevnu reakcijsku komoru koja ima ulaz za otopinu sumporne kiseline na ili susjednom jednom kraju i izlaz za reakcijsku smjesu na kraju koji je udaljen od ulaza za sumpornu kiselinu i ulaz prigodan za otopinu vodik peroksid koji je postavljen na sredini između ulaza za sumpornu kiselinu i izlaza za reakcijsku smjesu pri čemu se otopina vodik peroksida u tijeku rada unosi u tok otopine sumporne kiseline, a navedena reakcijska komora je tako ^dimenzionirana u odnosu na brzine protoka reagenasa da je ukupan protok na minutu najmanje oko 20 puta od njegovog unutrašnjeg volumena mjereno između ulaza za otopinu vodik peroksida i izlaza.1. Apparatus suitable for the production of peroxomonosulfuric acid by the reaction between concentrated sulfuric acid and concentrated hydrogen peroxide, characterized in that it has a closed tubular reaction chamber having an inlet for a sulfuric acid solution at or adjacent one end and an outlet for the reaction mixture at a remote end from the inlet for sulfuric acid and the inlet suitable for the hydrogen peroxide solution, which is placed in the middle between the inlet for sulfuric acid and the outlet for the reaction mixture, whereby the hydrogen peroxide solution is introduced into the flow of the sulfuric acid solution during operation, and the said reaction chamber is thus ^ dimensioned in relation to reagent flow rates that the total flow per minute is at least about 20 times its internal volume measured between the hydrogen peroxide solution inlet and outlet. 2. Aparatura za kontinuirano dobivanje otopine Karo kiseline, naznačena time, što sadrži cijevnu reakcijsku komoru koja ima ulaz za otopinu sumporne kiseline na ili susjednom jednom kraju, izlaz za reakcijsku smjesu na kraju koji je udaljen od ulaza i transverzalno usmjeren ulaz za otopinu vodik peroksida koji je postavljen između ulaza za sumpornu kiselinu i izlaza, pri čemu reakcijska komora obuhvaća kružno područje koje izlazi longitudinalno u blizini vodik peroksida za reagens, pri čemu se u tijeku rada otopina vodik peroksida unosi kroz njegov ulaz i direktno je transverzalno na otopinu prema otopini sumporne kiseline koja teče longitudinalno kroz kružno područje prema izlazu za reakcijsku smjesu.2. Apparatus for continuously obtaining a solution of Karo acid, indicated by the fact that it contains a tubular reaction chamber having an inlet for a sulfuric acid solution at or adjacent one end, an outlet for the reaction mixture at an end remote from the inlet and a transversally directed inlet for a hydrogen peroxide solution which is placed between the inlet for sulfuric acid and the outlet, wherein the reaction chamber includes a circular area that exits longitudinally near the hydrogen peroxide for the reagent, wherein during operation the hydrogen peroxide solution is introduced through its inlet and is directly transverse to the solution towards the solution of the sulfuric acid acid flowing longitudinally through the circular area towards the outlet for the reaction mixture. 3. Aparatura prema zahtjevu 1, naznačena time, što reakcijska komora obuhvaća kružno područje koje se prostire longitudinalno u blizini ulaza za vodik peroksid pri čemu se u radu otopina vodik peroksida uvodi kroz njegov ulaz i direktno je tranverzalan za otopinu sumporne kiseline koja teče longitudinalno kroz kružno područje prema izlazu reakcijske smjese.3. Apparatus according to claim 1, characterized by the fact that the reaction chamber includes a circular area that extends longitudinally near the hydrogen peroxide inlet, where in operation the hydrogen peroxide solution is introduced through its inlet and is directly transverse to the sulfuric acid solution that flows longitudinally through circular area towards the outlet of the reaction mixture. 4. Aparatura prema bilo kojem od prethodnih zahtjeva, naznačena time, što reakcijska komora sadrži kružno područje u blizini ulaza za reagense i cilindrično područje u blizini izlaza.4. Apparatus according to any one of the preceding claims, characterized in that the reaction chamber contains a circular area near the reagent inlet and a cylindrical area near the outlet. 5. Aparatura prema bilo kojem od prethodnih zahtjeva, naznačena time, što reakcijska komora sadrži kružno područje koje ima relativno malu širinu u blizini ulaza sumporne kiseline i relativno veću širinu u blizini ulaza vodik peroksida.5. Apparatus according to any of the preceding claims, characterized in that the reaction chamber contains a circular area having a relatively small width near the sulfuric acid inlet and a relatively larger width near the hydrogen peroxide inlet. 6. Aparatura prema bilo kojem od zahtjeva 2 do 5, naznačena time, što je kružno područje reakcijske komore formirano ubacivanjem jezgre unutar cilindrične komore.6. Apparatus according to any one of claims 2 to 5, characterized in that the circular region of the reaction chamber is formed by inserting a core inside the cylindrical chamber. 7. Aparatura prema zahtjevu 6, naznačena time, što je jezgra stacionarna.7. Apparatus according to claim 6, characterized in that the core is stationary. 8. Aparatura prema bilo kojem od prethodnih zahtjeva, naznačena time, što je ulaz za vodik peroksid nagnut unazad u struju sumporne kiseline koja teče prema izlazu.8. Apparatus according to any one of the preceding claims, characterized in that the hydrogen peroxide inlet is inclined backwards into the sulfuric acid stream flowing towards the outlet. 9. Aparatura prema zahtjevu 8, naznačena time, što je kut susreta između vodik peroksida i struje sumporne kiseline između 95 i 165°.9. Apparatus according to claim 8, characterized in that the meeting angle between the hydrogen peroxide and the stream of sulfuric acid is between 95 and 165°. 10. Aparatura za proizvodnju peroksomonosumporne kiseline, naznačena time, što je suštinski kao što je opisana ovdje obzirom na sliku.10. Apparatus for the production of peroxomonosulfuric acid, characterized in that it is essentially as described herein with reference to FIG. 11. Kontinuirani postupak za proizvodnju peroksomonosumporne kiseline reakcijom između koncentrirane sumporne kiseline i koncentriranog vodik peroksida, naznačen time, što se uvode dva reagensa pod pritiskom u zatvorenu cilindričnu komoru koja ima ulaz za otopinu sumporne kiseline na ili susjednom jednom kraju, izlaz za reakcijsku smjesu na kraju udaljenom od ulaza za sumpornu kiselinu i ulaz za otopinu vodik peroksida koji se nalazi na sredini između ulaza za sumpornu kiselinu i izlaza za reakcijsku smjesu pri čemu se otopina vodik peroksida uvodi u tok otopine sumporne kiseline, a navedena reakcijska komora je dimenzionirana u odnosu na brzine protoka reagenasa tako da je protok na minutu pri najmanje oko 20 puta njenog unutarnjeg volumena mjereno između ulaza za otopinu vodik peroksida i izlaza.11. A continuous process for the production of peroxomonosulfuric acid by the reaction between concentrated sulfuric acid and concentrated hydrogen peroxide, indicated by the fact that two reagents are introduced under pressure into a closed cylindrical chamber having an inlet for a sulfuric acid solution at or adjacent one end, an outlet for the reaction mixture at at the end far from the inlet for sulfuric acid and the inlet for the hydrogen peroxide solution located in the middle between the inlet for sulfuric acid and the outlet for the reaction mixture, whereby the hydrogen peroxide solution is introduced into the flow of the sulfuric acid solution, and the specified reaction chamber is dimensioned in relation to reagent flow rate such that the flow per minute is at least about 20 times its internal volume as measured between the hydrogen peroxide solution inlet and outlet. 12. Postupak prema zahtjevu 11, naznačen time, što se koristi karakteristična odlika bilo kojeg od zahtjeva 2 ili 3 do 10.12. The method according to claim 11, characterized in that the characteristic feature of any of claims 2 or 3 to 10 is used. 13. Postupak prema zahtjevu 11 ili 12, naznačen time, što je protok oko 40 do 80 puta njenog unutrašnjeg volumena na minutu.13. The method according to claim 11 or 12, characterized in that the flow is about 40 to 80 times its internal volume per minute. 14. Postupak prema bilo kojem od zahtjeva 11 do 13, naznačen time, što je molski odnos sumporne kiseline prema vodik peroksidu izabran u području od 0.5:1 do 5:1.14. The method according to any one of claims 11 to 13, characterized in that the molar ratio of sulfuric acid to hydrogen peroxide is chosen in the range from 0.5:1 to 5:1. 15. Postupak prema bilo kojem od zahtjeva 11 do 14, naznačen time, što je koncentracija otopine sumporne kiseline od 92 do 99 % mas/mas a koncentracija otopine vodik peroksida od 60 do 75 % mas/mas.15. The method according to any one of claims 11 to 14, characterized in that the concentration of the sulfuric acid solution is from 92 to 99% wt/wt and the concentration of the hydrogen peroxide solution is from 60 to 75% wt/wt. 16. Postupak prema bilo kojem od zahtjeva 11 do 15, naznačen time, što je ukupna količina unesene vode u dva reagensa od 25 do 40 mola.16. The method according to any one of claims 11 to 15, characterized in that the total amount of introduced water in the two reagents is from 25 to 40 moles. 17. Postupak za dobivanje peroksomonosumporne kiseline, naznačen time, što je suštinski kao što je definiran obzirom na bilo koji Primjer.17. A process for obtaining peroxomonosulfuric acid, characterized in that it is essentially as defined with respect to any Example. 18. Otopina permonosumporne kiseline, naznačena time, što je dobiven u aparaturi prema bilo kojem od zahtjeva 1 do 10 ili postupkom prema bilo kojem od zahtjeva 11 do 17.18. Permonosulfuric acid solution, characterized by the fact that it was obtained in the apparatus according to any of claims 1 to 10 or by the process according to any of claims 11 to 17. 19. Aparatura ili postupak za dobivanje otopine peroksi kiseline reakcijom između koncentrirane otopine prekursorske kiseline i koncentriranog vodik peroksida koristeći bilo koju novu karakteristiku ili bilo koju novu kombinaciju karakteristika suštinski kako je ovdje opisano.19. Apparatus or process for obtaining a peroxy acid solution by reaction between a concentrated precursor acid solution and concentrated hydrogen peroxide using any novel feature or any novel combination of features substantially as described herein.
HRP920929 1992-10-02 1992-10-02 Peroxoacid manufacture HRP920929A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP920929 HRP920929A2 (en) 1992-10-02 1992-10-02 Peroxoacid manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP920929 HRP920929A2 (en) 1992-10-02 1992-10-02 Peroxoacid manufacture

Publications (1)

Publication Number Publication Date
HRP920929A2 true HRP920929A2 (en) 1994-12-31

Family

ID=10945802

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP920929 HRP920929A2 (en) 1992-10-02 1992-10-02 Peroxoacid manufacture

Country Status (1)

Country Link
HR (1) HRP920929A2 (en)

Similar Documents

Publication Publication Date Title
EP0515767B1 (en) Process for the generation of chlorine dioxide
US5304360A (en) Peroxoacid manufacture
Lancia et al. Uncatalyzed heterogeneous oxidation of calcium bisulfite
Damm et al. Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes.
RU2481322C2 (en) Method of producing aqueous solution of glyoxylic acid
RU2430877C1 (en) Method of producing iodine heptafluoride
WO2008047864A1 (en) Process for producing monopersulfuric acid and monopersulfuric acid continuous production apparatus
Maralla et al. Process intensification using a spiral capillary microreactor for continuous flow synthesis of performic acid and it’s kinetic study
CN109320423A (en) A kind of method of micro passage reaction synthesizing nitryl compound
EP0514848B1 (en) Process and apparatus for the generation of peroxyacids
EP1433748A2 (en) Process and production reactor for the preparation of nitrogen trifluoride
HRP920929A2 (en) Peroxoacid manufacture
US4185025A (en) Continuous process for ozonizing unsaturated compounds
US5234607A (en) Wet oxidation system startup process
PL128562B1 (en) Method of continuously generating chlorine dioxide
JP4776246B2 (en) Method for producing solution containing percarboxylic acid
CA1219385A (en) Submerged oxygen inlet nozzle for injection of oxygen into wet oxidation reactor
RU2099279C1 (en) Apparatus for preparing suboxomonosulfuric acid (versions) and method of preparing peroxomonosulfuric acid
CA2244223C (en) Process for manufacturing caro's acid
US4186171A (en) Apparatus for the wet oxidation of sulphur and the capture of generated heat
CN217511832U (en) Continuous flow peroxyacetic acid synthesizer in micro-reactor
PL139817B1 (en) Method of obtaining acid fluoride by a continuous process
JP2002058986A (en) Nozzle for supercritical water and supercritical water reaction apparatus
JP2654928B2 (en) Method for producing ferric sulfate or basic ferric sulfate solution
Shah The Theoretical Analysis of Experimental Autoregrigeration Kinetic Data

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
PNAN Change of the applicant name, address/residence

Owner name: SOLVAY INTEROX LIMITED, GB

PNAN Change of the applicant name, address/residence

Owner name: SOLVAY INTEROX LIMITED, GB

ODBC Application rejected