HRP20030990A2 - System for guidance and control of minimum invasive delivery of therapy with medical agents - Google Patents
System for guidance and control of minimum invasive delivery of therapy with medical agents Download PDFInfo
- Publication number
- HRP20030990A2 HRP20030990A2 HR20030990A HRP20030990A HRP20030990A2 HR P20030990 A2 HRP20030990 A2 HR P20030990A2 HR 20030990 A HR20030990 A HR 20030990A HR P20030990 A HRP20030990 A HR P20030990A HR P20030990 A2 HRP20030990 A2 HR P20030990A2
- Authority
- HR
- Croatia
- Prior art keywords
- catheter
- ultrasound
- administration
- guiding
- needle
- Prior art date
Links
- 238000002560 therapeutic procedure Methods 0.000 title claims description 33
- 238000002604 ultrasonography Methods 0.000 claims abstract description 61
- 239000003550 marker Substances 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims description 24
- 210000001519 tissue Anatomy 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 230000001225 therapeutic effect Effects 0.000 claims description 10
- 238000002513 implantation Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000013160 medical therapy Methods 0.000 claims description 6
- 210000004165 myocardium Anatomy 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims 4
- 108091030071 RNAI Proteins 0.000 claims 1
- 239000000824 cytostatic agent Substances 0.000 claims 1
- 230000001085 cytostatic effect Effects 0.000 claims 1
- 210000001174 endocardium Anatomy 0.000 claims 1
- 230000009368 gene silencing by RNA Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 8
- 230000004807 localization Effects 0.000 description 10
- 230000000747 cardiac effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 6
- 210000004872 soft tissue Anatomy 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- 210000000596 ventricular septum Anatomy 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229940030602 cardiac therapy drug Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 210000003361 heart septum Anatomy 0.000 description 1
- 210000001308 heart ventricle Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003540 papillary muscle Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/04—Endoscopic instruments
- A61B2010/045—Needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00392—Transmyocardial revascularisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/062—Measuring instruments not otherwise provided for penetration depth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3925—Markers, e.g. radio-opaque or breast lesions markers ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3925—Markers, e.g. radio-opaque or breast lesions markers ultrasonic
- A61B2090/3929—Active markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M25/0084—Catheter tip comprising a tool being one or more injection needles
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Ovaj izum rješava problem vođenja i kontrole punkcije u srcu. Ovaj izum u tu svrhu uključuje slijedeće naprave: ultrazvučno markirani introduktor kateter kroz kojeg se ultrazvučno markirani kateter sa iglom može pomicati, kao i transponderske krugove za ultrazvučno vođenje, te ultrazvučne impulsne mjerače udaljenosti.Rečeni kateterski sklop je ultrazvučno markiran piezoelektričkim marker pretvaračima. Jedan ili više minijaturnih piezoelektričkih marker pretvarača su montirani pri vrhu introduktorskog katetera, a posebni je pretvarač montiran na punkcijski kateter s iglom. Elektrode marker pretvarača su spojene na električke vodiče koji ih povezuju uzduž katetera s vanjskim električkim priključnicama na proksimalnoj strani katetera. Kad jemarker pretvarač na kateterskom vrhu unutar područja pretrage ehoskopa onda ultrazvučni snopovi iz ehoskopskog pretvarača aktiviraju marker pretvarač.The present invention solves the problem of guiding and controlling the puncture of the heart. The invention includes for this purpose the following devices: an ultrasound-labeled introductory catheter through which the ultrasound-labeled catheter with a needle can be moved, as well as transponder circuits for ultrasound guidance, and ultrasonic pulse distance meters. One or more miniature piezoelectric marker transducers are mounted at the top of the introductory catheter, and a special transducer is mounted on the needle puncture catheter. The transducer marker electrodes are connected to the electrical conductors, which connect them along the catheter to the external electrical ports on the proximal side of the catheter. When the marker converter is on the catheter tip within the scope of the echoscope search then ultrasonic beams from the echoscopic transducer activate the marker transducer.
Description
Područje tehnike The field of technology
Ovaj izum se odnosi na kardiološku terapiju, posebno na aparat za vođenje sistema za davanje genetske terapije ili druge farmakoterapije. Posebno se ovaj izum odnosi na sistem za vođenje postupaka kod koji se medicinski preparati direktno daju u srčani mišić ili druge tjelesne strukture. This invention relates to cardiac therapy, in particular to an apparatus for guiding a system for the administration of genetic therapy or other pharmacotherapy. In particular, this invention relates to a system for conducting procedures in which medical preparations are directly administered into the heart muscle or other body structures.
Stanje tehnike State of the art
Implantacija i postavljanje srčanih katetera se u današnje vrijeme obavlja uz pomoć rendgena. Nedostatak rendgenskih metoda je opasnost od ionizirajućeg zračenja i slab prikaz mekih tkiva poput papilarnog mišića, međuventrikularnog septuma, srčanih valvula, itd. Ultrazvučno odslikavanje dobro prikazuje meka tkiva i ne predstavlja opasnost od rendgenskog zračenja, ali ima nedostatak da obično prikazuje sliku u jednoj ravnini, tj. tomografski. Ultrazvučnim odslikavanjem se mogu prikazati savitljivi elektrodni kateteri, ali se vrh ili bilo koji drugi dio katetera ne mogu jednoznačno identificirati jer prividni vrh katetera može biti samo mjesto na kojem kateter napušta ili ulazi u ravninu pretrage. Zato se dosad ultrazvučna ehoskopija samo rijetko upotrebljavala za prikaz srčanih katetera. Upotreba je bila ograničena na sonografski pogodne situacije i na pretrage u trudnoći kad rendgensko snimanje nije preporučljivo. Kako bismo poboljšali lokalizacija elektroda i vrhova katetera na elektrodnim kateterima mi smo razvili ultrazvučno markirane katetere. Nowadays, the implantation and placement of heart catheters is done with the help of X-rays. The disadvantage of X-ray methods is the danger of ionizing radiation and the poor representation of soft tissues such as papillary muscle, interventricular septum, heart valves, etc. Ultrasound imaging shows soft tissues well and does not pose a danger of X-ray radiation, but it has the disadvantage that it usually shows an image in one plane, i.e. tomographic. Ultrasound imaging can show flexible electrode catheters, but the tip or any other part of the catheter cannot be unambiguously identified because the apparent tip of the catheter can only be the place where the catheter leaves or enters the plane of examination. That is why so far ultrasound echoscopy has only rarely been used to visualize cardiac catheters. The use was limited to sonographically suitable situations and to tests during pregnancy when X-ray imaging is not recommended. In order to improve the localization of electrodes and catheter tips on electrode catheters, we have developed ultrasound-marked catheters.
Langberg (JACC Vol.12, No.1, July 1988:218-23) pokazuje kako lokalizirati kateter i elektrode na njemu unutar srca upotrebom naših izuma koji su opisani u US Patentima 4,697,595 i 4,706,681 što on jasno citira u referencama iako ne spominje brojeve patenata. U našem USA patentu br. 5,840,030 mi smo pokazali kako upotrijebiti usmjereno polje ablacije indirektnom metodom “energetske vizualizacije” unutar ehokardiografske slike. Tu se upotrebljava znanje o odnosu usmjerenosti dvaju polja i to ultrazvučnog polja i ablacijskog polja, kao i znanje o tome kako pratiti kontakt elektrode sa tkivom. Langberg (JACC Vol.12, No.1, July 1988:218-23) shows how to localize the catheter and its electrodes within the heart using our inventions described in US Patents 4,697,595 and 4,706,681 which he clearly cites in the references although he does not mention the numbers patents. In our US patent no. 5,840,030 we have shown how to use a directed ablation field by an indirect method of “energy visualization” within an echocardiographic image. This is where the knowledge of the relationship between the directionality of the two fields, namely the ultrasound field and the ablation field, is used, as well as the knowledge of how to monitor the contact of the electrode with the tissue.
U USA patentu br. 5,385,148 Lesh pokazuje kako se ultrazvučno može karakterizirati tkivo. In US patent no. 5,385,148 Lesh shows how ultrasound can characterize tissue.
Lokalizacijska funkcija se može ostvariti na dva načina: bilo upotrebom transpondera bilo upotrebom pasivnog lokalizacijskog sistema. Transponder je okidan signalima iz marker pretvarača dovedenih kroz elektrodni kateter. Nakon okidanja, transponder generira karakterističnu seriju električnih impulsa koji se odvedu nazad do istog marker pretvarača. Zbog toga marker pretvarač odašilje seriju ultrazvučnih impulsa. Ovi impulsi se pojavljuju na ekranu ehoskopa kao vidljiva oznaka pored markiranog dijela elektrodnog katetera bez obzira na to vidi li se sam elektrodni kateter ili ne. Prigušenje ultrazvučnih impulsa u tijelu se kompenzira kompenzacijskim pojačalom (tzv. TGC pojačalo) ugrađenim u transponder. To pojačalo pojačava odjeke iz dubljih struktura više nego odjeke iz plićih struktura. Sinkronizacija TGC pojačala se vrši bilo direktno iz ehoskopa ili upotrebom induktivne petlje uz sondu ehoskopa. Kašnjenje transpondera je 40 ns. Oznaka se pojavljuje uzduž linije gledanja ehoskopa kao svijetla treptajuća oznaka. The localization function can be realized in two ways: either by using a transponder or by using a passive localization system. The transponder is triggered by signals from marker transducers fed through the electrode catheter. Once triggered, the transponder generates a characteristic series of electrical pulses that are fed back to the same marker transducer. Because of this, the marker transducer emits a series of ultrasonic pulses. These pulses appear on the echoscope screen as a visible mark next to the marked part of the lead catheter regardless of whether the lead catheter itself is visible or not. Damping of ultrasound pulses in the body is compensated by a compensating amplifier (the so-called TGC amplifier) built into the transponder. This amplifier amplifies echoes from deeper structures more than echoes from shallower structures. Synchronization of the TGC amplifier is performed either directly from the echoscope or by using an inductive loop with the echoscope probe. The transponder delay is 40 ns. The mark appears along the line of sight of the echoscope as a bright flashing mark.
Pasivni lokalizacijski sistem sadrži krug za udvostručivanje vremena (TDC) koji udvostručuje vrijeme koje protekne između odašiljanja ultrazvučnog impulsa iz sonde ehoskopa i prijema tog impulsa na marker pretvaraču, te onda aktivira signal generator za oznaku na ekranu. Taj se signal vodi na signalnu sabirnicu ultrazvučnog ehoskopa u željenom obliku, polaritetu i vremenskom slijedu. U elektrodnim kateterima za elektrofiziološke studije svaki od marker pretvarača koji markira drugu elektrodu može imati drugačiju oznaku na ekranu. Ovdje, kao i kod transpondera, se prigušenje u tijelu kompenzira TGC pojačalom vezanim na TGC pojačalo ehoskopa. Nema razlika u svojstvima analognih i digitalnih krugova za podvostručenje vremena. Sistem sadrži elektroničke krugove za izolaciju od električnog udara prema standardu za CF klasu opreme prema IEC 601-1. The passive localization system contains a time doubling circuit (TDC) that doubles the time that elapses between the transmission of an ultrasound pulse from the echoscope probe and the reception of that pulse at the marker transducer, and then activates the signal generator for the mark on the screen. This signal is fed to the signal bus of the ultrasound echoscope in the desired form, polarity and time sequence. In electrode catheters for electrophysiological studies, each of the marker transducers marking a different electrode may have a different label on the screen. Here, as with the transponder, the attenuation in the body is compensated by a TGC amplifier connected to the TGC amplifier of the echoscope. There is no difference in the properties of analog and digital time doubling circuits. The system contains electronic circuits for isolation from electric shock according to the standard for CF class equipment according to IEC 601-1.
Sigurnosne posljedice pucanja električke izolacije zbog čega bi se marker signal spojio na tijelo su provjerene mjerenjem ukupne impedancije u fiziološkoj otopini. Izmjerena je ovisnost impedancije o frekvenciji. The safety consequences of breaking the electrical insulation, which would cause the marker signal to connect to the body, were verified by measuring the total impedance in saline. The dependence of impedance on frequency was measured.
Maksimalni radni napon je 5V vrh-vrh. Taj izvor napona je izoliran membranom koja normalno pokriva marker pretvarač. Impulsi 5Vpp na 4MHz centralne frekvencije u serijama od 5 do 10 i frekvenciji repeticije ehoskopa (oko 1 kHz). U slučaju kvara na izolaciji u vrijeme rada sa transponderom taj se signal može pojaviti između elektrode za elektrostimulaciju i ogoljene elektrode marker pretvarača. Fiziološka otopina se ponaša poput tkiva i daje impedanciju potrebnu za proračun energije prenesene od transpondera na tkiva u slučaju takvog kvara. The maximum operating voltage is 5V peak-peak. This voltage source is isolated by a membrane that normally covers the marker transducer. Impulses 5Vpp at 4MHz central frequency in series of 5 to 10 and echoscope repetition frequency (about 1 kHz). In case of insulation failure during operation with the transponder, this signal can appear between the electrode for electrostimulation and the bare electrode of the marker transducer. The physiological solution behaves like tissue and provides the impedance necessary to calculate the energy transferred from the transponder to the tissues in the event of such a failure.
Maksimalni vremenski, maksimalni prostorni intenzitet ultrazvuka je u najgorem slučaju ispod 0,5 W/cm2 za impulse kraće od 3 mikrosekunde. Prosječni vremenski, maksimalni prostorni intenzitet je za tri reda veličine manji kod današnjih ehoskopa. Ovi su intenziteti unutar prihvatljivih granica u dijagnostici. The maximum temporal, maximum spatial intensity of ultrasound is in the worst case below 0.5 W/cm2 for pulses shorter than 3 microseconds. Average temporal, maximum spatial intensity is three orders of magnitude lower with today's echoscopes. These intensities are within acceptable diagnostic limits.
Točnost lokalizacije ovisi o fizičkim dimenzijama i položaju marker pretvarača kao i o širini snopa i osjetljivosti sistema. Uz danas dobavljive piezokeramike duljina marker pretvarača se može smanjiti na 1,5 mm, dajući sa sadašnjim konstrukcijama duljinsku pogrešku pozicioniranja od oko 2mm. Pogreška zbog širine snopa ehoskopa je jednaka ovoj ili veća i ona je dominantna. Pored toga, postoji osnovna mogućnost operaterske pogreške u različitom podešavanju TGC karakteristika ehoskopa i lokalizacijske elektronike. Takva pogreška je moguća samo tamo gdje TGC pojačala ehoskopa i transpondera nisu direktno povezana. Najmanja moguća točnost je u smjeru najveće osjetljivosti marker pretvarača. Praktični kompromis je da se upotrebljava oko 15 dB veća osjetljivost od one koja je potrebna za osnovnu detekciju impulsa ehoskopa u najosjetljivijem smjeru. The localization accuracy depends on the physical dimensions and position of the marker transducer as well as on the beam width and the sensitivity of the system. With today's available piezoceramics, the length of the transducer marker can be reduced to 1.5 mm, giving with the current constructions a length positioning error of about 2 mm. The error due to the echoscope beamwidth is equal to or greater than this and is dominant. In addition, there is a basic possibility of operator error in different settings of the TGC characteristics of the echoscope and localization electronics. Such an error is possible only where the TGC amplifiers of the echoscope and the transponder are not directly connected. The lowest possible accuracy is in the direction of the highest sensitivity of the marker transducer. A practical compromise is to use about 15 dB higher sensitivity than that required for basic echoscope pulse detection in the most sensitive direction.
U primjenama sa kardijalnim kateterima je normalno potrebna samo jedan oblik oznake, ali u elektrofiziološkim primjenama se mora imati više oblika oznaka kako bi se razlikovale različite elektrode. Pasivni sistem ima u ovom smislu veću fleksibilnost nego transponder. In cardiac catheter applications, only one form of label is normally required, but in electrophysiological applications, multiple forms of labels are required to distinguish between different electrodes. In this sense, the passive system has more flexibility than the transponder.
Sa strane sigurnosti transponder je jednostavnije električki izolirati nego pasivni sistem, ali oba moraju odgovarati IEC601-1 zahtjevima za CF klasu medicinske opreme. S druge strane, iz pasivnog sistema se ne odašilju nikakvi signali u marker pretvarač. Rutinska provjera izolacije i funkcije marker sistema prije primjene je lako moguća. Kod pasivnog sistema jednostruki lom izolacije ne dovodi do slanja dodatnih električnih signala u srce. On the safety side, a transponder is easier to electrically isolate than a passive system, but both must meet the IEC601-1 requirements for CF class medical equipment. On the other hand, no signals are sent from the passive system to the marker transducer. A routine check of the isolation and function of the marker system before application is easily possible. In a passive system, a single breakdown of the insulation does not lead to the sending of additional electrical signals to the heart.
Zahtjev za rad na rezonantnoj frekvenciji marker pretvarača je striktan i ne dozvoljava promjenu piezoelektričnih svojstava s vremenom ili zahtijeva poznavanje rezonancije cijelo vrijeme. Time je izbor piezoelektrika ograničen na vrlo stabilne tipove. The requirement to operate at the resonant frequency of the marker transducer is strict and does not allow the piezoelectric properties to change with time or require knowledge of the resonance all the time. Thus, the choice of piezoelectrics is limited to very stable types.
Ultrazvučni marker sistem može pomoći da se izbjegne značajni dio upotrebe rendgena u kardijalnoj kateterizaciji i implantaciji elektrodnih katetera ili elektrofizioloških studija. Dodatno ovaj sistem može omogućiti otkrivanje kvarova elektrodnog katetera. Doza zračenja na ruke operatora može lako prijeći 300 μGy po aplikaciji, pa je izbjegavanje upotrebe rendgenskih zraka opravdano kad god je to moguće. An ultrasound marker system can help to avoid a significant part of the use of X-rays in cardiac catheterization and implantation of electrode catheters or electrophysiological studies. In addition, this system can enable the detection of electrode catheter failures. The radiation dose to the operator's hands can easily exceed 300 μGy per application, so avoiding the use of X-rays is justified whenever possible.
Transponder i pasivni sistem imaju različita svojstva i treba ih upotrebljavati u različitim okolnostima. Transponder je pogodan za implantaciju privremenog elektrodnog katetera za elektrostimulaciju i kateterizaciju jer po konstrukciji ne ovisi o ehoskopu i lako ga je električki izolirati. U tom slučaju se potrebna provjera izolacije može izvršiti prije upotrebe. Transponder je manje pogodan za elektrofiziološke studije zbog problematičnog prepoznavanja različitih transponderskih potpisa, a nije jednostavan za upotrebu u stalnoj elektrostimulaciji zbog velikog potroška energije. A transponder and a passive system have different properties and should be used in different circumstances. The transponder is suitable for implantation of a temporary electrode catheter for electrostimulation and catheterization because it is not dependent on the echoscope by design and is easy to isolate electrically. In this case, the required insulation check can be performed before use. The transponder is less suitable for electrophysiological studies due to the problematic recognition of different transponder signatures, and it is not easy to use in permanent electrostimulation due to high energy consumption.
Konstrukcija pasivnog sistema ovisi o ehoskopu s koji se primjenjuje ali on ima mnogo manji potrošak energije nego transponder i može generirati jednostavno prepoznatljive oznake za elektrofiziološke studije jer nema međukoraka odašiljanja ultrazvuka. The construction of the passive system depends on the echoscope with which it is applied, but it has a much lower energy consumption than the transponder and can generate easily recognizable marks for electrophysiological studies because there is no intermediate step of transmitting ultrasound.
Ovi i drugi aspekti su opisani u našim znanstvenim radovima B. Breyer, B. Ferek-Petrić i I. Čikeš: Properties of Ultrasonically Marked Leads. Pacing and Clinical Electrophysiology. Vol.12, (1989), p.1369., i u B. Breyer & B.Ferek-Petrić. Possibilities of Ultrasound Catheters. Int.Journ. of Cardiac Imaging, Vol.6., (1991), p. 277. These and other aspects are described in our scientific papers B. Breyer, B. Ferek-Petrić and I. Čikeš: Properties of Ultrasonically Marked Leads. Pacing and Clinical Electrophysiology. Vol.12, (1989), p.1369, and in B. Breyer & B. Ferek-Petrić. Possibilities of Ultrasound Catheters. Int.Journ. of Cardiac Imaging, Vol. 6, (1991), p. 277.
Opis izuma Description of the invention
Glavni je cilj ovog izuma da omogući točnu kontrolu smjera i dubine terapijskih i dijagnostičkih punkcija unutar srca ili drugih tjelesnih struktura do kojih se normalno može doći samo kateterima ili sličnim napravama. Takva punkcija može poslužiti za davanje nekog medicinskog sredstva u punktirano tkivo. Rečeno medicinsko sredstvo može biti genetičko sredstvo, kemoterapijsko sredstvo ili bilo kakav lijek koji se može uštrcati. U slučajevima kad je potrebna implantacija u neku točno određenu dubinu, naš izum služi za točnu kontrolu dubine. Prednost dijagnostičkog aspekta takve punkcije je opet striktna kontrola dubine punkcije. The main objective of the present invention is to enable accurate control of the direction and depth of therapeutic and diagnostic punctures within the heart or other body structures normally accessible only by catheters or similar devices. Such a puncture can be used to administer a medical agent into the punctured tissue. Said medical agent can be a genetic agent, a chemotherapy agent, or any drug that can be injected. In cases where implantation is required at a precisely determined depth, our invention serves for accurate depth control. The advantage of the diagnostic aspect of such a puncture is again the strict control of the puncture depth.
Drugi cilj ovog izuma je vođenje i lokalizacija točnih točaka mjesta kuda se daje medicinska terapija koja se daje injekcijom ili instilacijom nekog medicinskog sredstva direktno u ljudska tkiva na mjestima u tijelu koja nisu vidljiva ili se ne mogu učiniti vidljivima optičkim sredstvima ali se mogu prikazati ultrazvučnim ehoskopom. Another object of this invention is to guide and localize the exact points where medical therapy is given by injection or instillation of a medical agent directly into human tissues in places in the body that are not visible or cannot be made visible by optical means but can be shown with an ultrasound echoscope. .
Punkcija se vrši u dva koraka, naime prvi korak je da se punkcijski sklop dovede do pravog mjesta i u kontakt sa tkivima koja treba punktirati, a drugi korak je stvarna punkcija sa davanjem medicinskog sredstva ili aspiracije dijagnostičkog uzorka. The puncture is performed in two steps, namely the first step is to bring the puncture assembly to the right place and in contact with the tissues to be punctured, and the second step is the actual puncture with the administration of a medical agent or aspiration of a diagnostic sample.
Rečena punkcija se vrši specifičnim priborom za katetersku punkciju. Pribor za katetersku punkciju se sastoji od šupljeg introduktor katetera i unutar toga drugog katetera sa punkcijskom iglom na distalnom kraju. Unutrašnji član može biti i samo savitljiva punkcijska igla. Introduktor kateter se upotrebljava za manevriranje vrha naprave do mjesta od interesa. Unutrašnji punkcijski kateter se tada gurne van kako bi se učinila terapijska ili dijagnostička punkcija. Oba koraka, točno postavljanje i točna punkcija, zahtijevaju vođenje i kontrolu kako bi se sve učinilo sigurnijim i točnijim od slijepog postupka. Vođenje rendgenom nije sasvim adekvatno zbog opasnosti od zračenja i zato jer se na taj način meka tkiva slabo prikazuju. Said puncture is performed with specific equipment for catheter puncture. Accessories for catheter puncture consist of a hollow introducer catheter and inside it another catheter with a puncture needle at the distal end. The inner member can be just a flexible puncture needle. The introducer catheter is used to maneuver the tip of the device to the point of interest. The internal puncture catheter is then pushed out to perform a therapeutic or diagnostic puncture. Both steps, accurate placement and accurate puncture, require guidance and control to make everything safer and more accurate than a blind procedure. X-ray guidance is not entirely adequate due to the danger of radiation and because soft tissues are poorly visualized in this way.
Ultrazvučna ehoskopija ne predstavlja opasnost od zračenja za bolesnika i operatera a ima odličnu sposobnost prikaza mekih tkiva. Prikaz rečenog katetera, njegovog vrha i vrha punkcijske igle je bitan za ultrazvučno vođenje rečenih postupaka sa priborom za punkciju. Ultrasound echoscopy does not pose a radiation hazard for the patient and the operator and has an excellent ability to visualize soft tissues. The representation of said catheter, its tip and the tip of the puncture needle is essential for ultrasound guidance of said procedures with puncture accessories.
Metoda za jednoznačnu lokalizaciju neke točke na napravi uvedenoj u tijelo, npr. rečenom introduktoru ili elektrofiziološkom kateteru, se sastoji od ultrazvučnog markiranja katetera i upotrebe transpondera za generiranje vidljive oznake na ekranu ultrazvučnog ehoskopa. To znači da ovdje opisana metoda uključuje ultrazvučni ehoskop i ovdje opisani ultrazvučno markirani kateterski pribor za punkciju. The method for unequivocal localization of a point on a device introduced into the body, for example said introducer or electrophysiological catheter, consists of ultrasound marking of the catheter and the use of a transponder to generate a visible mark on the screen of the ultrasound echoscope. This means that the method described herein includes the ultrasound echoscope and the ultrasound-marked catheter puncture kit described herein.
Jedan ili više minijaturnih piezoelektričkih marker pretvarača se montiraju pri vrhu introduktora katetera a posebni se pretvarač montira na kateter za punkciju sa iglom. Elektrode marker pretvarača (napareno srebro ili slično) se vežu na električne vodiče koji su položeni uzduž katetera do vanjske električne priključnice na proksimalnom kraju katetera. Kad je pretvarač na vrhu katetera u polju pretraživanja ehoskopa onda ga aktivira ultrazvuk iz snopa koji generira ehoskopska sonda. Tako stvoreni visokofrekventni impulsi se vode ugrađenim električnim vodičima do lokalizacijskih elektroničkih krugova. One or more miniature piezoelectric marker transducers are mounted at the tip of the catheter introducer and a separate transducer is mounted on the needle puncture catheter. Marker transducer electrodes (vaporized silver or similar) are attached to electrical conductors that are laid along the catheter to an external electrical connector at the proximal end of the catheter. When the transducer is on the tip of the catheter in the search field of the echoscope, it is activated by ultrasound from the beam generated by the echoscopic probe. The high-frequency pulses created in this way are guided by built-in electrical conductors to the localization electronic circuits.
Najjednostavniji elektronički krug za lokalizaciju je transponder. Transponder je generator serije impulsa okidan signalima iz rečenog marker pretvarača kad je markirani dio katetera u ravnini pretrage ehoskopa. Kad ultrazvučni impuls stigne do marker pretvarača stvori električni impuls koji okine impuls generator čiji se izlaz vodi nazad na marker pretvarač. Time marker pretvarač postaje odašiljač ultrazvuka koji proizvodi vidljivu oznaku koja označava njegov položaj na ekranu ehoskopa. Metoda ne ovisi o tome da li se pretraga vrši u dvije ili tri dimenzije. Ovim postupkom izvršen je prvi dio zadatka, tj. dovođenje punkcijskog katetera u željeni položaj. The simplest electronic circuit for localization is a transponder. The transponder is a generator of a series of pulses triggered by signals from said marker transducer when the marked part of the catheter is in the plane of the echoscope search. When the ultrasonic pulse reaches the marker transducer, it creates an electrical impulse that triggers the pulse generator whose output is fed back to the marker transducer. Thus, the marker transducer becomes an ultrasound transmitter that produces a visible mark indicating its position on the ultrasound screen. The method does not depend on whether the search is performed in two or three dimensions. This procedure completed the first part of the task, i.e. bringing the puncture catheter to the desired position.
Slijedeći korak postupka je stvarna kontrolirana punkcija. Da bi se to ostvarilo igla se izgura iz vanjskog katetera i punktira prislonjeno tkivo. Potrebno je ustanoviti da je punkcija stvarno izvršena i izmjeriti dubinu punkcije. Činjenica da je igla izišla i ušla u tkivo vrši se uz pomoć transpondera i ultrazvučnog marker pretvarača na igli. Dubina punkcije se određuje ultrazvučnim impulsnim mjerenjem udaljenosti između marker pretvarača na introduktor kateteru i na igli. Posebni elektronički krug mjeri rečeni udaljenost mjerenjem vremena potrebnog ultrazvučnim impulsima da prijeđu udaljenost između ta dva marker pretvarača. Time je dubina punkcije detaljno kontrolirana. The next step of the procedure is the actual controlled puncture. To achieve this, the needle is pushed out of the external catheter and punctures the adjacent tissue. It is necessary to establish that the puncture was actually performed and to measure the depth of the puncture. The fact that the needle has exited and entered the tissue is done with the help of a transponder and an ultrasound marker transducer on the needle. The puncture depth is determined by ultrasonic pulse measurement of the distance between the marker transducer on the introducer catheter and on the needle. A special electronic circuit measures said distance by measuring the time it takes for the ultrasonic pulses to travel the distance between the two marker transducers. In this way, the depth of the puncture is controlled in detail.
Dakle ovaj izum rješava problem vođenja i kontrole punkcijskih postupaka u srcu. U tu svrhu izum obuhvaća slijedeće naprave: Ultrazvučno markirani introduktor kateter kroz koji se ultrazvučno markirani kateter sa iglom može pokretati, te transponderske krugove za vođenje ultrazvučne ehografije kao i ultrazvučni mjerač udaljenosti. Thus, this invention solves the problem of conducting and controlling puncture procedures in the heart. For this purpose, the invention includes the following devices: an ultrasound-marked introducer catheter through which an ultrasound-marked catheter with a needle can be moved, and transponder circuits for conducting ultrasound echography, as well as an ultrasound distance meter.
Kratki opis slika Short description of the pictures
Prema slici 1 punktira se interventrikularni septum upotrebom sklopa katetera za punkciju koji se uvodi kroz desni srčani ventrikul. Kateter introduktor 1 markiran marker pretvaračem 2 se postavlja u desno srce. Kroz taj introduktor kateter uvodi se igleni kateter 11 markiran marker pretvaračem 12, a igla 13 se gurne naprijed i time punktira srčanu strukturu 10, u prikazanom slučaju međuventrikularni septum. According to Figure 1, the interventricular septum is punctured using a puncture catheter assembly that is introduced through the right heart ventricle. Catheter introducer 1 marked with marker transducer 2 is placed in the right heart. Through this introducer catheter, a needle catheter 11 marked with a marker transducer 12 is introduced, and the needle 13 is pushed forward and thus punctures the cardiac structure 10, in the case shown, the interventricular septum.
Prema slici 2 šuplji kateter 1 je markiran pretvaračem 2 koji je vezan sa proksimalnom stranom uzdužnim vodičima 3 i 4. Drugi unutrašnji kateter 11 sa punkcijskom iglom 13 na vrhu markiran je piezoelektričkim marker pretvaračem 12. Vodiči 5 i 6 koji teku uzduž tog katetera povezuju marker pretvarač 12 sa proksimalnom stranom katetera 11. According to Figure 2, the hollow catheter 1 is marked by a transducer 2 which is connected to the proximal side by longitudinal guides 3 and 4. The second internal catheter 11 with a puncture needle 13 on the tip is marked by a piezoelectric marker transducer 12. Guides 5 and 6 running along this catheter connect the marker. transducer 12 with the proximal side of the catheter 11.
Prema slici 3 šuplji kateter 1 je markiran pretvaračem 2 koji je povezan sa proksimalnom stranom katetera 1 uzdužnim vodičima 3 i 4. Drugi unutrašnji kateter 111 sa punkcijskom iglom 13 na vrhu je markiran piezoelektričkim pretvaračem 12. Uzdužni vodiči 105 i 106 povezuju marker pretvarač 12 sa proksimalnom stranom katetera 111. According to Figure 3, the hollow catheter 1 is marked by a transducer 2 which is connected to the proximal side of the catheter 1 by longitudinal guides 3 and 4. The second internal catheter 111 with a puncture needle 13 at the top is marked by a piezoelectric transducer 12. Longitudinal guides 105 and 106 connect the marker transducer 12 with the proximal side of the catheter 111.
Prema slici 4 je ultrazvučni ehoskop 30 upotrebljen za odslikavanje unutrašnjosti pacijentovog tijela 33. Sonda ehoskopa 34 pretražuje područje 35 unutar pacijentova tijela. Rečeni kateter 1 se uvede u tijelo i povezuje se sa krugovima za označavanje 37, npr. transponderima. Sklop katetera opisan uz slike 1, 2 i 3 je označen marker pretvaračima 2 i 12. Kad se rečeni marker pretvarači 1 ili 12 nađu u odslikanom području 35 elektronički krugovi 37 za markiranje generiraju takve električke signale da generiraju vidljive i prepoznatljive oznake na ekranu ultrazvučnog ehoskopa 30. According to Figure 4, the ultrasound echoscope 30 is used to image the inside of the patient's body 33. The probe of the echoscope 34 searches the area 35 inside the patient's body. Said catheter 1 is introduced into the body and connected to marking circuits 37, eg transponders. The catheter assembly described in Figures 1, 2 and 3 is marked by marker transducers 2 and 12. When said marker transducers 1 or 12 are located in the imaged area 35, electronic marking circuits 37 generate such electrical signals as to generate visible and recognizable markings on the screen of the ultrasound echoscope. 30.
Prema slici 5 elektronički krugovi za markiranje su dvostruki ako postoje dva marker pretvarača kako je to ilustrirano u slikama 1 i 2. Prema ilustraciji iz slike 5 elektronički krug se sastoji od dva transpondera ili ekvivalentna kruga 41 i 43, te od mjerača udaljenosti 42 i 44. Ovi su međusobno povezani sa odgovarajućim uklopnim krugovima 45, a sa kateterskim sklopom 1 sa slika 1 – 4 preko uklopnih i veznih krugova 47. Kontrolni krug 45 se upotrebljava za koordinaciju rada pojedinih dijelova. According to Figure 5, the electronic marking circuits are dual if there are two marker transducers as illustrated in Figures 1 and 2. According to the illustration in Figure 5, the electronic circuit consists of two transponders or equivalent circuits 41 and 43, and distance meters 42 and 44. These are interconnected with the corresponding switching circuits 45, and with the catheter assembly 1 from Figures 1-4 via switching and connecting circuits 47. The control circuit 45 is used to coordinate the operation of individual parts.
Prema slici 6 krugovi za markiranje mogu imati multiplekserski prekidač 55 da funkcioniraju kao dvostruki ako postoje dva marker pretvarača 2 i 12 prema slikama 1 i 2. Kako je ilustrirano u slici 6, krugovi se sastoje od jednog transpondera 52 i krugova za mjerenje udaljenosti 51 i 56. Ovi su međusobno povezani odgovarajućim preklopnim krugovima 55 a na kateterski sklop 1 sa slika 1 – 4 preko prekidačkih i veznih krugova 57 i 58. Kontrolni krug 55 se upotrebljava za koordinaciju rad pojedinih dijelova. According to Figure 6, the marking circuits may have a multiplexer switch 55 to function as a dual if there are two marker transducers 2 and 12 according to Figures 1 and 2. As illustrated in Figure 6, the circuits consist of a single transponder 52 and distance measuring circuits 51 and 56. These are connected to each other by appropriate switching circuits 55 and to the catheter assembly 1 from pictures 1-4 via switching and connection circuits 57 and 58. Control circuit 55 is used to coordinate the work of individual parts.
Opis jedne izvedbe Description of one performance
Kako se vidi na slici 1 problem koji treba riješiti je vođenje i kontrola punkcije neke strukture unutar živog srca. Vođenje znači dovesti napravu do željene strukture u tijelu. Kontrola znači da se kontrolira dubina punkcije mjerena od površine strukture. Punkcija može biti dijagnostička ili terapijska. Terapijske punkcije uključuju davanje genske terapije, kemoterapije ili davanja bilo kakvog drugog medicinskog sredstva. As can be seen in Figure 1, the problem that needs to be solved is the guidance and control of the puncture of a structure inside the living heart. Guiding means bringing the device to the desired structure in the body. Control means that the puncture depth measured from the surface of the structure is controlled. Puncture can be diagnostic or therapeutic. Therapeutic punctures include the administration of gene therapy, chemotherapy, or the administration of any other medical agent.
Savitljivi kateter 1 koji sadrži još jedan savitljivi kateter ili iglu 11 uvede se i postavi na mjesto od interesa 10, u ovom slučaju interventrikularni septum. Praktični problem je kontrola ovog postavljanja. To se vrši pomoću ultrazvučnog ehoskopa kojim se u stvarnom vremenu mogu vidjeti srčane strukture od mekog tkiva kao i rečeni kateteri. Međutim, zbog stalnog micanja i malih dimenzija rečenih naprava se točni položaj vrha koji sadrži iglu 13 teško može znati bez ovog tehničkog izuma. Kako bi se to riješilo montiran je marker pretvarač 12 na unutrašnji kateter 11. Taj unutrašnji kateter 11 se može uzdužno micati unutar vanjskog katetera 1 i može se tako izgurati da se eksponira punkcijska igla 13 čime se punktira struktura od interesa 10. Vanjski ultrazvučni ehoskop i transponder se upotrebljavaju sa rečenim kateterskim sklopom. A flexible catheter 1 containing another flexible catheter or needle 11 is introduced and positioned at the site of interest 10, in this case the interventricular septum. A practical problem is the control of this setup. This is done with the help of an ultrasound echoscope, which can see the heart's soft tissue structures as well as said catheters in real time. However, due to the constant movement and small dimensions of said devices, the exact position of the tip containing the needle 13 can hardly be known without this technical invention. In order to solve this, a marker transducer 12 is mounted on the inner catheter 11. This inner catheter 11 can be moved longitudinally inside the outer catheter 1 and can be pushed out so as to expose the puncture needle 13, thereby puncturing the structure of interest 10. The external ultrasound echoscope and transponder are used with said catheter assembly.
Rečeni kateteri su u više detalja ilustrirani na slikama 2 i 3. Said catheters are illustrated in more detail in Figures 2 and 3.
Kako je to ilustrirano na slikama 2A i 2B vanjski kateter 1 je upravljiv tako da se njegov distalni dio upotrebom vanjskih kontrola može savijati u najmanje jednoj osi. Kako se vidi na slici 2A, piezoelektrički pretvarač 2 je montiran pri vrhu katetera 1. Taj pretvarač može biti kompozitnog tipa sastavljen od više pretvarača i povezan sa proksimalnim dijelom katetera električnim vodičima 3 i 4 tako da može primati i slati električke signale u elektroničke spojene krugove. Drugi kateter 11 je manjeg promjera i postavljen je unutar katetera 1 i može se u potpunosti uvući u njega. Na svojem vrhu ima iglu 13 ili neku drugu napravu te vrste. Igla je prikazana kako viri iz vanjskog katetera 1, ali za vrijeme manevriranja u tijelu ona je potpuno uvučena tako da za ništa ne zapne dok ne dođe do cilja. Kad je cilj dosegnut terapijska ili dijagnostička punkcija se može izvršiti izguravanjem unutrašnjeg katetera 11 van (slika 2B), čime se iglom 13 penetrira u tkivo ispred naprave. U isto vrijeme se izloži drugi marker pretvarač 12 i on sad može primati i odašiljati električke signale iz elektroničkih krugova spojenih na njega unutrašnjim vodičima 5 i 6 koji vode do proksimalne strane katetera 11 i mogu se spojiti na elektroničke krugove koji će kasnije biti opisani. Igla 13 je šuplja igla koja se upotrebljava za terapijske punkcije, tj. davanje medicinskih sredstava kroz šuplji kateter 11 u tjelesne strukture 10 koje treba liječiti. As illustrated in Figures 2A and 2B, the external catheter 1 is controllable so that its distal portion can be bent in at least one axis using external controls. As seen in Figure 2A, a piezoelectric transducer 2 is mounted at the tip of the catheter 1. This transducer may be of a composite type composed of several transducers and connected to the proximal part of the catheter by electrical conductors 3 and 4 so that it can receive and send electrical signals to the electronic connected circuits. . The second catheter 11 has a smaller diameter and is placed inside the catheter 1 and can be fully retracted into it. It has a needle 13 or some other device of that type on its tip. The needle is shown protruding from the external catheter 1, but during maneuvering in the body it is fully retracted so that it does not catch on anything until it reaches the target. When the goal is reached, a therapeutic or diagnostic puncture can be performed by pushing the internal catheter 11 out (Figure 2B), which penetrates the tissue in front of the device with the needle 13. At the same time, the second marker transducer 12 is exposed and it can now receive and transmit electrical signals from electronic circuits connected to it by internal conductors 5 and 6 leading to the proximal side of the catheter 11 and can be connected to electronic circuits that will be described later. The needle 13 is a hollow needle that is used for therapeutic punctures, i.e. administration of medical agents through the hollow catheter 11 into body structures 10 to be treated.
Kako je to ilustrirano na slikama 3A i 3B vanjski kateter 1 je upravljiv tako da se njegov distalni dio upotrebom vanjskih kontrola može savijati u najmanje jednoj osi. Kako se vidi na slici 3A, piezoelektrički pretvarač 2 je montiran pri vrhu katetera 1. Taj pretvarač može biti kompozitnog tipa sastavljen od više pretvarača i povezan sa proksimalnim dijelom katetera električnim vodičima 3 i 4 tako da može primati i slati električke signale u spojene elektroničke krugove. Drugi kateter 111 je manjeg promjera i postavljen je unutar katetera 1 i može se u potpunosti uvući u njega. Može se izgurati iz katetera 1 u stranu. Na svojem vrhu ima iglu 13 ili neku drugu napravu te vrste. Igla je prikazana kako viri iz vanjskog katetera 1, ali za vrijeme manevriranja u tijelu ona je potpuno uvučena tako da za ništa ne zapne dok ne dođe do cilja. Kad je cilj dosegnut terapijska ili dijagnostička punkcija se može izvršiti izguravanjem unutrašnjeg katetera 111 van (slika 3B), tako da se iglom 13 penetrira u tkivo ispred naprave. U isto vrijeme se izloži drugi marker pretvarač 12 i on sad može primati i odašiljati električke signale iz elektroničkih krugove spojenih na njega unutrašnjim vodičima 5 i 6 koji vode do proksimalne strane katetera 111 i mogu se spojiti na elektroničke krugove koji će kasnije biti opisani. Igla 13 je šuplja igla koja se upotrebljava za terapijske punkcije za davanje medicinskih sredstava kroz šuplji kateter 111 ili 11 u tjelesne strukture 10 koje treba liječiti. Ovaj se oblik naprave koristi kad se strukturi od interesa lakše pristupa naslanjanjem upravljivog katetera 1 na nju ili kad je struktura uska, npr. krvna žila. As illustrated in Figures 3A and 3B, the external catheter 1 is controllable so that its distal part can be bent in at least one axis using external controls. As seen in Figure 3A, a piezoelectric transducer 2 is mounted at the tip of the catheter 1. This transducer can be of a composite type composed of several transducers and connected to the proximal part of the catheter by electrical conductors 3 and 4 so that it can receive and send electrical signals to the connected electronic circuits. . The second catheter 111 is smaller in diameter and is placed inside the catheter 1 and can be fully retracted into it. It can be pushed out of the catheter 1 to the side. It has a needle 13 or some other device of that type on its tip. The needle is shown protruding from the external catheter 1, but during maneuvering in the body it is fully retracted so that it does not catch on anything until it reaches the target. When the goal is reached, a therapeutic or diagnostic puncture can be performed by pushing the internal catheter 111 out (Figure 3B), so that the needle 13 penetrates the tissue in front of the device. At the same time, the second marker transducer 12 is exposed and it can now receive and transmit electrical signals from electronic circuits connected to it by internal conductors 5 and 6 leading to the proximal side of the catheter 111 and can be connected to electronic circuits that will be described later. The needle 13 is a hollow needle used for therapeutic punctures to administer medical agents through the hollow catheter 111 or 11 into body structures 10 to be treated. This form of device is used when the structure of interest is easier to access by leaning the steerable catheter 1 on it or when the structure is narrow, for example a blood vessel.
Rečeni postupci punkcije se vode i kontroliraju upotrebom vanjskog ultrazvučnog ehoskopa i posebnih lokalizacijskih elektroničkih krugova kako je to ilustrirano na slici 4. Ultrazvučni ehoskop 30 odslikava područje 35 unutar ljudskog tijela 33. Rečeni kateterski sklop 1 opisan pomoću slika 1, 2, 3 je uložen u tijelo. Uz ostale dijelove koji su već opisani on ima i dva sklopa piezoelektričkih marker pretvarača 2 i 12 koji su spojeni na elektroničke krugove 37 i 38 pomoću vodiča unutar kateterskog sklopa. Kad ultrazvučni impulsi iz ehoskopske sonde 34 pogode piezoelektrički marker pretvarače 2 i 12 generiraju se električki signali koji se vode do elektroničkog kruga 37, poželjno transpondera. Transponder je naprava koja generira svoj karakteristični električki signal kad primi signal iz nekog piezoelektričkog pretvarača i pošalje taj karakteristični električki signal-potpis nazad na pretvarač iz kojeg je bio okinut. Said puncture procedures are guided and controlled using an external ultrasound echoscope and special localization electronic circuits as illustrated in Figure 4. The ultrasound echoscope 30 images an area 35 inside the human body 33. Said catheter assembly 1 described by means of Figures 1, 2, 3 is embedded in body. In addition to the other parts that have already been described, it also has two sets of piezoelectric marker transducers 2 and 12 that are connected to electronic circuits 37 and 38 by means of conductors inside the catheter assembly. When the ultrasonic pulses from the echoscopic probe 34 hit the piezoelectric marker transducers 2 and 12, electrical signals are generated that are led to the electronic circuit 37, preferably a transponder. A transponder is a device that generates its characteristic electrical signal when it receives a signal from a piezoelectric transducer and sends that characteristic electrical signal-signature back to the transducer from which it was removed.
Dva različita zadatka se moraju obaviti ovom napravom, naime vođenje naprave do njezinog namjeravanog položaja i kontrola same punkcije. Two different tasks must be performed with this device, namely guiding the device to its intended position and controlling the puncture itself.
U skladu sa prvim aspektom ovog izuma se kateterski sklop 1 vodi do željenog položaja upotrebom vanjskog ultrazvučnog ehoskopa 30 u vezi sa transponderom 37 ili drugim ekvivalentnim krugom za pozicioniranje. In accordance with the first aspect of the present invention, the catheter assembly 1 is guided to a desired position using an external ultrasound echoscope 30 in conjunction with a transponder 37 or other equivalent positioning circuit.
U skladu sa drugim aspektom ovog izuma, dubina i uspjeh te punkcije je određen i kontroliran mjerenjem udaljenosti između marker pretvarača 2 i 12 upotrebom ultrazvučnog impulsnog mjerača udaljenosti 38. In accordance with another aspect of the present invention, the depth and success of that puncture is determined and controlled by measuring the distance between marker transducers 2 and 12 using an ultrasonic pulse distance meter 38.
U više detalja postoje razne mogućnosti ostvarenja opisanog osnovnog principa. In more detail, there are various possibilities for realizing the described basic principle.
Kako je ilustrirano na slici 5 moguće je uzeti dva transpondera 42 i 44 koji su spojeni na marker pretvarače 2 odnosno 12. Ovi su povezani preklopnikom 45 za vrijeme faze vođenja. Svaki od rečenih transpondera generira svoj vlastiti električki i posljedično tome ultrazvučni red impulsa - potpis. Ti različiti potpisi daju različite oznake na ekranu ehoskopa 30. Kad je kateter 1 doveden do točke od interesa i naslanja se na nju, onda se drugi kateter 11 izgura tako da igla 13 penetrira tkivo, npr. srčani ventrikularni septum. Dubina penetracije igle se kontrolira mjerenjem udaljenosti između marker pretvarača 2 i 12. U tu se svrhu se dva pretvarača preklope na krugove za mjerenje udaljenosti 41 i 43 putem preklopnika 45 i pod kontrolom kontrolnog kruga 42 kojim operater može upravljati. Ti ultrazvučni krugovi za mjerenje udaljenosti u osnovi mjere vrijeme prijelaza ultrazvuka sa mjesta na mjesto kako je to poznato u ovoj tehnologiji. Marker pretvarači se mogu preklapati preklopnikom 45 između rečenih mjernih krugova po volji često. As illustrated in Figure 5, it is possible to take two transponders 42 and 44 that are connected to marker converters 2 and 12, respectively. These are connected by a switch 45 during the guidance phase. Each of said transponders generates its own electrical and consequently ultrasonic pulse sequence - signature. These different signatures give different markings on the echoscope screen 30. When the catheter 1 is brought to the point of interest and rests on it, then the second catheter 11 is pushed out so that the needle 13 penetrates the tissue, eg the cardiac ventricular septum. The depth of needle penetration is controlled by measuring the distance between marker transducers 2 and 12. For this purpose, the two transducers are switched to the distance measuring circuits 41 and 43 by means of a switch 45 and under the control of a control circuit 42 which can be operated by the operator. These ultrasonic distance measuring circuits basically measure the time the ultrasound travels from place to place as is known in the art. The marker converters can be switched with the switch 45 between said measuring circuits as often as desired.
Moguće je upotrijebiti samo jedan transponder kako je to ilustrirano na slici 6. U tom slučaju se jedan transponder 52 preklapa između marker pretvarača 2 i 12 pomoću preklopnika 57. Kontroler 55 kontrolira učestalost preklapanja između ta dva pretvarača. Kad je dostignuta točka od interesa u tijelu i kateter 1 se naslanja na nju, drugi kateter 11 se izgura van tako da igla 13 penetrira tkivo, npr. srčani ventrikularni septum. Dubina do koje igla uđe u tkivo se kontrolira mjerenjem udaljenosti između marker pretvarača 1 i 12. U tu svrhu se ta dva pretvarača prebace na krugove za mjerenje udaljenosti 51 i 56 preko preklopnika 57 i pod kontrolom kontrolnih krugova 55 kojima operater može upravljati. Ovi ultrazvučni krugovi za mjerenje udaljenosti u osnovi mjere vrijeme prolaza ultrazvučnih impulsa kao što je to poznato u ovoj tehnologiji. Marker pretvarači se mogu preklapati između rečenih elektroničkih krugova 55, 57, 58 po volji često. It is possible to use only one transponder as illustrated in Figure 6. In this case, one transponder 52 is switched between marker transducers 2 and 12 by means of switch 57. Controller 55 controls the frequency of switching between the two transducers. When a point of interest in the body is reached and the catheter 1 rests on it, the second catheter 11 is pushed out so that the needle 13 penetrates the tissue, eg the cardiac ventricular septum. The depth to which the needle penetrates the tissue is controlled by measuring the distance between marker transducers 1 and 12. For this purpose, these two transducers are switched to the distance measuring circuits 51 and 56 via a switch 57 and under the control of control circuits 55 which can be operated by the operator. These ultrasonic distance measuring circuits basically measure the transit time of ultrasonic pulses as is known in the art. Marker transducers can be switched between said electronic circuits 55, 57, 58 as often as desired.
Prema tome, prije spomenuti ciljevi vođenja aktivnog vrha naprave za davanje medicinskog sredstva u tjelesnu strukturu od interesa i kasnija kontrola postupka punkcije su time postignuti. Therefore, the previously mentioned objectives of guiding the active tip of the device to deliver the medical agent into the body structure of interest and the subsequent control of the puncture procedure are thereby achieved.
Claims (32)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HR20030990A HRP20030990A2 (en) | 2003-11-27 | 2003-11-27 | System for guidance and control of minimum invasive delivery of therapy with medical agents |
PCT/HR2004/000059 WO2005055849A1 (en) | 2003-11-27 | 2004-11-25 | Ultrasonically marked system for therapy delivery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HR20030990A HRP20030990A2 (en) | 2003-11-27 | 2003-11-27 | System for guidance and control of minimum invasive delivery of therapy with medical agents |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP20030990A2 true HRP20030990A2 (en) | 2006-02-28 |
Family
ID=34674376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR20030990A HRP20030990A2 (en) | 2003-11-27 | 2003-11-27 | System for guidance and control of minimum invasive delivery of therapy with medical agents |
Country Status (2)
Country | Link |
---|---|
HR (1) | HRP20030990A2 (en) |
WO (1) | WO2005055849A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8019404B2 (en) | 2006-10-06 | 2011-09-13 | The Cleveland Clinic Foundation | Apparatus and method for targeting a body tissue |
US8694077B2 (en) | 2006-10-06 | 2014-04-08 | The Cleveland Clinic Foundation | Apparatus and method for targeting a body tissue |
US8002736B2 (en) | 2007-12-21 | 2011-08-23 | Carticept Medical, Inc. | Injection systems for delivery of fluids to joints |
US8545440B2 (en) | 2007-12-21 | 2013-10-01 | Carticept Medical, Inc. | Injection system for delivering multiple fluids within the anatomy |
US9044542B2 (en) | 2007-12-21 | 2015-06-02 | Carticept Medical, Inc. | Imaging-guided anesthesia injection systems and methods |
WO2016037137A1 (en) * | 2014-09-05 | 2016-03-10 | Procept Biorobotics Corporation | Physician controlled tissue resection integrated with treatment mapping of target organ images |
ES2691477T3 (en) | 2012-10-22 | 2018-11-27 | The Cleveland Clinic Foundation | Apparatus for acting on a body tissue |
US11324479B2 (en) | 2013-06-28 | 2022-05-10 | Koninklijke Philips N.V. | Shape injection into ultrasound image to calibrate beam patterns in real-time |
CN105338906B (en) * | 2013-06-28 | 2019-06-14 | 皇家飞利浦有限公司 | Shape into ultrasound image is injected with real time calibration beam patterns |
CN105431092B (en) * | 2013-06-28 | 2018-11-06 | 皇家飞利浦有限公司 | Acoustics to intervening instrument highlights |
EP3013227B1 (en) | 2013-06-28 | 2022-08-10 | Koninklijke Philips N.V. | Scanner independent tracking of interventional instruments |
US20150018911A1 (en) | 2013-07-02 | 2015-01-15 | Greatbatch Ltd. | Apparatus, system, and method for minimized energy in peripheral field stimulation |
EP3082614B1 (en) | 2013-12-17 | 2018-10-17 | Koninklijke Philips N.V. | System and instrument for delivering an object |
EP3091907A1 (en) * | 2014-01-02 | 2016-11-16 | Koninklijke Philips N.V. | Ultrasound navigation/tissue characterization combination |
CN107106126B (en) * | 2014-12-24 | 2021-05-28 | 皇家飞利浦有限公司 | Needle trajectory prediction for target biopsy |
US11583249B2 (en) * | 2017-09-08 | 2023-02-21 | Biosense Webster (Israel) Ltd. | Method and apparatus for performing non-fluoroscopic transseptal procedure |
EP3753524B1 (en) * | 2019-06-20 | 2024-03-20 | AURA Health Technologies GmbH | Ultrasound marker, ultrasound marker system and method of operating an ultrasound marker system |
CN113679458B (en) * | 2021-09-17 | 2024-04-02 | 哈尔滨理工大学 | Front-mounted flexible needle puncture device capable of adjusting needle insertion angle |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431006A (en) | 1982-01-07 | 1984-02-14 | Technicare Corporation | Passive ultrasound needle probe locator |
US4771788A (en) | 1986-07-18 | 1988-09-20 | Pfizer Hospital Products Group, Inc. | Doppler tip wire guide |
US5024234A (en) | 1989-10-17 | 1991-06-18 | Cardiovascular Imaging Systems, Inc. | Ultrasonic imaging catheter with guidewire channel |
US6302875B1 (en) * | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
IL151563A0 (en) * | 1995-10-13 | 2003-04-10 | Transvascular Inc | A longitudinal compression apparatus for compressing tissue |
US6006750A (en) * | 1996-04-30 | 1999-12-28 | Medtronic, Inc. | Position sensing system and method for using the same |
DE69725651T2 (en) * | 1996-06-11 | 2004-07-29 | Roke Manor Research Ltd., Romsey | A catheter tracking system |
US5893848A (en) | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US6086534A (en) | 1997-03-07 | 2000-07-11 | Cardiogenesis Corporation | Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging |
US6024703A (en) | 1997-05-07 | 2000-02-15 | Eclipse Surgical Technologies, Inc. | Ultrasound device for axial ranging |
DE19750335A1 (en) * | 1997-11-13 | 1999-06-02 | Fraunhofer Ges Forschung | Device preferably for performing medical puncture procedures and procedures |
WO1999035980A1 (en) * | 1998-01-15 | 1999-07-22 | Lumend, Inc. | Catheter apparatus for guided transvascular treatment of arterial occlusions |
DE69838526T2 (en) * | 1998-02-05 | 2008-07-03 | Biosense Webster, Inc., Diamond Bar | Device for releasing a drug in the heart |
US6206831B1 (en) | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
-
2003
- 2003-11-27 HR HR20030990A patent/HRP20030990A2/en not_active Application Discontinuation
-
2004
- 2004-11-25 WO PCT/HR2004/000059 patent/WO2005055849A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2005055849A1 (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HRP20030990A2 (en) | System for guidance and control of minimum invasive delivery of therapy with medical agents | |
US5779642A (en) | Interrogation device and method | |
US5840030A (en) | Ultrasonic marked cardiac ablation catheter | |
EP0966226B1 (en) | A system for sharing electrocardiogram electrodes and transducers | |
JP5452500B2 (en) | Integrated system for intravascular placement of catheters | |
US7850610B2 (en) | Electrode location mapping system and method | |
EP2713888B1 (en) | Ablation probe with ultrasonic imaging capabilities | |
US6246898B1 (en) | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system | |
US6746401B2 (en) | Tissue ablation visualization | |
US8414492B2 (en) | Image guided intracardiac catheters | |
US20090312617A1 (en) | Needle injection catheter | |
US20050203410A1 (en) | Methods and systems for ultrasound imaging of the heart from the pericardium | |
KR20040093451A (en) | Method and device for transseptal facilitation using location system | |
US8784800B2 (en) | Method of delivering cell therapy to a target site | |
KR20040093452A (en) | Method and device for transseptal facilitation based on injury patterns | |
WO1997029682A1 (en) | Locatable biopsy needle | |
JPH0643242A (en) | Ultrasonic wave imaging system | |
CN103845053A (en) | Location sensing using local coordinate system | |
EP2797536A1 (en) | Ablation probe with ultrasonic imaging capability | |
JP2004321816A (en) | Method and device for transseptal facilitation using sheath with electrode structure | |
JP3740550B2 (en) | Catheter device for evaluation of transvascular, ultrasound and hemodynamics | |
HRP20030588A2 (en) | Ultrasonically marked delivery system for left heart pacing lead | |
Cikes et al. | Interventional echocardiography | |
US20230028061A1 (en) | Needle localization reflectors, systems, and methods | |
Breyer et al. | Properties of ultrasonically marked leads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
OBST | Application withdrawn |