GB2504720A - Reinforced joints between precast concrete elements - Google Patents
Reinforced joints between precast concrete elements Download PDFInfo
- Publication number
- GB2504720A GB2504720A GB1214123.0A GB201214123A GB2504720A GB 2504720 A GB2504720 A GB 2504720A GB 201214123 A GB201214123 A GB 201214123A GB 2504720 A GB2504720 A GB 2504720A
- Authority
- GB
- United Kingdom
- Prior art keywords
- headed
- bars
- studs
- joint
- ajoint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011178 precast concrete Substances 0.000 title claims description 8
- 239000004567 concrete Substances 0.000 claims abstract description 8
- 241000288673 Chiroptera Species 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000011372 high-strength concrete Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009416 shuttering Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/02—Arrangement or construction of joints; Methods of making joints; Packing for joints
- E01C11/04—Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
- E01C11/14—Dowel assembly ; Design or construction of reinforcements in the area of joints
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/02—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
- E04B1/04—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
- E04B1/043—Connections specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/48—Dowels, i.e. members adapted to penetrate the surfaces of two parts and to take the shear stresses
- E04B1/483—Shear dowels to be embedded in concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/023—Separate connecting devices for prefabricated floor-slabs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/10—Load-carrying floor structures formed substantially of prefabricated units with metal beams or girders, e.g. with steel lattice girders
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/18—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly cast between filling members
- E04B5/19—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly cast between filling members the filling members acting as self-supporting permanent forms
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/18—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly cast between filling members
- E04B5/21—Cross-ribbed floors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/06—Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
- E04C5/0645—Shear reinforcements, e.g. shearheads for floor slabs
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Joining Of Building Structures In Genera (AREA)
- Reinforcement Elements For Buildings (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
A joint between two adjacent faces (14) of concrete elements is formed by overlapping headed bars (16) projecting from the adjacent faces, with transverse headed studs (22) between the bars. The studs may be supported by a rail running the length of the joint and supported on the bars. Alternatively the studs may project from the upper surface of a beam underlying the joint.
Description
Joints Between Precast Concrete Elements 10001] The present invention relates to the use of headed anchor reinforcement bars in the creation ofjoints between precast concrete elements.
10002] Hcadcd deformed bars arc deformed reinforcing bars, such as ribbed carbon steel reinforcing bars, with a head attached at one or both ends. Smooth reinforcing bars are also used with heads. In this specification a reinforcing bar with a head attached at both ends is described as a double headed stud whether or not the shank is deformed for better anchorage.
10003] The use of lap splices anchored by headed bars in creating joints between precast elements is described in a technical paper entitled Lap Splices Anchored by Headed Bars by by M. Keith Thompson, Antonio Ledesma, James 0. Jirsa, and John E. Breen published in AC1 Structural Journal V 103, No 2 March April 2006. This primarily addresses their use in bridge structures. This paper describes the mechanics of such joints. A more detailed report by the same authors from May 2002 has been published by the Center for Transportation and Research, The University of Texas, Austin as Report 1855-3. These documents are herein referred to as the Texas papers. A typical joint width under consideration in these documents is 10 inches (0.254 m).
10004] Headed bars are also used in the reinforcement of flat slabs, particularly to deal with loealised high shear stresses around column heads. The RFA-Teeh SHEARTECH® system proposes the use of double headed shear studs welded to carrier/spacer rails. These stud carrying rails are designed to be placed liked rays within the slab surrounding a column in order to provide shear reinforcement. The studs are positioned vertically within the surrounding slab parallel to the axis of the column.
There are other proprietary systems for use around eolunm heads offered by Halfen and Max Frank of Germany.
10005] The present invention is particularly concerned with the problems of the construction of floors within large multi-storey structures requiring flat slab constructions to create a framework defining muhiple floors. These floors can be assembled from precast concrete planks. The joints between these planks and between othcr structural clcmcnts such as concrctc columns, bcams, walls which arc uscd in a variety of configurations, must be sfructurally robust. It is also desirable to minimise the use of high strength concrete in making of these joints.
100061 In accordance with the present invention, a joint structure is employed in which headed bars are interlaced in the manner of a lap joint as described in the Texas papers with the addition of a stud carrying rail along the length of the joint supported on the overlapping headed bars and suspending double headed studs between them. When such a reinforcement structure is embedded in high-strength concrete, a robust structural joint of relatively small dimcnsions can bc constructcd. In analytical tcrms, thc transfcr of forccs can bc considcrcd as a scrics of comprcssion struts and tcnsion tics according to normal strut and tie theory, with the strength of the compression struts enhanced by the confining effect of the intermediate studs on their carrying rail.
100071 Where joints are required to be formed above a steel beam element, single headed studs can be pre-welded to the beam top flange to provide the intersecting studs between the overlapping headed bars.
100081 Using this form ofjoint construction, the precast structural elements of the system can bc manufactured as large elements. The elements will be typically produced using lightweight concrete to reduce their weight and ease handling and transportation logistics.
100091 Joints of the system between adjacent slab elements, beam and slab elements, wall and slab elements and other similar scenarios, require temporary supporting of one element from the other element. This is typically provided by temporary steel channels bolted on top of one element and which rest on the adjacent element through eantilevering action.
100101 In order that the invention may be well understood, an embodiment of ajoint between adjacent floor planks will now be described by reference to the accompanying diagrammatic drawings, in which: 100111 Figure 1 shows a perspective view of an embodiment of a partly constructed floor using the joint of the present invention; 10012] Figure 2 shows a perspective view of adjacent p'anks with reinforcement to construct a joint in accordance with the invention in place; 10013] Figure 3 shows a view of the joint from above; and 100141 Figure 4 shows a perspective view of an alternative embodiment of a partly constructed floor using the joint of the present invention.
10015] A floor in a multi-storey construction is assembled from precast lightweight concrete (LWC) planks 10. The planks 10 are supported by concrete beams 26 and columns 28 and prior to the construction of the joints between the beams and planks and adjoining planks, the elements are supported by means of steel channels 30.
10016] Joints 12 are constructed as shown in Figures 2 to 3. Each edge face 14 of a beam or plank 10 has a series of headed bars 16 projecting from it. In this example, the bars are shown in two vertically spaced layers. The reinforcement is precast into the planks so that they can be laid edge to edge with the headed bars of one plank interlaced and overlapping with those of the adjacent plank without the bars coming into contact or conflict with one another. The edge faces of both the beams and planks have similar arrays of headed bars at the same spacing so that joints of the same form can be made between all the elements.
10017] Two longitudinal bars 18 are laid along the length of the joint and a rail 20 which supports a series of double headed studs 22 rests on the uppermost headed bars.
The studs are spaced along the rail so that they can be positioned centrally between the headed bars. The douNe headed studs 22 hang vertieaHy from the rail 20.
100181 In this embodiment, the rail comprises two rods to which the heads 24 of the double headed studs are welded. The rail is there to keep the double headed studs 22 in position at the required spacing and performs no structural part of the joint. It may be relatively lightweight. The lowermost head of the double headed studs lies within the joint.
100191 Shuttering is provided beneath the joint so that concrete can be poured into the gap to surround the reinforcement and bring the surface of the joint up to the level of the adjoining surfaces of the precast planks. Once joints have been completed, the channels are removed.
100201 It is envisaged that a joint width typically of 200mm can be employed with a lap length of 100mm using reinforcing bars of a typical diameter of 16 to 25mm.
100211 In Figure 4, a steel framework 4 is made up of steel beams 6 that define a perimeter of the floor and at least one horizontal beam 8 within it. This framework 4 is used to support a plurality of lightweight concrete (LWC) planks 10, which are laid on the framework 4 and connected to it. The joints are then made as previously described.
100221 Where a joint overlies a beam 6, the rail supported double headed studs, can be replaced by a series of single headed studs welded to the top of the beam. These perform the same function within the joint.
Claims (6)
- CLAIMSI. Ajoint between two precast concrete elements each having headed bars pmjccting from adjoining faces of thc clemcnts to be joincd; the elements being positioned so that their respective headed bars are interleaved and overlap but arc not in contact with one another; and headed studs positioned transversely to and between the headed bars, the bars and studs being enclosed in concrete.
- 2. Ajoint as claimed in claim!, wherein the headed studs are double headed studs supported on a rail which rests on the overlapped headed bars.
- 3. Ajoint as claimed in claim 1, wherein the headed studs are welded to a beam beneath the joint.
- 4. Ajoint as claimed in claim 1 wherein each element edge has a double row of headed bars.
- 5. Ajoint as claimed in claim 1, wherein at least one longitudinal bar is positioned along the length of the joint.
- 6. A joint between two precast concrete elements substantially as herein described with reference to the accompanying drawings.Amendment to the claims have been filed as follwsCLAIMS1. A longitudinal joint between two precast concrete elements each having headed bars projecting from adjoining fitces of the elements to bc joincd; the elements being positioned so that theft respective headed bars are interleaved and overlap but arc not in contact with onc another; and headed studs positioned transversely to a length of the joint and transversely to and between the headed bats, the bars and studs being enclosed in concrete.2. Ajoint as claimed in claim I, wherein the headed studs are double headed studs supported on a rail which rests on the overlapped headed bars.3. Ajoint as claimed in claim!, wherein the headed studs are welded to a beam beneath the joint.4. Ajoint as claimed in claim 1 wherein each element edge has a double row of CO headed bars.5. Ajoint as claimed in claim!, wherein at least one longitudinal bar is positioned LI) along the length of the joint.0 6. Ajoint between two precast concrete elements substantially as herein described 0 with reference to the accompanying drawings.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1214123.0A GB2504720B (en) | 2012-08-07 | 2012-08-07 | Joints between precast concrete elements |
US13/960,166 US20140041328A1 (en) | 2012-08-07 | 2013-08-06 | Joints Between Precast Concrete Elements |
EP13750098.9A EP2882905B1 (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
CA2880440A CA2880440A1 (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
PCT/GB2013/052094 WO2014023948A1 (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
JP2015525940A JP2015528534A (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
CN201380041619.0A CN104583505A (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
AU2013301332A AU2013301332B2 (en) | 2012-08-07 | 2013-08-06 | Joints between precast concrete elements |
KR20157003796A KR20150040297A (en) | 2012-08-07 | 2013-08-06 | Joints Between Precast Concrete Elements |
IL237088A IL237088A0 (en) | 2012-08-07 | 2015-02-04 | Joints between precast concrete elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1214123.0A GB2504720B (en) | 2012-08-07 | 2012-08-07 | Joints between precast concrete elements |
Publications (3)
Publication Number | Publication Date |
---|---|
GB201214123D0 GB201214123D0 (en) | 2012-09-19 |
GB2504720A true GB2504720A (en) | 2014-02-12 |
GB2504720B GB2504720B (en) | 2014-07-16 |
Family
ID=46935067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB1214123.0A Active GB2504720B (en) | 2012-08-07 | 2012-08-07 | Joints between precast concrete elements |
Country Status (10)
Country | Link |
---|---|
US (1) | US20140041328A1 (en) |
EP (1) | EP2882905B1 (en) |
JP (1) | JP2015528534A (en) |
KR (1) | KR20150040297A (en) |
CN (1) | CN104583505A (en) |
AU (1) | AU2013301332B2 (en) |
CA (1) | CA2880440A1 (en) |
GB (1) | GB2504720B (en) |
IL (1) | IL237088A0 (en) |
WO (1) | WO2014023948A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021026600A1 (en) * | 2019-08-13 | 2021-02-18 | LWC Research Pty Ltd | Prefabricated floor panel, construction and method therefor |
NL2027123A (en) * | 2020-09-30 | 2022-06-01 | Jiangsu Vocational Inst Architectural Tech | A connector for prefabricated floor slabs and its use method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015038805A1 (en) * | 2013-09-11 | 2015-03-19 | Aditazz, Inc. | Concrete deck for an integrated building system assembly platfrom |
US9388562B2 (en) * | 2014-05-29 | 2016-07-12 | Rocky Mountain Prestress, LLC | Building system using modular precast concrete components |
TWI659143B (en) * | 2017-09-07 | 2019-05-11 | Ruentex Engineering & Construction Co., Ltd. | Method of laying out abnormal-shaped grid decks |
US10895071B2 (en) | 2017-12-29 | 2021-01-19 | Envision Integrated Building Technologies Inc. | Structural frame for a building and method of constructing the same |
EP3816360A1 (en) * | 2019-10-30 | 2021-05-05 | Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO | Load bearing device |
US12110682B2 (en) * | 2021-09-30 | 2024-10-08 | Rustin J Russo | Building system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2698111A1 (en) * | 1992-11-18 | 1994-05-20 | Razel Freres Entr | Reinforced concrete bridge deck construction method - uses precast units slid onto longitudinal steel beams with starter bars in gap between comprising top flange steel and unit starters and stirrups |
US20050220539A1 (en) * | 2004-04-01 | 2005-10-06 | Yee Alfred A | Precast concrete slab system and method therefor |
WO2006118528A1 (en) * | 2005-05-02 | 2006-11-09 | Nils-Gustav Svensson | Method for production of a floor structure of steel and concrete |
CN201771074U (en) * | 2010-03-29 | 2011-03-23 | 曙光控股集团有限公司 | Ribbed reinforced concrete prefabricated component board |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1624802A (en) * | 1924-09-22 | 1927-04-12 | Rebell Fred | Concrete reenforcing bond and connecter |
US2150982A (en) * | 1936-06-26 | 1939-03-21 | Sheffield Steel Corp | Expansion and contraction joint |
US2319049A (en) * | 1940-02-20 | 1943-05-11 | Albert C Fischer | Load transfer joint apparatus |
US2466106A (en) * | 1944-03-02 | 1949-04-05 | Hoge Edward Clyde | Preformed slab structures |
US2508443A (en) * | 1946-08-20 | 1950-05-23 | John E Carter | Sealed joint for concrete slab road pavements |
US3295286A (en) * | 1961-05-31 | 1967-01-03 | Owens Illinois Inc | Cementitious slab with bolt means |
CH598433A5 (en) * | 1976-07-28 | 1978-04-28 | Camazet Ag | |
US4648739A (en) * | 1985-03-20 | 1987-03-10 | Thomsen Bernard D | Load transfer cell assembly for concrete pavement transverse joints |
US4781006A (en) * | 1986-11-10 | 1988-11-01 | Haynes Harvey H | Bolted chord bar connector for concrete construction |
CH676615A5 (en) * | 1988-04-22 | 1991-02-15 | Bau Box Ewiag | |
JPH07247632A (en) * | 1994-01-19 | 1995-09-26 | Taisei Corp | Prestressed, precast concrete beam, and joined structure of same with column |
DE4412598A1 (en) * | 1994-04-13 | 1995-10-19 | Zellner Wilhelm | Dowel bar for shear reinforcement |
CA2165848C (en) * | 1995-12-21 | 1999-03-30 | Amin Ghali | Stud-trough reinforcing system for structural concrete |
CN2247687Y (en) * | 1996-01-16 | 1997-02-19 | 韩鑫森 | Antiseismic prefabricated slab for building |
US6293063B2 (en) * | 1997-06-30 | 2001-09-25 | David A. Van Doren | Cast-in-place hybrid building system |
DE10350384A1 (en) * | 2002-10-28 | 2004-05-13 | Sprungala, Hubert, Dr.-Ing. | Ceiling element bears by end section on beam of support construction, and ceiling element and beam form composite girder, and ceiling element has cavities extending at right angles to longitudinal extent of beam |
JP2005083072A (en) * | 2003-09-09 | 2005-03-31 | Advance:Kk | Joint structure and joint construction method for precast concrete slab |
US7632037B2 (en) * | 2004-08-05 | 2009-12-15 | Construction Materials, Inc. | Dowel apparatus and method |
US7540121B2 (en) * | 2004-08-13 | 2009-06-02 | Bam Ag | Steel-concrete hollow bodied slab or ceiling |
US20060179730A1 (en) * | 2005-02-01 | 2006-08-17 | Ben C. Gerwick, Inc. | Wall structural member and method for constructing a wall structure |
KR100926140B1 (en) * | 2007-08-21 | 2009-11-10 | 이완영 | Structure for using precast members and construction method thereof |
CA2619333C (en) * | 2008-01-28 | 2014-12-09 | Amin Ghali | Stud support system for structural concrete |
DE502009000173D1 (en) * | 2009-03-12 | 2010-12-23 | Gerhard Krummel | Device for bonding prefabricated concrete parts |
WO2011030178A1 (en) * | 2009-09-08 | 2011-03-17 | Gutzwiller Holding Ag | Reinforcing element for recessed parts in concrete structures |
-
2012
- 2012-08-07 GB GB1214123.0A patent/GB2504720B/en active Active
-
2013
- 2013-08-06 AU AU2013301332A patent/AU2013301332B2/en active Active
- 2013-08-06 US US13/960,166 patent/US20140041328A1/en not_active Abandoned
- 2013-08-06 KR KR20157003796A patent/KR20150040297A/en not_active Application Discontinuation
- 2013-08-06 WO PCT/GB2013/052094 patent/WO2014023948A1/en active Application Filing
- 2013-08-06 CN CN201380041619.0A patent/CN104583505A/en active Pending
- 2013-08-06 EP EP13750098.9A patent/EP2882905B1/en active Active
- 2013-08-06 JP JP2015525940A patent/JP2015528534A/en active Pending
- 2013-08-06 CA CA2880440A patent/CA2880440A1/en not_active Abandoned
-
2015
- 2015-02-04 IL IL237088A patent/IL237088A0/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2698111A1 (en) * | 1992-11-18 | 1994-05-20 | Razel Freres Entr | Reinforced concrete bridge deck construction method - uses precast units slid onto longitudinal steel beams with starter bars in gap between comprising top flange steel and unit starters and stirrups |
US20050220539A1 (en) * | 2004-04-01 | 2005-10-06 | Yee Alfred A | Precast concrete slab system and method therefor |
WO2006118528A1 (en) * | 2005-05-02 | 2006-11-09 | Nils-Gustav Svensson | Method for production of a floor structure of steel and concrete |
CN201771074U (en) * | 2010-03-29 | 2011-03-23 | 曙光控股集团有限公司 | Ribbed reinforced concrete prefabricated component board |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021026600A1 (en) * | 2019-08-13 | 2021-02-18 | LWC Research Pty Ltd | Prefabricated floor panel, construction and method therefor |
NL2027123A (en) * | 2020-09-30 | 2022-06-01 | Jiangsu Vocational Inst Architectural Tech | A connector for prefabricated floor slabs and its use method |
Also Published As
Publication number | Publication date |
---|---|
GB201214123D0 (en) | 2012-09-19 |
JP2015528534A (en) | 2015-09-28 |
CA2880440A1 (en) | 2014-02-13 |
GB2504720B (en) | 2014-07-16 |
EP2882905A1 (en) | 2015-06-17 |
EP2882905B1 (en) | 2016-04-27 |
AU2013301332B2 (en) | 2017-04-13 |
IL237088A0 (en) | 2015-03-31 |
CN104583505A (en) | 2015-04-29 |
KR20150040297A (en) | 2015-04-14 |
WO2014023948A1 (en) | 2014-02-13 |
US20140041328A1 (en) | 2014-02-13 |
AU2013301332A1 (en) | 2015-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013301332B2 (en) | Joints between precast concrete elements | |
US20120240497A1 (en) | Construction system | |
CN104264895A (en) | Prestressed concrete F slab and frame structure system | |
US9045894B2 (en) | Center-supported wall panel | |
RU2609504C1 (en) | Steel and concrete bridge span | |
KR101129502B1 (en) | Synthetic girder of i type | |
RU2014139332A (en) | UNIVERSAL HOUSING SYSTEM | |
US2776471A (en) | Method of erecting prestressed floor sections | |
CN112593632A (en) | Fabricated beam-slab structure suitable for large-span high-clearance building and construction method thereof | |
KR102630598B1 (en) | Construction structure of bridge having corrugated steel plate structure and construction method of bridge using the same | |
US10138630B1 (en) | Concrete shearwall and assemblies thereof, and related methods | |
CA2625897A1 (en) | Reinforced concrete forming system | |
KR100588193B1 (en) | Hybrid Structere System of Steel and Reinforced Concrete for Slim Floor System and Construction Method thereof | |
US20220356706A1 (en) | Reinforcing Steel Skeletal Framework | |
KR101402620B1 (en) | Construction method of slab type rahmen birdge using Half-PC slab for slab bridge | |
KR101127427B1 (en) | Rahmen bridge and construction method thereof | |
JP6952628B2 (en) | Joint structure of half PCa shear wall | |
CN111566291A (en) | Detachable floor structure | |
CN215829267U (en) | Pin-connected panel bridge construction protector | |
JP5841786B2 (en) | Steel concrete composite slab construction panel and steel concrete composite slab | |
US1099953A (en) | Fireproof-building construction. | |
US1141160A (en) | Reinforced-concrete building construction. | |
JP2010281040A (en) | Steel concrete composite floor slab, panel for constructing the steel concrete composite floor slab, and construction method for steel concrete composite floor slab | |
RU2250966C2 (en) | Composite reinforced concrete frame for multistory building | |
NO342534B1 (en) | A connecting means of a building structure and a method of using same |