HRP940048A2 - Process for the preparation of polypeptides having the antigenicity or antigen specificity of hepatitis b viral antigens - Google Patents
Process for the preparation of polypeptides having the antigenicity or antigen specificity of hepatitis b viral antigens Download PDFInfo
- Publication number
- HRP940048A2 HRP940048A2 HRP-136/90A HRP940048A HRP940048A2 HR P940048 A2 HRP940048 A2 HR P940048A2 HR P940048 A HRP940048 A HR P940048A HR P940048 A2 HRP940048 A2 HR P940048A2
- Authority
- HR
- Croatia
- Prior art keywords
- dna
- hepatitis
- antigenicity
- virus
- polypeptide
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 82
- 229920001184 polypeptide Polymers 0.000 title claims description 81
- 102000004196 processed proteins & peptides Human genes 0.000 title claims description 81
- 238000000034 method Methods 0.000 title claims description 66
- 108091007433 antigens Proteins 0.000 title claims description 59
- 239000000427 antigen Substances 0.000 title claims description 58
- 102000036639 antigens Human genes 0.000 title claims description 57
- 230000008569 process Effects 0.000 title description 16
- 238000002360 preparation method Methods 0.000 title description 11
- 208000006454 hepatitis Diseases 0.000 title description 4
- 231100000283 hepatitis Toxicity 0.000 title description 4
- 230000003612 virological effect Effects 0.000 title description 4
- 108020004414 DNA Proteins 0.000 claims description 100
- 239000012634 fragment Substances 0.000 claims description 86
- 108020004511 Recombinant DNA Proteins 0.000 claims description 63
- 230000014509 gene expression Effects 0.000 claims description 44
- 241000588724 Escherichia coli Species 0.000 claims description 40
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 39
- 102000053602 DNA Human genes 0.000 claims description 36
- 101710132601 Capsid protein Proteins 0.000 claims description 34
- 241000700721 Hepatitis B virus Species 0.000 claims description 32
- 230000000890 antigenic effect Effects 0.000 claims description 19
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 241000701959 Escherichia virus Lambda Species 0.000 claims description 4
- 241000233866 Fungi Species 0.000 claims description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 3
- 244000063299 Bacillus subtilis Species 0.000 claims description 2
- 101710094648 Coat protein Proteins 0.000 claims description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 claims description 2
- 101710125418 Major capsid protein Proteins 0.000 claims description 2
- 101710141454 Nucleoprotein Proteins 0.000 claims description 2
- 101710083689 Probable capsid protein Proteins 0.000 claims description 2
- 241000589516 Pseudomonas Species 0.000 claims description 2
- 210000004102 animal cell Anatomy 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 131
- 239000002773 nucleotide Substances 0.000 description 68
- 125000003729 nucleotide group Chemical group 0.000 description 67
- 210000004027 cell Anatomy 0.000 description 39
- 239000013612 plasmid Substances 0.000 description 33
- 150000001413 amino acids Chemical group 0.000 description 29
- 238000004519 manufacturing process Methods 0.000 description 25
- 108091008146 restriction endonucleases Proteins 0.000 description 24
- 239000004098 Tetracycline Substances 0.000 description 23
- 238000010367 cloning Methods 0.000 description 23
- 229960002180 tetracycline Drugs 0.000 description 23
- 229930101283 tetracycline Natural products 0.000 description 23
- 235000019364 tetracycline Nutrition 0.000 description 23
- 150000003522 tetracyclines Chemical class 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 22
- 208000015181 infectious disease Diseases 0.000 description 18
- 230000001580 bacterial effect Effects 0.000 description 14
- 230000014616 translation Effects 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 241000700605 Viruses Species 0.000 description 13
- 229960000723 ampicillin Drugs 0.000 description 13
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 208000002672 hepatitis B Diseases 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 11
- 108091081024 Start codon Proteins 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 10
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 10
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 229920001817 Agar Polymers 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 9
- 241000282412 Homo Species 0.000 description 9
- 239000008272 agar Substances 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 8
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 108010087702 Penicillinase Proteins 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000003127 radioimmunoassay Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 229910001629 magnesium chloride Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 229950009506 penicillinase Drugs 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108090000204 Dipeptidase 1 Proteins 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- 241001131785 Escherichia coli HB101 Species 0.000 description 4
- 108060002716 Exonuclease Proteins 0.000 description 4
- 101710142246 External core antigen Proteins 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 102000006635 beta-lactamase Human genes 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 102000013165 exonuclease Human genes 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 3
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108010076181 Proinsulin Proteins 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 150000002972 pentoses Chemical class 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 241001515965 unidentified phage Species 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- PCDQPRRSZKQHHS-XVFCMESISA-N CTP Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-XVFCMESISA-N 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 102000005157 Somatostatin Human genes 0.000 description 2
- 108010056088 Somatostatin Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000000951 immunodiffusion Effects 0.000 description 2
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 229960000553 somatostatin Drugs 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 101150013191 E gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000702374 Enterobacteria phage fd Species 0.000 description 1
- 241000701533 Escherichia virus T4 Species 0.000 description 1
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 208000037319 Hepatitis infectious Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 102100025354 Macrophage mannose receptor 1 Human genes 0.000 description 1
- 108010031099 Mannose Receptor Proteins 0.000 description 1
- 101000966481 Mus musculus Dihydrofolate reductase Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101000868151 Rattus norvegicus Somatotropin Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 101150010882 S gene Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 101000874347 Streptococcus agalactiae IgA FC receptor Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 108010075344 Tryptophan synthase Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000011681 asexual reproduction Effects 0.000 description 1
- 238000013465 asexual reproduction Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 239000004247 glycine and its sodium salt Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001320 lysogenic effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- -1 nucleoside triphosphates Chemical class 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- HJRIWDYVYNNCFY-UHFFFAOYSA-M potassium;dimethylarsinate Chemical compound [K+].C[As](C)([O-])=O HJRIWDYVYNNCFY-UHFFFAOYSA-M 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 230000001718 repressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229940029258 sodium glycinate Drugs 0.000 description 1
- WUWHFEHKUQVYLF-UHFFFAOYSA-M sodium;2-aminoacetate Chemical compound [Na+].NCC([O-])=O WUWHFEHKUQVYLF-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Description
Prijava je izdvojena iz naše odobrene patentne prijave P-3127/79. The application was separated from our approved patent application P-3127/79.
Područje tehnike The field of technology
Izum je iz područja postupaka za dobivanje polipeptida. Oznaka prema Međunarodnoj klasifikaciji patenata je C12N 15/00; C07K 1/00; C12Q 1/70; A61K 37/02. The invention is from the field of methods for obtaining polypeptides. The designation according to the International Classification of Patents is C12N 15/00; C07K 1/00; C12Q 1/70; A61K 37/02.
Tehnički problem Technical problem
Izumom je riješen tehnički problem postupka za dobivanje polipeptida koji su proizvedeni ekspresijom sekvencija DNK strukturnih gena, koji kodiraju za najmanje jedan polipeptid koji pokazuje antigenost ili antigensku specifičnost antigena jezgre ili površinskog antigena virusa hepatitisa B u odgovarajućim organizmima domaćina. Polipeptidi dobiveni postupkom prema izumu mogu se koristiti u detekciji virusa hepatitisa B kod ljudi i u stimulaciji stvaranja antitijela protiv ovog virusa. The invention solves the technical problem of the procedure for obtaining polypeptides that are produced by expression of DNA sequences of structural genes, which code for at least one polypeptide that shows the antigenicity or antigenic specificity of the core antigen or surface antigen of the hepatitis B virus in the respective host organisms. The polypeptides obtained by the process according to the invention can be used in the detection of the hepatitis B virus in humans and in the stimulation of the production of antibodies against this virus.
Stanje tehnike State of the art
Čini se da virus koji izaziva hepatitis B ili serumski hepatitis inficira samo ljude. Infekcija virusom hepatitisa B ("HBV") kod ljudi je široko rasprostranjena. U Sjedinjenim Američkim Državama, Velikoj Britaniji i Zapadnoj Europi, približno 0.1% svih davatelja krvi su kronični nositelji HBV. Iako smrtnost od virusnog hepatitisa nije visoka (1975. g. u Velikoj Britaniji iznosila je 3 na milion), postoje indikacije daje čak 5% populacije u Velikoj Britaniji i 15% populacije u SAD inficirano. U mnogim afričkim i azijskim zemljama, do 20% populacije su kronični nositelji HBV, a preko 50% svih odraslih osoba u ovim zemljama bilo je ili jest zaraženo s HBV. The virus that causes hepatitis B, or serum hepatitis, appears to infect only humans. Hepatitis B virus ("HBV") infection in humans is widespread. In the United States, Great Britain and Western Europe, approximately 0.1% of all blood donors are chronic carriers of HBV. Although the mortality from viral hepatitis is not high (in 1975 in Great Britain it was 3 per million), there are indications that as many as 5% of the population in Great Britain and 15% of the population in the USA are infected. In many African and Asian countries, up to 20% of the population are chronic carriers of HBV, and over 50% of all adults in these countries have been or are infected with HBV.
Infekcija hepatitisa se prenosi pomoću tri opća mehanizma: (1) parenteralnom inokulacijom inficirane krvi ili fluida krvi, bilo u velikim količinama kao kroz slučajnu ranu na koži; (2) bliskim obiteljskim ili seksualnim kontaktom; i (3) pomoću nekih supstancija, koje vrše infekciju za vrijeme trudnoće, tako da se virus prenosi na novorođenčad. Transmisija inhalacijom se javlja rijetko, ako je uopće moguća. Hepatitis infection is transmitted by three general mechanisms: (1) parenteral inoculation of infected blood or blood fluid, either in large quantities such as through an accidental skin wound; (2) by close family or sexual contact; and (3) by means of some substance, which causes infection during pregnancy, so that the virus is transmitted to the newborn. Transmission by inhalation occurs rarely, if at all.
Mnoge HBV infekcije su subkliničke. Klinička bolest obično traje tri do šest tjedana i varira prema ozbiljnosti od blagog do akutnog eksplozivnog hepatitisa koji je praćen cirozom ili smrću. Oporavak od kliničkih ili podkliničkih HBV infekcija je obično potpun. Međutim, u nekim slučajevima nastaju ozbiljne dugotrajne posljedice: (1) približno 5% akutnih infekcija vodi kroničnom nošenju antigena hepatitis B virusa s produženim potencijalom za inficiranje drugih osoba i produžavanjem oštećivanja jetre; i (2) vjerojatno je da prijašnja infekcija s HBV može potpuno ili djelomično biti odgovorna za iniciranje značajne količine HBV-seronegativnih slučajeva kroničnog aktivnog hepatitisa, ciroze i primarnog karcinoma jetre. Many HBV infections are subclinical. Clinical illness usually lasts three to six weeks and varies in severity from mild to acute explosive hepatitis followed by cirrhosis or death. Recovery from clinical or subclinical HBV infections is usually complete. However, in some cases serious long-term consequences arise: (1) approximately 5% of acute infections lead to chronic carriage of hepatitis B virus antigens with prolonged potential for infecting others and prolonging liver damage; and (2) it is likely that previous infection with HBV may be partially or fully responsible for initiating a significant number of HBV-seronegative cases of chronic active hepatitis, cirrhosis, and primary liver cancer.
Nedavni napredak u molekularnoj biologiji omogućio je uvođenje DNA kodiranja za specifične ne-bakterijske enkariotske proteine u bakterijske stanice. Uglavnom, s DNA koje su napravljene na drugi način, a ne kemijskom sintezom, konstrukcija rekombinantnih DNA molekula obuhvaća faze proizvodnje DNA kopije s jednim lancem (cDNA) pročišćenog mesindžera (mRNA) koji je kalup za željeni protein, konverziju cDNA u DNA s dva lanca; povezivanje DNA na odgovarajućem mjestu u odgovarajućem nosaču za kloniranje i transformaciju odgovarajućeg domaćina s rekombinantnom DNA molekulom. Takva transformacija omogućava da domaćin proizvodi željeni protein. Nadalje, barem u slučaju ovalbumin DNA, poznato je da odgovarajuća fuzija određene DNA za jaki bakterijski promotor ili za sekvenciju za izražavanje kontrole proizvodi veće količine željenog ovalbuminskog proteina, tj. oko 0.5 do 1% od ukupne mase proteina stanice E. coli (0. Mercereau-Puijalon et.al., "Synthesis of an Ovalbumin-Like Protein by Escherischia coli K12 Harboring A Recombinant Plasmid", Nature. 275, pp 505-510 (1978) and T.H. Fraser & B.J. Bruce, "Chicken Ovalbumin is Synthetized and Secreted by Escherichia coli". Proc. Natl. Acad. Sci. USA. 75, pp 5936-5940 (1978). Recent advances in molecular biology have enabled the introduction of DNA coding for specific non-bacterial enkaryotic proteins into bacterial cells. Basically, with DNA made by other means than chemical synthesis, the construction of recombinant DNA molecules involves the steps of producing a single-stranded DNA copy (cDNA) of a purified messenger (mRNA) that is a template for the desired protein, converting cDNA to double-stranded DNA ; linking the DNA at the appropriate site in the appropriate carrier for cloning and transformation of the appropriate host with the recombinant DNA molecule. Such a transformation enables the host to produce the desired protein. Furthermore, at least in the case of ovalbumin DNA, it is known that appropriate fusion of certain DNA to a strong bacterial promoter or to an expression control sequence produces larger amounts of the desired ovalbumin protein, i.e., about 0.5 to 1% of the total protein mass of an E. coli cell (0. Mercereau-Puijalon et.al., "Synthesis of an Ovalbumin-Like Protein by Escherischia coli K12 Harboring A Recombinant Plasmid", Nature. 275, pp 505-510 (1978) and T.H. Fraser & B.J. Bruce, "Chicken Ovalbumin is Synthesized and Secreted by Escherichia coli". Proc. Natl. Acad. Sci. USA. 75, pp 5936-5940 (1978).
Nekoliko nebakterijskih proteina i gena sintetizirano je korištenjem rekombinantne DNA tehnologije. Ovi uključuju antigenske determinante slične proteinu proinzulina štakora (L. Villa-Komaroff et.al. "A Bacterial Clone Synthetozing Proinsulin", Proc. Natl. Acad. Sci. USA. 75, pp 3727-3731 (1978), hormon rasta štakora (P.H. Seeburg et.al.. "Synthesis of Growth Hormone by Bacteria", Nature. 276, pp. 795-798 (1978), dihidrofolatnu reduktazu miševa (A.C. Y. Chang et.al.. "Phenotypic Expression in E. coli of a DNA Sequence Coding for Mouse Dihvdrofolate Reductase", Nature. 275, pp 617-624 (1978), somatostatin (K. Itakura et.al.. "Expression in Escherichia coli of a Chemically Synthetized Gene for the Hormone Somatostatin", Science. 198, 1056-1063 (1977), United Kingdom patentne prijave 2,007,657A, 2,007,676a I 2,008,123a i srodne prijave u drugim zemljama) i A i B polipeptidni nizovi čovječjeg inzulina (D.V. Goeddel et.al.. "Expression in Escherichia coli of Chemically Synthetized Genese for Human Insulin", Proc.Natl.Acad.Sci.. USA 76, pp. 106-110 (1979) i prijave Velike Britanije i druge srodne patentne prijave, supra). Several non-bacterial proteins and genes have been synthesized using recombinant DNA technology. These include antigenic determinants similar to rat proinsulin protein (L. Villa-Komaroff et.al. "A Bacterial Clone Synthetozing Proinsulin", Proc. Natl. Acad. Sci. USA. 75, pp 3727-3731 (1978), rat growth hormone ( P.H. Seeburg et.al.. "Synthesis of Growth Hormone by Bacteria", Nature. 276, pp. 795-798 (1978), mouse dihydrofolate reductase (A.C. Y. Chang et.al.. "Phenotypic Expression in E. coli of a DNA Sequence Coding for Mouse Dihvdrofolate Reductase", Nature. 275, pp 617-624 (1978), somatostatin (K. Itakura et.al.. "Expression in Escherichia coli of a Chemically Synthesized Gene for the Hormone Somatostatin", Science. 198, 1056-1063 (1977), United Kingdom Patent Applications 2,007,657A, 2,007,676a and 2,008,123a and related applications in other countries) and the A and B polypeptide chains of human insulin (D.V. Goeddel et.al.. "Expression in Escherichia coli of Chemically Synthesized Genes for Human Insulin", Proc.Natl.Acad.Sci.. USA 76, pp. 106-110 (1979) and applications from Great Britain and other related patent applications, supra).
Niti jedna od prethodnih referencija nije, međutim, usmjerena kao u ovom izumu na sintezu rekombinantne DNA takvih virusnih proteina kao što su antigeni hepatitis B virusa. None of the previous references, however, are directed as in the present invention to the synthesis of recombinant DNA of such viral proteins as hepatitis B virus antigens.
Poznato je da HBV infekcije izazivaju razvoj antitijela prema antigenima virusa. Ova antitijela su mehanizam obrane organizma od HBV infekcije. Razvoj takvih antitijela prije izlaganja ili brzo u slučaju potencijalnog izlaganja treba bitno smanjiti i savladati rast virusa i širenje u pacijentu. It is known that HBV infections cause the development of antibodies against virus antigens. These antibodies are the body's defense mechanism against HBV infection. Development of such antibodies prior to exposure or rapidly in case of potential exposure should substantially reduce and control virus growth and spread in the patient.
Međutim, problem umjetno stimuliranom razvoju antitijela prema antigenima hepatitis B virusa je ograničen interval domaćina za virus. Na primjer, iako je vrlo infektivan za ljude, eksperimentalna infekcija s hepatitis B virusom postignuta je samo kod još nekoliko primata. I, virus nije bio propagiran u tkivima. Ovaj ograničeni interval domaćina i nesposobnost da se inficiraju stanice kulture tkiva vrlo je usporio i karakterizaciju virusa i patologiju njegove infekcije i razvoj brzih sredstava za detekciju i efikasnih sredstava za kontrolu infekcije i prevenciju. However, the problem with the artificially stimulated development of antibodies against hepatitis B virus antigens is the limited host interval for the virus. For example, although it is highly infectious to humans, experimental infection with hepatitis B virus has been achieved in only a few other primates. And, the virus was not propagated in the tissues. This limited host interval and inability to infect tissue culture cells has greatly slowed both the characterization of the virus and the pathology of its infection and the development of rapid means of detection and effective means of infection control and prevention.
Iako je bilo pokušaja da se koriste autentični HBV virusni antigeni, izolirani iz žrtava HBV infekcije, za razvoj antitijela i detekciju infekcije, ova tretiranja uglavnom nisu bila pristupačna zbog ograničenog izvora aktivnih osebujnosti. Nadalje, korištenje ljudskih izvora za ove antigene nije povoljno zbog dobro poznatih problema kontaminacije u korištenju ljudskih izolata. Although there have been attempts to use authentic HBV viral antigens, isolated from victims of HBV infection, to develop antibodies and detect infection, these treatments have generally not been affordable due to the limited source of active specificities. Furthermore, the use of human sources for these antigens is not advantageous because of the well-known contamination problems in the use of human isolates.
Opis rješenja tehničkog problema Description of the solution to the technical problem
Sadašnji izum rješava probleme o kojima je govoreno osiguravanjem postupka prema izumu za proizvodnju polipeptida koji imaju antigenost virusnih antigena hepatitisa B. Postupak iz ovog izuma se karakterizira time što se kultivira domaćin transformiran s rekombinantnom DNA molekulom koja ima strukturni gen koji kodira za najmanje jedan polipeptid koji pokazuje HBV antigenost i koji ima, operativno vezanu za sebe, sekvenciju za kontrolu ekspresije, i onda se iz kulture prikuplja polipeptid. The present invention solves the problems discussed by providing a method according to the invention for the production of polypeptides having the antigenicity of hepatitis B viral antigens. The method of the present invention is characterized by culturing a host transformed with a recombinant DNA molecule having a structural gene coding for at least one polypeptide which exhibits HBV antigenicity and has, operably linked to itself, an expression control sequence, and the polypeptide is then harvested from the culture.
Pomoću našeg izuma moguće je dobiti ove HBV antigene u bitnim i nekontaminiranim količinama za pravljenje vakcine i za korištenje u detekciji virusne infekcije kao i za određivanje njegove patologije i molekularne biologije. Takvi izvori dosada nisu bili pristupačni zbog uskog intervala domaćina za virus i njegove nesposobnosti da se kultivira u kulturi tkiva. Ovi proizvodi mogu se također identificirati i okarakterizirati i korisni su ili kao što su proizvedeni u domaćinu ili poslije određene derivatizacije ili modifikacije u preparatima i postupcima za poboljšavanje proizvodnje samih ovih proizvoda kao i za detekciju HBV infekcije, što omogućuje da se prati patologija i da se stimulira proizvodnja HBV antitijela na ljudima. By means of our invention it is possible to obtain these HBV antigens in essential and uncontaminated quantities for making a vaccine and for use in the detection of viral infection as well as for determining its pathology and molecular biology. Until now, such sources have not been accessible due to the narrow host range of the virus and its inability to be cultivated in tissue culture. These products can also be identified and characterized and are useful either as produced in the host or after certain derivatization or modification in preparations and procedures for improving the production of these products themselves as well as for the detection of HBV infection, which allows pathology to be monitored and stimulates the production of HBV antibodies in humans.
Postupak iz našeg izuma se također karakterizira povezivanjem DNA sekvencije napravljene iz endogene DNA Dane djelića za drugu DNA sekvenciju napravljenu iz nekog drugog izvora osim Dane djelića. The method of our invention is also characterized by linking a DNA sequence made from the endogenous DNA of a given fragment to another DNA sequence made from a source other than the given fragment.
Naš postupak može se razlikovati od ranijih gore spomenutih postupaka po tome što nijedan od prethodnih postupaka ne koristi prirodni gen ili DNA za određeni protein za konstrukciju rekobinantne DNA molekule i proizvodnju tog proteina ili gena. Umjesto toga, oni koriste ili sintetičke gene napravljene kemijskom sintezom ili umjetne gene napravljene enzimatskim kopiranjem mRNA izolirane iz donorne stanice tako da se proizvode cDNA sekvencije. Our method may differ from the earlier methods mentioned above in that none of the previous methods use the natural gene or DNA for a particular protein to construct a recombinant DNA molecule and produce that protein or gene. Instead, they use either synthetic genes made by chemical synthesis or artificial genes made by enzymatically copying mRNA isolated from a donor cell to produce cDNA sequences.
Jedan od razloga da prirodna DNA nije prije korištena direktno u rekombinantnoj DNA sintezi proteina jest da prirodne DNA iz mnogih, viših organizama i barem nekih životinjskih virusa sadržavaju "introne" ili dopunske nukleotidne sekvencije kao dio gena. Ovi introni ne čine dio finalne poruke gena. Umjesto toga, oni se uklanjaju in vivo u višim organizmima pod djelovanjem specijalnih procesnih enzima koji djeluju na proizvod primarne transkripcije tako da se dobiva obvezna poruka (mRNA) gena. Pretpostavlja se da bakterije nisu sposobne prerađivati takve introne tako da se ne može očekivati da će prirodna DNA biti izražena u bakterijskim domaćinima, te se ne može očekivati da će ove bakterije proizvoditi željene proteine. One of the reasons that natural DNA has not previously been used directly in recombinant DNA protein synthesis is that natural DNA from many higher organisms and at least some animal viruses contain "introns" or complementary nucleotide sequences as part of the gene. These introns do not form part of the final message of the gene. Instead, they are removed in vivo in higher organisms under the action of special processing enzymes that act on the primary transcription product so that the obligatory message (mRNA) of the gene is obtained. It is assumed that bacteria are not capable of processing such introns, so natural DNA cannot be expected to be expressed in bacterial hosts, and these bacteria cannot be expected to produce the desired proteins.
Slika 1 je pojednostavljeni dijagram koji predstavlja strukturu endogene DNA Dane djelića. Pokazuje dva komplementarna DNA lanca, lanac a i b, urez u lancu a i razmak u lancu b i zatvaranje tog lanca pomoću DNA polimerazne reakcije. Figure 1 is a simplified diagram representing the structure of the endogenous DNA of Dane delić. It shows two complementary DNA strands, strand a and b, a nick in strand a and a gap in strand b, and closure of that strand using a DNA polymerase reaction.
Slika 2 je shematski prikaz poželjne realizacije iz ovog izuma: fragmenti endogene DNA izolirane iz Daje djelića kondenziraju se za E. coli penicilinarni gen na plazmidu pBR322 na Pst I mjestu. Nakon transformacije u E.coli HB101, rekombinantna DNA molekula pBR322-Pst I dG: HBV-KpnI dC usmjerava se na sintezu polipeptida koji pokazuju HBV antigenost. Figure 2 is a schematic representation of a preferred embodiment of the present invention: fragments of endogenous DNA isolated from the Daje fragment are fused to the E. coli penicillin gene on plasmid pBR322 at the Pst I site. After transformation into E. coli HB101, the recombinant DNA molecule pBR322-Pst I dG: HBV-KpnI dC is directed to the synthesis of polypeptides showing HBV antigenicity.
Slike 3-9 pokazuju nukleotidnu sekvenciju određenu za dio hepatitis B virus genoma prema ovom izumu. Sekvencija je prikazana sa zaustavnim kodonima u tri okvira kao što je naznačeno gore. Arbitrarno je označena brojevima od kodona za iniciranje za gen koji kodira za HBcAg kao što je određeno u ovom izumu. Nukleotidi - 80 do -1 predstavljaju vodeću sekvenciju koja prethodi ovom genu. Nukleotidi 1-549 predstavljaju nukleotidnu sekvenciju za gen koji kodira za unutarnji antigen hepatitis B virusa, dok je sekvencija amino-kiselina (naznačeni okvir 1) ovog antigena označena iznad te sekvencije. Nukleotidi 1437-2114 predstavljaju nukleotidnu sekvenciju određenu za gen površinskog antigena hepatitis B virusa, dok je sekvencija aminokiselina (naznačeni ovkir 3) ovog antigena opisana iznad te sekvencije. Razna restrukcijska endonukleazna mjesta raspoznavanja u ovim genima također su označena na slikama 3-9. Figures 3-9 show the nucleotide sequence determined for a portion of the hepatitis B virus genome according to the present invention. The sequence is shown with stop codons in three boxes as indicated above. It is arbitrarily numbered from the initiation codon for the gene encoding HBcAg as defined in the present invention. Nucleotides - 80 to -1 represent the leader sequence preceding this gene. Nucleotides 1-549 represent the nucleotide sequence for the gene encoding the internal antigen of the hepatitis B virus, while the amino acid sequence (marked box 1) of this antigen is indicated above that sequence. Nucleotides 1437-2114 represent the nucleotide sequence determined for the surface antigen gene of the hepatitis B virus, while the amino acid sequence (designated box 3) of this antigen is described above that sequence. The various restriction endonuclease recognition sites in these genes are also indicated in Figures 3-9.
Slika 10 je shematski prikaz postupka iz ovog izuma u kojem se rekombinantna DNA molekula koja može proizvoditi polipeptid koji pokazuje unutarnji hepatitis B virusa fragmentira i njegov fragment spaja se s poboljšanom sekvencijom za izražavanje kontrole, lac sustav. Figure 10 is a schematic representation of a process of the present invention in which a recombinant DNA molecule capable of producing a polypeptide expressing the internal hepatitis B virus is fragmented and its fragment is joined to an improved expression control sequence, the lac system.
Slika 11 je shematski prikaz postupka iz ovog izuma u kojem se rekombinantna DNA molekula iz ovog izuma fragmentira i spaja za fragment fag DNA za korištenje u lizogenizaciji stanica domaćina tako da se u njima povećava broj kopija gena. Figure 11 is a schematic representation of a process of the present invention in which a recombinant DNA molecule of the present invention is fragmented and joined to a phage DNA fragment for use in lysogenizing host cells to increase gene copy number.
Slika 12 je shematski prikaz druge realizacije postupka iz ovog izuma: rekombinantna DNA molekula iz ovog izuma koji ne proizvodi polipetid koji izražava unutarnji antigen hepatitis B virusa fragmentira se tako da se odvoji strukturni gen za HBsAg i ovaj strukturni gen se koristi za proizvodnju DNA molekule koja proizvodi HBsAg u odgovarajućem domaćinu. Figure 12 is a schematic representation of another embodiment of the method of the present invention: a recombinant DNA molecule of the present invention that does not produce a polypeptide expressing the internal antigen of the hepatitis B virus is fragmented so that the structural gene for HBsAg is separated and this structural gene is used to produce a DNA molecule that produces HBsAg in the appropriate host.
U cilju potpunijeg shvaćanja ovdje opisanog izuma, sada je dan detaljan opis. In order to more fully understand the invention described herein, a detailed description is now provided.
U opisu su korišteni sljedeći termini: The following terms are used in the description:
Nukleotid- Monomerska jedinica DNA ili RNA koja sadržava šećernu vrstu (pentoza), fosfat i dušikovu heterocikličku bazu. Baza je vezana na šećernu vrstu preko glikozidnog ugljika (1' ugljik pentoze) i ova kombinacija baze i šećera je nukleozid. Baza karakterizira nukleotid. Četiri DNA baze su adenin ("A"), guanin ("G"), citozin ("C") i timin ("T"). Četiri RNA baze su A,G,C i uracil ("U"). Nucleotide - Monomeric unit of DNA or RNA that contains a sugar species (pentose), a phosphate and a nitrogenous heterocyclic base. The base is attached to the sugar species via the glycosidic carbon (1' carbon of the pentose) and this combination of base and sugar is a nucleoside. A base characterizes a nucleotide. The four DNA bases are adenine ("A"), guanine ("G"), cytosine ("C") and thymine ("T"). The four RNA bases are A,G,C and uracil ("U").
DNA sekvencija- Linijski niz nukleotida spojenih jedan s drugim pomoću fosfodiesterskih veza između 3' i 5' ugljika susjednih pentoza. DNA sequence - A linear sequence of nucleotides connected to each other by means of phosphodiester bonds between the 3' and 5' carbons of adjacent pentoses.
Kodon- DNA sekvencija tri nukleotida (triplet) koja kodira preko mRNA jednu amino-kiselinu, translacijski polazni signal ili translacijski terminacijski signal. Na primjer, nukleotidni tripleti TTA, TTG, CTT, CTC, CTA i CTG kodiraju za amino-kiselinu leucin ("Leu"), TAG, TAA i TGA su translacijski stop signali i ATG je translacijski polazni signal. Codon - DNA sequence of three nucleotides (triplet) that encodes one amino acid, a translation initiation signal or a translation termination signal via mRNA. For example, the nucleotide triplets TTA, TTG, CTT, CTC, CTA and CTG code for the amino acid leucine ("Leu"), TAG, TAA and TGA are translational stop signals and ATG is the translational start signal.
Naznačeni okvir- Skupina kodona za vrijeme translacije mRNA u sekvencije amino-kiselina. Za vrijeme translacije mora se održavati pravilan naznačeni okvir. Na primjer, sekvencija GCTGGTTGTAAG može se prevesti u tri naznačena okvira ili faze, pri čemu svaki daje različitu sekvenciju amino-kiselina: Indicated box - A group of codons during the translation of mRNA into amino acid sequences. A proper indicated frame must be maintained during translation. For example, the sequence GCTGGTTGTAAG can be translated into three indicated frames or phases, each yielding a different amino acid sequence:
GCT GGT TGT AAG - Ala-Gly-Cys-Lys GCT GGT TGT AAG - Ala-Gly-Cys-Lys
G CTG GTT GTA AG - Leu-Val-Val G CTG GTT GTA AG - Leu-Val-Val
GC TGG TTG TAA A - Trp-Leu-(STOP) GC TGG TTG TAA A - Trp-Leu-(STOP)
Polipeptid- Linearni niz amino-kiselina povezanih jedna s drugom pomoću peptidnih veza između alfa-amino i karboksi skupina susjednih amino-kiselina. Polypeptide- A linear sequence of amino acids linked to each other by peptide bonds between the alpha-amino and carboxy groups of adjacent amino acids.
Genom- Cjelokupna DNA supstancije. Uključuje inter alia strukture gena koji kodiraju za polipeptide supstancije, kao i vezivne i interakcijske sekvencije za operator, promotor i ribozom uključujući i sekvencije kao što su Shine-Dulgano sekvencije. Genome - The entire DNA of a substance. It includes inter alia gene structures that code for substance polypeptides, as well as operator, promoter and ribosome binding and interaction sequences including sequences such as Shine-Dulgano sequences.
Strukturni gen- DNA sekvencija koja kodira preko njezinog kalupa ili mesindžer ("mRNA") sekvenciju amino-kiselina koja je karakteristična za specifični polipeptid. Structural gene - a DNA sequence that encodes through its template or messenger ("mRNA") an amino-acid sequence that is characteristic of a specific polypeptide.
Transkripcija- Postupak proizvodnje mRNA iz strukturnog gena. Transcription- The process of producing mRNA from a structural gene.
Translacija- Postupak proizvodnje polipeptida iz mRNA. Translation - The process of producing polypeptides from mRNA.
Izražavanje- Postupak kojem podliježe strukturni gen zbog proizvodnje polipeptida. To je kombinacija transkripcije i translacije. Expression- The process a structural gene undergoes to produce a polypeptide. It is a combination of transcription and translation.
Plazmid- Nekromozomska sekvencija DNA s dvostrukim lancem koja obuhvaća netaknuti "replikon" tako da se plazmid replicira u stanici domaćina. Kada se plazmid stavi u jednostanični organizam, karakteristike tog organizma se mijenjaju ili transformiraju kao posljedica DNA plazmida. Na primjer, plazmid koji nosi gen za otpornost na tetraciklin (TetR) transformira stanicu koja je prethodno bila osjetljiva na tetraciklin u stanicu koja je rezistentna na njega. Stanica koja je transformirana pomoću plazmi zove se "transformant". Plasmid- A double-stranded, nonchromosomal DNA sequence that encompasses an intact "replicon" so that the plasmid is replicated in the host cell. When a plasmid is placed in a single-celled organism, the characteristics of that organism are changed or transformed as a result of the plasmid DNA. For example, a plasmid carrying the gene for tetracycline resistance (TetR) transforms a cell previously sensitive to tetracycline into a cell resistant to it. A cell that has been transformed by plasma is called a "transformant".
Fag ili Bakteriofag- Bakterijski virusi od kojih mnogi uključuju DNA sekvencije enkapsulirane u proteinski omotač ili prevlaku ("kapsid"). U jednostaničnom organizmu fag se replicira procesom koji se zove transvekcija. Phage or Bacteriophage - Bacterial viruses, many of which include DNA sequences encapsulated in a protein coat or coating ("capsid"). In a unicellular organism, the phage replicates by a process called transvection.
Nosač za kloniranje- Plazmid, fag DNA ili druge DNA sekvencije koje se mogu replicirati u stanici domaćina koje se karakteriziraju jednim malim brojem endonukleaznih mjesta raspoznavanja na kojima se takve DNA sekvencije mogu sjeći na određeni način bez pratećeg gubitka bitne biološke funkcije DNA, npr. replikacijom, proizvodnjom proteina prevlake ili gubljenjem promotorskih ili vezivnih mjesta, i koji sadrže marker koji je prikladan u identifikaciji transformiranih stanica, npr. otpornost na tetraciklin ili ampicilin. Nosač za kloniranje se često zove vektor. Cloning carrier - Plasmid, phage DNA, or other DNA sequences that can be replicated in a host cell that are characterized by a small number of endonuclease recognition sites at which such DNA sequences can be cut in a specific manner without concomitant loss of the essential biological function of the DNA, e.g., by replication , by the production of a coat protein or by loss of promoter or binding sites, and containing a marker useful in the identification of transformed cells, eg resistance to tetracycline or ampicillin. A cloning medium is often called a vector.
Kloniranje- Proces aseksualne reprodukcije. Cloning- Process of asexual reproduction.
Rekombinantna DNA molekula- Hibridna DNA sekvencija koja obuhvaća najmanje dvije nukleotidne sekvencije, pri čemu se prva sekvencija normalno ne nalazi u prirodi zajedno s drugom. Recombinant DNA molecule - A hybrid DNA sequence comprising at least two nucleotide sequences, where the first sequence is not normally found in nature together with the second.
Sekvencija za izražavanje kontrole- DNA sekvencija nukleotida koja kontrolira i regulira izražavanje strukturnih gena, kada je operativno povezana s tim genima. Expression Control Sequence - A DNA sequence of nucleotides that controls and regulates the expression of structural genes, when operably linked to those genes.
Na slici 1 mi smo prikazali pojednostavljeni dijagram endogene DNA Dane djelića. Dane djelići se mogu detektirati u krvnoj plazmi nekih pacijenata s virusnim infekcijama hepatitisa B (D.S. Dane and C.H. Cameron, "Virus-Like Particles in Serum of Patients with Australia-Antigen Associated Hepatitis", The Lancet. 1, pp. 695-698 (1970). Za ovaj djelić se smatra da je identičan ili blisko srodan infektivnom virionu hepatitisa B. Iako je njegova veličina poznata (42 nanometra u presjeku), njegova struktura nije u potpunosti razumljiva. Uglavnom, vjeruje se da se Dane djelić sastoji od vanjskog sloja i unutarnjeg dijela. Vanjski sloj djelića uglavnom sadržava polipeptid koji je poznat kao površinski antigen hepatitisa B ("HBsAg"). Unutarnji dio (27 nanometara u presjeku sadržava drugi polipeptid, unutarnji antigen hepatitisa B ("HBcAg") kao i jednu endogenu, kružnu DNA molekulu s dvostrukim lancem od 2.1 x 106 daltona, koji sadržava razmak s jednim lancem različite dužine. Treći polipeptid, "e" antigen ("HBeAg") može također pratiti Dane djelića. Nadalje, vjeruje se da Dane djelić uključuje jednu o endogenu DNA ovisnu DNA polimerazu koja djelomično zatvara razmak s jednim lancem u endogenoj DNA polimeraznom reakcijom korištenjem DNA kao "primjer/kalup. Struktura i osobine Dane djelića i pobliže njegovog DNA bili su predmet nekoliko analiza. Npr. W.S. Robinson, "The Genome of Hepatitis B Virus", Ann.Rev.Microbiol.. 31, pp. 357-377 (1977). Međutim, stvarna struktura raznih antigena ili njihovih gena nije bila određena. In Figure 1, we have shown a simplified diagram of the endogenous DNA of Dane djelica. Dane particles can be detected in the blood plasma of some patients with hepatitis B viral infections (D.S. Dane and C.H. Cameron, "Virus-Like Particles in Serum of Patients with Australia-Antigen Associated Hepatitis", The Lancet. 1, pp. 695-698 ( 1970). This fragment is thought to be identical or closely related to the infectious hepatitis B virion. Although its size is known (42 nanometers in cross-section), its structure is not fully understood. Basically, the Dane fragment is believed to consist of an outer layer and an inner part. The outer layer of the particle mainly contains a polypeptide known as hepatitis B surface antigen ("HBsAg"). The inner part (27 nanometers in cross-section) contains another polypeptide, hepatitis B internal antigen ("HBcAg") as well as an endogenous, circular A double-stranded DNA molecule of 2.1 x 106 daltons, containing a single-stranded gap of varying length. A third polypeptide, the "e" antigen ("HBeAg") can also track Dane particles. Furthermore, it is believed that D ane fragment involves an endogenous DNA-dependent DNA polymerase that partially closes the single-stranded gap in the endogenous DNA polymerase reaction using DNA as a "template/template. The structure and properties of Dana delič and its DNA were the subject of several analyses. For example W.S. Robinson, "The Genome of Hepatitis B Virus", Ann.Rev.Microbiol.. 31, pp. 357-377 (1977). However, the actual structure of the various antigens or their genes has not been determined.
Endogena DNA Dane djelića bila je izolirana ekstrakcijom iz Dane djelića. Sastoji se od jednog lanca nukleotida konstantne dužine koji ima mali urez ili otvor u sebi (Slika 1, lanac a, ~ 3000 nukleotida) i drugog lanca nukleotida donekle promjenljive dužine (slika 1, lanac b, ~ 2000 nukleotida). Drugi lanac je komplementaran prvom i preklapa njegov izrez tako da kompletira kružnu strukturu vodikovim vezanjem između komplementarnih baza na standardan Watson Crick način. Ovo preklapanje se vidi na slici 1. Čini se da DNA polimeraza Dane djelića koristi drugi lanac endogene DNA kao primjer i prvi lanac kao kalup tako da popunjava promjenljivi razmak s nukleotidima koji su komplementarni s nukleotidima prvog lanca i daje DNA s dvostrukim lancem s oko 3000 nukleotidnih parova. Endogenous DNA of Dane djelic was isolated by extraction from Dane djelic. It consists of one nucleotide chain of constant length that has a small notch or opening in it (Figure 1, chain a, ~ 3000 nucleotides) and another nucleotide chain of somewhat variable length (Figure 1, chain b, ~ 2000 nucleotides). The second strand is complementary to the first and overlaps its cut to complete the circular structure by hydrogen bonding between the complementary bases in standard Watson Crick fashion. This overlap can be seen in Figure 1. Dane Delić's DNA polymerase appears to use the second strand of endogenous DNA as a template and the first strand as a template so that it fills in the variable gap with nucleotides that are complementary to the nucleotides of the first strand and produces a double-stranded DNA with about 3000 nucleotide pairs.
Ljudski serum iz jednog HBsAg pozitivnog, HBeAg pozitivnog donora (serotyp adym) razblažen je s jednakim volumenom tampona (0.1 M tris-HCl, 0.1 M slana otopina (NaCl), 0.1% (težina/volumen) 2-merkaptoetanola, 0.1% volovskog serumskog albumina, 0.001 M EDTA) na pH 7.4. Ovo se centrifugira na 35,000 rpm 2 sata na 4°C. Tako dobivena granula se resuspendira u 200 μl istog tampona i rasloji se na vrhu cijevi centrifuge koja sadržava 20% saharoze. Suspenzija se centrifugira na 40,000 rpm 2 sata na 4°C. Tako dobivena granula se ponovno resuspendira u 100 ml tampona (0.1 M tris-HCl, 0.1 M slana otopina) na pH 7.5. Human serum from one HBsAg positive, HBeAg positive donor (serotype adym) was diluted with an equal volume of buffer (0.1 M tris-HCl, 0.1 M saline (NaCl), 0.1% (w/v) 2-mercaptoethanol, 0.1% bovine serum albumin, 0.001 M EDTA) at pH 7.4. This is centrifuged at 35,000 rpm for 2 hours at 4°C. The granule thus obtained is resuspended in 200 μl of the same buffer and stratified on top of a centrifuge tube containing 20% sucrose. The suspension is centrifuged at 40,000 rpm for 2 hours at 4°C. The thus obtained granule is again resuspended in 100 ml of buffer (0.1 M tris-HCl, 0.1 M saline) at pH 7.5.
Dobivena granula koja sadržava DNA se tada markira s 3H ili 32P kao što su opisali P.M. Kaplan et.al.. "DNA Polymerase Associated with Human Hepatitis B Antigen", L ViroL, 12, pp. 995-1005 (1973) da se olakša njezino praćenje u kasnijim fazama postupka. Ovo markiranje nastaje reakcijom koncentriranih Dane djelića i 3H ili 32P-markiranih deoksinukleozid trifosfata (dNTP) tijekom 4 sata na 37°C. Nakon ove DNA polimerazne reakcije koja vodi do djelomičnog zatvaranja razmaka u jednom lancu u DNA (vidi sliku 1), markirani DNA materijal se rasloji na vrhu cijevi centrifuge koja sadržava 30% saharoze i centrifugira se na 42,000 rpm tijekom 3.5 sata na 4°C. The resulting granule containing DNA is then labeled with 3H or 32P as described by P.M. Kaplan et.al.. "DNA Polymerase Associated with Human Hepatitis B Antigen", L ViroL, 12, pp. 995-1005 (1973) to facilitate its follow-up at later stages of the proceedings. This labeling is produced by the reaction of concentrated Dane particles and 3H or 32P-labeled deoxynucleoside triphosphates (dNTPs) for 4 hours at 37°C. After this DNA polymerase reaction leading to partial closing of the DNA single-strand gap (see Figure 1), the labeled DNA material is layered on top of a centrifuge tube containing 30% sucrose and centrifuged at 42,000 rpm for 3.5 hours at 4°C.
DNA se tada ekstrahira s fenolom iz dobivene granule korištenjem postupka L.I. Lutwick and W.S. Robinson,, "DNA Synthesized in the Hepatitis B Dane Particle DNA Polymerase Reaction", J.Virol.. 21, pp. 96-104 (1977). Ekstrahirana DNA se tada dijalizira prema otopini 0.01 M tris-HCl, 0.001 M EDTA (pH 8.0) da se eliminira fenolno otapalo. Izolirana DNA je zatim spremna podvrći se djelovanju restrikcijskog enzima. Pokazuje specifičnu radioaktivnost od 108 cpm/ug. Gore opisani proces je shematski prikazan na slici 2. The DNA is then extracted with phenol from the resulting pellet using the procedure of L.I. Lutwick and W.S. Robinson,, "DNA Synthesized in the Hepatitis B Dane Particle DNA Polymerase Reaction", J.Virol.. 21, pp. 96-104 (1977). The extracted DNA is then dialyzed against a solution of 0.01 M tris-HCl, 0.001 M EDTA (pH 8.0) to eliminate the phenolic solvent. The isolated DNA is then ready to undergo the action of a restriction enzyme. It shows a specific radioactivity of 108 cpm/ug. The process described above is shown schematically in Figure 2.
Široki spektar kombinacija nosača za kloniranje i domaćina može se uspješno koristiti za kloniranje dvočlane DNA izolirane na gore opisani način. Na primjer, kao nosači za kloniranje mogu se, između ostalih, upotrijebiti kromozomske, nekromozomske i sintetičke sekvencije DNA, kao što su razni poznati bakterijski plazmidi - pBR322, drugi plazmidi E. coli i njihovi derivati, kao i plazmidi primjenjivi na širi opseg domaćina-RP4, fag DNA kao što su brojni derivati faga, npr., NM899 i vektori izvedeni iz kombinacija plazmida i DNA faga, kao što su plazmidi modificirani za korištenje sekvencija za izražavanje kontrole DNA faga. Domaćini koji se mogu koristiti uključuju bakterijske domaćine kao što su E. coli X1776, E. coliX2282, E, coli HB101 E. coli MRC1, sojeve Pseudomonas. Bacillus subtilis i ostalih bacila, kvasce i druge gljivice, biljne ili životinjske domaćine, kao što su kulture biljnih i životinjskih stanica i druge domaćine. Naravno, ne moraju svi domaćini biti podjednako efikasni. Izbor određene kombinacije domaćina i nosača za kloniranje treba napraviti stručnjak uzimajući u obzir gore navedena načela, ne izlazeći iz okvira izuma. A wide range of cloning vehicle and host combinations can be successfully used to clone double-stranded DNA isolated as described above. For example, chromosomal, non-chromosomal and synthetic DNA sequences, such as various known bacterial plasmids - pBR322, other E. coli plasmids and their derivatives, as well as plasmids applicable to a wider range of hosts - can be used as cloning carriers, among others. RP4, phage DNA such as numerous phage derivatives, eg, NM899 and vectors derived from combinations of plasmids and phage DNA, such as plasmids modified to use phage DNA control expression sequences. Hosts that can be used include bacterial hosts such as E. coli X1776, E. coliX2282, E. coli HB101 E. coli MRC1, Pseudomonas strains. Bacillus subtilis and other bacilli, yeasts and other fungi, plant or animal hosts, such as plant and animal cell cultures and other hosts. Of course, not all hosts have to be equally efficient. The choice of a particular combination of host and carrier for cloning should be made by a specialist taking into account the above principles, without departing from the scope of the invention.
Osim toga, za ubacivanje izolirane dvolančane DNA mogu se izabrati razna mjesta unutar svakog pojedinog vektora. Ova mjesta se obično određuju prema restrikcijskom enzimu ili endonukleazi koja ih siječe. Na primjer, u pBR322 locirano je mjesto Pst I u genu za penicilinazu, između tripleta nukleotida koji kodiraju aminokiseline 181 i 182 proteina penicilinaze. Ovo mjesto iskoristio je Villa-Komaroff et.al. supra. u sintezi proteina koji pokazuje antigenske determinante proinsulina štakora. Hind II endonukleazno mjesto raspoznavanja je između tripleta koji kodiraju za amino-kiseline 101 i 102 a Tag mjesto je na tripletu koji kodira za amino-kiselinu 45 toga proteina u pHBR322. Na sličan način, Eco RI endonukeleazno mjesto raspoznavanja za ovaj plazmid nalazi se između gena koji kodiraju za otpornost na tetraciklin i ampicilin. Ovo mjesto iskoristio je Itakura et.al. i Goedel et.al. u njihovim rekombinantnim DNA sintetskim shemama, supra. Slike 2 i 11 pokazuju u ilustrativne svrhe neka mjesta raspoznavanja u plazmidu pBR322 i fagu NM899. In addition, different sites within each vector can be chosen for insertion of isolated double-stranded DNA. These sites are usually determined by the restriction enzyme or endonuclease that cuts them. For example, in pBR322, the Pst I site in the penicillinase gene is located between the triplets of nucleotides encoding amino acids 181 and 182 of the penicillinase protein. This site was used by Villa-Komaroff et.al. above. in the synthesis of a protein showing the antigenic determinants of rat proinsulin. The Hind II endonuclease recognition site is between the triplet coding for amino acids 101 and 102 and the Tag site is on the triplet coding for amino acid 45 of that protein in pHBR322. Similarly, the Eco RI endonuclease recognition site for this plasmid is located between the genes coding for resistance to tetracycline and ampicillin. This site was used by Itakura et.al. and Goedel et al. in their recombinant DNA synthetic schemes, supra. Figures 2 and 11 show for illustrative purposes some recognition sites in plasmid pBR322 and phage NM899.
Određeno mjesto izabrano za umetanje biranog DNA fragmenta u nosaču za kloniranje radi stvaranja rekombinantne DNA molekule određuju razni faktori. Ovi uključuju veličinu i strukturu polipeptida koji se treba izraziti, susceptibilnost željenog polipeptida endoenzimatskoj degradaciji pomoću komponenata stanica domaćina i kontaminaciji njegovim proteinima, karakteristike izražavanja kao što su lokacija polaznih i zaustavnih kodona, i drugi faktori koje će stručnjaci razumjeti. Obzirom da proces izražavanja nije potpuno shvaćen, nijedan od ovih faktora ne kontrolira apsolutno samostalno izbor mjesta umetanja za određeni polipeptid. Prije na ovo mjesto utječe ravnoteža ovih faktora i za dani protein ne moraju sva mjesta biti jednako efikasna. The specific site chosen for insertion of the selected DNA fragment in the cloning vehicle to create a recombinant DNA molecule is determined by various factors. These include the size and structure of the polypeptide to be expressed, the susceptibility of the desired polypeptide to endoenzymatic degradation by host cell components and contamination by its proteins, expression characteristics such as the location of start and stop codons, and other factors that will be understood by those skilled in the art. Since the expression process is not fully understood, none of these factors absolutely independently controls the choice of insertion site for a particular polypeptide. Rather, this site is affected by the balance of these factors, and for a given protein, not all sites have to be equally efficient.
Iako je u nauci poznato nekoliko postupaka za umetanje strane DNA u nosač za kloniranje zbog stvaranja rekombinantne DNA molekule, poželjan postupak prema ovom izumu prikazan je na slici 2. On se karakterizira cijepanjem DNA Dane djelića restrikcijskom endonukleazom, spajanjem poli-deoksiC sekvencija za 3' terminala (imenovane konvencijom iz deoksiriboznog ugljika DNA šećernog kostura) rascijepljene DNA i povezivanjem izdužene DNA za nosač za kloniranje koji je bio izrezan na određenom mjestu pomoću restrikcijske endonukleaze i izdužen na 3' terminalima tog reza s polideoksiG sekvencijama, koje su komplementarne s poli-dC sekvencijama prekinute DNA. Komplementarni karakter 3' repova DNA i nosača za kloniranje omogućuje koheziju tih terminala. Although several methods are known in the art for inserting foreign DNA into a cloning vehicle to create a recombinant DNA molecule, the preferred method according to the present invention is shown in Figure 2. It is characterized by cleavage of the DNA fragment with a restriction endonuclease, joining the poly-deoxyC sequences to the 3' terminals (named by convention from the deoxyribose carbon of the DNA sugar backbone) of the cleaved DNA and ligating the elongated DNA to a cloning support that had been cut at a specific site by a restriction endonuclease and extended at the 3' termini of that cut with polydeoxyG sequences, which are complementary to poly-dC sequences of interrupted DNA. The complementary character of the 3' tails of the DNA and the cloning support enables the cohesion of these terminals.
Da bi bio koristan u postupku iz ovog izuma izabrani restrikcijski enzim za raskidanje HBV DNA ne treba prekinuti HBV DNA unutar bitnog dijela gena koji kodira za polipeptide koji pokazuju antigenost HBV, i najprikladnije treba prekidati DNA na ograničenom broju mjesta. Restrikcijski enzimi koji su bili korišteni u ovom izumu uključuju Kpn I, Bgl II, Bam HI, Ava I i Eco RI. Druge restrikcijske endonukleaze mogu se na sličan način koristiti prema ovom izumu. Njihov izbor mogu izvršiti stručnjaci u ovom području na osnovu razmatranja faktora prikazanih gore bez odstupanja od obujma ovog izuma. Slike 3-9 prikazuju neka mjesta raspoznavanja restrikcijske endonukleaze u dijelu HBV genoma. To be useful in the method of the present invention, the selected HBV DNA cleavage restriction enzyme should not cleave HBV DNA within a substantial portion of the gene encoding polypeptides exhibiting HBV antigenicity, and most preferably should cleave the DNA at a limited number of sites. Restriction enzymes that have been used in this invention include Kpn I, Bgl II, Bam HI, Ava I and Eco RI. Other restriction endonucleases may similarly be used according to the present invention. Their selection can be made by those skilled in the art based on consideration of the factors presented above without departing from the scope of this invention. Figures 3-9 show some restriction endonuclease recognition sites in part of the HBV genome.
Naravno, drugi poznati postupci za umetanje DNA sekvencija u nosače za kloniranje radi stvaranja rekombinantnih DNA molekula jednako su korisni u ovom izumu. Ovi uključuju, na primjer, direktnu ligaciju u kojoj se koristi ista restrikcijska endonukleaza za prekidanje HBV DNA i nosača za kloniranje. Ovaj postupak obvezno osigurava komplementarne krajeve za koheziju. Of course, other known methods for inserting DNA sequences into cloning vehicles to generate recombinant DNA molecules are equally useful in the present invention. These include, for example, direct ligation in which the same restriction endonuclease is used to cleave HBV DNA and the cloning vehicle. This procedure necessarily ensures complementary ends for cohesion.
Treba naravno biti jasno da nukleotidna sekvencija fragmenta gena umetnutog na izabranom restrikcijskom mjestu nosača za kloniranje može uključivati nukleotide koji nisu dio stvarnog strukturnog gena za željeni protein ili može uključivati samo fragment tog strukturnog gena. Za proizvodnju polipeptida je samo potrebno, bez obzira koja je DNA sekvencija umetnuta, da transfomirani domaćin proizvodi polipeptid koji pokazuje antigenost HBV. It should of course be understood that the nucleotide sequence of the gene fragment inserted at the selected restriction site of the cloning vehicle may include nucleotides that are not part of the actual structural gene for the desired protein or may include only a fragment of that structural gene. For polypeptide production, it is only necessary, regardless of which DNA sequence is inserted, that the transformed host produces a polypeptide that exhibits HBV antigenicity.
Rekombinantna DNA molekula koja sadržava hibridni gen može se koristiti za transformaciju domaćina tako da omogućuje da taj domaćin (transformant) izražava strukturni gen ili njegov fragment i da proizvodi polipeptid ili njegov dio za koji kodira hibridna DNA. A recombinant DNA molecule containing a hybrid gene can be used to transform a host so that it enables that host (transformant) to express the structural gene or a fragment thereof and to produce the polypeptide or part thereof encoded by the hybrid DNA.
Rekombinantna DNA molekula može se također koristiti za transformaciju domaćina tako da se omogući da domaćin prilikom replikacije proizvodi dopunske rekombinantne DNA molekule kao izvor HBV strukturnih gena i njegovih fragmenata. Izbor odgovarajućeg domaćina za bilo koju od ovih primjena kontroliran je većim brojem faktora prihvaćenih u nauci. Ovi uključuju, na primjer, kompatibilnost s izabranim vektorom, toksičnost koproizvoda, lakoću izoliranog željenog polipeptida, karakteristike izražavanja, sigurnost i cijenu. Opet, kako mehanizam izražavanja nije potpuno shvaćen, ne može se izvršiti apsolutni izbor domaćina za određenu rekombinantnu DNA molekulu ili polipeptid na osnovu bilo kojeg od ovih faktora uzetog samostalno. Umjesto toga, balans ovih faktora mora se ocjenjivati u kontekstu shvaćanja da ne moraju svi domaćini biti jednako efikasni za izražavanje određene rekombinantne DNA molekule. The recombinant DNA molecule can also be used to transform the host by allowing the host to produce complementary recombinant DNA molecules during replication as a source of HBV structural genes and its fragments. The choice of an appropriate host for any of these applications is controlled by a number of scientifically accepted factors. These include, for example, compatibility with the chosen vector, co-product toxicity, ease of isolation of the desired polypeptide, expression characteristics, safety and cost. Again, as the mechanism of expression is not fully understood, absolute host selection for a particular recombinant DNA molecule or polypeptide cannot be made based on any one of these factors taken alone. Instead, the balance of these factors must be evaluated in the context of the understanding that not all hosts may be equally efficient at expressing a particular recombinant DNA molecule.
U sadašnjoj sintezi, poželjni nosač za kloniranje je bakterijski plazmid pBR322, a poželjno restrikcijsko endonukleazno mjesto u njemu je Pst I mjesto (slika 2). Ovaj plazmid je maleni (molekularna težina približno 2.6 megadaltona) plazmid koji nosi gene rezistentnosti na antibiotik ampicilin (Amp) i tetraciklin (Tet). Plazmid je potpuno okarakteriziran (F. Bolivar et.al. "Construction and Characterization of New Cloning Vehicles II. A Multipurpose Cloning System", Gene, pp 95-113 (1977). Poželjan domaćin prema ovom izumu je E.coli HB101. In the present synthesis, the preferred cloning vehicle is the bacterial plasmid pBR322, and the preferred restriction endonuclease site therein is the Pst I site (Figure 2). This plasmid is a small (molecular weight approximately 2.6 megadaltons) plasmid that carries genes for antibiotic resistance to ampicillin (Amp) and tetracycline (Tet). The plasmid has been fully characterized (F. Bolivar et. al. "Construction and Characterization of New Cloning Vehicles II. A Multipurpose Cloning System", Gene, pp 95-113 (1977). The preferred host of this invention is E.coli HB101.
1. Stvaranje dC-izdužene DNA Dane Djelića 1. Creation of dC-elongated DNA by Dana Djelic
U stvarnoj praksi poželjne realizacije ovog izuma, DNA izolirana kao gore iz Dane djelića digerirano je s restrikcijskom endonukleazom Kpn I (približno 20 ng DNA u 10 ul 10 mM tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM 2-merkaptoetanola, 40 mM NaCl, 0.5 μl enzimskog preparata) na 37°C 90 minuta i restrikcijski enzim inaktiviran je zagrijavanjem na 70ºC 5 minuta. Poli-deoksiC sekvencije (u ilustrativne svrhe opisane samo kao CCC na slici 2) spojene su za 3' terminale proizvoda digestije standardnom reakcijom s polinukleotidnom terminalnom transferazom nakon uklanjanja rezidualnog proteina ekstrakcijom s fenolom i kloroformom (20 μ1 svaka). Fenol se ukloni iz vodene faze ekstrakcijom s eterom i DNA se staloži dodavanjem 3M natrij acetata, pH 6.5 μl) i hladnog etanola 0.1 ml. Nakon stokiranja na -70°C u tijeku jednog sata, staložena DNA se izolira centrifugiranjem na 10,000 rpm u tijeku 20 minuta i granula se otopi u 10 mM tris-HCl pH 7.5 (10 μl). Ovome se doda 3 μl 400 mM kalij-kakodilata, pH 7.0, 4 mM kobalt-klorida, 4 mM deoksicitozin trifosfata (dCTP), 200 jul/ml volovskog serumskog albumina i smjesa se inkubira na 27°C u tijeku 10 minuta s 0,5 /xl polinukleotidne terminalne transferaze (6000 u/ml) i reakcija se zaustavi dodavanjem 50 mM EDTA (1 jtl). In the actual practice of the preferred embodiment of the present invention, DNA isolated as above from the given fragment is digested with restriction endonuclease Kpn I (approximately 20 ng of DNA in 10 µl of 10 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM 2-mercaptoethanol, 40 mM NaCl, 0.5 μl of enzyme preparation) at 37°C for 90 minutes and the restriction enzyme was inactivated by heating at 70°C for 5 minutes. Poly-deoxyC sequences (described for illustrative purposes only as CCC in Figure 2) were fused to the 3' termini of the digestion products by standard reaction with polynucleotide terminal transferase after removal of residual protein by extraction with phenol and chloroform (20 μl each). Phenol is removed from the aqueous phase by extraction with ether and the DNA is precipitated by adding 3M sodium acetate, pH 6.5 μl) and cold ethanol 0.1 ml. After storage at -70°C for one hour, the settled DNA is isolated by centrifugation at 10,000 rpm for 20 minutes and the pellet is dissolved in 10 mM Tris-HCl pH 7.5 (10 μl). To this is added 3 μl of 400 mM potassium cacodylate, pH 7.0, 4 mM cobalt chloride, 4 mM deoxycytosine triphosphate (dCTP), 200 μl/ml bovine serum albumin and the mixture is incubated at 27°C for 10 minutes with 0, 5 µl of polynucleotide terminal transferase (6000 u/ml) and the reaction was stopped by adding 50 mM EDTA (1 µl).
2. Stvaranje Pst I raskinutog, dG-izduženog pBR322 2. Generation of Pst I-cleaved, dG-elongated pBR322
Plazmid pBR322 digeriran je s restrikcijskom endonukleazom Pst I (za koju plazmid sadržava jedan cilj) i proizvodi su pročišćeni ekstrakcijom s fenolom i taloženjem s etanolom na način kako je opisano gore za HBV DNA. Poli-dG sekvencije (za ilustrativne svrhe opisane samo kao GGG na slici 2) dodane su na 3' terminale linearnih pBR322 molekula pomoću terminalne transferaze kako je opisano za dodavanje poli-dC sekvencija na HBV osim što se reakcija obavlja na 37°C. Plasmid pBR322 was digested with restriction endonuclease Pst I (for which the plasmid contains one target) and the products were purified by phenol extraction and ethanol precipitation as described above for HBV DNA. Poly-dG sequences (described only as GGG in Figure 2 for illustrative purposes) were added to the 3' termini of linear pBR322 molecules using terminal transferase as described for addition of poly-dC sequences to HBV except that the reaction was performed at 37°C.
3. Kohezija G-izduženog pBR322 i C-izduženog HBV DNA 3. Cohesion of G-elongated pBR322 and C-elongated HBV DNA
Ekvimolarne količine pBR322-poli-dG i HBV DNA-poli-dC pomiješaju se zajedno i pusti se da se komplementarne sekvencije spoje inkubacijom u 100 mM NaCl, 50 mM tris-HC1, pH 7.5, 5 mM EDTA (TNE), (50 μl) na 65°C tijekom jednog sata, i zatim na 47°C jedan sat, 37°C jedan sat i 20°C jedan sat i tada se doda jednaka količina TNE i 20 μl 100 mM MgCl2, 100 mM Ca Cl2, 100 mM tris-HCl, pH 7.5. Equimolar amounts of pBR322-poly-dG and HBV DNA-poly-dC were mixed together and the complementary sequences were allowed to join by incubation in 100 mM NaCl, 50 mM Tris-HCl, pH 7.5, 5 mM EDTA (TNE), (50 μl ) at 65°C for one hour, and then at 47°C for one hour, 37°C for one hour and 20°C for one hour and then an equal amount of TNE and 20 μl of 100 mM MgCl2, 100 mM Ca Cl2, 100 mM tris-HCl, pH 7.5.
4. Transformacija E. coli HB 101 4. Transformation of E. coli HB 101
Kulture E.coli. HB 101 kompetentne za transformaciju napravljene su kako je opisano u E.M.Lederberg and S.H. Cohen: "Transformation of Salmonella typhimurium by Plasmid Deoxyribonucleic Acid", J.Bacteriol. 119, pp. 1072-1074 (1974). Dijelovi od 0.1 ml stanica miješaju se s 25 μl odstajalog DNA preparata i inkubiraju se na 0°C 20 minuta i tada na 20°C 10 minuta prije prevlačenja na L-agarne ploče koje sadržavaju tetraciklin (50 μg/ml) za inkubaciju preko noći na 37°C. Kako plazmid pBR322 uključuje gen za otpornost na tetraciklin, E.coli kolonije koje su bile transformirane s plazmidom rasti će u kulturama koje sadržavaju taj antibiotik za razliku od onih kolonija E.coli koje nisu transformirane. Zbog toga, rast kulture koja sadržava tetraciklin omogućuje izbor pravilno transformiranih domaćina. Cultures of E.coli. Transformation-competent HB 101s were made as described in E.M. Lederberg and S.H. Cohen: "Transformation of Salmonella typhimurium by Plasmid Deoxyribonucleic Acid", J.Bacteriol. 119, pp. 1072-1074 (1974). Aliquots of 0.1 ml of cells were mixed with 25 μl of the supernatant DNA preparation and incubated at 0°C for 20 min and then at 20°C for 10 min before plating onto L-agar plates containing tetracycline (50 μg/ml) for overnight incubation. at 37°C. As plasmid pBR322 includes a gene for resistance to tetracycline, E.coli colonies that have been transformed with the plasmid will grow in cultures containing that antibiotic unlike those E.coli colonies that have not been transformed. Therefore, growth of a tetracycline-containing culture allows the selection of properly transformed hosts.
5. Ispitivanje kolonija E. coli pomoću hibridizacije 5. Examination of E. coli colonies using hybridization
Bakterijske kolonije kultivirane na inkubiranim L-agarnim pločama koje sadržavaju tetraciklin testirane su na osjetljivost na ampicilin. Plazmid pBR233 uključuje gen za rezistentnost na ampicilin. Ovaj gen je predloženo mjesto za umetanje hibridnog gena. Zbog toga, kolonije koje su bile transformirane s plazmidom koji ima DNA umetnutu na izabranom mjestu raspoznavanja biti će osjetljive na ampicilin, ali će zadržati svoju otpornost na tetraciklin. E.coli. kolonije koje su bile osjetljive na ampicilin, ali rezistentne na tetraciklin su prikupljene na disk Millipore celuloznog nitratnog filtra koji je bio podržan na L-agarnim pločama koje sadržavaju tetraciklin. Nakon rasta preko noći na 37°C, Millipore filtar je prenesen na svježe L-agarne ploče koje sadržavaju tetraciklin i kloromfenikol (150 μg/ml) i inkubacija je obavljena nekoliko daljnjih sati na 37°C u cilju amplificiranja broja kopija plazmida u stanicama (slika 2). Millipore filteri su tada korišteni za hibridizaciju kolonija kako je opisano u M. Grunstein and D.S. Hogness, "Colony Hybridization: A Method for the Isolation of Cloned DNAs that Contain a Specific Gene", Proc. Natl.Acad.Sci. USA. 72, pp. 3961-3965 (1975) s 32P- markiranom HBV DNA koja je napravljena prethodno kao za sondu. Radioautografija filtra otkrila je prisutnost kolonija koje sadržavaju DNA sekvencije komplementarne s autentičnom HBV DNA. Bacterial colonies cultured on incubated L-agar plates containing tetracycline were tested for sensitivity to ampicillin. Plasmid pBR233 includes the ampicillin resistance gene. This gene is the proposed site for the insertion of the hybrid gene. Therefore, colonies that have been transformed with a plasmid having DNA inserted at the chosen recognition site will be sensitive to ampicillin but retain their resistance to tetracycline. E.coli. colonies that were sensitive to ampicillin but resistant to tetracycline were collected on a Millipore cellulose nitrate filter disk supported on L-agar plates containing tetracycline. After overnight growth at 37°C, the Millipore filter was transferred to fresh L-agar plates containing tetracycline and chloramphenicol (150 μg/ml) and incubated for a few more hours at 37°C in order to amplify the number of plasmid copies in the cells ( picture 2). Millipore filters were then used to hybridize colonies as described in M. Grunstein and D.S. Hogness, "Colony Hybridization: A Method for the Isolation of Cloned DNAs that Contain a Specific Gene", Proc. Natl.Acad.Sci. USA. 72, pp. 3961-3965 (1975) with 32 P-labeled HBV DNA made previously as a probe. Radioautography of the filter revealed the presence of colonies containing DNA sequences complementary to authentic HBV DNA.
6. Detekcija kolonija koje sintetiziraju polipeptide s HBV antigenosti 6. Detection of colonies that synthesize polypeptides with HBV antigenicity
Kolonije koje su bile rezistentne na tetraciklin, osjetljive na ampicilin i hibridizirane s autentičnom HBV DNA testirane su na njihovu sposobnost da proizvode najmanje jedan polipeptid koji pokazuje antigensku specifičnost ili antigenost HBV. Kolonije su ponovno prikupljene na Millipore filterima podržanim na L-agarnim pločama koje sadržavaju tetraciklin i inkubirane su na 37°C preko noći. Druga ploča L-agara pokrivena je s kulturom E.coli C600 (0.1 ml u 2 ml mekanog agara) inficiranom s virulentnom vrstom bakteriofaga λ vir (multiplicitet infekcije oko 1) i također rast konfluentno liziran (tj. bitno sve stanice domaćina imale su izgorjele zidove) pomoću faga (λ vir). Millipore filter koji sadržava stanice transformirane prema ovom izumu podignut je s njegove ploče i stavljen, s kolonijama prema dolje, u kontakt s površinom L-agarne ploče E. coli C600 koja je bila lizirana s X vir. Ovaj kontakt je nastavljen oko 10 minuta da se omogući infekcija stanica koje leže na Millipore filteru s λ vir. Millipore filter je zatim prenesen na svježu ploču L-agara inkubiran na 37°C još 5 sati. U međuvremenu polivinil diskovi su prevučeni s HBV antitijelima kako je opisano u S.Broome and W. Gilbert "Immunological Screening Method to Detect Specific Translation Products", Proc.Natl.Acad.Sci. USA. 75, pp. 2746-2749 (1978). Millipore filter na kojem su transformirane bakterijske kolonije sada očito bile lizirane kako bi kolonije bile u kontaktu s prevučenim polivinil diskovima i držane na 4°C 3 sata. Učinak ovog kontakta je da se svi HBV antigeni lizirani iz stanica na Millipore filteru vežu s HBV antitijelima diska. Prevučeni diskovi se odvoje od Millipore filtera i zatim isperu i inkubiraju s 125I-markiranim HBV antitijelima. Ovo inkubiranje dovodi do radioaktivnog markiranja onih mjesta na disku gdje su HBV antigeni iz Millipore filtera prethodno postali vezani pomoću HBV antitijela diska. Nakon ispiranja i zbog autobiografije, kao što su opisali Broome and Gilbert, supra. kolonije koje su proizvodile polipeptide sa specifičnošću HBV antigena locirane su imajući za referenciju radioautograf. Colonies that were tetracycline-resistant, ampicillin-susceptible, and hybridized with authentic HBV DNA were tested for their ability to produce at least one polypeptide exhibiting antigenic specificity or antigenicity of HBV. Colonies were collected again on Millipore filters supported on L-agar plates containing tetracycline and incubated at 37°C overnight. Another L-agar plate was covered with a culture of E.coli C600 (0.1 ml in 2 ml of soft agar) infected with a virulent type of bacteriophage λ vir (multiplicity of infection about 1) and also growth confluently lysed (i.e. essentially all host cells had burned walls) using phage (λ vir). A Millipore filter containing cells transformed according to this invention was lifted from its plate and placed, colony side down, in contact with the surface of an E. coli C600 L-agar plate that had been lysed with X vir. This contact was continued for about 10 min to allow infection of the cells lying on the Millipore filter with λ vir. The Millipore filter was then transferred to a fresh L-agar plate incubated at 37°C for another 5 hours. Meanwhile polyvinyl discs were coated with HBV antibodies as described in S.Broome and W. Gilbert "Immunological Screening Method to Detect Specific Translation Products", Proc.Natl.Acad.Sci. USA. 75, pp. 2746-2749 (1978). The Millipore filter on which the transformed bacterial colonies were now apparently lysed to bring the colonies into contact with the coated polyvinyl discs and kept at 4°C for 3 hours. The effect of this contact is that all HBV antigens lysed from the cells on the Millipore filter bind with the HBV antibodies of the disc. The coated disks are separated from Millipore filters and then washed and incubated with 125I-labeled HBV antibodies. This incubation leads to radiolabeling of those sites on the disc where the HBV antigens from the Millipore filter have previously become bound by the disc's HBV antibodies. After washout and for autobiography, as described by Broome and Gilbert, supra. colonies that produced polypeptides with HBV antigen specificity were located using the radioautograph as a reference.
Korištenje polipeptida i gena prozvedenih iz rekombinantnih DNA molekula u detekciji prisustva HBV antitijela kod ljudi The use of polypeptides and genes derived from recombinant DNA molecules in the detection of the presence of HBV antibodies in humans
Polipeptidi koji pokazuju HBV antigenost i strukturni geni i fragmenti koji kodiraju za njih mogu se koristiti u postupcima i kompletima opreme namijenjenim detekciji prisutnosti HBV antitijela kod ljudi pa se tako raspoznaju ljudi i uzorci krvi koji su inficirani ovim virusom. Polypeptides showing HBV antigenicity and structural genes and fragments that code for them can be used in procedures and equipment sets intended to detect the presence of HBV antibodies in humans, thus identifying people and blood samples infected with this virus.
Na primjer, HBcAg proizveden domaćinima koji su bili transformirani pomoću rekombinantnih DNA molekula iz ovog izuma može se koristiti u imunološkim dijagnostičkim testovima koji su trenutno pristupačni za detekciju hepatitis B virusa, tj. u radioimunoeseju ili ELISA (test enzimom vezanog imunosorbenta). U jednom tipu radioimunoeseja, antitijela anti-unutarnjeg antigena, kultivirano u laboratorijskoj životinji, spoji se na krutu fazu, na primjer, unutrašnjost epruvete. Tada se doda HBcAg u epruvetu tako da se veže s antitijelom. Cijevi koja je prevučena s kompleksom antigen-antitijela doda se uzorak seruma pacijenta, zajedno s poznatom količinom HBV anti-unutarnjeg tijela markiranog s takvim radioaktivnim izotopom kao što je radioaktivni jod. Bilo koje HBV antitijelo u serumu pacijenta takmičit će se s markiranim antitijelom za slobodna vezivna mjesta na kompleksu antigen-antitijelo. Nakon što se serumu jednom dopusti da reagira višak, tekućine se odvoji, epruveta se ispere i mjeri se količina radioaktivnosti. Pozitivan rezultat, tj. da pacijentov serum sadržava HBV antitijelo, naznačen je niskim odbrojavanjem radioaktivnosti. U jednom tipu ELISA testa, mikrotitarska ploča se prevuče s HBcAg i doda se uzorak seruma pacijenta. Nakon razdoblja inkubacije koji omogućava interakciju bilo kojeg antitijela s antigenom, ploča se ispere i preparat anti-humanih antitijela kultivira se u laboratorijskoj životinji, ovome se doda neki enzimski marker, inkubira se da se omogući vršenje reakcije, i ploča se tada ponovno ispere. Nakon toga, enzimski supstrat se doda na mikrotitarsku ploču i inkubira se tijekom vremenskog perioda koji omogućuje enzimu da radi na supstratu, i onda se mjeri adsorbancija finalnog preparata. Velika promjena u adsorbanciji označava pozitivan rezultat. For example, HBcAg produced by hosts that have been transformed with the recombinant DNA molecules of the present invention can be used in immunological diagnostic tests currently available for the detection of hepatitis B virus, i.e., radioimmunoassay or ELISA (enzyme-linked immunosorbent assay). In one type of radioimmunoassay, an anti-internal antigen antibody, cultured in a laboratory animal, binds to a solid phase, for example, the inside of a test tube. HBcAg is then added to the test tube so that it binds with the antibody. A sample of the patient's serum is added to a tube coated with the antigen-antibody complex, along with a known amount of HBV anti-intrinsic antibody labeled with such a radioactive isotope as radioactive iodine. Any HBV antibody in the patient's serum will compete with the labeled antibody for free binding sites on the antigen-antibody complex. After allowing the serum to react in excess once, the liquid is separated, the tube is washed, and the amount of radioactivity is measured. A positive result, i.e. that the patient's serum contains HBV antibody, is indicated by a low radioactivity count. In one type of ELISA, a microtiter plate is coated with HBcAg and a patient's serum sample is added. After an incubation period that allows any antibody to interact with the antigen, the plate is washed and the anti-human antibody preparation is cultured in a laboratory animal, some enzymatic marker is added to this, incubated to allow the reaction to take place, and the plate is then washed again. After that, the enzyme substrate is added to the microtiter plate and incubated for a period of time that allows the enzyme to work on the substrate, and then the absorbance of the final preparation is measured. A large change in adsorptivity indicates a positive result.
In vivo aktivnost polipeptida proizvedenih iz rekombinantnih DNA molekula In vivo activity of polypeptides produced from recombinant DNA molecules
Za testiranje biološke aktivnosti antigenskih polipeptida translatiranih s rekombinatne DNA molekule u E.coli i u ovom izumu, sterilni ekstrakti bakterijskih stanica koji su pokazali izražavanje HBeAg, injektirani su kunićima nakon miješanja s jednakim volumenom Freund dodatka. Dvije životinje primile su sirovi bakterijski ekstrakt, a dvjema su dani uzorci istog ekstrakta nakon frakcioniranja na Sephadex 650 stupcu. Dopunske injekcije istog uzorka, koji je bio zamrznut i stokiran (uz zadržavanje pune antigenske aktivnosti) dane su dvije i pet tjedana nakon prve injekcije. Životinje su iskrvarile u intervalima nekoliko nedjelja nakon početne injekcije. To test the biological activity of antigenic polypeptides translated from recombinant DNA molecules in E.coli and in this invention, sterile extracts of bacterial cells that showed expression of HBeAg were injected into rabbits after mixing with an equal volume of Freund's adjunct. Two animals received the crude bacterial extract, and two were given samples of the same extract after fractionation on a Sephadex 650 column. Additional injections of the same sample, which had been frozen and stored (retaining full antigenic activity) were given two and five weeks after the first injection. Animals were bled at intervals of several weeks after the initial injection.
Izvršeni su imunodifuzijski eksperimenti, korištenjem postupka koji je opisan u O.Ouchterlony, "Immunodiffusion and Immunoelectrophoresis", u Handbookof Experimental Immunology (D.W. Weir ed.) (Blackwell Scientific Publications, Oxford and Edinburgh) chap. 19 (1967) zbog usporedbe seruma kunića (antitijela) s unutarnjim antitijelom humanog hepatitisa B virusa ("HBcAb") korištenjem HBcAg izvedenog iz ljudske jetre (BJ. Cohen and Y.E. Cossart, "Application of a Screening test for Antibody to Hepatitis B Core Antigen", J.Clin.Path.. 30, pp. 709-713 (1977). Sva četiri seruma kunića dala su precipitin linije s HBCAg koje su istovjetne onima načinjenim između HBcAg i HBcAb izvedenim iz humanih izvora. Zbog toga je unutarnji antigen sintetiziran u E. coli s rekombinantnim DNA molekulama iz ovog izuma serološki aktivan in vivo. Ova aktivnost utvrđuje praktičnost preparata i postupaka korištenjem virusnih antigena sintetiziranih u mikrobnim stanicama za stimuliranje stvaranja antitijela kod ljudi. Takvi preparati i postupci karakteriziraju se polipeptidima koji su proizvedeni u domaćinima transformiranim pomoću rekombinantnih DNA molekula napravljenih prema izumu. Ovi polipeptidi koristit će se samostalno ili s dobro poznatim farmaceutski prihvatljivim nosačima kao što su slane otopine ili drugi aditivi koji su u nauci prihvaćeni za korištenje u preparatima i postupcima za tretiranje i prevenciju virusnih infekcija kod ljudi. Immunodiffusion experiments were performed using the procedure described in O. Ouchterlony, "Immunodiffusion and Immunoelectrophoresis", in Handbook of Experimental Immunology (D.W. Weir ed.) (Blackwell Scientific Publications, Oxford and Edinburgh) chap. 19 (1967) for comparison of rabbit serum (antibody) with internal human hepatitis B virus antibody ("HBcAb") using HBcAg derived from human liver (BJ. Cohen and Y.E. Cossart, "Application of a Screening test for Antibody to Hepatitis B Core Antigen ", J.Clin.Path.. 30, pp. 709-713 (1977). All four rabbit sera gave precipitin lines with HBCAg identical to those formed between HBcAg and HBcAb derived from human sources. Therefore, the internal antigen was synthesized in E. coli with recombinant DNA molecules of the present invention serologically active in vivo. This activity establishes the practicality of preparations and methods using viral antigens synthesized in microbial cells to stimulate antibody formation in humans. Such preparations and methods are characterized by polypeptides that are produced in transformed hosts using recombinant DNA molecules made according to the invention These polypeptides will be used alone or with a well-known pharmaceutical agent flexible carriers such as saline solutions or other additives that are scientifically accepted for use in preparations and procedures for the treatment and prevention of viral infections in humans.
Kako je ranije naznačeno, restrikcijski enzimi koji se razlikuju od Kpn I/Pst I kombinacije opisane gore mogu se korisno upotrijebiti u pravljenju rekombinantnih DNA molekula iz ovog izuma. Druga restrikcijska mjesta u plazmidu pBR322 i dio HBV genoma opisani su na slikama 2 i 3. U ilustraciji ove alternative, ali u manje poželjnim realizacijama, prikazani su sljedeći primjeri. As previously indicated, restriction enzymes other than the Kpn I/Pst I combination described above may be usefully employed in making the recombinant DNA molecules of the present invention. Other restriction sites in plasmid pBR322 and part of the HBV genome are described in Figures 2 and 3. In illustration of this alternative, but in less preferred embodiments, the following examples are shown.
BAH HI,ECO RI,BGL II-PST I kombinacije BAH HI, ECO RI, BGL II-PST I combinations
HBV DNA fragmenti proizvedeni korištenjem Bam HI Eco RI i Bgl II, za razliku od onih koji su proizvedeni pomoću Kpn I, nisu se mogli prikladno direktno trasirati za koheziju zbog prisutnosti kratkih 5' projekcija s jednim lancem. Oni su zbog toga tretirani s X egzonukleazom da se uklone ove projekcije prije dodavanja poli-dC sekvencija na 3' terminalima. Ovo je izvršeno inkubacijom restriktivne DNA (10 μl otopine kako je opisano prije) s 15 μl 100 mM natrijevog glicinata, pH 9.5, 10 mM MgCl2, 100 μg/ml volovskog serumskog albumina, 5 μl λ egzonukleaze na 0°C za 1.5 sat. Smjesa se tada ekstrahira s fenolom i kloroformom i postupak se nastavi. U preparatu u kojem je korišten Bam HI, kasniji radioimunoesej je potvrdio proizvodnju polipeptida s HBV antigenskom specifičnošću. HBV DNA fragments produced using Bam HI Eco RI and Bgl II, unlike those produced using Kpn I, could not be conveniently traced directly for cohesion due to the presence of short 5' single-stranded overhangs. They were therefore treated with X exonuclease to remove these projections before adding poly-dC sequences at the 3' termini. This was done by incubating restriction DNA (10 μl solution as described before) with 15 μl 100 mM sodium glycinate, pH 9.5, 10 mM MgCl2, 100 μg/ml bovine serum albumin, 5 μl λ exonuclease at 0°C for 1.5 hours. The mixture is then extracted with phenol and chloroform and the process is continued. In the preparation in which Bam HI was used, subsequent radioimmunoassay confirmed the production of polypeptides with HBV antigenic specificity.
Direktna ligacija: ECO RI-ECO RI I BAM HI-BAM HI Direct ligation: ECO RI-ECO RI AND BAM HI-BAM HI
Umjesto trasiranja DNA fragmenata za koheziju, kako je opisano gore, direktna ligacija fragmenata gena može se koristiti u postupcima iz ovog izuma. Na primjer, u dva daljnja preparata HBV DNA (20 ng) je bila ograničena s restrikcijskom endonukleazom Eco RI ili BAM HI u 10 mM tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM 2-merkaptoetanola, 50 mM NaCl (10 μl) na 37°C tijekom 1,5 sata i pomiješana je s viškom pBR322 koja je bila inkubirana s istim enzimima pod identičnim uvjetima. Dodana je koncentrirana puferska otopina (660 mM tris-HCl, pH 7.5, 100 mM MgCl2, 10 mM EDTA, 100 mM 2-merkaptoetanola, 400 mM NaCl, 1 mM ATP) (2 μl) i smjesa je inkubirana s T4 DNA ligazom (0.5 μl) na 10°C 3 sata, nakon čega na 0°C najmanje 24 sata. Otopina je razblažena na 0.1 ml s 10 mM tris-HCl, pH 7.5 i korištena je za transformaciju kompetentnih kultura E.coli HB101 kao stoje opisano gore. U slučaju Bam HI napravljenih rekombinantnih DNA molekula, kolonije su testirane, prije ispitivanja za hibridizaciju, na osjetljivost prema tetraciklinu, a ne ampicilinu, zato što je cilj za Pam HI u pBR 322 unutar gena koji kodira rezistentnost na tetracilin pa zato uspješno umetanje na ovom mjestu raspoznavanja dovodi do gubljenja ove rezistentnosti umjesto rezistentnosti na ampicilin kao u slučaju umetanja na Pst I mjestu. Instead of tracing DNA fragments for cohesion, as described above, direct ligation of gene fragments can be used in the methods of the present invention. For example, in two further preparations, HBV DNA (20 ng) was restricted with restriction endonuclease Eco RI or BAM HI in 10 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM 2-mercaptoethanol, 50 mM NaCl (10 μl ) at 37°C for 1.5 hours and was mixed with an excess of pBR322 that had been incubated with the same enzymes under identical conditions. Concentrated buffer solution (660 mM Tris-HCl, pH 7.5, 100 mM MgCl2, 10 mM EDTA, 100 mM 2-mercaptoethanol, 400 mM NaCl, 1 mM ATP) (2 μl) was added and the mixture was incubated with T4 DNA ligase ( 0.5 μl) at 10°C for 3 hours, after which at 0°C for at least 24 hours. The solution was diluted to 0.1 ml with 10 mM Tris-HCl, pH 7.5 and used to transform competent cultures of E.coli HB101 as described above. In the case of Bam HI-made recombinant DNA molecules, colonies were tested, prior to the hybridization assay, for sensitivity to tetracycline, not ampicillin, because the target for Pam HI in pBR 322 is within the gene encoding tetracycline resistance, hence the successful insertion on this at the recognition site leads to loss of this resistance instead of resistance to ampicillin as in the case of insertion at the Pst I site.
U slučaju rekombinantnih DNA molekula napravljenih via Eco RI mjesta, kolonije su testirane, prije ispitivanja na hibridizaciju, na rezistentnost i prema ampicilinu i prema tetraciklinu zato što je cilj za Eco RI u pBR322 između gena koji kodiraju rezistentnost prema tetraciklinu i ampicilinu ili tetraciklinsku rezistentnost nakon hibridnog DNA umetanja na ovom mjestu. In the case of recombinant DNA molecules made via Eco RI sites, colonies were tested, prior to hybridization testing, for both ampicillin and tetracycline resistance because the target for Eco RI in pBR322 is between the genes encoding tetracycline and ampicillin resistance or tetracycline resistance after of hybrid DNA insertion at this site.
Primjeri mikroorganizama koji su napravljeni pomoću ovdje opisanih postupaka su kulture deponirane u Culture Collection of the Microbiological Research Establishment at Porton Dwn 15. prosinca, 1978 i identificirani su kao pBR322-HBV-A do F. Examples of microorganisms made using the procedures described herein are cultures deposited in the Culture Collection of the Microbiological Research Establishment at Porton Dwn on December 15, 1978 and identified as pBR322-HBV-A to F.
Specifično ove kulture se karakteriziraju na sljedeći način: Specifically, these cultures are characterized as follows:
A: E.coli HB 101/pBR322 -Pst I dG:HBV -Kpn I dC: A: E.coli HB 101/pBR322 -Pst I dG:HBV -Kpn I dC:
TetR AmpS HBV+ VA+ TetR AmpS HBV+ VA+
B: B.coli HB 101/pBR322 -Pst I dG:HBV -Bani HI dC: B: B.coli HB 101/pBR322 -Pst I dG:HBV -Bani HI dC:
TetR AmpS HBV+ VA+ TetR AmpS HBV+ VA+
C: E.coli HB 101/pBR322 -Pst I dg: HBV -Bgl II dC: C: E.coli HB 101/pBR322 -Pst I dg: HBV -Bgl II dC:
TetR AmpS HBV+ TetR AmpS HBV+
D: E.coli HB 101pBR322 -Pst I dg:HBV -Eco RI dC: D: E.coli HB 101pBR322 -Pst I dg:HBV -Eco RI dC:
TetR AmpS HBV+ TetR AmpS HBV+
E: E.coli HB 101/pBR322 -Bam HI:HBV -Barn HI E: E. coli HB 101/pBR322 - Bam HI: HBV - Barn HI
TetR AmpS HBV+ TetR AmpS HBV+
F: E.coli HB 101/pBR322 -Eco RI-.HBV -Eco RI F: E.coli HB 101/pBR322 -Eco RI-.HBV -Eco RI
TetR AmpS HBV+ TetR AmpS HBV+
Dijelovi ovih istovjetnih kultura također su deponirani u Culture Collection of the National Collection of Industrial Bacteria, Aberdeen, Scotland, 19 prosinca 1979. Portions of these identical cultures were also deposited in the Culture Collection of the National Collection of Industrial Bacteria, Aberdeen, Scotland, 19 December 1979.
Gornja nomenklatura za kulture je opis te kulture kako sijedi: Domaćin/nosač za kloniranje s naznakom izduženja nukleotida (ako ga ima): restrikcijsko mjesto u hepatitis B virusu s naznakom izduženja (ako ga ima): rezistentnost (R) ili senzitivnost (S) prema tetraciklinu (Tet) i ampicilinu (Amp), pozitivna hibridizacija prema HBV DNA u testu hibridizacije kolonija, supra. (HBV+) i proizvodnja polipeptida koji pokazuje antigenost HBV, supra. (VA+). Korištenjem ove nomenklature kultura pBR322-HBV-A označava kulturu E.coli HB 101 koja sadržava kao plazmid rekombinantnu DNA molekulu koja obuhvaća pBR322 prekinut na Pst I mjestu i izdužen s poli-dC repom na 3' terminalima, pri čemu kultura pokazuje rezistentnost prema tetraciklinu, senzitivnost prema ampicilinu, pozitivan test hibridizacije HBV DNA i proizvodi polipeptid koji pokazuje HBV antigenost. The above nomenclature for cultures is a description of that culture as grayed out: Host/cloning carrier with indication of nucleotide elongation (if present): restriction site in hepatitis B virus with indication of elongation (if present): resistance (R) or sensitivity (S) to tetracycline (Tet) and ampicillin (Amp), positive hybridization to HBV DNA in the colony hybridization test, supra. (HBV+) and the production of a polypeptide showing HBV antigenicity, supra. (VA+). Using this nomenclature, the pBR322-HBV-A culture means an E.coli HB 101 culture containing as a plasmid a recombinant DNA molecule comprising pBR322 interrupted at the Pst I site and extended with a poly-dC tail at the 3' termini, whereby the culture shows resistance to tetracycline , sensitivity to ampicillin, positive HBV DNA hybridization test and produces a polypeptide that shows HBV antigenicity.
Naravno, treba biti jasno da hibridni mikroorganizmi, rekombinantne DNA molekule i postupci koji su na njih primjenljivi nisu ograničeni na one koji su opisani u poželjnoj gornjoj realizaciji. Umjesto toga, hibridni organizmi rekombinantne DNA molekule i polipeptidi se mogu modificirati za vrijeme proizvodnje ili kasnije pomoću poznatih postupaka s dobrom prednošću. Na primjer, mogu se koristiti efikasnije sekvencije za kontrolu izražavanja za transkripciju HBV gena ili hibridnih gena, mogu se uvesti mutacije za smanjivanje sinteze nepoželjnih genskih proizvoda, mogu se smanjiti nivoi proteaze u stanicama domaćina, termo-inducirajući lizogeni koji sadržavaju HBV gene mogu se integrirati u kromosom domaćina ili se mogu provesti druge modifikacije i postupci za povećanje broja kopija gena u stanici ili za povećanje produktivnosti stanice u proizvodnji željenih polipeptida. Of course, it should be understood that hybrid microorganisms, recombinant DNA molecules and methods applicable thereto are not limited to those described in the preferred embodiment above. Instead, hybrid organisms of recombinant DNA molecules and polypeptides can be modified during production or later using known methods to good advantage. For example, more efficient expression control sequences can be used for transcription of HBV genes or hybrid genes, mutations can be introduced to reduce synthesis of unwanted gene products, protease levels in host cells can be reduced, thermo-inducible lysogens containing HBV genes can be integrated into the host chromosome or other modifications and procedures can be carried out to increase the number of gene copies in the cell or to increase the productivity of the cell in the production of the desired polypeptides.
Povrh njihove primjene za proizvodnju polipeptida koji pokazuju HBV antigenost, hibridni mikroorganizmi iz ovog izuma su također korisni za proizvodnju velikih količina DNA koja sadrži sav ili dio genoma za hepatitis B virus. Na primjer, amplifikacija, npr. dodavanjem kloramfenikola u podlogu za rast kada je gustoća stanica dostigla prikladan nivo, ili korištenjem mutacija za sprečavanje cijepanja bakteriofagnih hibrida koji sadržavaju HBV sekvencije omogućava pravljenje HBV DNA u količinama koje prije toga nisu bile pristupačne. In addition to their use for the production of polypeptides exhibiting HBV antigenicity, the hybrid microorganisms of the present invention are also useful for the production of large quantities of DNA containing all or part of the hepatitis B virus genome. For example, amplification, eg by adding chloramphenicol to the growth medium when the cell density has reached a suitable level, or by using mutations to prevent the cleavage of bacteriophage hybrids containing HBV sequences allows the production of HBV DNA in quantities not previously accessible.
HBV DNA načinjena na ovaj način može se koristiti za određivanje sekvencije nukleotida genoma i na osnovu toga sekvencije gena i amino-kiselina HBV antigena i samih strukturnih gena. Poznavanju ovih sekvencija pomaže razumijevanje biologije hepatitis B virusa i omogućava da se modifikacije koje su opisane gore koriste s najboljom prednošću. HBV DNA made in this way can be used to determine the nucleotide sequence of the genome and, based on that, the sequence of the genes and amino acids of the HBV antigen and the structural genes themselves. Knowledge of these sequences aids in understanding hepatitis B virus biology and allows the modifications described above to be used to best advantage.
Pravljenje mape DNA fragmenta i određivanje sekvencije nukleotida Creating a DNA fragment map and determining the nucleotide sequence
1. Hepatitis B unutarnji antigen 1. Hepatitis B internal antigen
Za analizu sekvencije izabrana je serija rekombinantnih DNA molekula, načinjenih prema postupcima koji su opisani gore, koja je dala stanicama njihovog domaćina sposobnost sintetiziranja HBcAg kao što je detektirano radioimunoesejom u krutoj fazi. Načinjeni su fragmenti iz ovih rekombinantnih DNA molekula digeriranjem s odgovarajućim restrikcijskim enzimima i fragmenti su markirani na njihovim 5' terminalima s λ -32P) ATP i T4 polunukleotidnom kinazom. Zatim su određene nukleotidne sekvencije svakog fragmenta pomoću dobro poznatih kemijskih degradativnih postupaka (A.M.Maxam i W.Gilbert, "A New Method for Sequencing DNA", Proc.Nat.Acad.Sci.USA. 74, pp. 560-564, (1977). Dobivena nukleotidna sekvencija opisana je na slikama 3-9. Kao referencija, sekvencija je označena brojevima od A ATG translacijskog inicirajućeg kodona unutarnjeg gena. Nukleotidna sekvencija gena za HBcAg a i sekvencija amino-kiselina za polipeptid koji je izveden iz ovog gena (naznačeni okvir 1) opisana je na slikama 3-9 između nukleotida 1-549. Veličina polipeptida za koji kodira ovaj gen je bliska molekularnoj težini 19000 primijećenoj za unutarnje antigene iz Dane djelića. Međutim, sadašnje strukturno određivanje ne isključuje mogućnost da se neke aminokiseline mogu odcijepiti s amino terminala ovog polipeptida in vivo za vrijeme stvaranja autentičnog antigena. Ova struktura također ne uzima u obzir bilo koje druge daljnje modifikacije na polipeptidu izazvane njegovom interakcijom s drugim ljudskim enzimima, npr. s onim enzimima koji vrše glikozoliranje proteina. Zbog toga, polipeptidna struktura kako je ovdje određena može biti identična strukturi HBcAg nađenoj in vivo. ali će ipak inducirati vrlo sličnu, ako ne istovjetnu imuno reakciju. A series of recombinant DNA molecules, made according to the procedures described above, were chosen for sequence analysis, which gave their host cells the ability to synthesize HBcAg as detected by solid phase radioimmunoassay. Fragments were made from these recombinant DNA molecules by digestion with appropriate restriction enzymes and the fragments were labeled at their 5' termini with λ -32P) ATP and T4 half-nucleotide kinase. The nucleotide sequences of each fragment were then determined using well known chemical degradative procedures (A.M.Maxam and W.Gilbert, "A New Method for Sequencing DNA", Proc.Nat.Acad.Sci.USA. 74, pp. 560-564, (1977 ). The resulting nucleotide sequence is described in Figures 3-9. For reference, the sequence is numbered from A ATG to the translation initiation codon of the internal gene. The nucleotide sequence of the gene for HBcAg a and the amino acid sequence of the polypeptide derived from this gene (indicated box 1) is described in Figures 3-9 between nucleotides 1-549. The size of the polypeptide encoded by this gene is close to the molecular weight of 19000 observed for internal antigens from the Dana fragment. However, the current structural determination does not exclude the possibility that some amino acids may be cleaved with of the amino terminus of this polypeptide in vivo during authentic antigen formation.This structure also does not account for any other further modifications to the polypeptide caused by by its interaction with other human enzymes, for example with those enzymes that carry out protein glycosylation. Therefore, the polypeptide structure as determined here may be identical to that of HBcAg found in vivo. but will still induce a very similar, if not identical, immune response.
Sve ispitivane rekombinantne DNA molekule imale su HBV DNA umetnutu tako da je gen unutarnjeg antigena održavan u istoj translacijskoj fazi kao gen za rezistentnost na penicilin pBR322. Štoviše, u raznim rekombinantnima HBV DNA umetak je započeo unutar jednog ili dva nukleotida istog dijela u HBV sekvenciji. Zbog toga što ove rekombinantne DNA molekule potječu od HBV DNA koja je digerirana s raznim restrikcijskim enzimima, npr. Bam HI i Kpn I, ovo jedinstveno spajanje je iznenađujuće i moglo je nastati nesmotrenim raskidanjem ili polinukleotidnim trasiranjem BHV DNA na urezu u endogenoj DNA Dane djelića (slika 1). Rekombinantne DNA molekule koje imaju HBV DNA umetak u različitoj translacijskoj fazi nisu izražavali HBcAg gen i nije detektiran polipeptid koji pokazuje HBV antigenost u domaćinima koji su transformirani s takvim rekombinantim DNA molekulama. Naravno, treba biti jasno da su takvi domaćini koji ne izražavaju gen i rekombinantne DNA molekule još uvijek korisne za proizvodnju HBV DNA prema ovom izumu. All tested recombinant DNA molecules had HBV DNA inserted such that the internal antigen gene was maintained in the same translation phase as the penicillin resistance gene of pBR322. Moreover, in various recombinant HBV DNA the insert started within one or two nucleotides of the same part in the HBV sequence. Because these recombinant DNA molecules are derived from HBV DNA that has been digested with various restriction enzymes, e.g., Bam HI and Kpn I, this unique junction is surprising and could have arisen by inadvertent cleavage or polynucleotide tracing of BHV DNA at a nick in the endogenous DNA of the fragment. (picture 1). Recombinant DNA molecules having an HBV DNA insert in a different translational phase did not express the HBcAg gene and no polypeptide showing HBV antigenicity was detected in hosts transformed with such recombinant DNA molecules. Of course, it should be understood that such hosts that do not express the gene and recombinant DNA molecules are still useful for the production of HBV DNA according to the present invention.
Iako je bilo očekivano da HBcAg ili njegovi fragmenti proizvedeni izražavanjem HBV DNA umetaka budu kondenzirani za proizvod (β-laktamaza) gena za rezistentnost prema penicilinazi preko malog broja glicinskih ostataka, to nije bio slučaj. Umjesto toga, β-laktamaza je u svakom slučaju bila kondenzirana preko 5-8 glicina za istovjetnu peptidnu sekvenciju, ali je ova sekvencija završavala nakon 25 amino-kiselina. U ovom naznačenom okviru (Okvir 1, Slika 3) zaustavni kodon (TAG) je praćen s tri nukleotida i kasnije s kodonom za iniciranje iz kojeg se neometano nastavlja translacija tako da se dobiva polipeptid dužine 183 amino-kiseline (Slike 3-8). Zbog toga, aktivnost unutarnjeg antigena leži u polipeptidu s oko 21,000 daltona translatiranom de novo iz HBV sekvenciji unutar mRNA transkribirane iz rekombinantnog DNA molekula. Ovaj polipeptid ostaje unutar stanice domaćina samo što nije vezan za izlučeni noseći protein penicilinaze zbog rasporeda zaustavnih i startnih kodona HBV DNA umetka. Although it was expected that HBcAg or its fragments produced by expression of HBV DNA inserts would be fused to the product (β-lactamase) of the penicillinase resistance gene via a small number of glycine residues, this was not the case. Instead, the β-lactamase was in each case fused over 5-8 glycines for the same peptide sequence, but this sequence ended after 25 amino acids. In this indicated frame (Frame 1, Figure 3) the stop codon (TAG) is followed by three nucleotides and later by the initiation codon, from which translation continues unhindered so that a polypeptide with a length of 183 amino acids is obtained (Figures 3-8). Therefore, the activity of the internal antigen lies in a polypeptide of about 21,000 daltons translated de novo from the HBV sequence within the mRNA transcribed from the recombinant DNA molecule. This polypeptide remains inside the host cell except that it is not bound to the secreted penicillinase carrier protein due to the arrangement of the stop and start codons of the HBV DNA insert.
2. Hepatitis B površinski antigen 2. Hepatitis B surface antigen
Nukleotidna sekvencija gena za HBsAg i amino-kiselina za polipeptid koji je izveden iz ovog gena (Naznačeni okvir 3) također je opisana na slikama 6-8 između nukleotida 1437-2114. Amino-kiselinska sekvencija ovog polipeptida počinje na N terminalu sa sekvencijom met-glu-asn-ile-thr-ser. Ovu početnu amino-kiselinsku sekvenciju odredili su D.L. Peterson et.al. "Partial Amino Acid Sequence of two Major Component Polypeptides of Hepatitis B Surface Antigen". Proc.Natl. Acad.Sci.USA. 74, pp. 1530-1534, (1977) iz autentičnog humanog HBsAg. Amino-kiselinska sekvencija ovog proteina nastavlja se na slikama 6-8 do zaustavnog kodona 226 od amino-kiselina. Ova sekvencija 226 polipeptida odgovara proteinu od 25,400 daltona. The nucleotide sequence of the HBsAg gene and the amino acid sequence of the polypeptide derived from this gene (Marked Box 3) is also described in Figures 6-8 between nucleotides 1437-2114. The amino acid sequence of this polypeptide begins at the N terminus with the sequence met-glu-asn-ile-thr-ser. This initial amino acid sequence was determined by D.L. Peterson et al. "Partial Amino Acid Sequence of two Major Component Polypeptides of Hepatitis B Surface Antigen". Proc. Natl. Acad.Sci.USA. 74, pp. 1530-1534, (1977) from authentic human HBsAg. The amino acid sequence of this protein continues in Figures 6-8 to a stop codon of amino acids 226. This 226 polypeptide sequence corresponds to a 25,400 dalton protein.
HBsAg amino-kiselinska sekvencija i dužina neovisno su potvrđeni sekvencioniranjem odgovarajućih rekombinantnih DNA molekula u P.Valenzuela et.al.. "Nucleotide Sequence of the Gene Coding for the Major Protein of Hepatitis B Virus Surface Antigen", Nature. 280. pp 815-819 (1979). The HBsAg amino acid sequence and length were independently confirmed by sequencing the corresponding recombinant DNA molecules in P.Valenzuela et.al.. "Nucleotide Sequence of the Gene Coding for the Major Protein of Hepatitis B Virus Surface Antigen", Nature. 280. pp. 815-819 (1979).
Nukleotidna sekvencija određena za rekombinantne DNA molekule iz ovog izuma pokazuje da nijedan od ispitivanih nukleotida koji izražavaju gen za HBcAg ne može imati gen za HBsAg u položaju iz kojeg se također može očekivati izražavanje u odgovarajućoj stanici domaćina. Ustvari, nije detektiran HBsAg u ekstraktima stanica transformacijskih s onim plazmidima za koje se nalazi da izražavaju gen za HBcAg. Međutim, kao što je naznačeno gore, poznavanje nukleotidnih sekvencija ovih gena omogućuje modifikaciju postupka izražavanja zbog poboljšavanja prinosa i efekta i radi favoriziranja izražavanja gena i proizvodnje polipeptida koji prethodno nisu izraženi niti detektirani. The nucleotide sequence determined for the recombinant DNA molecules of this invention shows that none of the investigated nucleotides expressing the HBcAg gene can have the HBsAg gene in a position from which expression in the corresponding host cell can also be expected. In fact, no HBsAg was detected in extracts of cells transformed with those plasmids found to express the HBcAg gene. However, as indicated above, knowledge of the nucleotide sequences of these genes allows modification of the expression process to improve yield and effect and to favor gene expression and production of polypeptides not previously expressed or detected.
Pravljenje poboljšanih rekombinantnih DNA molekula za proizvodnju HBV antigena Creation of improved recombinant DNA molecules for HBV antigen production
Sekvencije gena i amino-kiselina ovih antigena korisne su u planiranju postupaka za povećanje nivoa proizvodnje antigena ili gena po bakterijskoj stanici. The gene and amino acid sequences of these antigens are useful in planning procedures for increasing the level of antigen or gene production per bacterial cell.
Nivoom proizvodnje proteina komandira se pomoću dva glavna faktora: brojem kopija njegovog gena u stanici i efikasnošću s kojom se ove kopije gena transkribiraju i translantiraju. Efikasnost transkripcije i translacije (koji zajednički čine izražavanje) opet ovisi o nukleotidnoj sekvenciji, koje se normalno nalaze ispred željene sekvencije za kodiranje. Ove nukleotidne sekvencije ili sekvencije za kontrolu izražavanju definiraju, između ostalog, lokaciju na kojoj RNA polimeraza interreagira zbog započinjanja transkripcije (promotorska sekvencija) i na kojoj se ribosomi vezuju i interreagiraju s mRNA (proizvod transkripcije) zbog započinjanja translacije. Ne funkcioniraju sve takve sekvencije za kontrolu izražavanja s jednakom efikasnošću. Tako je prednost da se odvoje specifične sekvencije za kodiranje za željeni protein od njihovih susjednih nukleotidnih sekvencija i da se one kondenziraju, umjesto za poznate sekvencije za kontrolu izražavanja, tako da se favoriziraju viši nivoi izražavanja. Kada se ovo postigne, novo konstruirani DNA fragment može se umetnuti u plazmid za multikopiranje bakteriofagnog derivata u cilju povećanja broja kopija gena u stanici i tako daljnjeg poboljšavanja prinosa izraženog proteina. The level of protein production is controlled by two main factors: the number of copies of its gene in the cell and the efficiency with which these gene copies are transcribed and translated. The efficiency of transcription and translation (which together constitute expression) again depends on the nucleotide sequence, which normally precedes the desired coding sequence. These nucleotide sequences or expression control sequences define, among other things, the location at which RNA polymerase interacts to initiate transcription (promoter sequence) and at which ribosomes bind and interact with mRNA (transcription product) to initiate translation. Not all such sequences function to control expression with equal efficiency. Thus, it is preferred to separate the specific coding sequences for the desired protein from their adjacent nucleotide sequences and to condense them, rather than to known expression control sequences, so that higher levels of expression are favored. When this is achieved, the newly constructed DNA fragment can be inserted into a plasmid for multicopying the bacteriophage derivative in order to increase the number of gene copies in the cell and thus further improve the yield of the expressed protein.
Za ilustrativne svrhe sekvencija određena za gen HBcAg korištena je na ovaj način zbog poboljšanja proizvodnje HBcAg u E.coli. Jedan takav postupak opisan je na Slici 10. For illustrative purposes, the sequence determined for the HBcAg gene was used in this way due to the improvement of HBcAg production in E.coli. One such procedure is described in Figure 10.
Inspekcija DNA sekvencije za HBcAg na slici 3 otkriva da ovom genu prethodi cilj za Alu I na nukleotidu-26 (AGCT) i sadrži ciljeve za Eco RI* na nukleotidima 22 i 1590, za Eco RII na 209 (CCTGG) za Hae III na 246 i 461 (GGACC, GGTCC). Pri ovoj kompleksnosti, podesno je da se prenese sekvencija za kodiranje unutarnjeg antigena na efikasnije sekvencije za kontrolu izražavanja u dvije faze. Na primjer, digestija rekombinantnog DNA molekula, napravljenog prema ovom izumu, koji ima HBV DNA umetak od oko 2350 parova baza (nukleotidi), tj. od nukleotida -80 do oko 2270 sa slike 3, i sa Alu I i Eco RI* daje, između ostalog, fragment između nukleotida -26 i 22 (fragment A), dok digestija samo sa Eco. RI* daje frament od nukleotida 23 do 1589 (fragment B) i niske prinose fragmenta od nukleotida 23 do 576 (Fragment B). Ovi fragmenti mogu se lako identificirati na Slikama 3-4 i opisani su shematski na Slici 10. Fragmenti A i B se frakcioniraju gel elektroforezom da se pročiste i spajaju se preko njihovih Eco RI* kohezivnih krajeva da se dobije kombinirani (Fragment C). Fragment C je sada spojen za novu sekvenciju za kontrolu izražavanja prema potrebi bilo direktnim vezivanjem (ligacijom) radi održavanja korektne translacijske faze, bilo postupkom 3' trasiranja kao što je opisano ranije, ili sintezom oligo-nukleotidnih vezivnih elemenata. Ovo spajanje ne samo da daje bolju sekvenciju za kontrolu izražavanja radi poboljšavanja proizvodnje proteina već također omogućava da fragment gena koji kodira za HBcAg bude spojen bliže samoj sekvenciji za kontrolu izražavanja tako da se pojačava kontrola izražavanja tog fragmenta gena. Na sličan način, Fragmenti A i B' se mogu spojiti ili se mogu napraviti brojni drugi fragmenti i nastali fragment koristi se kao gore. Ovaj postupak demonstrira da samo dio gena koji kodira za određeni polipeptid treba koristiti u rekombinantnim DNA molekulama iz ovog izuma. Inspection of the HBcAg DNA sequence in Figure 3 reveals that this gene is preceded by a target for Alu I at nucleotide-26 (AGCT) and contains targets for Eco RI* at nucleotides 22 and 1590, for Eco RII at 209 (CCTGG) for Hae III at 246 and 461 (GGACC, GGTCC). Given this complexity, it is convenient to transfer the internal antigen coding sequence to more efficient sequences to control expression in two phases. For example, digestion of a recombinant DNA molecule, made according to the present invention, having an HBV DNA insert of about 2350 base pairs (nucleotides), i.e., from nucleotides -80 to about 2270 of Figure 3, with both Alu I and Eco RI* gives, among others, the fragment between nucleotides -26 and 22 (fragment A), while digestion only with Eco. RI* gives a fragment from nucleotides 23 to 1589 (Fragment B) and a fragment from nucleotides 23 to 576 (Fragment B) in low yields. These fragments can be easily identified in Figures 3-4 and are described schematically in Figure 10. Fragments A and B are fractionated by gel electrophoresis to purify them and joined via their Eco RI* cohesive ends to give a combined (Fragment C). Fragment C is now fused to a new expression control sequence as needed either by direct ligation to maintain correct translation phase, by the 3' tracing process as described earlier, or by synthesis of oligonucleotide linkers. This splicing not only provides a better expression control sequence to improve protein production but also allows the gene fragment encoding HBcAg to be fused closer to the expression control sequence itself so that expression control of that gene fragment is enhanced. In a similar manner, Fragments A and B' can be joined or a number of other fragments can be made and the resulting fragment used as above. This procedure demonstrates that only the portion of the gene that codes for a particular polypeptide should be used in the recombinant DNA molecules of the present invention.
Da se još više skrati razdaljina između određene sekvencije za kontrolu izražavanja i inivirajućeg kodona izabranog fragmenta gena, određeni fragment može se lako tretirati s kombinacijom nukleaza koje djeluju specifično na ili blizu njegovog terminala ili se koriste u egzonukleaznim i polimeraznim reakcijama spajanja zbog uklanjanja nekih ili svih nukleotidnih fragmenata koji prethode početnom kodonu fragmenta. Alternativno se fragment, kao što se Alu I fragment koji nastaje raskidanjem nukleotida -26 i 30 može na sličan način skratiti tretiranjem s egzonukleazom ili s polimeraznim vezivnim popratnim reakcijama i tada se raskine s Eco RI* tako da se proizvodi fragment od između nukleotida -26 i 1 i nukleotida 22 da se omogući kondenzacija za fragment B prije spajanja za sekvenciju za kontrolu izražavanja. Daljnji način mogao bi uključiti hibridizaciju fragmenta B, ili ekvivalentnog fragmenta, za odgovarajući kalup s jednim lancem iz osnovnog rekombinantnog DNA molekula za serijsko širenje reakcija s DNA polimerazom i s ograničenim brojem nukleozid trifosfata tako da se nit fragmenta može rekonstruirati na početku sekvencije za kodiranje. Ovaj kalup će se tada raskinuti u položaju njegovog spajanja s produženim fragmentom s endonukleazom S1 i tako dobiveni fragment veže se za sekvenciju za kontrolu izražavanja. To further shorten the distance between a particular expression control sequence and the initiation codon of a selected gene fragment, the particular fragment can easily be treated with a combination of nucleases that act specifically at or near its terminus or used in exonuclease and polymerase splicing reactions to remove some or all of nucleotide fragments preceding the start codon of the fragment. Alternatively, a fragment such as the Alu I fragment resulting from cleavage of nucleotides -26 and 30 can be similarly truncated by treatment with exonuclease or polymerase ligation side reactions and then cleaved with Eco RI* to produce a fragment from between nucleotides -26 and 1 and nucleotide 22 to allow condensation for fragment B prior to splicing for the expression control sequence. A further method could involve hybridization of fragment B, or an equivalent fragment, to a suitable single-stranded template from the basic recombinant DNA molecule for serial extension reactions with DNA polymerase and with a limited number of nucleoside triphosphates so that the strand of the fragment can be reconstructed at the beginning of the coding sequence. This template will then be cleaved at the site of its junction with the extended fragment by S1 endonuclease and the resulting fragment binds to the expression control sequence.
Nekoliko sekvencija za kontrolu izražavanja može se koristiti kao stoje opisano gore. Ovo uključuje operatorsko, promotorsko i ribozomno vezivanje i sekvencije interakcije (uključujući sekvencije kao što su Shine-Dulgano sekvencije) laktoznog operona E.coli ("lac sustav"), odgovarajuće sekvencije sustava sintetaze triptofana E.coli ("trp sustav"), glavne operatorske i promotorske regije faga λ (OLOL i ORPRI) i kontrolnu regiju faga fd prevlake proteina. DNA fragmenti koji sadrže ove sekvencije se isjeku raskidanjem s restrikcijskim enzimima iz DNA izolirane iz transduktnih faga λ ili fd. Ovim fragmentima se tada manipulira na način koji je opisan za sekvencije HBV antigena u cilju dobivanja ograničene populacije takvih molekula tako da se bitne sekvencije za kontrolu mogu spajati vrlo blizu, ili Several expression control sequences can be used as described above. This includes the operator, promoter and ribosome binding and interaction sequences (including sequences such as Shine-Dulgano sequences) of the E.coli lactose operon ("lac system"), the corresponding sequences of the E.coli tryptophan synthetase system ("trp system"), the major operator and promoter regions of phage λ (OLOL and ORPRI) and the control region of phage fd protein coating. DNA fragments containing these sequences are cut by restriction enzyme digestion from DNA isolated from transducing phages λ or fd. These fragments are then manipulated in the manner described for the HBV antigen sequences in order to obtain a limited population of such molecules such that essential control sequences can be joined very closely, or
točno naspram, inicirajućeg kodona sekvencije za kodiranje za željeni antigen kao što je opisano gore za Fragment C. exactly opposite the initiation codon of the coding sequence for the desired antigen as described above for Fragment C.
Kondenzacijski proizvod se tada umeće kao prije u nosač za kloniranje za transformaciju odgovarajućih domaćina i mjeri se nivo proizvodnje antigena pomoću radioimunoeseja poslije raskidanja stanica. Tako se mogu izabrati stanice koje daju najefikasnije izražavanje. Alternativno se mogu koristiti nosači za kloniranje koji nose lac, trp ili λ PL kontrolni sustav spojen za kodon za iniciranje i kondenzira se za fragment koji sadrži sekvenciju za kodiranje za polipeptid koji izražava HBV antigenost tako da se fragment strukturnog gena korektno translatira iz kodona za iniciranje nosača za kloniranje. The condensation product is then inserted as before into a cloning vehicle for transformation into appropriate hosts and the level of antigen production is measured by radioimmunoassay after cell disruption. Thus, the cells that give the most efficient expression can be chosen. Alternatively, cloning vehicles can be used that carry a lac, trp or λ PL control system fused to the initiation codon and fused to a fragment containing the coding sequence for a polypeptide expressing HBV antigenicity such that the structural gene fragment is correctly translated from the initiation codon cloning carrier.
Iako se ovi eksperiment odnose na proizvodnju specifično HBV unutarnjeg antigena, oni se mogu primijeniti na poboljšanje izražavanje drugih gena kao što su HBsAg i HBeAg geni i njihovi fragmenti. Although these experiments refer to the production of specific HBV internal antigen, they can be applied to improve the expression of other genes such as HBsAg and HBeAg genes and their fragments.
Daljnja povećanja u staničnom prinosu ovih određenih antigena ovise o povećanju broja gena koji se mogu koristiti u stanici. Ovo je postignuto za ilustrativne svrhe umetanjem rekombinantnih DNA molekula konstruiranih na način koji je opisan ranije u kalupski bakteriofag λ (NM899), najprostije digestijom plazmida s restrikcijskim enzimom, npr. Eco. RI ili Hind III, tako da se dobiva linearna molekula koja se tada može miješati s restriktivnim nosačem za kloniranje faga (npr. tipa koji je opisan u N.E.Murrav et.al. "Lambdoid Phages that Simplify the Recovery of In Vitro Recombinants", Molec.gen.Genet.. 150, pp. 53'61 (1977) i N.E.Murray et.al. "Molecular Cloning of the DNA Ligase Gene from Bacteriophage T4". J.Mol.Biol.. 132, pp. 493-505 (1979) i rekombinantnim DNA molekulom proizvedenih inkubacijom s DNA ligazom. Takav postupak opisan je na Slici 11. Tada se bira željeni rekombinantni fag pomoću radioimunoeseja za određeni antigen ili hibridizacijom s radioaktivno označenim HBV DNA sekvencijama i onda se koristi za lizogenizaciju vrste domaćina E. coli. Further increases in cellular yield of these particular antigens depend on increasing the number of genes that can be used in the cell. This was achieved for illustrative purposes by inserting recombinant DNA molecules constructed in the manner described earlier into the mold bacteriophage λ (NM899), most simply by digesting the plasmid with a restriction enzyme, eg Eco. RI or Hind III, so that a linear molecule is obtained which can then be mixed with a restrictive phage cloning carrier (eg of the type described in N.E.Murrav et.al. "Lambdoid Phages that Simplify the Recovery of In Vitro Recombinants", Molec .gen.Genet.. 150, pp. 53'61 (1977) and N.E.Murray et.al. "Molecular Cloning of the DNA Ligase Gene from Bacteriophage T4". J.Mol.Biol.. 132, pp. 493-505 (1979) and recombinant DNA molecules produced by incubation with DNA ligase. Such a procedure is described in Figure 11. The desired recombinant phage is then selected by radioimmunoassay for a specific antigen or by hybridization with radiolabeled HBV DNA sequences and then used to lysogenize the host species E. coli.
Naročito prikladni λ nosači za kloniranje sadrže temperaturno osjetljivu mutaciju u represivnom genu cI i supresivne mutacije u genu S, čiji je proizvod neophodan za raskidanje stanica domaćina, u gen E,. čiji je proizvod glavni kapsidni protein virusa. S ovim sustavom lizogene stanice se kultiviraju na 32°C i tada se zagrijavaju na 45°C tako da se inducira sječenje profaga. Produženi rast na 37°C vodi do visokih nivoa proizvodnje antigena, koji se zadržava u stanicama, pošto se ove ne raskidaju pomoću proizvoda gena faga na normalan način, a pošto umetak gena faga nije kapsuliran ostaje pristupačan za transkripciju. Umjetno raskidanje stanica tada oslobađa antigen u visokom prinosu (Slika 11). Particularly suitable λ carriers for cloning contain a temperature-sensitive mutation in the cI repressive gene and suppressive mutations in the S gene, the product of which is required for host cell disruption, in the E gene. whose product is the main capsid protein of the virus. With this system, lysogenic cells are cultured at 32°C and then heated to 45°C to induce prophage cleavage. Prolonged growth at 37°C leads to high levels of antigen production, which is retained in the cells, since these are not cleaved by the phage gene product in the normal way, and since the phage gene insert is not encapsulated, it remains accessible for transcription. Artificial disruption of the cells then releases the antigen in high yield (Figure 11).
Pored sustava E.coli na koje su se ovi primjeri uglavnom odnosili, isti tip manipulacija može se vršiti u cilju povećanja proizvodnje antigena na drugim mikrobnim stanicama, kao što su B.subtilis. termoplastične bakterije ili kvasci i gljivice, ili u stanicama životinja ili biljaka u kulturi. U slučaju B.subtilis plazmid koji nosi determinante za penicilinazu izoliranu iz B.licheniformis pruža korisnu sekvenciju za kontrolu izražavanja za ove svrhe. In addition to the E.coli system to which these examples mainly referred, the same type of manipulation can be performed in order to increase antigen production on other microbial cells, such as B.subtilis. thermoplastic bacteria or yeasts and fungi, or in animal or plant cells in culture. In the case of B.subtilis a plasmid carrying determinants for penicillinase isolated from B.licheniformis provides a useful expression control sequence for these purposes.
Pravljenje poboljšanih rekombinantnih molekula za izražavanje kodiranja gena za HBsAg Construction of improved recombinant molecules for expression of the gene coding for HBsAg
Određene sekvencije gena i amino-kiselina za HBsAg korisne su u planiranju postupaka za omogućavanje izražavanja gena za HBsAg pomoću postupka iz ovog izuma. Takvo izražavanje nije prethodno zapaženo u domaćinima transformiranim s rekombinantnim DNA molekulama koje proizvode polipeptide koji izražavaju HBV antigenost. Certain HBsAg gene and amino acid sequences are useful in designing methods for enabling expression of the HBsAg gene using the method of the present invention. Such expression has not previously been observed in hosts transformed with recombinant DNA molecules producing polypeptides expressing HBV antigenicity.
Nukleotidna sekvencija sa Slika 6-8 pokazuje kodiranje gena za HBsAg između nukleotida 1437 i 2114. Ovaj gen je u različitoj translacijskoj fazi (naznačeni okvir 3) od gena koji kodira za HBcAg (naznačeni okvir 1) u HBV genomu Slika 3-9. Zato je izabrana rekombinantna molekula DNA koja nije proizvodila HBcAg kada se koristila za transformaciju odgovarajućeg domaćina, ali je sadržavala HBV DNA umetak od oko 2350 nukleotida (što odgovara otprilike nukleotidima -80 do 2270 sekvencije sa Slika 3-8) za korištenje u proizvodnji HBsAg. The nucleotide sequence of Figure 6-8 shows the gene coding for HBsAg between nucleotides 1437 and 2114. This gene is in a different translational phase (marked box 3) than the gene coding for HBcAg (marked box 1) in the HBV genome Figure 3-9. Therefore, a recombinant DNA molecule that did not produce HBcAg when used to transform a suitable host, but contained an HBV DNA insert of about 2350 nucleotides (corresponding to approximately nucleotides -80 to 2270 of the sequence from Figure 3-8) was chosen for use in the production of HBsAg.
Izabrana rekombinantna DNA molekula sadržavala je, između ostaloga, cijeli gen za kodiranje HBsAg. Ispitivanje nukleotidne sekvencije HBV DNA umetka ove rekombinantne DNA molekule otkriva nekoliko ciljeva za restrikcijsku endonukleazu što omogućuje rezanje fragmenata koji sadržavaju gen za kodiranje za HBsAg. Npr. nukleotid 1409 (Xho), nukleotid 1410 (Tag), nukleotid 1409 (Ava I) i nukleotid 1428 (Hhal) (slika 6). Od ovih posljednjih (Hha I) je osobito koristan zato što se kidanje HBV DNA umetka javlja između nukleotida ispred translacijskog kodona za iniciranje (AGT) gena za sam HBsAg. U sva četiri slučaja, izrezani fragment će se protezati iza izabranog HBV DNA umetka prema cilju za određenu restrikcijsku endonukleazu koji se nalazi unutar nukleotidne sekvencije pBR322 dijela rekombinantne DNA molekule. Zbog korištenja ovih restrikcijskih endonukleaza i drugih slično korisnih, samostalno ili u kombinaciji, omogućuje rezanje gena koji kodira za HBsAg blizu, ali ispred njegovog kodona za iniciranje, a poslije njegovog translacijskog kodona za terminaciju. Naravno, treba biti jasno da kao što je ilustrirano u slučaju gena za HBcAg, samo fragmenti cijelog gena trebaju se stvarno koristiti u rekombinantnim DNA molekulama koje pokazuju HBsAg antigenost u odgovarajućim domaćinima. The selected recombinant DNA molecule contained, among other things, the entire gene for coding HBsAg. Examination of the nucleotide sequence of the HBV DNA insert of this recombinant DNA molecule reveals several targets for the restriction endonuclease, which allows cutting of the fragments containing the gene coding for HBsAg. For example nucleotide 1409 (Xho), nucleotide 1410 (Tag), nucleotide 1409 (Ava I) and nucleotide 1428 (Hhal) (Figure 6). Of these, the latter (Hha I) is particularly useful because cleavage of the HBV DNA insert occurs between nucleotides before the translational initiation codon (AGT) of the HBsAg gene itself. In all four cases, the excised fragment will extend beyond the selected HBV DNA insert toward a target for a particular restriction endonuclease located within the nucleotide sequence of the pBR322 portion of the recombinant DNA molecule. Due to the use of these restriction endonucleases and others similarly useful, alone or in combination, it allows cutting the gene that codes for HBsAg close to, but before its initiation codon, and after its translational termination codon. Of course, it should be clear that as illustrated in the case of the HBcAg gene, only fragments of the entire gene should actually be used in recombinant DNA molecules that exhibit HBsAg antigenicity in appropriate hosts.
Fragmenti HBV DNA izvedeni iz takvih digesta tretirani su u seriji reakcija analognih onima koje su opisane za gen i fragmente gena koji kodiraju za unutarnji antigen. Na primjer, fragment gena može se umetnuti u gen koji kodira za rezistentnost prema penicilinu pBR322 (npr., Pst I mjesto raspoznavanja, slika 2) tako da se proizvodi polipeptid koji pokazuje HBsAg antigenost u sudjelovanju s β-laktamazom (proizvod penicilaznog gena), fragmenta gena može se umetnuti između gena koji kodiraju za rezistentnost prema penicilinu i rezistentnost prema tetraciklinu u pBR322 (Eco RI ili Hind III mjesta raspoznavanja, Slika 2) pa se spajaju tako da se proizvodi polipeptid koji pokazuje HBsAg antigenost u sudjelovanju s /3-galaktozidaznim proteinom lac sustava, fragment gena može se umetnuti u nosač za kloniranje što je bliže moguće samoj izabranoj sekvenciji za kontrolu izražavanja kako je prije opisano za gen koji kodira za HBcAg, ili se fragment gena može klonirati na drugi način kako opisano prema ovom izumu. HBV DNA fragments derived from such digests were treated in a series of reactions analogous to those described for the gene and gene fragments coding for the internal antigen. For example, a gene fragment can be inserted into the penicillin resistance gene of pBR322 (eg, the Pst I recognition site, Figure 2) to produce a polypeptide that exhibits HBsAg antigenicity in association with β-lactamase (the product of the penicillase gene), gene fragments can be inserted between the genes encoding penicillin resistance and tetracycline resistance in pBR322 (Eco RI or Hind III recognition sites, Figure 2) and joined to produce a polypeptide that exhibits HBsAg antigenicity in association with /3-galactosidase protein of the lac system, the gene fragment can be inserted into the cloning vehicle as close as possible to the selected expression control sequence itself as described above for the gene encoding HBcAg, or the gene fragment can be cloned in another way as described according to the present invention.
U ilustrativne svrhe, jedna takva shema opisana je na Slici 12. Tu se izabrana rekombinantna DNA molekula koja ima HBV DNA umetak koji se proteže između oko nukleotida -80 i 2270 (Slike 3-8) fragmentira digeriranjem s Hha I. Dobiveni fragment se umetne postupkom 3' trasiranja kako je opisano prethodno na Pst i mjestu pBR322. Domaćini koji su transformirani s ovom rekombinantnom DNA molekulom proizvodili su polipeptide koji izražavaju HBsAg antigenost. For illustrative purposes, one such scheme is depicted in Figure 12. Here, a selected recombinant DNA molecule having an HBV DNA insert extending between about nucleotides -80 and 2270 (Figures 3-8) is fragmented by digestion with Hha I. The resulting fragment is inserted by the 3' tracing procedure as described previously on Pst and site pBR322. Hosts transformed with this recombinant DNA molecule produced polypeptides expressing HBsAg antigenicity.
Drugi fragmenti (npr., Ava I, Taq. Xho. ili Pst I (parcijalni digest) također su bili umetnuti na Pst I mjestu raspoznavanja ili drugim mjestima u pBR322 tako da se proizvode rekombinantne DNA molekule koje su korisne za proizvodnju polipeptida koji izražavaju HBsAg antigenost ili genskih fragmenata koji kodiraju za HBsAg. Other fragments (eg, Ava I, Taq. Xho. or Pst I (partial digest)) were also inserted at the Pst I recognition site or other sites in pBR322 to produce recombinant DNA molecules useful for the production of polypeptides expressing HBsAg antigenicity or gene fragments coding for HBsAg.
Nadalje, takvi genski fragmenti umetnuti su u pBR322 koji je bio raskinut pomoću Pst I i dobiveni fragment gena koji kodira za penicilinazu je tada otkinut od kodona koji kodira za aminokiselinu 182 penicilinaze ili β-laktamaze u jednom slučaju do kodona koji kodira za amino-kiselinu 32 i u drugom slučaju do kodona koji kodira za amino-kiselinu 13 tog polipeptida. Ovi derivativni plazmidi pBR322 -Pst I' su također bili korišteni s HBsAg genskim fragmentima koji su prošireni iz nukleotida 1447 do 1976 (Slike 6-7) tako da se proizvode polipetidi koji izražavaju HBsAg antigenost. Furthermore, such gene fragments were inserted into pBR322 which had been cleaved with Pst I and the resulting fragment of the gene encoding penicillinase was then cleaved from the codon encoding amino acid 182 of penicillinase or β-lactamase in one case to the codon encoding amino acid 32 and in the second case to the codon that codes for amino acid 13 of that polypeptide. These derivative plasmids pBR322 -Pst I' were also used with HBsAg gene fragments extended from nucleotides 1447 to 1976 (Figures 6-7) to produce polypeptides expressing HBsAg antigenicity.
Nukleotidna sekvencija između nukleotida 948 i 1437 koja neposredno prethodi strukturnom genu koji kodira za HBsAg, može se također uključiti u fragmente koji se koriste za proizvodnju korisnih rekombinantnih DNA molekula za proizvodnju polipeptida koji pokazuju HBsAg antigenost gena strukturnog gena za HBsAg. Ova nukleotidna sekvencija zove se prekursorska sekvencija gena. Genski fragmenti koji uključuju i ovu prekursorsku sekvenciju i strukturni gen za HBsAg mogu se izrezati s Alu I (nukleotid 939), Hha I (nukleotid 900) ili Hae II (nukleotid 899). U slučaju Alu i Hha i djelomična digestija i odvajanje dobivenih fragmenata, npr. gel elektroforezom, su neophodni zato što se mjesta raspoznavanja za ove enzime također javljaju unutar prekursorske sekvencije na nukleotidu 1091 za Alu I i na nukleotidu 1428 za Hha II. The nucleotide sequence between nucleotides 948 and 1437 immediately preceding the structural gene encoding HBsAg can also be included in fragments used to produce useful recombinant DNA molecules for the production of polypeptides exhibiting the HBsAg antigenicity of the structural gene for HBsAg. This nucleotide sequence is called the precursor sequence of the gene. Gene fragments including both this precursor sequence and the structural gene for HBsAg can be excised with Alu I (nucleotide 939), Hha I (nucleotide 900), or Hae II (nucleotide 899). In the case of Alu and Hha, both partial digestion and separation of the resulting fragments, eg by gel electrophoresis, are necessary because the recognition sites for these enzymes also occur within the precursor sequence at nucleotide 1091 for Alu I and at nucleotide 1428 for Hha II.
Iako smo mi ovdje prikazali veći broj realizacija izuma, jasno je da se naša osnovna konstrukcija može mijenjati tako da se osiguraju druge realizacije koje koriste postupak iz ovog izuma. Zbog toga treba biti jasno da je obujam ovog izuma ograničen pridodanim zahtjevima, a ne specifičnim realizacijama koje su ovdje prije prikazane u primjerima. Although we have shown here a number of embodiments of the invention, it is clear that our basic construction can be modified to provide other embodiments that use the process of this invention. Therefore, it should be understood that the scope of this invention is limited by the appended claims and not by the specific embodiments set forth in the examples hereinbefore.
Primjeri mikroorganizama koji su dobiveni postupkom koji je ovdje opisan jesu kulture deponirane u Culture Collection of the National Collection of Industrial Bacteria, Aberdeen, Scotland, 19 December, 1979 i identificirani su kao pBR322 HBV-G-L a karakteriziraju se na sljedeći način: Examples of microorganisms obtained by the process described herein are cultures deposited in the Culture Collection of the National Collection of Industrial Bacteria, Aberdeen, Scotland, December 19, 1979 and identified as pBR322 HBV-G-L and characterized as follows:
G: E.coli HB 101/pBR322-Pst I dG: HBV -Kpa I dC: G: E.coli HB 101/pBR322-Pst I dG: HBV -Kpa I dC:
(ovdje kasn. "pHBV114"): TetR AmpS HBV+ (herein late "pHBV114"): TetR AmpS HBV+
H: E.coli HB 101/pBR322-Pst I' dG: pHBV114-Pst I: H: E.coli HB 101/pBR322-Pst I' dG: pHBV114-Pst I:
TetR AmpS HBV+ VA+ TetR AmpS HBV+ VA+
I: E.coli HB 101/((pBR322-Bco RI, Bam HI : lac promotorska sekvencija)-Hind III: I: E.coli HB 101/((pBR322-Bco RI, Bam HI : lac promoter sequence)-Hind III:
Vezivni elementi: Binding elements:
HBV114-HhaI Bam HI: HBV114-HhaI Bam HI:
TetS AmpR HBV+ VA+ TetS AmpR HBV+ VA+
J: E.coli HB 101/pUR2* (vidi napomenu)-Bco RI:HBV114-HaIBcoRI J: E.coli HB 101/pUR2* (see note)-Bco RI:HBV114-HaIBcoRI
vezivni elementi: connecting elements:
TetS AmpR HBV+ VA+ TetS AmpR HBV+ VA+
K: E.coli HB 101/pBR322-Pst I dG: pHBV114-Avo I dC K: E.coli HB 101/pBR322-Pst I dG: pHBV114-Avo I dC
TetR AmpS HBV+ VA+ TetR AmpS HBV+ VA+
L: E.coli HB 101/pBR322-Pst I dC: pHBV114 Tag dC: L: E.coli HB 101/pBR322-Pst I dC: pHBV114 Tag dC:
TetR AmpS HBV+ VA+ TetR AmpS HBV+ VA+
napomena: derivat pBR322 koji ima DNA sekvenciju uključujući gen koji kodira za polipeptid za rezistentnost prema tetraciklnu zamijenjenu s manjom DNA sekvencijom uključujući E.coli lac sustav. note: a derivative of pBR322 having the DNA sequence including the gene encoding the tetracyclic resistance polypeptide replaced with a smaller DNA sequence including the E.coli lac system.
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7849907 | 1978-12-22 | ||
GB7850039 | 1978-12-27 | ||
GB7937910 | 1979-11-01 | ||
YU13690 | 1990-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP940048A2 true HRP940048A2 (en) | 1997-08-31 |
Family
ID=27449101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP-136/90A HRP940048A2 (en) | 1978-12-22 | 1994-01-27 | Process for the preparation of polypeptides having the antigenicity or antigen specificity of hepatitis b viral antigens |
Country Status (1)
Country | Link |
---|---|
HR (1) | HRP940048A2 (en) |
-
1994
- 1994-01-27 HR HRP-136/90A patent/HRP940048A2/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4710463A (en) | Recombinant DNA molecules capable of expressing HBV core and surface antigens | |
AU2024216517A1 (en) | Enhanced systems for cell-mediated oncolytic viral therapy | |
JP2687995B2 (en) | DNA sequence, recombinant DNA molecule and method for producing human fibroblast interferon-like polypeptide | |
JPH0659221B2 (en) | DNA transport mediator | |
JPS61274687A (en) | Tissue surface antigen of pig mycoplasma and vaccine and diagnostic method based thereon | |
BG60443B2 (en) | Improved vectors, methods for their preparation and for expressing the cloning genes | |
EP0182442B1 (en) | Recombinant dna molecules and their method of production | |
US4820642A (en) | Amplified expression vector | |
JPH01160998A (en) | Polypeptide | |
US4859465A (en) | Vaccine capable of eliciting multivalent antibodies | |
US6268122B1 (en) | Recombinant DNA molecules and their method of production | |
HRP940048A2 (en) | Process for the preparation of polypeptides having the antigenicity or antigen specificity of hepatitis b viral antigens | |
CA1341644C (en) | Recombinant dna molecules and their method of production | |
JPS62187495A (en) | Novel dna and polypeptide | |
SI7913127A8 (en) | Process for obtaining recombinant dna molecules | |
KR100274190B1 (en) | Expression of hbv specific antigen of ubhvcore protein | |
KR840000949B1 (en) | Method of making aselected protein | |
JPH0859695A (en) | New dna and polypeptide | |
SU1740418A1 (en) | Method for designing recombinant plasmid dna pgc s1-39 of c-terminal aminoacids of hepatitis b virus with the epitop p s1 (20-68) exposed on its surface and bacterial strain of e coli as cor antigen producer deprived of 39 c-terminal aminoacids of hepatitis b virus with the epitop p s1 (20-68) exposed on its surface | |
MXPA02010880A (en) | Sentinel virus ii. | |
HU196236B (en) | Process for producing polypeptides showing hepatitis b virus antigenicity | |
Jupp | Characterisation of T5 heat-stable mutants and location of the T5 tRNA genes | |
JPS62190083A (en) | Polypeptide-expression vector, host transformed with said vector and production of polypeptide using said host | |
JPS59500946A (en) | Method for producing protein fragments | |
JPS63283586A (en) | Development of p.falciparum circumsporozoite protein by yeast |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
ODBC | Application rejected |