GB2560256A - Coated superhard particles and composite materials made from coated superhard particles - Google Patents
Coated superhard particles and composite materials made from coated superhard particles Download PDFInfo
- Publication number
- GB2560256A GB2560256A GB1801821.8A GB201801821A GB2560256A GB 2560256 A GB2560256 A GB 2560256A GB 201801821 A GB201801821 A GB 201801821A GB 2560256 A GB2560256 A GB 2560256A
- Authority
- GB
- United Kingdom
- Prior art keywords
- particles
- temperature
- superhard
- mixture
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 111
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 238000000576 coating method Methods 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 26
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 239000010949 copper Substances 0.000 claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000010931 gold Substances 0.000 claims abstract description 11
- 229910052709 silver Inorganic materials 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052737 gold Inorganic materials 0.000 claims abstract description 9
- 239000004332 silver Substances 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 7
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 238000009707 resistance sintering Methods 0.000 claims abstract description 7
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910039444 MoC Inorganic materials 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 73
- 239000010432 diamond Substances 0.000 claims description 73
- 238000005245 sintering Methods 0.000 claims description 16
- 229910052582 BN Inorganic materials 0.000 claims description 10
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 238000002490 spark plasma sintering Methods 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 238000007731 hot pressing Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 12
- 238000005087 graphitization Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 5
- 229910003178 Mo2C Inorganic materials 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052729 chemical element Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C20/00—Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
- C23C20/06—Coating with inorganic material, other than metallic material
- C23C20/08—Coating with inorganic material, other than metallic material with compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62831—Carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6265—Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62836—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62897—Coatings characterised by their thickness
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
- C22C1/101—Pretreatment of the non-metallic additives by coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/427—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Electrochemistry (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
Abstract
A method for coating superhard particles comprises mixing superhard particles with MoO3 particles, the ratio of the superhard particles to the MoO3 particles being between 1:1 and 1:10 by weight, heating the mixture in a vacuum or protective atmosphere at a first temperature of no more than 795°C and heating the mixture at a second temperature of at least 830°C in an inert gas at a pressure of between 0.1 and 10 MPa. During the increase from the first to the second temperature, at least one annealing process in a vacuum or protective atmosphere is preferably performed. After heating the mixture at the second temperature, a heat treatment in an atmosphere selected from a vacuum, hydrogen, nitrogen CO or CO2 may be performed. Also disclosed are coated particles having a superhard material core and a coating of molybdenum carbide. A composite material comprises the coated particles and a metallic binder comprising copper, silver or gold or alloys or mixtures thereof. A method of fabricating said composite material comprises forming a green body from a mixture of metallic binder material and the coated particles and electrical resistance sintering the mixture by applying current and pressure.
Description
(56) Documents Cited:
WO 2001/023630 A1 US 5914156 A1
CN 104674053 A US 20100319900 A1 (71) Applicant(s):
Element Six GMBH
Stadeweg 18, Burghaun 36151, Germany (72) Inventor(s):
Igor Yurievich Konyashin Hauke Hinners Bernd Heinrich Ries
Applied Surface Science, Vol. 402,10 January 2017, Ma et al., Mo2C coating on diamond: Different effects on thermal conductivity of diamond/AI and diamond/Cu composites, pp. 372 - 383.
(58) Field of Search:
INT CL C04B, C22C, C23B, H01L
Other: EPODOC, WPI, PATENT FULLTEXT, XPESP,
INSPEC (74) Agent and/or Address for Service:
Element Six (UK) Limited
Global Innovation Centre, Fermi Avenue,
Harwell Campus, Didcot, Oxfordshire, OX11 0QR, United Kingdom (54) Title of the Invention: Coated superhard particles and composite materials made from coated superhard particles
Abstract Title: Coated superhard particles, methods of coating and methods of fabricating a composite material comprising said particles (57) A method for coating superhard particles comprises mixing superhard particles with MoO3 particles, the ratio of the superhard particles to the MoO3 particles being between 1:1 and 1:10 by weight, heating the mixture in a vacuum or protective atmosphere at a first temperature of no more than 795°C and heating the mixture at a second temperature of at least 830°C in an inert gas at a pressure of between 0.1 and 10 MPa. During the increase from the first to the second temperature, at least one annealing process in a vacuum or protective atmosphere is preferably performed. After heating the mixture at the second temperature, a heat treatment in an atmosphere selected from a vacuum, hydrogen, nitrogen CO or CO2 may be performed. Also disclosed are coated particles having a superhard material core and a coating of molybdenum carbide. A composite material comprises the coated particles and a metallic binder comprising copper, silver or gold or alloys or mixtures thereof. A method of fabricating said composite material comprises forming a green body from a mixture of metallic binder material and the coated particles and electrical resistance sintering the mixture by applying current and pressure.
Figure 1
1/3
Figure 1
Figure 2
2/3
Figure 4
3/3
Figure 5A
Figure 5B
COATED SUPERHARD PARTICLES AND COMPOSITE MATERIALS MADE
FROM COATED SUPERHARD PARTICLES
FIELD
The invention relates to the field of methods of coating superhard particles and composite materials made from coated superhard particles.
BACKGROUND
It is known that diamond is thermodynamically unstable at low pressures. However, in the absence of metals having a catalytic effect with the respect to the diamond graphitization (metals such as iron, cobalt and nickel) the transformation of diamond into sp2-hybridised carbon is very slow. Therefore, diamond-based composite materials with a binder comprising metals not having a catalytic effect on the diamond graphitization can be sintered by fast sintering techniques for short times of the order of 0.5 seconds, for example by the so-called “Electrical Resistance Sintering (ERS) technique (see: J.M. Montes, J.A. Rodriguez, F.G. Cuevas, J. Cintas, Consolidation by Electrical Resistance Sintering of Ti Powder, Journal of Materials Science, 46(15) (2010) 5197-5207). This technique is based on the employment of electrical discharges at high currencies of about 10 kA, pressures of about 100 MPa and sintering time of roughly 0.1 to 1.0 seconds. A problem with sintering diamond with binders consisting of copper, silver, gold etc. is, however, the poor wettability of diamond by such metals. This means that diamond particles with coatings, which are well wetted by these metals, must be used instead of pure diamond. However, it is extremely difficult or in many cases hardly possible to obtain uniform and thick coatings on fine diamond particles (50 pm in size or finer).
US 5,723,177 discloses a diamond-impregnated hard material, in which diamond grains are surrounded by a coating of refractory compounds or metals of more than 1 mm thick. The coating is deposited by known Chemical Vapour Deposition (CVD) or Physical Vapour Deposition (PVD) methods. A disadvantage of this method is that it is impossible to obtain uniform coatings on fine diamond particles of below 100 pm in size.
EP 1751320B1 discloses a wear part consisting of a diamond-based composite material comprising a metallic or intermetallic binder with a melting point of below 1400°C, which is composed of more than 50 wt.% Cu and carbide-forming chemical elements. The carbide-forming chemical elements dissolved in the melted binder phase react with the diamond grains forming a carbide coating during liquid-phase sintering of a green body. The major disadvantage of the method and material disclosed in EP 1751320B1 is that the formation of the carbide coating is performed directly during sintering. The formation of the carbide coating on the diamond grains is a time-consuming process, so that before the carbide coating forms, much of the liquid Cu-based binder flows away from the green body on the initial stage of the sintering process leaving only very little binder within the green body being sintered.
WO 2006/027675 discloses as process of current-pulse sintering of diamond or c-BN particles with a binder selected from silicon, germanium, etc. The binder materials represent brittle chemical elements, so that the material fabricated by the method disclosed in WO 2006/027675 has a limited application as a result of its very low fracture toughness.
EP 774527 describes a sintered carbide alloy containing coated diamond grains with a Co-based binder and fabricated by electric-resistance heating under pressure. The diamond grains are coated with a refractory metal by use of conventional coating techniques, which does not allow obtaining thick and uniform coatings on fine diamond particles, so that graphitization of diamond due to its interaction with melted Co during sintering cannot be prevented.
It is known that ΜοΟδ is a chemical compound that melts at 795°C without decomposing. It has surprisingly been found that the wettability of superhard materials such as diamond by liquid MOO3 is very good at temperatures between 795°C and 1000°C. If one mixes diamond particles with MOO3 powder and subsequently heats the mixture to temperatures exceeding 795°C, MOO3 melts to form a liquid melt and each diamond particle becomes surrounded by layers of the melt. It has also been surprisingly found that the MOO3 melt reacts with the diamond in the temperature range between 795°C and 1100°C forming a thick and uniform coating of M02C without any diamond graphitization. The reaction should be performed in an inert gas to prevent the evaporation of liquid MOO3, which has a high vapour pressure in a vacuum. The heating rate should be limited to prevent intensive boiling of the melt containing the diamond particles and spraying them within the furnace volume. The vapour pressure of liquid MOO3 is very high at temperatures above 1000°C. Therefore, the excess MOO3 melt which did not react with the diamond can be removed from the diamond/MoO3 mixture at temperatures of above 1000°C due to annealing leaving only the diamond particles with the uniform and thick M02C coating.
The wettability of the diamond particles with such a coating by a liquid such as molten Cu, Ag and/or Au is found to be good, allowing the production of dense diamond-based composite materials with binders containing these metals without any diamond graphitization.
An objective is to obtain superhard particles with continuous and thick M02C coatings. Such particles can be used for the fabrication of composite materials comprising the coated superhard particles and a binder based on metals that do not have a catalytic effect with respect to issues such as diamond graphitization. Such metals include copper, silver, gold, or alloys or mixtures thereof.
SUMMARY
According to a first aspect, there is provided a method for coating superhard particles. The method comprises mixing superhard particles with ΜοΟδ particles, the ratio ofthe superhard particles to the MOO3 particles being between 1:1 and 1:10 by weight. The particles mixture is heated in a vacuum or protective atmosphere at a first temperature of no more than 795°C. The particles mixture is subsequently heated at a second temperature of at least 830°C in an inert gas at a pressure of between 0.1 and 10 MPa.
It is thought that is the ratio of superhard particles to MOO3 is less than 1:1, then there is not enough melt of MOO3 to uniformly surround each superhard particle. If the ratio is above 1:10 then the superhard particles become agglomerated.
As an option, the first temperature is no more than 770°C.
The second temperature is optionally selected from any of at least 1000°C, at least 1100°C, and at least 1200°C.
As an option, the heating rate from the first temperature to the second temperature is increased at no more than 2°C/minute. As a further option, the heating rate from the first temperature to the second temperature is increased at no more than 1°C/minute. As a further option, the heating rate from the first temperature to the second temperature is increased at no more than 0.5°C/minute.
The method optionally comprises, during the increase from the first temperature to the second temperature, performing at least one annealing process in a vacuum or protective atmosphere for between 5 and 360 minutes.
The method optionally comprises, after heating the particles mixture at the second temperature, performing a heat treatment in an atmosphere selected from any of a vacuum, hydrogen, nitrogen, CO and CO2, between the first and second temperatures for between 5 and 360 minutes.
As an option, the superhard particles are selected from any of diamond, cubic boron nitride, and cubic boron nitride coated with borides and/or nitrides of molybdenum.
According to a second aspect, there is provided coated particles comprising a superhard material core and a coating of molybdenum carbide prepared using the method described above in the first aspect.
As an option, the superhard material mean particle size is from 1 to 400 pm. As a further option, the superhard material mean particle size is from 5 to 100 pm.
The molybdenum carbide optionally has an average thickness of at least 1 pm.
The superhard materials are optionally selected from any of diamond, cubic boron nitride, and cubic boron nitride coated with borides and/or nitrides of molybdenum.
According to a third aspect, there is provided a composite material comprising coated particles as described above in the second aspect, and a metallic binder comprising any of copper, silver, gold, and alloys or mixtures thereof.
As an option, the metallic binder comprises any of dissolved Mo, C, B and N.
According to a fourth aspect, there is provided a method of fabricating the composite material described above in the third aspect. The method comprises providing a mixture of metallic binder particles and coated particles as described above in the second aspect. A green body is formed from the mixture. The mixture is then Electrical Resistance Sintered by applying sufficient current and pressure to the green body for a sufficient time.
As an option, the current density is between 10 and 100 kA/mm2, the pressure is between 10 to 200 MPa, and the sintering time is from 100 ms to 1 second.
As an option, the sintering temperature is from 1000°C to 2000°C.
Note that hot pressing and Spark Plasma Sintering may be used as an alternative to ERS.
BRIEF DESCRIPTION OF THE DRAWINGS
Non-limiting embodiments will now be described by way of example and with reference to the accompanying drawings in which:
Figure 1 is a flow diagram showing exemplary steps for coating diamond particles;
Figure 2 is a flow diagram showing exemplary steps for manufacturing a composite material from coating diamond particles;
Figure 3 is a scanning electron micrograph showing coated diamond particles;
Figure 4 shows the microstructure of a diamond composite made from the diamond particles shown in Figure 3; and
Figures 5A and 5B show the microstructure of a further exemplary coated diamond power.
DETAILED DESCRIPTION
As described above, the inventors have found a way to provide a thick, uniform coating of M02C on diamond particles. An exemplary method is shown in Figure 1. The following numbering corresponds to that of Figure 1:
51. Superhard particles, such as diamond particles, are mixed with ΜοΟδ particles. The ratio of the superhard particles to the MOO3 particles varies between 1:1 and 1:10 by weight.
52. The mixture of particles is heated in a vacuum or protective atmosphere at a first temperature of no more than 770°C.
53. The temperature of the mixture is then increased from the first temperature. In optional embodiments, at least one annealing steps is carried out during this temperature increase for between 5 and 360 minutes in the vacuum or protective atmosphere. The heating rate may be no more than 0.5°C/minute, no more than 1.0°C/minute, or no more than 2.0°C/minute.
54. The mixture is then heated at a second temperature of at least 1000°C in an inert gas at a pressure of between 0.1 and 5 MPa. Higher temperatures of at least 1100°C or at least 1200°C may be suitable.
55. After heating at the second temperature, a further heat treatment may be applied. This further heat treatment is performed in in an atmosphere selected from any of a vacuum, hydrogen, nitrogen, CO and CO2, between the first and second temperatures for between 5 and 360 minutes.
The steps described above allow the production of coated particles that have a superhard core with a uniform, thick Mo2C coating.
The superhard mean particle size varies from 1 to 400 pm, or from 5 to 100 pm, and the Mo2C has an average thickness of at least 1 pm.
The coated particles may be used to create a composite material of coated superhard particles in a metallic binder. The metallic binder comprises copper, gold, silver, or alloys or mixtures of copper, gold or silver. The wettability of the superhard particles with a Mo2C coating by a liquid metal such as Cu, Ag and/or Au is sufficient to allow the production of dense superhard material-based composite materials with binders containing these metals. Where the superhard material is diamond, this substantially prevents diamond graphitization.
Figure 2 is a flow diagram showing exemplary steps to create such a composite material. The following numbering corresponds to that of Figure 2.
56. A mixture of coated superhard particles as described above, and metal particles of any of copper, gold or silver is provided.
57. A green body is of the mixed particles is prepared, for example by cold pressing.
S8. The green body is sintered either by Electrical Resistance Sintering (ERS) the mixture by applying sufficient current and pressure to the green body for a sufficient time, by hot pressing, by Spark Plasma Sintering (SPS) or any other suitable sintering process. Where ERS is used, a current density of between 10 and 100 kA/mm2, a pressure of between 10 to 200 MPa, a sintering time from 100 ms to 1 second and a sintering temperature from 1000°C to 2000°C has been found to be suitable.
The following Examples are provided to better illustrate the processes and materials described above:
Example 1
Diamond particles with a mean grain size of about 6 pm was mixed with a MOO3 powder at a ratio of 1:5 by weight in a Turbular mixer. The mixture was loaded into an alumina crucible. The crucible containing the powder mixture was put into a furnace and first heated in a vacuum to a temperature of 200°C. The crucible was then heated up to a temperature of 750°C in Ar at a pressure of 0.3 MPa at a heating rate of 27minute. The crucible was subsequently heated up to a temperature of 1100°C at in Ar at a pressure of 0.5 MPa at a heating rate of 0.5°/minute followed by annealing in a vacuum at 1100°C for 1 hour. XRD studies of the diamond powder after such a heattreatment indicated the presence of only the M02C phase, forming a coating, and the diamond phase; no other phases were found. Figure 3 is a micrograph showing the morphology of the coated powder thus obtained, indicating that the coated diamond particles were not agglomerated. SEM/EDX studies of the particles of the coated diamond shown in Figure 3 provided evidence that each analysed particle was uniformly coated by molybdenum, which is present in form of M02C, according to the XRD results.
The coated diamond particles were mixed with 30 wt.% of Cu powder and subjected to an Electric Resistance Sintering (ERS) process at an applied current density of 40 kA/mm2 and pressure of 100 MPa for 500 ms. Figure 4 shows the microstructure of the composite material thus obtained, indicating substantially no residual porosity; the density of the sample was found to be 8.54 g/cm3. Raman spectroscopic studies of the sample indicated no diamond graphitization.
Example 2
Diamond particles with a mean grain size of about 50 pm were mixed with a MoO3 powder at a ratio of 1:3 by weight in a Turbular mixer and the mixture was loaded into an alumina crucible. The coating procedure was performed in the same way as described in Example 1. XRD studies of the diamond powder after the coating procedure indicated the presence of the M02C and diamond phases. Figures 5A and 5B show the morphology of the coated diamond particles, indicating that the coated diamond particles are not agglomerated. SEM/EDX studies of the particles of the coated diamond particles shown in Figures 5A and 5B provide evidence that each particle is uniformly coated with Mo, which is present in form of M02C according the XRD results.
The coated diamond particles were mixed with 30 wt.% Cu and sintered using ERS at same conditions as in Example 1. As a result, a dense composite material substantially free of porosity was obtained; the density of the sample was equal to 8.34 g/cm3. Raman spectroscopic studies of the diamond-coating interface in the sample indicated no diamond graphitization.
Example 3
Diamond particles with a mean grain size of about 6 pm were coated using the procedure described in Example 1. The coated diamond particles were subsequently mixed with 30 wt.% Cu and sintered by hot pressing at a pressure of 30 MPa, temperature of 1200°C for 1 hour in Ar. The composite material obtained was substantially porous-free with a density of 8.68 g/cm3. Raman spectroscopic studies of the sample indicated no diamond graphitization.
Example 4
Diamond particles with a mean grain size of about 6 pm was coated according the procedure described in Example 1. The resultant coated diamond particles were mixed with 30 wt.% Cu and sintered by the Spark Plasma Sintering technique (SPS) (see e.g. Guillon et al.: Field-Assisted Sintering Technology I Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. In: ADVANCED ENGINEERING MATERIALS 2014, doi: 10.1002/adem.201300409) at a pressure of 50 MPa, temperature of 1200°C in Ar for 10 minutes. The composite material obtained thereby was slightly porous with a density of 7.85 g/cm3. Raman spectroscopic studies of the sample indicated no diamond graphitization.
The materials obtained according to the examples can be used for the fabrication of wear parts subjected to intensive wear, erosion and abrasion, e.g. nozzles for spraying abrasive liquids, components of grinding wheels, segments and inserts for stonecutting, etc. The materials in form of thick layers can be sintered onto hardmetal substrates to improve their impact resistance.
The above description refers to the particle size of powders. As used herein, sizes expressed in length units such as micrometres (microns) refer to the equivalent circle diameters (ECD), in which each grain is regarded as though it were a sphere. The ECD distribution of a plurality of grains can be measured by means of laser diffraction, in which the grains are disposed randomly in the path of incident light and the diffraction pattern arising from the diffraction of the light by the grains is measured. The diffraction pattern may be interpreted mathematically as if it had been generated by a plurality of spherical grains, the diameter distribution of which being calculated and reported in terms of ECD. Aspects of a grain size distribution may be expressed in terms of various statistical properties using various terms and symbols. Particular examples of such terms include mean, median and mode. The size distribution can be thought of as a set of values Di corresponding to a series of respective size channels, in which each Di is the geometric mean ECD value corresponding to respective channel i, being an integer in the range from 1 to the number n of channels used.
Mean values obtained by means of laser diffraction methods may be most readily expressed on the basis of a distribution of grain volumes, the volume mean can be represented as D[4,3] according to a well-known mathematical formula. The result can be converted to surface area distribution, the mean of which being D[3,2] according to a well-known mathematical formula. Unless otherwise stated, mean values of size distributions as used in the present disclosure refer to the volume-based mean D[4,3], The median value D50 of a size distribution is the value dividing the plurality of grains into two equal populations, one consisting of grains having ECD size above the value and the other half having ECD size at most the value. The mode of a size distribution is the value corresponding to the highest frequency of grains, which can be visualised as the peak of the distribution (distributions can include more than one local maximum frequency and be said to be multi-modal). Various other values d(y) can be provided, expressing the size below which a fraction y of the plurality of grains reside in the distribution. For example, d(0.9) refers to the ECD size below which 90 per cent of the grains reside, d(0.5) refers to the ECD size below which 50 per cent of the grains reside and d(0.1) refers to the ECD size below which 10 per cent ofthe grains reside.
While all of the above examples refer to diamond, the method may be used on any superhard material, including diamond, cubic boron nitride, and cubic boron nitride coated with nitrides or borides of molybdenum.
While this invention has been particularly shown and described with reference to embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as defined by the appended claims.
Claims (19)
1. A method for coating superhard particles, the method comprising:
mixing superhard particles with ΜοΟδ particles, the ratio of the superhard particles to the MOO3 particles being between 1:1 and 1:10 by weight;
heating the particles mixture in a vacuum or protective atmosphere at a first temperature of no more than 795°C;
subsequently heating the particles mixture at a second temperature of at least 830°C in an inert gas at a pressure of between 0.1 and 10 MPa.
2. The method according to claim 1, wherein the first temperature is no more than 770°C.
3. The method according to claim 1 or claim 2, wherein the second temperature is selected from any of at least 1000°C, at least 1100°C, and at least 1200°C.
4. The method according to any one of claims 1 to 3, wherein the heating rate from the first temperature to the second temperature is increased at no more than 2°C/minute.
5. The method according to any one of claims 1 to 4, wherein the heating rate from the first temperature to the second temperature is increased at no more than rC/minute.
6. The method according to any one of claims 1 to 5, wherein the heating rate from the first temperature to the second temperature is increased at no more than 0.5°C/minute.
7. The method according to any one of claims 1 to 6, further comprising, during the increase from the first temperature to the second temperature, performing at least one annealing process in a vacuum or protective atmosphere for between 5 and 360 minutes.
8. The method according to any one of claims 1 to 7, further comprising, after heating the particles mixture at the second temperature, performing a heat treatment in an atmosphere selected from any of a vacuum, hydrogen, nitrogen, CO and CO2, between the first and second temperatures for between 5 and 360 minutes.
9. The method according to any one of claims 1 to 8, wherein the superhard particles comprise any of diamond, cubic boron nitride, and cubic boron nitride coated with borides and/or nitrides of molybdenum.
10. Coated particles comprising a superhard material core and a coating of molybdenum carbide prepared using the method of any one of claims 1 to 9.
11. Coated particles according to claim 10, wherein the superhard material mean particle size is from 1 to 400 pm.
12. Coated particles according to claim 10 or 11, wherein the superhard material mean particle size is from 5 to 100 pm.
13. Coated particles according to any one of claims 10 to 12, in which the molybdenum carbide has an average thickness of at least 1 pm.
14. Coated particles according to any one of claims 10 to 13, wherein the superhard materials comprise any of diamond, cubic boron nitride, and cubic boron nitride coated with borides and/or nitrides of molybdenum.
15. A composite material comprising coated particles according to any one of claims 10 to 14, and a metallic binder comprising any of copper, silver, gold, and alloys or mixtures thereof.
16. A method of fabricating the composite material according to claim 15, the method comprising:
providing a mixture of metallic binder particles and coated particles according to any one of claims 10 to 14;
forming a green body of the mixture; and
Electrical Resistance Sintering the mixture by applying sufficient current and pressure to the green body for a sufficient time.
17. The method of fabricating the composite material according to claim 16, in which the current density is between 10 and 100 kA/mm2, the pressure is between 10 to 200 MPa, and the sintering time is from 100 ms to 1 second.
18. The method of fabricating the composite material according to any one of claims 16 or 17, in which the sintering temperature is from 1000°C to 2000°C.
19. A method of fabricating the composite material according to claim 16, the 5 method comprising any of hot pressing and Spark Plasma Sintering, SPS.
Intellectual
Property
Office
Application No: GB1801821.8 Examiner: Dr Karen Payne
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1701902.7A GB201701902D0 (en) | 2017-02-06 | 2017-02-06 | Coated super hard particles and composite materials made from coated superhard particles |
Publications (2)
Publication Number | Publication Date |
---|---|
GB201801821D0 GB201801821D0 (en) | 2018-03-21 |
GB2560256A true GB2560256A (en) | 2018-09-05 |
Family
ID=58462372
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB1701902.7A Ceased GB201701902D0 (en) | 2017-02-06 | 2017-02-06 | Coated super hard particles and composite materials made from coated superhard particles |
GB1801821.8A Withdrawn GB2560256A (en) | 2017-02-06 | 2018-02-05 | Coated superhard particles and composite materials made from coated superhard particles |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB1701902.7A Ceased GB201701902D0 (en) | 2017-02-06 | 2017-02-06 | Coated super hard particles and composite materials made from coated superhard particles |
Country Status (2)
Country | Link |
---|---|
GB (2) | GB201701902D0 (en) |
WO (1) | WO2018141963A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919472B (en) * | 2019-12-06 | 2022-10-14 | 中国科学院福建物质结构研究所 | Preparation method and application of molybdenum carbide two-dimensional material |
CN111590080A (en) * | 2020-05-21 | 2020-08-28 | 南京航空航天大学 | Method for rapidly preparing titanium-plated diamond copper composite material by SPS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914156A (en) * | 1995-05-02 | 1999-06-22 | Technical Research Associates, Inc. | Method for coating a carbonaceous material with a molybdenum carbide coating |
WO2001023630A1 (en) * | 1999-09-24 | 2001-04-05 | 3M Innovative Properties Company | Fused abrasive bodies comprising an oxygen scavenger metal |
US20100319900A1 (en) * | 2009-10-21 | 2010-12-23 | Andrey Mikhailovich Abyzov | Composite material having high thermal conductivity nd process of fabricating same |
CN104674053A (en) * | 2015-01-26 | 2015-06-03 | 北京科技大学 | Method for preparing diamond/Cu electronic packaging composite material with high thermal conductivity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5350553B1 (en) * | 2013-04-26 | 2013-11-27 | 冨士ダイス株式会社 | Heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance, device for electronics using the heat sink, and heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance Manufacturing method |
-
2017
- 2017-02-06 GB GBGB1701902.7A patent/GB201701902D0/en not_active Ceased
-
2018
- 2018-02-05 WO PCT/EP2018/052811 patent/WO2018141963A1/en active Application Filing
- 2018-02-05 GB GB1801821.8A patent/GB2560256A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914156A (en) * | 1995-05-02 | 1999-06-22 | Technical Research Associates, Inc. | Method for coating a carbonaceous material with a molybdenum carbide coating |
WO2001023630A1 (en) * | 1999-09-24 | 2001-04-05 | 3M Innovative Properties Company | Fused abrasive bodies comprising an oxygen scavenger metal |
US20100319900A1 (en) * | 2009-10-21 | 2010-12-23 | Andrey Mikhailovich Abyzov | Composite material having high thermal conductivity nd process of fabricating same |
CN104674053A (en) * | 2015-01-26 | 2015-06-03 | 北京科技大学 | Method for preparing diamond/Cu electronic packaging composite material with high thermal conductivity |
Non-Patent Citations (1)
Title |
---|
Applied Surface Science, Vol. 402, 10 January 2017, Ma et al., "Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites", pp. 372 - 383. * |
Also Published As
Publication number | Publication date |
---|---|
GB201801821D0 (en) | 2018-03-21 |
GB201701902D0 (en) | 2017-03-22 |
WO2018141963A1 (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8968834B2 (en) | Wear part with hard facing | |
JP3309897B2 (en) | Ultra-hard composite member and method of manufacturing the same | |
JP6703757B2 (en) | Cermet and cutting tool | |
US11525173B2 (en) | Component comprising hard metal composition including fused tungsten carbide | |
EP2433727B1 (en) | Method for producing a sintered composite body | |
Chu et al. | Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization | |
CN114302780A (en) | WC-based cemented carbide powder, WC-based cemented carbide member, and method for producing WC-based cemented carbide member | |
Shen et al. | Interfacial characteristics of titanium coated micro-powder diamond abrasive tools fabricated by electroforming-brazing composite process | |
JP4282767B2 (en) | Coating powder and method for producing the same | |
US10906104B2 (en) | Systems and methods of fabrication and use of wear-resistant materials | |
GB2560256A (en) | Coated superhard particles and composite materials made from coated superhard particles | |
JP2011046555A (en) | Sintered compact of diamond fine particles and production method | |
CN106133191B (en) | Method for producing a coating by cold gas spraying of a coating material and coating | |
Dudina et al. | Spark plasma sintering of diamond-and nanodiamond-metal composites | |
JP2003183761A (en) | Tool material for fine working | |
CN104928615A (en) | Method for using La2O3 to regulate and control preparation of titanium carbide coating on surface of titanium alloy | |
JP2011051890A (en) | Adhesive composite coating film for diamond and for diamond-containing material, and method for producing the same | |
Hayashi et al. | High-temperature erosion rates of Fe–Cr–C alloys produced by mechanical alloying and sintering process | |
JPH08260129A (en) | Cubic boron nitride composite cermet tool and its production | |
Nakonechnyi et al. | The Nanostructured NiFeCrWMo High-Entropy Alloy Binder versus Traditional Co Binder for WC-based Hard Alloys | |
JP2001020056A (en) | Titanium carbide/tungsten boride coating | |
JP4123529B2 (en) | Ultrafine particle dispersion film | |
Mohammadikhah | Improved Wear Resistance of the Fe-C-Ti Hardfacing Alloy by Nano TiCN Particles Fabricated by FCAW-N2 | |
Dong et al. | Wear and morphology investigation of Cr/WC-Ni based composite coating by laser cladding | |
CN117324639A (en) | Nickel-copper-based diamond composite material and electron beam additive manufacturing process and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |