[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

GB2510737A - Vehicle remote function system using ultra-wide band transmissions - Google Patents

Vehicle remote function system using ultra-wide band transmissions Download PDF

Info

Publication number
GB2510737A
GB2510737A GB1406818.3A GB201406818A GB2510737A GB 2510737 A GB2510737 A GB 2510737A GB 201406818 A GB201406818 A GB 201406818A GB 2510737 A GB2510737 A GB 2510737A
Authority
GB
United Kingdom
Prior art keywords
vehicle
zones
fob
location
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1406818.3A
Other versions
GB2510737B (en
GB201406818D0 (en
Inventor
Jason Bauman
Thomas O'brien
Keith A Christenson
Hilton W Girard Iii
Jian Ye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lear Corp
Original Assignee
Lear Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/923,522 external-priority patent/US20130342379A1/en
Application filed by Lear Corp filed Critical Lear Corp
Priority claimed from GB1311161.2A external-priority patent/GB2505287B/en
Publication of GB201406818D0 publication Critical patent/GB201406818D0/en
Publication of GB2510737A publication Critical patent/GB2510737A/en
Application granted granted Critical
Publication of GB2510737B publication Critical patent/GB2510737B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lock And Its Accessories (AREA)

Abstract

A vehicle remote function system 10 and method is provided for determining a location of a fob 26 relative to a vehicle 12. The system includes a controller 24 adapted to be mounted in the vehicle and configured for communication with a plurality of antennas 22 mounted at different vehicle locations, the controller for use in determining the location of the fob based on ultra-wide band wireless signals 28 transmitted between the antennas and the fob. The controller is configured to locate the fob within one of multiple three-dimensional zones 14, 16, one of the zones configured to have a non-spherical shape. The zone may be positioned to one side of the vehicle and may have a volume less than the volume of a person. The plurality of antennas may be positioned inside the vehicle headliner 30 or dashboard 32 and, with the controller, may be used to locate the fob using one of a Kalman filter, triangulation or trilateration methods.

Description

VEHICLE REMOTE FUNCTION SYSTEM AND METHOD
TECHNICAL FTELD
[0091] The following relates to a vehicle remote function system and a method for determining a location of a fob relative to a vehicle using ultra-wide band wireless signals.
BACKGROUND
[0092] Automotive vehicles may include passive entry systems that allow a user to access and start a vehicle just by holding a key, key fob or card. In operation, such systems may perform and/or enable vehicle access and vehicle start functions based on a determined location of the key in or around the vehicle.
[0003] To facilitate determining key location, the key, key fob or card may be equipped with a transceiver with one or more antennas, and the passive entry system may employ one or more transceivers with multiple antennas positioned at different locations in the vehicle. The passive entry system may also include an Electronic Control Unit (ECU) or controller having a decision based algorithm that determines key location based on the transmission of radio freqLlency (RE) or low frequency (LF) signals (e.g., 125 kHz) between the key antenna and the vehicle based antennas.
[0004] Current passive entry systems use low frequency (LF) antennas located in the vehicle door handles and trunk. Such systems provide relatively small, concentrated lock/unlock zones just around the individual doors and trunk areas. As previously noted, the locking/unlocking functions occur as a result of wireless communication with a key fob.
[0005] As a result, there exists a need for a vehicle remote function system and a method for locating the fob more precisely around the entire vehicle. Such a system and method would allow for more exact and encompassing zones using ultra-wide band wireless signals communicated between the fob and vehicle mounted antennas. The improved zoning strategy of such a system and method would allow zones to be custom tailored for individual "chicle needs and customer requirements.
SUMMARY
[0006] According to one embodiment disclosed herein, a vehicle remote function system is provided for determining a location of a fob relative to a vehicle according to claim 1. The system comprises a plurality of antennas adapted to be mounted at different locations in the vehicle, each antenna for use in transmitting and/or receiving ultra-wide band wireless signals to andlor from the fob. The system further comprises a controller adapted to be mounted in the vehicle and configured for communication with the antennas, the controller for use in determining the location of the fob relative to the vehicle based on ultra-wide hand wireless signals transmitted hetween the antennas and the fob. The controller is configured to locate the fob within one of a plurality of three-dimensional zones, one of the plurality of zones configured to have a non-spherical shape.
[0007] According to the invention, the one of the plurality of zones is configured to have a non-spherical shape being positioned substantially outside the vehicle.
[0008] According to a further embodiment disclosed herein, a method is provided for use in a "chicle remote fullction system according to claim 9. The method comprises transmitting ultra-wide hand wireless signals between the vehicle and the foh. The method further comprises determining the location of the fob within one of a plurality of three-dimensional zones, one of the plurality of zones having a non-spherical shape, hased on the ultra-wide band wireless signals transmitted hetween the vehicle and the foh.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Figure I is a simplified, exemplary diagram of a prior art passive entry system, including coverage zones; [0010] Figure 2 is a simplified, exemplary diagram of a vehicle remote function system, including exemplary coverage zones, for determining a location of a fob relative to a "chicle using ultra-wide hand wireless signals; and [0011] Figure 3 is a simplified, exemplary flowchart of a method for determilling a locatioll of a fob relative to a vehicle using ultra-wide band wireless for use in a vehicle remote function system.
DETAILED DESCRIPTION
[0012] As required, detailed embodiments are disclosed herein. However, it is to he understood that the disclosed embodiments are merely exemplary and that various and alternative forms may he employed. The embodiments are included in order to explain principles of the disclosure and not to limit the scope thereof, which is defined by the appended claims. Details from two or more of the embodiments may he combined with cacTi other. The figures are not necessarily to scale. Some features maybe exaggerated or minimized to show details of particular components.
Therefore, specific structural and functional details disclosed herein are not to he interpreted as limiting, hut merely as a representative basis for teaching one skilled in the art.
[0013] With reference to Figures 1-3, various embodiments of the method and system disclosed herein are shown and described. For ease of illustration and to facilitate understanding, similar reference numerals have been used throughout the following descriptioll to denote similar elements, parts, items or features in the drawings, where applicable.
[0014] As described previously, automotive vehicles may include passive entry systems that allow a user to access and start a vehicle just by holding a key, key fob or card. Ill operation, such systems may perform and/or enable vehicle access aild vehicle start functions based on a determined location of the key in or around the vehicle. To facilitate determining key location, the key, key fob or card may be equipped with a trmsceiver with one or more antennas, aild the passive entry system may employ oe or more transceivers with multiple antenilas positioned at different locations in the vehicle. The passive entry system may also include an Electronic Control Unit (ECU) or controller having a decision based algorithm that determines key location based 011 the transmlssioll of radio frequency (RF) or low frequency (LF) signals (e.g., 125 kHz) between the key antenna and the vehicle based antennas.
[0015] Current passive entry systems use low frequency (LF) antennas located in the vehicle door handles and trunk. Such systems provide relatively small, concentrated lock/unlock zones just around the individual doors and trunk areas. As previously noted, the locking/unlocking functions occur as a result of wireless communication with a key fob. Thus, there exists a need for a vehicle remote function system and a method for locating the fob more precisely around the entire vehicle.
Such a system and method woukl allow for more exact and encompassing zones using ultra-wide band wireless signals communicated between the fob and vehicle mounted antennas. The improved zoning strategy of such a system and method would allow zones to be custom tailored for individual vehicle needs and customer requirements.
[0016] Figure 1 is a simplified, exemplary diagram of a prior art passive entry system 10 for a vehicle 12, including coverage zones 14, 16, 17. As seen therein, the applicable zones 14, 16, 17 are localized to areas around the doors iS and trunk 20. Current passive entry systems tO use low frequency (LF) antennas 22 located in the handles of the doors 18 and in the trunk 20, and that provide relatively small, concentrated lock/unlock zones 14, 16, 17 just around the individual doors 18 and the trunk 20. Locking/unlocking functions occur inside/outside the zones 14, 16, 17 as a result of wireless comtnunication 28 of a vehicle-mounted controller or Electronic Control Unit (ECU) 24 with a key fob 26 via antennas 22.
[0017] For example, when the fob 26 is brought inside a range 14 of about 1.5 meters around the vehicle doors 18, an unlock command may be issued that results in the performance of a vehicle door unlock function or operation. When the fob 26 is taken outside a range 16 of about 2.0 meters around the vehicle doors 18, a lock command may be issued that results in the performance of a vehicle door lock function or operation. All other areas outside of these small zones 14, 16, 17 are "dead zones" where no locking or unlocking functions occur.
[0018] As previously described, the ECU or controller 24 determines the location of the key fob 26 based on the transmission of radio frequency (RF) or low frequency (LF) signals (e.g., 125 kHz) between the key antenna (not shown) and the vehicle based antennas 22, typically by using the strength of the signals 28 to indicated range. The zones 14, 16, 17 created with the use of antennas 22 are three-dimensional and have a spherical shape, but also may be described as having a circular or arching shape in a cross-section of the zones 14, 16, 17 taken in a horizontal plane substantially parallel to the ground.
[0019] Figure 2 is a simplified, exemplary diagram of a vehicle remote function system 10, including exemplary coverage zones 14, 16, for determining a location of a fob 26 relative to a vehicle 12 using ultra-wide band wireless signals 28. The remote function system 10 shown in Figure 2 and disclosed herein is able to locate the fob 26 more precisely around the entire vehicle 12 allowing for more exact and encompassing zones between the fob 26 and antennas 22 located in the vehicle 12. Figure 2 illustrates this improved zoning strategy, with exemplary zones 14, 16. These zones 14, 16 may be custom tailored for individual vehicle needs and customer requirements.
[0020] The system shown in Figure 2 implements fuli lock and unlock zones 14, 16 around the entire vehicle 12. Via triangulation, trilateration, or the use of a Kalman filter, ECU 24 can precisely locate the fob 26 around the entire vehicle 12 allowing for more encompassing zones. Tn particular, zones 14, 16 may be created that completely envelope the whole vehicle 12 and allow for the fob 26 to he tracked in and out of these zones 14, 16 and perform locking/unlocking functions relative to the location of the fob 26, such as performing an unlock operation when the fob 26 moves into zone 14, and a lock operation when the fob 26 moves outside zone 16.
[0021] Ultra-wide band (UWB) antennas 22 at various locations in/on the vehicle 12 can provide tailored lock/unlock zones 14, 16 around the entire vehicle 12, with locking/unlocking or other vehicle functions occurring inside/outside zones 14, 16 as a result of wireless communication 28 by ECU 24 with a key fob 26. In that regard, and as used herein, an antenna 22 may be an internal antenna of an UWB transceiver unit, or an antenna in communication with a centrally located UWB transceiver, such as via coaxial cabling, which centrally located UWB transceiver may be provided as part of ECU 24.
[0022] The UWB antennas 22 may he positioned at different locations in/on the vehicle 12.
As seen in Figure 2, one antenna 22 may be located in the instrument panel area 32 of the vehicle 12, while three other antennas 22 may be located in the headliner 30 of the vehicle 12. It should be noted, however, that any number of antennas 22 may be employed and may be positioned at any of a variety of locations in/on the vehicle 12.
[0023] While two substantially rectangular zones 14, 16 are depicted in Figure 2, any number of zones of other shapes and sizes/ranges may be employed or created. In that regard, the UWB system 10 of Figure 2 permits as many zones to be created as desired, with each zone having any type of shape, size and/or location desired, including inside or outside the vehicle 12, on one or both sides of the vehicle 12, and/or in front or back of the vehicle 12, which zones may or may not circumscribe, envelope or encompass the vehicle 12, in whole or in part, and may have any orientation.
S
[0024] For example, in contrast to the prior art passive entry system depicted in Figure 1, which has spherical shaped zones 14, 16, 17, the vehicle remote function system 10 illustrated in Figure 2 allows for zones 14, 16 having sharp corners. The zones 14, 16 may be three-dimensional rectangular prisms, having a substantially rectangular cross-section in a horizontal plane parallel to the wound. Other shapes, however, may alternatively be used for these or additional zones, which may be spheres, regular or uniform three-dimensional prisms, or irregular or non-uniform in shape or volume. As well, differently shaped zones maybe provided for use in remotely performing different vehicle functions, such as an arched zone for a door unlock function, an octagonal zone for a door lock function, and a square zone for a trunk release function.
[0025] Such zones may also be located inside or outside the vehicle, and may have any volume. For example, the zones 14, 16 illustrated in Figure 2 are located outside the vehicle 12 and encompass and/or have a volume greater than that of the vehicle 12. However, the system shown in Figure 2 allows for zones that may be located outside the vehicle 12 on one side thereof, such as may be desired to allow a door unlock function only when the fob 26 approaches the vehicle 12 from one side.
[0026] The system 10 of Figure 2 also allow for zones that may be located inside the vehicle 12, in whole or in part, and that may have a relatively small volume, such as less than the volume of an average person. Such smaller zones located inside the vehicle 12 may be used to determine the precise location of the fob 26 within the vehicle, such as in a vehicle glove box andJor for use in push-to-start systems.
[0027] The zones employed or created may also be provided for use in remote performance of other vehicle functions in addition to or instead of remote door lock/unlock or trunk release. For example, a combination of zones may be created outside the vehicle 12 which can be used to recognize gestures by a user as the fob 26 moves (which may include back and forth movement) between zones in order to perform remote engine start, headlight activation and/or any other type of vehicle function.
[0028] With reference again to Figure 2, a vehicle remote function system 10 is provided for determining a location of a fob 26 relative to a vehicle 12. The system 10 may comprise a plurality of antennas 22 adapted to be mounted at different locations in the vehicle 12. Each antenna 22 is for use in transmitting and/or receiving ultra-wide band wireless signals 28 to mdJor from the fob 12, which is also provided with a antenna and transmitter/transceiver (not shown).
[0029] The system 10 may also comprise a controller 24 adapted to be moullted in the vehicle 12 and configured for communication with the ailtennas 22. The controller 24 is for use in determining the location of the fob 26 relative to the vehicle 12 based on ultra-wide brnid wireless signals 28 transmitted between the antennas 22 and the fob 26. The controller 24 is configured to locate the fob within one of a plurality of three-dimensional zones 14, 16, wherein one of the plurality of zones 14, 16 configured to have a non-spherical shape.
[0030] As previously described, one of the plurality of zones 14, 16 configured to have a non-spherical shape may be configured to substantially envelope the vehicle 12. One of the plurality of zones 14, 16 configured to have a non-spherical shape may be configured to have a substantially rectangular cross-section in a horizontal plane. As well, one of the plurality of zones 14, 16 configured to have a non-spherical shape is configured to be positioned substantially outside the vehicle.
[0031] As also previously described, one of the plurality of zones configured to have a non-spherical shape may be configured to be positioned Oil a side of the vehicle and to have a volume less than a volume of the vehicle. One of the plurality of zones may he configured to have a volume less than a volume of a person, may be coilfigured to be positiolled substaxtially outside the vehicle, and/or maybe configured to he positioned suhstanti ally inside the vehicle.
[0032] The plurality of antennas 22 may comprise an antenna 22 adapted to be mounted in a vehicle headliner 30 and an antenna 22 adapted to be mounted in a vehicle instrument panel 32. The controller 24 may also be configured to determine the location of the fob using a Kalman filter, trilateration, triangulation, or any other similar means or method.
[0033] As seen in Figure 2, when the fob 26 is brought inside a first range 14 anywhere around the vehicle 12, an unlock command may be issued that results in the performance of a vehicle door unlock function or operation. When the fob 26 is taken outside a second range 1 anywhere around the vehicle 12, a lock command maybe issued that results in the performance of a vehicle door lock function or operation.
[0034] Referring next to Figure 3, a simplified, exemplary flowchart of a method 40 is showil for determining a location of a fob relative to a vehicle using ultra-wide band wireless signals, the method 40 for use in a vehicle remote function system, such as that described in connection with Figure 2. As seen in Figure 3, the method 40 may comprise transmitting 42 ultra-wide band wireless sigilals between the vehicle and the fob. The method may further comprise determining 44 the location of the fob within one of a plurality of three-dimensional zones, one of the plurality of zones having a non-spherical shape, based on the ultra-wide hand wireless signals transmitted between the vehicle and the fob.
[0035] As previously described in connection with the system depicted in Figure 2, the one of the plurality of zones having a non-spherical shape may substantially envelope the vehicle. As well, the one of the plurality of zones having a non-spherical shape may he positioned substantially outside the vehicle on a side of the vehicle and have a volume less than a volume of the vehicle. The one of the plurality of zones also may have a volu ne less than a volume of a person.
[0036] The activities, functions or steps of the system 10 and method 40 for determining the position of a key fob 26 relative to a vehicle 12 described above may also be implemented in or as a computer readable medium having non-transitory computer executable illstructions stored thereon for determining a location of a key fob for use in a vehicle access system. More specifically, the computer executable instructions stored on the computer readable medium may include instructions for performing any or all of the activities, functions or steps described above in connection with the system 10 or method 40 disclosed herein.
[0037] In that regard, the ECU 24 may comprise an appropriately programmed processor or other hardware, software, or any combillation thereof for performing the functions described herein.
The ECU 24 may also comprise a memory, which may provide the computer readable medium and have the computer executable instructiolls stored thereon described above.
[0038] As is readily apparent from the foregoing, a vehicle remote function system and a method have been described for locating a key fob more precisely around a vehicle. The embodiments of the system and method described allow for more exact and encompassing zones using ultra-wide band wireless signals conmiunicated betweell the fob and vehicle mounted anteilnas. The improved zonillg strategy of the embodiments of the system and method described allow zones to he custom tailored for individual vehicle needs and customer requirements.
[0039] While various embodiments of a vehick remote function system and a method for locating a key fob re'ative to a vehicle using ulira-wide band wireless signals have been illustrated and described herein, they are exemplary only and it is not intended that these embodiments illustrate aild describe all those possible. Illstead, the words used herein are words of description rather than limitation, md it is ullderstood that various changes may be made to these embodiments without departing from the scope of the following c'aims.

Claims (12)

  1. WHAT IS CLAIMED IS: -A vehicle remote function system for determining a location of a fob relative to a vehicle, the system comprising: a plurality of antennas adapted to he mounted at different locations in the vehicle, each antenna for use in transmitting and/or receiving ultra-wide hand wireless signals to and/or from the fob; and a controller adapted to be mounted in the vehicle and configured for communication with the antennas, the controller for use in determining the location of the fob relative to the vehicle based on ultra-wide band wireless signals transmitted between the antennas and the fob; the controller being configured to locate the fob within one of a plurality of three-dimensional zones; wherein the one of the plurality of zones is configured to have a non-spherical shape being positioned substantially outside the vehicle.
  2. 2. The system of claim 1 wherein one other of the plurality of zones is configured to have a non-spherical shape and is configured to substantially envelope the vehicle.
  3. 3. The system of claim 1 wherein the oe of the plurality of zones configured to have a non-spherical shape is configured to have a substantially rectailgular cross-section in a horizontal plane.
  4. 4. The system of claim I wherein the one of the plurality of zones configured to have a non-spherical shape outside the vehicle is configured to be positioned on a side of the vehicle mid to have a volume less than a volume of the vehicle.
  5. 5. The system of claim I wherein one of the plurality of zones is configured to have a volume less than a volume of a person.
  6. 6. The system of claim 1 wherein one other of the plurality of zones is configured to be positioned substantially inside the vehicle.
  7. 7. The system of claim 1 wherein the plurality of antennas comprise an antenna adapted to be mounted in a vehicle headliner md an antenna adapted to be moullted ill a vehicle instrument panel.
  8. 8. The system of claim 1 wherein the controller is configured to determille the location of the fob using one of a Kalman filter, trilateration and triangulation.
  9. 9. A method for use in a vehicle remote function system for determining a location of a fob relative to a vehicle, the method comprising: transmitting ultra-wide band wireless signals between the vehicle and the fob; and determining the location of the fob within one of a plurality of three-dimensional zones, one of the plurality of zones having a non-spherical shape, based on the ultra-wide band wireless signals transmitted between the vehicle and the fob; wherein the one of the plurality of zones having a non-spherical shape is positioned substantially outside the vehicle.
  10. 10. The method of claim 9 wherein the one of the plurality of zones is positioned 011 a side of the vehicle and has a volume less than a volume of the vehicle
  11. 11. The method of claim 10 wherein one of the plurality of zones has a volume less than a volume of a person.
  12. 12. A vehicle remote function system for determining a location of a fob relative to a vehicle substantially as herein described with reference to the accompanying drawing Figures 2 and 3.13-A method for use in a vehicle remote function system suhstantially as herein described with reference to the accompanying drawing Figures 2 and 3.
GB201406818A 2012-06-25 2013-06-24 Vehicle remote function system and method Active GB2510737B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261663736P 2012-06-25 2012-06-25
US13/923,522 US20130342379A1 (en) 2012-06-25 2013-06-21 Vehicle Remote Function System and Method
GB1311161.2A GB2505287B (en) 2012-06-25 2013-06-24 Vehicle remote function system and method

Publications (3)

Publication Number Publication Date
GB201406818D0 GB201406818D0 (en) 2014-05-28
GB2510737A true GB2510737A (en) 2014-08-13
GB2510737B GB2510737B (en) 2015-05-13

Family

ID=51220925

Family Applications (1)

Application Number Title Priority Date Filing Date
GB201406818A Active GB2510737B (en) 2012-06-25 2013-06-24 Vehicle remote function system and method

Country Status (1)

Country Link
GB (1) GB2510737B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522554A (en) * 2014-01-22 2015-07-29 Lear Corp Wireless device localization
US10768280B2 (en) 2017-07-03 2020-09-08 Nxp B.V. Ranging apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206119A1 (en) * 2017-04-10 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft A method, computer readable medium, system, and vehicle comprising the system for determining a location range of a mobile terminal relative to the vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024734A1 (en) * 2003-09-04 2005-03-17 Daimlerchrysler Ag Access control system for vehicles
WO2007073969A1 (en) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Wireless object use authentication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024734A1 (en) * 2003-09-04 2005-03-17 Daimlerchrysler Ag Access control system for vehicles
WO2007073969A1 (en) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Wireless object use authentication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522554A (en) * 2014-01-22 2015-07-29 Lear Corp Wireless device localization
US10768280B2 (en) 2017-07-03 2020-09-08 Nxp B.V. Ranging apparatus and method

Also Published As

Publication number Publication date
GB2510737B (en) 2015-05-13
GB201406818D0 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US20130342379A1 (en) Vehicle Remote Function System and Method
US9679430B2 (en) Vehicle remote function system and method for determining vehicle FOB locations using adaptive filtering
US9852560B2 (en) Vehicle remote function system and method for effectuating vehicle operations based on vehicle FOB movement
GB2505287A (en) Vehicle remote function system using ultra-wide band transmissions
US11889380B2 (en) Method and system for establishing microlocation zones
US10793109B2 (en) Methods and systems for providing bluetooth-based passive entry and passive start (PEPS) for a vehicle
US9378603B2 (en) Keyless entry system
US8284020B2 (en) Passive entry system and method for a vehicle
US20170018128A1 (en) Vehicle peps system using directional sensors
GB2513206A (en) Vehicle system for detecting a three-dimensional location of a wireless device
US20120092129A1 (en) Method to track vehicle key near vehicle for smart entry
US20150208207A1 (en) Wireless device localization
US10235823B1 (en) Passive entry system of a vehicle having relay attack prevention
US20190212425A1 (en) System and method for communicating with a vehicle
US20170050615A1 (en) Mobile device for a keyless access or actuation system for motor vehicles
JP2009155864A (en) Vehicle radio device, control method therefor, and program
US11782122B2 (en) Detection device
JP5918101B2 (en) Key position determination device
JP2018178506A (en) Vehicle door control system
GB2510737A (en) Vehicle remote function system using ultra-wide band transmissions
CN111163977B (en) Access system and access verification method
CN108290549B (en) Authorizing use of motor vehicles
US12036947B2 (en) Method and system for relay attack prevention using subzones
GB2522554A (en) Wireless device localization
CN108349459B (en) Authorizing use of motor vehicles