[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

GB9106108D0 - A lateral insulated gate field effect semiconductor device - Google Patents

A lateral insulated gate field effect semiconductor device

Info

Publication number
GB9106108D0
GB9106108D0 GB919106108A GB9106108A GB9106108D0 GB 9106108 D0 GB9106108 D0 GB 9106108D0 GB 919106108 A GB919106108 A GB 919106108A GB 9106108 A GB9106108 A GB 9106108A GB 9106108 D0 GB9106108 D0 GB 9106108D0
Authority
GB
United Kingdom
Prior art keywords
semiconductor device
field effect
insulated gate
gate field
effect semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB919106108A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Electronics UK Ltd
Original Assignee
Philips Electronic and Associated Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Electronic and Associated Industries Ltd filed Critical Philips Electronic and Associated Industries Ltd
Priority to GB919106108A priority Critical patent/GB9106108D0/en
Publication of GB9106108D0 publication Critical patent/GB9106108D0/en
Priority to EP92200718A priority patent/EP0504992B1/en
Priority to DE69215935T priority patent/DE69215935T2/en
Priority to KR1019920004508A priority patent/KR100256387B1/en
Priority to JP4063736A priority patent/JP2597064B2/en
Priority to ZA922069A priority patent/ZA922069B/en
Priority to US08/141,467 priority patent/US5391908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
GB919106108A 1991-03-22 1991-03-22 A lateral insulated gate field effect semiconductor device Pending GB9106108D0 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB919106108A GB9106108D0 (en) 1991-03-22 1991-03-22 A lateral insulated gate field effect semiconductor device
EP92200718A EP0504992B1 (en) 1991-03-22 1992-03-13 A lateral insulated gate field effect semiconductor device
DE69215935T DE69215935T2 (en) 1991-03-22 1992-03-13 Lateral field effect semiconductor device with insulated gate electrode
KR1019920004508A KR100256387B1 (en) 1991-03-22 1992-03-19 A lateral insulated gate field effect semiconductor device
JP4063736A JP2597064B2 (en) 1991-03-22 1992-03-19 Lateral insulated gate field effect semiconductor device
ZA922069A ZA922069B (en) 1991-03-22 1992-03-20 Biological control agents
US08/141,467 US5391908A (en) 1991-03-22 1993-10-22 Lateral insulated gate field effect semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB919106108A GB9106108D0 (en) 1991-03-22 1991-03-22 A lateral insulated gate field effect semiconductor device

Publications (1)

Publication Number Publication Date
GB9106108D0 true GB9106108D0 (en) 1991-05-08

Family

ID=10692024

Family Applications (1)

Application Number Title Priority Date Filing Date
GB919106108A Pending GB9106108D0 (en) 1991-03-22 1991-03-22 A lateral insulated gate field effect semiconductor device

Country Status (7)

Country Link
US (1) US5391908A (en)
EP (1) EP0504992B1 (en)
JP (1) JP2597064B2 (en)
KR (1) KR100256387B1 (en)
DE (1) DE69215935T2 (en)
GB (1) GB9106108D0 (en)
ZA (1) ZA922069B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW366543B (en) * 1996-12-23 1999-08-11 Nxp Bv Semiconductor device
US6506648B1 (en) * 1998-09-02 2003-01-14 Cree Microwave, Inc. Method of fabricating a high power RF field effect transistor with reduced hot electron injection and resulting structure
US6545316B1 (en) 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
FR2785448B1 (en) * 1998-10-30 2001-01-26 Alstom Technology METHOD FOR MANUFACTURING A GATE CONTROL ELECTRODE FOR IGBT TRANSISTOR
US6563193B1 (en) * 1999-09-28 2003-05-13 Kabushiki Kaisha Toshiba Semiconductor device
US6784486B2 (en) * 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
US6781194B2 (en) * 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
US20030091556A1 (en) * 2000-12-04 2003-05-15 Ruoslahti Erkki I. Methods of inhibiting tumor growth and angiogenesis with anastellin
EP1396030B1 (en) * 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertical power semiconductor device and method of making the same
US7180103B2 (en) * 2004-09-24 2007-02-20 Agere Systems Inc. III-V power field effect transistors
US8598659B2 (en) * 2005-10-26 2013-12-03 Hewlett-Packard Development Company, L.P. Single finger gate transistor
JP5307973B2 (en) * 2006-02-24 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
JP4989085B2 (en) * 2006-02-24 2012-08-01 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
JP4611270B2 (en) * 2006-09-27 2011-01-12 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
US20120175679A1 (en) * 2011-01-10 2012-07-12 Fabio Alessio Marino Single structure cascode device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852621C4 (en) * 1978-12-05 1995-11-30 Siemens Ag Insulating layer field-effect transistor with a drift path between the gate electrode and drain zone
NL8103218A (en) * 1981-07-06 1983-02-01 Philips Nv FIELD-EFFECT TRANSISTOR WITH INSULATED HANDLEBAR ELECTRODE.
CA1186072A (en) * 1983-02-17 1985-04-23 Robert A. Hadaway High voltage metal oxide semiconductor transistors
US4721986A (en) * 1984-02-21 1988-01-26 International Rectifier Corporation Bidirectional output semiconductor field effect transistor and method for its maufacture
US4609929A (en) * 1984-12-21 1986-09-02 North American Philips Corporation Conductivity-enhanced combined lateral MOS/bipolar transistor
JPS6358973A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Semiconductor device
US4920393A (en) * 1987-01-08 1990-04-24 Texas Instruments Incorporated Insulated-gate field-effect semiconductor device with doped regions in channel to raise breakdown voltage
FR2617642A1 (en) * 1987-06-30 1989-01-06 Thomson Semiconducteurs Field-effect transistor
JP2609619B2 (en) * 1987-08-25 1997-05-14 三菱電機株式会社 Semiconductor device
US5055896A (en) * 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
JP2650456B2 (en) * 1989-07-04 1997-09-03 富士電機株式会社 MOS semiconductor device
DE4020478C2 (en) * 1989-07-04 2001-03-29 Fuji Electric Co Ltd Mos semiconductor device

Also Published As

Publication number Publication date
JP2597064B2 (en) 1997-04-02
KR920018976A (en) 1992-10-22
DE69215935T2 (en) 1997-05-28
KR100256387B1 (en) 2000-05-15
US5391908A (en) 1995-02-21
ZA922069B (en) 1993-09-20
EP0504992B1 (en) 1996-12-18
DE69215935D1 (en) 1997-01-30
EP0504992A2 (en) 1992-09-23
JPH0582783A (en) 1993-04-02
EP0504992A3 (en) 1993-06-16

Similar Documents

Publication Publication Date Title
GB9313843D0 (en) A semiconductor device comprising an insulated gate field effect transistor
EP0585926A3 (en) Insulated gate semiconductor device
KR970005695B1 (en) Semiconductor device
GB2261990B (en) Semiconductor device
GB2259187B (en) Semiconductor device
KR970001887B1 (en) Semiconductor device
EP0519830A3 (en) Hemt type semiconductor device
EP0536668A3 (en) Vertical semiconductor device
EP0564204A3 (en) Semiconductor device
KR0124131B1 (en) Field effect transistor
GB2255244B (en) Insulated-gate controlled semiconductor device
GB2257297B (en) MOS Semiconductor device
EP0504992A3 (en) A lateral insulated gate field effect semiconductor device
EP0506480A3 (en) Semiconductor device package
GB2266183B (en) Semiconductor device
GB9201004D0 (en) A semiconductor device comprising an insulated gate field effect device
GB2255228B (en) Insulated gate bipolar transistor
TW540828U (en) Semiconductor device
EP0495452A3 (en) Field effect transistor
GB2256313B (en) Semiconductor device
GB2222306B (en) Field effect transistor devices
EP0534203A3 (en) Semiconductor device
KR950013786B1 (en) Semiconductor device
EP0519268A3 (en) High-voltage semiconductor device
GB2297648B (en) Semiconductor device